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Abstract 
There is a significant indicator of the pregnant uterus is uterine contraction (UC) in clinic. 

Electrohysterogram (EHG), recorded by electrodes on the abdominal of the pregnant, has 

recently been used as a promising method for monitoring UC. This paper aimed to evaluate 

the effect of various electrode configurations on applying a convolutional neural network 

(CNN) to recognize UCs with EHG signals. In this study, the EHG signals were in the 

Icelandic 16-electrode EHG database. Seven 8-electrode configurations and thirteen 4-

electrode configurations were selected from the 4 × 4 electrode grid in the database. EHG 

signals from these selected electrode configurations were divided into UC and non-UC 

sections of 45s and saved as images. A CNN was modeled with convolutional, max-pooling, 

and fully connected layers. Each 8-electrode configuration with 7152 images and each 4-

electrode configuration with 3576 images were applied to train CNN to recognize UCs, 

respectively. In the light of the area under the curve (AUC) and the accuracy, a scoring 

method was proposed to evaluate the effect of different electrode configurations on 

recognizing the UCs. The EHG signals from the 4-electrode configuration which covered 

the upper left of the uterus showed the best classification performance (AUC=0.79, 

Accuracy=0.72, Score=2.30). To conclude, the study could be utilized to optimize the 

electrode configuration, reduce the number of electrodes, and improve the feasibility of a 

practical application. 

 

 

KEYWORDS Electrohysterogram (EHG), electrode configuration, uterine contraction 

(UC), convolutional neural network (CNN)  
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1 INTRODUCTION 

 

Uterine contraction (UC) is a phenomenon of the myometrium associated with pregnancy 

or labor.1 An important feature of labor is regular UCs, which are accompanied by the 

disappearance and expansion of the cervix.2 When the pregnant are in labor, they will feel 

the UCs gradually frequent and synchronous until the labor is completed.3 Recording of 

UCs is a routine procedure of obstetrical care during pregnancy and labor, which provides 

important information for obstetricians. The current clinical approaches to assess UCs are 

manual palpation, external tocodynamometry (TOCO) and intrauterine pressure catheter 

(IUPC). Palpation is low-priced and no risks but a trained clinical observer is always 

needed. External TOCO is non-invasive, but the location of the sensor, tension of the elastic 

strap, properties of the maternal abdominal wall (fat thickness, abdominal muscles), and 

size of the uterus determines its recording quality. TOCO is an indirect indication of UC, 

and its interpretation depends on the clinician's subjectivity. Internal IUPC is confined to 

the invasion and infection.4 Therefore, there is an urgent clinical need to develop 

alternatives to detect UC. 

UCs are produced by electrical activity in the myometrium. Electrohysterogram (EHG) 

is representative of the electrical activity of the uterine muscle, and therefore can be 

measured for monitoring and analyzing uterine contractility, which contributes to a better 

understanding of labor.5-6 Compared with TOCO, EHG has a better ability of contraction 

detection.7-8 In general, multiple electrodes were placed on the abdominal surface of the 

pregnant to record EHG signals.  
Among the published studies with different research objectives, the number and 

configuration of electrodes were various. Icelandic EHG database presents 122 EHG 

recordings with a 44 electrode grid, which enables an independent and novel analysis of 

multi-electrode EHG for labor forecasts and other uses in obstetrical nursing.9 The term-

preterm EHG database (TPEHG DB) contains 300 EHG signals recorded by four electrodes 

placed 3.5cm to the left, right, above and below the navel in a square.10 Similarly, several 

studies for prediction preterm labor also recorded EHG signals by four electrodes 

(symmetric about the navel) with different positions and inter-electrode distance.11-12 In the 

early diagnosis of preterm labor, eight electrodes were symmetrically arranged in two 

columns around the navel.13 During labor, six bipolar electrodes were utilized to recognize 

UCs, with three of which were horizontally along the basal region and the others above 

pubic symphysis at a distance of 300, 200, and 100 mm, respectively.14 Five cross form 

unshielded Ag / AgCl electrodes were used under the umbilicus to achieve a high 

signal/noise ratio.15 A patch with four monopolar electrodes in a diamond shape16 and an 8 

× 8 high-density electrode grid17 have been applied to estimate EHG signal conduction 

velocity. However, the poor sensitivity of spatial selectivity and propagation direction of 

UC propagation with the conventional disc electrode impaired the accuracy of the 

measurements. Concentric ring electrodes have been investigated to recognize the electrical 

activity and additional information for inferring the efficiency of the uterus.18-19 A Spanish 

team evaluated the bipolar, tripolar, and quadripolar laplacian estimates via concentric ring 

electrodes. 20 

More electrodes can provide comprehensive and abundant information about uterine 

activities. On the other hand, it can cause inconvenience for clinical practice. Therefore, 

the effect of electrode configuration on recognizing UCs has to be investigated, which may 

contribute to optimize electrode configuration, reduce the number of electrodes and obtain 

the most useful information for UC recognition.  

A large number of linear and nonlinear characteristics have been fetched from multi-

electrode EHG signals to differentiate labor and pregnancy contractions.21-22 Various 

feature selection methods combined with multiple classifiers have been attempted to select 

the relevant features for UC classification and reduce computational complexity.22 The 

performance of conventional classifiers such as support vector machine, 23 and artificial 

neural network (ANN) 12, 24depend on their input features. The convolutional neural 

network (CNN) is a kind of deep and feed-forward ANNs25, which can make strong and 

mostly right assumptions about the input data for classification.26 CNN has incredible 
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advantages in automatically obtaining the optimal features from training data without 

adding feature extraction and selection algorithm compared with the conventional 

classifiers.27 Its depth and breadth can control the learning capacity of CNN. CNN has been 

applied to detect ventricular ectopic beats by electrocardiograph (ECG) signals with high 

accuracy.28 It is worth investigating its ability to detect UCs by using EHG signals. 

The objective of the research was to establish a CNN to investigate the effect of 

different electrode configurations on UC recognition, and therefore optimize the electrode 

configuration to reduce the number of electrodes for recording EHG signals. 

 

 

2 METHODS 

2.1 Icelandic 16-electrode EHG database 

 

The EHG signals in the Icelandic 16-electrode database were recorded by an array of 4 × 4 

electrodes placed on the abdomen, as shown in Figure 1.9 Electrode 9 to 12 were placed on 

the median axis of the uterus, and electrode 10 and 11 on halfway between the uterine 

fundus and pubic symphysis. The distance between centers of adjacent electrodes was 

17.5mm. The ground and reference electrodes were positioned on the patient's hip. The 

recordings of 45 participants were collected, 122 in all, lasting 0.5-1 hour. The gestational 

age was between 29 weeks +5 days to 41 weeks+5 days. Participants had normal singleton 

pregnancies. The records included 112 late pregnancies and 10 labors. Fifty-seven 

recordings used synthetic oxytocin during pregnancy and labor. In addition to the EHG 

recordings, the database contained TOCO recordings, event comments, and obstetric cases 

of participants. 

 

  
(A) 

 

(B) 

FIGURE 1 The Icelandic 16-electrode EHG recording placement.9 (A) The electrodes 

and TOCO on the abdomen of a pregnant woman (B) Numbering scheme of EHG 

electrode, as seen when looking at the abdomen of the pregnant  

 

2.2 Selection of EHG electrode configuration 

 

2.2.1 8-electrode and 4-electrode configuration  

 

There are quantities of electrode combinations, among which eight and four electrodes have 

been used to predict preterm labor in previous studies.10-13 Concerning the 16-electrode 

configuration in the Icelandic EHG Database, there were C(16,8)=12870 types of 8-

electrode configuration and C(16,4)=1820 types of 4-electrode configuration. Where C 

represented the number of combinations. Among them, seven 8-electrode configurations 

and thirteen 4-electrode configurations were selected based on the uterus shape, as shown 

in Figure 2. Among the 8-electrode configurations, 8H1-8H3 were along the horizontal 

direction, 8V1-8V3 were perpendicular, and 8I was in the form of an inverted cone-like 

uterus. Among the 4-electrode configurations, 4I-4IV were at the left and right, upper and 

bottom, and 4V at the center of the abdomen, 4V1-4V4 along the vertical direction, and 

4H1-4H4 along the horizontal direction. 
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(A)                    (B)                        (C)               

 

 
(D)                                (E) 

FIGURE 2 The selected electrode configurations. (A) 8V1-8V3 are along the vertical 

direction. (B) 8H1-8H3 along the horizontal direction. (C) 8I is in the form of an inverted 

cone. (D) 4I, 4II, 4III, 4IV, and 4V are at the four corners and center of the abdomen. (E) 

4H1, 4H2, 4H3, and 4H4 are along the horizontal direction, and 4V1, 4V2, 4V3, and 

4V4 are along the vertical direction. 

 

2.2.2 EHG signal processing and segmentation 

 

It has been reported that EHG signal is a low frequency signal of 0-5 Hz.29 Firstly, the 

recorded EHG signals were filtered by 0.08 ~ 4Hz band-pass filter to clear baseline wander, 

power-line interference, maternal ECG and motion artifacts up. Next, there was a one-to-

one relationship between the EHG segment and UC based on the TOCO and the UC 

comments. The duration of a UC is approximately 30～60s clinically. Therefore, the EHG 

segment of 45s corresponding to UC was obtained, and the corresponding non-UC EHG 

segment of 45s was obtained 10s after that UC. All EHG segments were then kept as 482 

× 482 pixel images. 
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(A) 

 

 
(B) 

 

FIGURE 3 EHG and TOCO signals from the Icelandic 16-electrode EHG database. (A) 

An example of 16-channel EHG and TOCO signals (B) Time reference in the TOCO 

signal used to segment UC and non-UC EHG.  

 

2.2.3 The architecture of the convolutional neural network 

 

In this study, CNN was employed to classify the corresponding EHG segments of UCs and 

non-UCs. As shown in Figure 4, the CNN architecture was based on the exiting Alex-net 

structure, 26 which consisted of convolution (Conv), max-pooling, and fully connected (FC) 

layers. Conv layers utilized rectified linear unit (ReLU) and local response normalization 

(LRN), and FC layers utilized ReLU, dropout and softmax functions. Max-pooling layer 

was designed to downsample inputs without affecting the recognition capability. The ReLU 

with nonlinear activation function was employed to quick the forward propagation process 

and overcome the question of gradient explosion. Some neurons were randomly ignored in 

the training process by the dropout layer to alleviate the over-fitting problem. The kernel 

size and stride were determined from the trade-off between the effective features and the 
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number of feature maps. The kernel size and stride were usually larger in the first Conv 

layer to reduce the image size and computational complexity for the following layers. 

Preliminary tests optimized all the parameters. Table 1 summarizes the detailed parameters 

of the CNN established.  

 
 

1 Convolution

2 Max-pooling 3 Convolution

4 Max-pooling

5 Convolution

6 Convolution

7 Convolution
8 Max-pooling

9 Fully connected

10 Fully connected

11 Fully connected

UC

482*482

92*92@96 31*31@96
30*30@256

15*15@256

13*13@384

13*13@38413*13@256
6*6@256

409640962

Non-UC

482*482

 
 

FIGURE 4 CNN architecture with eleven layers. 

 
TABLE 1 The detailed parameters of the CNN 

 

Layer Type Kernel Size Other Parameters output 

1 Conv+ReLU 27 Stride=5 92*92@96 

2 Max-pooling 2 Stride=3 31*31@96 

3 Conv+LRN+ReL

U 

2 Stride=1  30*30@256 

4 Max-pooling 2 Stride=2 15*15@256 

5 Conv+LRN+ReL

U 

3 Stride=1  13*13@384 

6 Conv+ReLU 3 Stride=1, pad =2 13*13@384 

7 Conv+ReLU 3 Stride=1, pad =2 13*13@256 

8 Max-pooling 3 Stride=2 6*6@256 

9 FC+ReLU 

+Dropout 

 Dropout_ratio =0.5 4096 

10 FC+ReLU 

+Dropout 

 Dropout_ratio =0.5 4096 
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11 FC +Softmax   2 

* Pad is the number of zero padding 

 
CNN was running on a workstation using Linux Ubuntu 16.04 LTS Operating System, 

and CPUs of Intel Xeon(R) and E5-2630 v4 @2.2GHz *20. 

 

2.2.4 EHG Classification using convolutional neural network 

 

The CNN was established to recognize UC and non-UC segments using EHG signals 

collected by the 8-electrode and 4-electrode configurations separately. From each 8-

electrode structure, 7,152 UC and non-UC images were obtained, of which 4,768 were used 

for training, 1,192 for validation, and 1,192 for testing CNN. Similarly, 3576 images were 

obtained from each 4-electrode configuration, 2384 images of which were used for training, 

596 images for validating and 596 images for testing CNN. The classification results were 

evaluated by the method of five-fold-cross-validation. The hyper-parameters of CNN were 

optimized by using the validation data. The mean of AUC and accuracy over the test sets 

was calculated respectively to evaluate the classification results.  

Receiver operating characteristic (ROC) curve is an authoritative method to 

summarize classifier performance in a series of trade-offs between true positive (TP) and 

false positive (FP) rates. The area under the curve (AUC) is an acceptable performance 

index of ROC curve. In the study, TP is the number of correctly classified UCs and FP is 

the number of incorrectly classified UCs. 

 

2.2.5 Electrode configuration scoring method 

 

Based on the class results, each chosen electrode configuration was scored. AUC was 

considered to be a better measurement method based on formal definitions of 

discriminability and consistency. Therefore, AUC was more important than accuracy when 

evaluating and comparing different electrode configurations. The score of each 

configuration was calculated as follow:   

Score = AUC × weight + accuracy (1) 30-31  

where the “weight,” a positive integer ranging from 2 to10, is used to stress the importance 

of AUC.30-31  

 

3 RESULTS 

 
ROC curve was depicted and AUC was calculated for each 4-electrode and 8-electrode 

configuration. Figure 5 (A) gives an example of ROC from 4I with an AUC of 0.793 (95% 

confidence interval (CI) : 0.71–0.88, P= 0.0021). The AUC and accuracy of the selected 4-

electrode and 8-electrode configurations are shown in Figure5 (B) and (C) respectively. 

For AUC, 4I> 4H2> 4V3> 8I> 4II> 4III> 4V1> 8V2> 4V= 4H4> 8H1= 8H2> 4V2> 8V3> 

4H3> 4H1> 4IV> 8H3> 4V4> 8V1. For accuracy, 4I> 4H1> 8V2> 8V3> 4V2> 4H2> 8H1> 

4II> 4V4> 4V3> 8H3> 4V> 4H4> 8I> 4IV> 8V1> 4III> 4V1> 8H2>4H3. 
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(A) 

 
(B) 

 
(C) 

FIGURE 5 Performance of CNN with 4-electrode and 8-electrode configurations. (A) 

An example of a ROC curve from 8I (B) AUC of different electrode configurations (C) 

Accuracy of different electrode configurations 

Score top 3 electrode configurations with different weights are shown in table 2. The 

results from the weight 1 were different from the other weights. The weight values from 2 

to 10 do not influence the ranking of the top 3, and therefore, the minimum weight of 2 was 

chosen to calculate the score of different electrode configurations. 

 

TABLE 2 Score top 3 electrode configuration with different weights 

         Weight                                      

Rank 
1 2 3 4 5 6 7 8 9 10 

R1 4I 4I 4I 4I 4I 4I 4I 4I 4I 4I 

R2 4H2 4H2 4H2 4H2 4H2 4H2 4H2 4H2 4H2 4H2 



10 

R3 8V2 4V3 4V3 4V3 4V3 4V3 4V3 4V3 4V3 4V3 

*R1: rank the first; R2: rank the second; R3: rank the third. 

 

The score of each 4-electrode and 8-electrode configuration with the weight of 2 is 

shown in Figure 6. The score was ranked as: 4I> 4H2> 4V3> 4II> 8V2> 8I> 8H1> 8V3> 

4V2> 4V> 4III> 4H4> 4H1> 4V1> 4V4> 8H3> 4IV> 8H2> 8V1> 4H3. 

 
FIGURE 6 The 4-electrode and 8-electrode configurations sorted from high score to 

low score 

 

 

4 DISCUSSION 

 
One of the impediments of conventional TOCO was the restricted mobility of pregnant 

women during labor, and therefore a lighter, smaller, or wireless system was required. 

Many authors confirmed that EHG signals could be used as a noninvasive method to 

evaluate the electrical activity of uterus.21, 32 The Icelandic database provided EHG signals 

recorded with16 electrodes. Reducing the number of electrodes that used to record EHG is 

essential for the convenience of pregnant women, particularly when a continuous 

monitoring time is demanded. Using too many electrodes on a patient could limit their 

movements and created stress. We expect to obtain more information with fewer electrodes. 

Efforts to reduce the number of electrodes have brought many benefits because some 

monitoring and experimental processes require patient movement. 

This paper studied the effect of electrode configuration on UC recognition according 

to CNN performance and score ranking. CNN is a class of deep, feed-forward ANN, which 

has not been widely used for EHG classification as far as we know. Among the selected 

electrode configurations, 4I was found to be optimal for classifying UC and non-UC EHG 

segments. Compared with the reported methods of EHG channel combination selection, 
23,33 our proposed method was not relying on feature extraction and selection algorithms 

and yet achieved acceptable results. 

Among the present electrode configurations, the four electrodes with 4I configuration 

covering the upper right part of the uterus achieved the best results. The obstetric textbooks 

generally consent that UCs originate in the upper corner of the uterus and propagate 

downward.34 However, this viewpoint has been debated recently with the work of Rabotti's 

team concerning the conduction velocity of the EHGs,35 and by Young, concerning the 

mechanotransduction effect due to the presence of channels sensitive to stretching.36  

Diab's analysis of the evolution of the real sources during contraction showed a non linear 

propagation of uterine electrical activity.37 Steigrad and Strecker found that about 80% of 

women in pregnancy have uterus torsion to the right.38-39 Therefore, it is reasonable to infer 

that EHG signals from 4I configuration provide more useful information for distinguishing 

between UCs and non-UCs. The optimal electrode configuration varies with the purpose 

of the application. As to the diagnosis of preterm labor with EHG recordings, the electrode 

configurations applied were similar to 4V and 8V2.10, 13 In addition to the adjacent 

horizontal and vertical configurations, other configurations along various directions was be 

helpful to understand the origin and spread of uterine contractions, and to explore the EHG 

methods for the diagnosis of premature delivery. Also, the ability of each electrode to 

recognize UC will be investigated. 
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The scoring method for the electrode configuration has to be investigated further. The 

weight value was used to regulate the importance of AUC and accuracy. AUC has been 

conventionally used in the medical diagnosis, which should be preferred over accuracy for 

evaluating the predictive ability of classifiers.30 In our study, the AUC and accuracy were 

used alone to evaluate the electrode configuration, as shown in Fig5 (B) and (C). However, 

their results were different .With comprehensive consideration, AUC and accuracy were 

combined to evaluate electrode configuration. AUC is suitable for both the balanced or 

unbalanced datasets because it comprehensively considers both the TP rate and FP rate. 

The sensitivity of accuracy to the majority and minority class may lead to the deviation of 

classification. Our proposed method can be generalized to distinguish between the majority 

class (term delivery) and the minority class (preterm delivery) in the future. 

CNN was firstly used for image evaluation so that many of its features were based on 

image representation, and there is a mature CNN parameter adjustment platform for image 

classification.26 The two-dimensional (2-D) CNN is more effective in processing small 

datasets,40-41 although one-dimensional (1-D) CNNs have recently been applied to the 

classification of time series (such as ECG signals).28 So in the first round of testing, the 

time series of EHG signals were segmented and converted into images, which were applied 

to CNN. The performance of CNN could be further improved with the increase of EHG 

signals. We’ll choose to work with 1D CNN and process signals as a time series in the 

future. Once the CNN and electrode configuration were determined, UCs could be detected 

in real-time for all patients. Therefore, wearable UC could be monitored in clinic for a long 

time, and the automatic recognition system could be used to recognize UCs. 

In our study, we agreed that EHG signals still contained other interference components 

even after the preprocessing. The automatic identification of UCs and motion artifacts has 

been proposed recently, 42 which may facilitate the CNN training. We manually determined 

the EHG segments corresponding to UCs based on the TOCO and comments of UCs. The 

EHG segments with too much interference were not used for CNN training. Automatic 

identification of contractions and motion artifacts will be investigated in future study. 

Besides, it is more appropriate to establish CNN models with different EHG signals 

associated with terms. However, we used the same trained CNN for all patients and 

electrode configurations because of the small datasets. More clinical cases of varied 

gestational age would be collected in follow-up research. 

To sum up, this study finds a new method combining CNN classification and scoring 

to evaluate electrode configurations, which is used to identify UCs in EHG signals. Among 

the electrode configurations we have attempted, the 4-electrode configuration covering the 

upper left of the uterus is optimal for identifying UCs in EHG signals. The reduced number 

of electrodes will bring convenience for UC monitoring in practice, and has a good prospect 

in obstetric clinical application. 
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