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Abstract

Gaussian process regression (GPR) has been shown to be a powerful and effective non-

parametric method for regression, classification and interpolation, due to many of its

desirable properties. However, most GPR models consider univariate or multivariate

covariates only. In this paper we extend the GPR models to cases where the covariates

include both functional and multivariate variables and the response is multidimen-

sional. The model naturally incorporates two different types of covariates: multivari-

ate and functional, and the principal component analysis is used to de-correlate the

multivariate response which avoids the widely recognised difficulty in the multi-output

GPR models of formulating covariance functions which have to describe the correla-

tions not only between data points but also between responses. The usefulness of the

proposed method is demonstrated through a simulated example and two real data sets

in chemometrics.

Keywords: Gaussian process regression, functional data analysis, functional

covariates, multivariate response, semi-metrics

1. Introduction

Gaussian process regression (GPR), first proposed by [1] and further developed in

machine learning community [2, 3], has received increasing interests in recent years,
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due to many of its desirable properties, such as the existence of explicit forms, the

ease of obtaining and expressing uncertainty in predictions, the ability to capture a

wide variety of behaviour through covariance functions, and a natural Bayesian inter-

pretation. It has been shown to be a powerful and effective nonparametric method for

regression, classification and interpolation by various empirical studies in a wide range

of fields. See for example the seminal book [3] and the references therein for details. In

chemometrics and related areas, GPR has been applied to a range of problems, such

as calibration of spectroscopic analysers [4, 5], response surface modelling [6], system

identification [7], ensemble learning [5, 8], prediction of transmembrane pressure [9],

and prediction of percutaneous absorption [10, 11], among others.

However, in the literature the covariates involved in Gaussian process methods

are mostly univariate or multivariate, such as time, spatial location, or multivariate

measurements in chemical processes. In this paper we extend the GPR model to the

cases where the covariates contain infinite dimensional variables or functional data.

Functional data concerns data which are collected as curves, surfaces or measurements

varying over a continuum. With the fast advances of technologies which allow to record

data with great accuracy and at high frequency, functional data have become more and

more prevalent in an increasing number of areas, such as biology, engineering, medical

science, meteorology, psychology, statistics, among others. Although multivariate sta-

tistical methods may be applied to some of such data (which is not always the case,

for example, when repeated measurements are sampled at different time points), there

are several advantages treating such data as functional. For instance, functional data

treatment enables us to extract additional information contained in the data, such

as the order information of observations and the derivatives (rates of changes, slope,

curvature, etc); see Levitin et al [12] for more discussion on this aspect.

The statistical methods for analysing functional data, termed as functional data

analysis (FDA), was pioneered by [13] and [14] and have experienced fast development

in recent years. FDA has also been applied in many chemometrical problems. One of

the classical examples in FDA is the spectrometric data, which concerns the absorbance
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measured at a grid of different wavelengths for a sample of finely chopped meat and

has been studied by [15] and many others. Other applications of FDA in chemometrics

include [16], [17], and [18].

The purpose of this paper is two-fold. Firstly, we extend the GPR models to the

situation where the covariates can be functional as well as multivariate. Secondly,

we deal with the regression problem where the response variable is multidimensional.

Multi-response GPR models with multivariate covariates have been studied by sev-

eral authors and various methods have been proposed. For example, [5, 6] treat each

response variable as a Gaussian process and multiple responses are modelled indepen-

dently; [19] treats Gaussian processes as the outputs of stable linear filters; [20] proposes

a direct formulation of the covariance function for multi-response GPR, based on the

idea that its covariance function is assumed to be the “nominal” uni-output covari-

ance multiplied by the covariances between different outputs. In this paper a new

method is proposed to deal with correlated multivariate response variables with multi-

variate and functional covariates. We use the principal component analysis (PCA) to

de-correlate the multivariate response which then enables us to model each principal

component independently by a Gaussian process regression. In the GPR models, the

closeness between the multivariate covariates is calculated by the usual Euclidean dis-

tance, while that between the functional covariates is measured by semi-metrics which

will be explained in more details later.

The rest of the paper is organised as follows. Section 2 briefly reviews the Gaus-

sian process regression, followed by the presentation of the proposed Gaussian process

methods for functional regression with multivariate response. The usefulness of the

proposed method will be illustrated through numerical examples in Section 3. And the

paper is concluded by Section 4.
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2. Methodology

2.1. Gaussian process regression

Let y ∈ R be a response variable and x ∈ R
p the covariate variable. Consider the

following nonlinear regression

y = f(x) + ε

where the function f(·) : Rp 7→ R is unknown. By Gaussian process regression method

f(·) is assumed to follow a Gaussian process with mean function µ(·) and covariance

function k(·, ·). Therefore, if n pairs of data points (x1, y1), . . . , (xn, yn) are observed,

we have

yi = f(xi) + εi,

where {εi}i=1,...,n are independent and identically distributed normal random noises

with mean 0 and variance σ2. Hence (y1, . . . , yn)
T follows an n-variate normal distri-

bution

(y1, . . . , yn)
T ∼ N(µ, K),

where µ = (µ(x1), . . . , µ(xn))
T is the mean vector and K is the n×n covariance matrix

whose (i, j)-th element Kij = k(xi, xj) + σ2δij . Here δij = 1 if i = j and 0 otherwise.

Suppose that x∗ is a test point and y∗ the corresponding response value. Then by

the Gaussian process assumption the joint distribution of (y1, . . . , yn, y
∗)T is an (n+1)-

variate normal distribution with mean (µ(x1), . . . , µ(xn), µ(x
∗))T and covariance matrix





K K∗

K∗T k(x∗, x∗) + σ2





where K∗ = (k(x∗, x1), · · · , k(x
∗, xn))

T . Therefore the conditional distribution of y∗,

given y = (y1, · · · , yn)
T , is N(ŷ∗, σ̂∗2) where

ŷ∗ = µ(x∗) +K∗TK−1(y − µ),

σ̂∗2 = k(x∗, x∗) + σ2 −K∗TK−1K∗.

In Gaussian process regression, the covariance function k(·, ·) reflects our presump-

tions about the unknown function so plays an important role. A number of different
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covariance functions have been proposed and discussed in the literature; see for ex-

ample [3] and [21]. In this paper we will adopt the most commonly used covariance

function - the squared exponential covariance function:

k(xi, xj) = v exp

(

−
1

2

p
∑

d=1

wd(xid − xjd)
2

)

, (1)

and assume the mean function µ(x) to be 0.

The hyper-parameters {v, w1, . . . , wp} in (1) and the noise variance σ2 can be esti-

mated by the maximum likelihood method. The log-likelihood of the training data is

given by

L(v, w1, . . . , wp, σ
2) = −

1

2
log detK −

1

2
yTK−1y −

n

2
log 2π.

The derivative of the log-likelihood with respect to each parameter (denoted by a

generic notation θ) is given by:

∂L

∂θ
= −

1

2
tr

(

K−1∂K

∂θ

)

+
1

2
yTK−1∂K

∂θ
K−1y.

2.2. Gaussian process regression with functional covariates and multivariate response

Now suppose that Y = (y1, . . . , ym)
T is a multivariate response in R

m, X(t) a

q-dimensional functional covariate, and z a p-dimensional multivariate covariate. Con-

sider the problem of nonlinear regression

Y = f (X(t), z) + ε

where f = (f1, . . . , fm)
T is an unknownm-dimensional function, and ε = (ε1, . . . , εm)

T ∼

N(0,Σ) with Σ being an m×m covariance matrix.

Given n observations (X1, z1, Y1), . . . , (Xn, zn, Yn), let µ̂ and Σ̂ be the sample mean

vector and the sample covariance matrix of Y = (Y1, . . . , Yn)
T , respectively, and have

the eigenvalue-(normalised) eigenvector pairs (λ1, e1), . . . , (λm, em) where λ1 ≥ λ2 ≥

· · · ≥ λm ≥ 0. Then by the principal component analysis the principal scores are given

by

Ψ = (Y −U)V ,
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where V = (e1, . . . , em), and U = (µ̂, . . . , µ̂)T is an n×m matrix.

Denote by ψl = (ψ1l, . . . , ψnl)
T the lth column of Ψ, then ψ1, . . . ,ψm are samples

of m uncorrelated random variables. Therefore the regression function f (·, ·) can be

represented by the relationships between ψil and Xi(t) and zi, that is, for l = 1, . . . , m

and i = 1, . . . , n,

ψil = rl(Xi(t), zi) + eil, (2)

where eil ∼ N(0, σ2
l ). By Gaussian process methods, we assume rl(·, ·) to follow a

Gaussian process with mean function 0 and covariance function k(l)(·, ·, ·, ·), defined as

k(l)(Xi, Xj, zi, zj) = v(l) exp

(

−
1

2

p
∑

d=1

w
(l)
d (zid − zjd)

2 −
1

2

q
∑

d=1

η
(l)
d ‖Xid −Xjd‖

2
d

)

, (3)

where ‖ · ‖d denotes the semi-metric defined for the dth component of the functional

covariate. Semi-metrics as a closeness measure for functional data were introduced

in [15], and a number of different semi-metrics have been proposed in the literature.

In this paper two semi-metrics, which are based on functional principal component

analysis (FPCA) and on derivatives, are employed in the numerical examples and are

briefly presented below for completeness.

Let X1, . . . ,Xn be a sample of curves which are identically distributed as the func-

tional random variable X = {X (t); t ∈ T }.

Semi-metric based on FPCA is defined as

‖Xi − Xj‖
FPCA, q =

√

√

√

√

q
∑

k=1

(
∫

[Xi(t)−Xj(t)]vk(t)dt

)2

,

where v1, . . . , vq are the orthonormal eigenfunctions of the covariance operator ΓX (s, t) =

E(X (s)X (t)) associated with the largest q eigenvalues.

Semi-metric based on derivatives is defined as

‖Xi − Xj‖
deriv, q =

√

∫

(

X
(q)
i (t)−X

(q)
j (t)

)2

dt,

where X (q) denotes the qth derivative of X with respect to t, which is computed using

the B-spline approximation of the curves in practice.
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The first semi-metric is suitable for rough functional data, while the derivatives-

type semi-metric is adapted to smooth functions. We refer to [15] for the practical

implementation of the semi-metrics. It should be noted that the semi-metrics in (3) can

be chosen differently for different components of the functional covariate as appropriate.

The model training and prediction for (2) and (3) can be performed in the same

way as presented in the previous subsection. Thus given a test input (X∗(t), z∗), the

predictive means and variances of the scores can then be obtained and denoted by

ψ̂∗

l and σ̂∗2
l for l = 1, . . . , m. Consequently the predictive mean and variance of the

m-dimensional response Y ∗ are given by

E(Y ∗) = µ̂+ V ψ∗, (4)

V ar(Y ∗) = V ar(µ̂) + V Σ∗V T + Σ̂, (5)

where ψ∗ = (ψ̂∗

1, . . . , ψ̂
∗

m)
T , Σ∗ = diag(σ̂∗2

1 , . . . , σ̂
∗2
m ), and V ar(µ̂) = Σ̂/n.

3. Numerical examples

In this section we demonstrate the usefulness of the proposed method using some

numerical examples, including simulated data and real data.

3.1. Simulated example

We first consider a simulated example, which is adapted from [22]. The data are

generated as follows. Let X1, . . . , Xn be n = 150 samples of a functional covariate such

that

Xi(tj) = ai cos(2tj) + bi sin(4tj) + ci(t
2
j − πtj +

2

9
π2) + ǫij ,

where ai, bi and ci (i = 1, . . . , n) are all independent real random variables uniformly

distributed in [0, 1], ǫij ∼ N(0, 0.012) and 0 = t1 < t2 < · · · < t100 = π are equally

spaced points.

The regression functions and the response variables are defined as, for i = 1, . . . , n,

f1(Xi) =
1

100

∫ π

0

X2
i (t)dt, y1i = f1(Xi) + ε1i,
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Figure 1: Sample covariate curves.

f2(Xi) =
1

100

∫ π

0

t cos(t)X2
i (t)dt, y2i = f2(Xi) + ε2i,

with

εi =





ε1i

ε2i



 ∼ N(0,Σ), Σ =





σ2
1 ρσ1σ2

ρσ1σ2 σ2
2



 .

We use σ1 = 0.1, σ2 = 0.12 and ρ = 0.9 or 0.2 to represent strong or weak correlation

between the two response variables, respectively. An example of fifty covariate curves

is shown in Figure 1.

We split the sample into two sets: the training sample (Xi, Yi)i=1,...,100 and the test

sample (Xi, Yi)i=101,...,150. Since the covariate curves are not smooth, the semi-metric

based on FPCA is adopted in our model. The root mean square error (RMSE) be-

tween the predicted and the true regression values for the fifty test samples is used as a

measure of prediction accuracy. The performance of the proposed method (Multi-GP)

is compared with that of the independent models (Ind-GP) where the two response

variables are modelled independently and without considering their correlation. The

above process is repeated 20 times and the average RMSEs are reported in Table 1. It

can be observed that the proposed model (Multi-GP) considerably improves the pre-

diction accuracy compared with the method of modelling each response independently
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Table 1: The average RMSEs for the simulated data

Response 1 (y1) Response 2 (y2)

Multi-GP Ind-GP Multi-GP Ind-GP

ρ = 0.9 0.0292 0.0350 0.0346 0.0385

ρ = 0.2 0.0336 0.0350 0.0336 0.0338

(Ind-GP), when the correlation between the two response variables is strong. On the

other hand, when the correlation is weak the improvement by Multi-GP is marginal in

comparison with the independent method.

3.2. Application to Real data

We now apply the proposed method to two real data sets in chemometrics.

Tecator data. The data are recorded on a Tecator Infratec Food and Feed Analyzer

working in the wavelength range 850 - 1050nm by the Near Infrared Transmission

(NIT) principle. Each sample contains one of 215 finely chopped pure meat with

different moisture, fat and protein contents. For each meat sample the data consists

of a 100 channel spectrum of absorbances and the contents of water, fat and protein.

The absorbance is -log10 of the transmittance measured by the spectrometer. The

spectrometric curves are shown in Figure 2. The sample correlations between fat and

water and between fat and protein are -0.9881 and -0.8609, respectively, and that

between water and protein is 0.8145. The task is to predict the three contents from

the spectrometric curves.

As the spectrometric curves are smooth, the semi-metric based on derivative of

order two is adopted in our model. To compare the performance, leave-one-out cross

validation is performed, that is, each of the 215 samples is left as test data whilst the

remaining data are used for model training. The predicted values are then compared

with the measured and the root mean square errors by the proposed Multi-GP with

functional covariate and the independent models with functional covariate (Ind-GP)
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Figure 2: A graphical display of spectrometric curves.

Table 2: The RMSEs for the Tecator data

Fat Water Protein

Multi-GP 1.429 1.548 0.942

Ind-GP 1.450 1.816 0.923

GP-MV 1.724 1.516 1.222

are reported in Table 2. The predictions by both methods are illustrated in Figure 3.

Although many functional data can not be analysed by multivariate statistical

methods as pointed out earlier, it is, nevertheless, possible to treat the spectrometric

curves as multivariate in this example. Therefore, for demonstration we also compare

the performance of GPR with functional covariate with that of the conventional GPR

with multivariate covariates (GP-MV) where each response is independently modelled

by a GPR with the covariates being the absorbances at each wavelength. Since the

number of wavelengths is large (100 in total), the usual strategy of PCA is adopted

to reduce the number of covariates and five principal components, which account for

99.996% of the total variation, is used in the GPR models as the covariates. The
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Figure 3: Prediction by leave-one-out cross validation for Tecator data. ’o’: by Multi-GP;

’+’: by Ind-GP.

RMSEs of the predictions by this model are also shown in Table 2 as GP-MV.

It can be seen that, in comparison with the independent model, the Multi-GP

method significantly improves the prediction accuracy for water whilst there is marginal

improvement for fat. The prediction for protein by Multi-GP is slightly worse than

Ind-GP, but in overall terms the former outperforms the independent model. Although

GP-MV provides the best prediction for water, its performance on fat and protein is

notably worse than the other two methods.

Soil data. This data set was originally studied by [23]. The soil samples were

obtained at a long-term field experiment in Abisko, northern Sweden. The samples are

from 36 plots, with three subsamples from each plot, giving a total of 108 samples. The

wavelength range of 400 - 2500nm (visible and near infrared spectrum) was scanned

at 2nm intervals with an NIR spectrophotometer and fluorescence excitation-emission

matrices (EEMs) were recorded with a spectrofluorometer. Two reference values, soil

organic matter (SOM) was measured as loss on ignition at 550 ◦C, and ergosterol

concentration (EC) was determined through HPLC. The sample correlation between

the two reference values is 0.7108.

The semi-metric based on derivative of order two is adopted in our model since the

covariate curves are smooth, and the same leave-one-out cross validation experiment
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Table 3: The RMSEs for the Soil data

SOM EC

Multi-GP 2.380 36.329

Ind-GP 2.432 37.098

GP-MV 2.942 36.743
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Figure 4: Prediction by leave-one-out cross validation for Soil data. ’o’: by Multi-GP; ’+’:

by Ind-GP.

as in the previous example is performed. The root mean square errors by Multi-GP,

Ind-GP and GP-MV (with five principal components accounting for 99.789% of the

total variation) are reported in Table 3, and the predictions by the first two methods

are shown in Figure 4.

It can be seen that the proposed Multi-GP model improves the accuracy of predic-

tion for both SOM and EC in comparison with the Ind-GP and GP-MV.

The above numerical examples also manifest another advantage of functional data

over multivariate, in addition to what has been discussed in the introduction, that is,

treating some data as functional rather than multivariate in GPR modelling signifi-

cantly reduces the model complexity. For instance, only one parameter is needed for
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the spectrometric curves in the soil data, instead of 1050 if each wavelength is treated

as a variable or 5-10 if PCA is used to reduce the dimensionality.

4. Conclusion

In this paper we extend the Gaussian process regression models to the situation

where the covariates include functional variable as well as multivariate variable and

with multidimensional response. The closeness between the functional covariates is

measured by the semi-metrics as discussed in [15]. Principal component analysis is

performed for the multivariate response and the uncorrelated principal scores are then

modelled using Gaussian process regressions. The usefulness of the proposed method

over the independent model and the conventional GPR models is demonstrated through

some numerical examples.

The proposed Gaussian process model naturally incorporates two different types of

covariates: multivariate and functional. And the PCA technique to deal with multi-

variate response avoids the widely recognised difficulty in GPR for multiple outputs,

that is, to formulate a covariance function that describes not only the correlation be-

tween data points, but also the correlation between responses. In this paper we assume

that the dimension of the response is low so that all the principal components are used

in the subsequent regression models. However, if the response is high dimensional

and it is intractable to build a GPR model for each of the principal components, we

can choose to model fewer number of principal components, for example choosing the

minimum number of components which explain at least 95% of the total variation, or,

determining this number by cross validation.
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