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Abstract 27 

Background/Objectives: Obesity can affect muscle phenotypes, and may thereby constrain 28 

movement and energy expenditure. Weight loss is a common and intuitive intervention for 29 

obesity, but it is not known whether the effects of obesity on muscle function are reversible 30 

by weight loss. Here we tested whether obesity-induced changes in muscle metabolic and 31 

contractile phenotypes are reversible by weight loss.  32 

Subjects/Methods: We used zebrafish (Danio rerio) in a factorial design to compare energy 33 

metabolism, locomotor capacity, muscle isometric force and work-loop power output, and 34 

myosin heavy chain composition between lean fish, diet-induced obese fish, and fish that 35 

were obese and then returned to lean body mass following diet restriction. 36 

Results: Obesity increased resting metabolic rates (p < 0.001) and decreased maximal 37 

metabolic rates (p = 0.030), but these changes were reversible by weight- loss, and were not 38 

associated with changes in muscle citrate synthase activity. In contrast, obesity-induced 39 

decreases in locomotor performance (p = 0.0034), and isolated muscle isometric stress (p = 40 

0.01), work loop power output (p < 0.001), and relaxation rates (p = 0.012) were not reversed 41 

by weight loss. Similarly, obesity-induced decreases in concentrations of fast and slow 42 

myosin heavy chains, and a shift towards fast myosin heavy chains were not reversed by 43 

weight loss.   44 

Conclusion: Obesity-induced changes in locomotor performance and muscle contractile 45 

function were not reversible by weight loss. These results show that weight loss alone may 46 

not be a sufficient intervention. 47 

 48 

 49 

 50 

 51 



 3 

Introduction 52 

 Skeletal muscle is essential for locomotion and posture 1, as well as for whole-body 53 

energy homeostasis and metabolism 2,3. Hence, any impairment of muscle function will 54 

impact on the health and fitness of the whole organism. Obesity has detrimental effects on 55 

metabolic phenotypes and muscle function 4. The consequences of these effects will be 56 

compounded if they persist in individuals that have undergone successful weight-loss 57 

therapy. It is therefore essential to determine the reversibility of obesity-induced 58 

physiological changes in order to predict the potential consequences of obesity and the 59 

efficacy of treatments. Our aim was to determine whether diet-induced obesity impairs 60 

locomotor capacity and muscle function, and whether any effects are reversible with weight 61 

loss. Skeletal muscle function is dependent on the contractile and calcium signaling proteins 62 

that mediate contraction and relaxation, and on energy metabolism to supply the necessary 63 

ATP 5. We therefore investigated metabolism in parallel with muscle contractile function. 64 

 Many signalling pathways associated with energy homeostasis are conserved among 65 

vertebrates and are similar in a number of model species, including humans, rodents, and 66 

zebrafish 6,7. One of the principal mediators of obesity-induced metabolic dysfunction is a 67 

reduction in concentration and activity of the sirtuin SIRT14,8. SIRT1 is a NAD+-dependent 68 

histone deacetylase that promotes expression of a range of metabolic regulators such as PGC-69 

1alpha 9, and thereby regulates mitochondrial function 10. Mice lacking SIRT1 had reduced 70 

activity and reduced rates of oxygen consumption, leading to an overall decrease in energy 71 

expenditure 11. Conversely, increased expression of SIRT1 led to increased energy 72 

expenditure12. Obesity-induced mitochondrial dysfunction in skeletal muscle manifests as 73 

decreased TCA cycle (citrate synthase) activity and electron transport chain flux 13. It would 74 

be expected therefore that this reduction in maximal metabolic capacities would lead to a 75 
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reduction in metabolic scope, which represents the energy available for activity and 76 

locomotion.  77 

 Locomotor performance is determined by dynamic muscular contractility rather than 78 

by isometric force production, and the capacity of muscles to produce work during the 79 

shortening and lengthening cycle, and the passive resistance to stretch determine muscle 80 

power output (work-loop performance) 14,15. When normalized to muscle mass, work-loop 81 

power output of isolated skeletal muscle was reduced in faster muscle fibre types of obese 82 

mice 16. A possible cause for changes in muscle power output are obesity-induced shifts in 83 

the expression of slow (oxidative) type I myosin heavy chains 17-19, although fibre type shifts  84 

can differ between males and females 19. Obesity also altered locomotor capacity 20 and the 85 

metabolic cost of locomotion 21, which could be associated with changes in muscle 86 

contractile properties. Although obesity is well known to constrain physical performance22,23, 87 

beyond a single mouse study 24 the effect of obesity on muscle power output are unknown, 88 

and it remains to be shown whether there is a link between muscle power output and 89 

locomotion, and whether any obesity-induced changes are reversible with weight loss.  90 

 Weight loss reversed obesity-induced increases in pro-inflammatory proteins 25, 91 

reductions in adiponectin levels26, impaired lymphatic function 27, metabolic dysfunction 92 

28,29, and reduction in slow type I myosin heavy chains 17. However, at least with respect to 93 

kidney function it is not clear whether the effects of obesity are reversible by weight loss 30. 94 

Overall, it may be expected that obesity-induced declines in physiological function are 95 

reversed by weight loss. However, the physiological effects of obesity are so complex that it 96 

is difficult to extrapolate between physiological systems. Hence, we tested whether obesity-97 

induced impacts on muscle and locomotor function are reversible by weight loss.  98 

 We used zebrafish to test the hypotheses that a) obesity reduces metabolic scope and 99 

muscle citrate synthase activity because of mitochondrial dysfunction; b) obesity reduces 100 
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isolated muscle power output; we predicted that these changes in contractile function are 101 

associated with decreases in whole-animal locomotor performance, and changes in myosin 102 

heavy chain composition; c) obesity-induced changes in metabolism, skeletal muscle and 103 

locomotor phenotypes are reversible by weight loss.  104 

 105 

Materials and Methods 106 

Study animals and treatments 107 

 All procedures were performed with the approval of the University of Sydney Animal 108 

Ethics Committee (approval #723). Adult zebrafish (Danio rerio) were obtained from a 109 

commercial supplier (Livefish, Bundaberg, Australia) and maintained in plastic tanks (600 x 110 

450 x 250 mm; 1-2 fish l-1) with dechlorinated water at 25oC, and a 12h dark:12 h light 111 

photoperiod for two weeks before experimentation, and fed with commercial fish flakes 112 

(Wardley's, The Hartz Mountain Company, Secaucus, USA; 46% protein, 6% fat). After two 113 

weeks fish were randomly allocated to one of three groups: 1) control fish were fed once a 114 

day to satiety for 9-10 weeks; 2) obese fish fed three times per day to satiety for 9-10 weeks; 115 

3) obese-lean fish were fed three times per day for 4-5 weeks, then once per day for 4-5 116 

weeks. We took photos of each fish (with an Exilim camera, Casio, Japan) to determine 117 

standard length (in ImageJ software, NIH, USA), and we weighed fish before treatments, 118 

again at the time when obese-lean fish were switched to the lean diet, and at the end of the 119 

treatments immediately before measurements were taken.  120 

 121 

Metabolism and swimming performance 122 

Metabolic scope, that is the difference between resting and maximal metabolic rates, 123 

represents the energy (ATP) available for activity 31. Resting metabolic rate represents the 124 

energetic costs to maintain membrane potential, protein synthesis and other processes 125 
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occurring while the animal is at rest. Maximal metabolic rate reflects the maximal 126 

mitochondrial and cardiovascular capacities 31. We measured (n = 12 lean fish, 14 obese, and 127 

9 obese-lean fish for all measures of oxygen consumption) resting and maximal oxygen 128 

consumption rates according to our previously published protocols 32,33 at 25oC. 129 

 Citrate synthase (CS) is a rate limiting enzyme in the TCA cycle, and its activity 130 

reflects mitochondrial densities in tissue samples 34. Fish (n = 8 fish per treatment group) 131 

were anaesthetised in buffered ethyl 3-aminobenzoate methanesulfonate (MS222; 0.3 g l-1; 132 

Sigma-Aldrich, Castle Hill, Australia) and euthanized by decapitation. Dorsal (back) and 133 

caudal (tail) skeletal muscle was extracted and immediately transferred to liquid nitrogen and 134 

stored at -80°C. Muscle samples were homogenised (in a TissueLyser LT; Qiagen, Venlo, 135 

Netherlands) in 9 volumes RIPA buffer (20mM TrisCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 136 

1 mM EGTA, 1% NP40, 1% sodium deoxycholate) and protease inhibitor cocktail 137 

(cӨmplete, EDTA-free; Roche Life Sciences, Germany) solution. Homogenate was further 138 

diluted by a factor of 10 to a final 1:100 dilution. Following published protocols 35, enzyme 139 

activities were determined using a UV/visible spectrophotometer (Ultrospec 2100 Pro; 140 

Biochrom, UK) with a temperature controlled cuvette holder. Assays were performed in 141 

duplicate at 25°C.  142 

 Sustained swimming performance was measured (in n = 12 lean, 14 obese, and 9 143 

obese-lean fish) as critical sustained swimming speed (Ucrit) 36 in a Blazka-type swimming 144 

flume according to published protocols 32. The Ucrit protocol uses an incremental increase in 145 

speed (Ui) for predetermined time intervals (Ti) until fish are fatigued as a measure of 146 

maximum locomotor capacity 36.  147 

 148 

 Muscle biomechanics 149 
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 Fish (n = 10 per treatment group) were euthanized via a blow to the head, and 150 

transection of the spinal cord.  The skin was removed and a section of rostral (anterior dorsal) 151 

muscle fibres of 5 to 7 myotomes in length was dissected from one side of the fish in cooled 152 

(<5C) aerated fish Ringer’s solution (composition in mmol l-1: NaCl 115.7; sodium pyruvate 153 

8.4; KCl 2.7; MgCl2 1.2; NaHCO3 5.6; NaH2PO4 0.64; HEPES sodium salt 3.2; HEPES 0.97; 154 

CaCl2 2.1; pH 7.4 at 20C) 37. The spine was removed from most of the muscle preparation 155 

leaving one myotome attached to the residual amount of spine at either end.  156 

We conducted isometric studies to determine the twitch and tetanus kinetics of the 157 

isolated muscle according to published protocols 38. We calculated rates of force production 158 

as peak tetanic stress (force per cross-sectional area) divided by 2 x time to half peak tetanus, 159 

and muscle relaxation as peak tetanic stress divided by 2 x time from last stimulus to half 160 

relaxation as measures of the contractile performance of muscle.  161 

 We used the work loop technique to determine the power output (average of each 162 

work loop cycle) of muscles during cyclical length changes 15. Unlike fixed-length isometric 163 

studies and fixed load isotonic studies of muscle performance, the work loop technique 164 

allows measures of muscle power output under length and activation changes that are 165 

generally more indicative of in vivo contractile performance 39. In the absence of in vivo 166 

strain (length change) data for rostral muscle in zebrafish, each muscle preparation was 167 

subjected to a set of four sinusoidal length changes symmetrical around the length found to 168 

generate maximal twitch force. In vivo rostral muscle length changes have been found to 169 

approximate a sinusoidal length change waveform in fish undergoing steady swimming, with 170 

the primary function of such muscle to produce power 40. The muscle was stimulated using 171 

the stimulation amplitude and stimulation frequency found to yield maximal isometric force. 172 

Electrical stimulation and length changes were controlled via a data acquisition board 173 

(KUSB3116, Keithley Instruments, Ohio, USA) and a custom-designed program developed 174 
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via TestPoint software (CEC Testpoint version 7, Measurement Computing, Norton, 175 

Massachusetts, USA). Muscle force was plotted against muscle length for each cycle to 176 

generate a work loop, the area of which equated to the net work produced by the muscle 177 

during the cycle of length change 41. Instantaneous power output was calculated for every 178 

data point in each work loop (2,000 data points per work loop) by multiplying instantaneous 179 

velocity by instantaneous force. These instantaneous power output values were then averaged 180 

to generate an average net power output for each work loop cycle. Every 5 minutes, the 181 

muscle was subjected to a further set of four work loop cycles with length change cycle 182 

frequency (between 3 and 22 Hz), strain, stimulation duration and stimulation phase 183 

parameters being altered in between each set until maximum net work was achieved at each 184 

cycle frequency and maximal power output had been determined.  185 

Every fourth or fifth set of work loop cycles was used as a control run whereby a 186 

fixed set of strain and stimulation parameters were repeated regularly throughout the 187 

experiment to monitor underlying changes in the performance of the muscle over time. On 188 

average the net mean muscle power output per cycle, produced in control runs, decreased by 189 

8.7% over the time course of each experiment. Therefore, the power produced by each 190 

preparation was corrected to the control run that yielded the highest power output (average 191 

power per cycle), assuming that alterations in power generating ability were linear over time 192 

between control runs. 193 

After a further 5 minute rest, fatigue resistance was determined by subjecting the 194 

muscle preparation to a series of tetani, each of 150 ms stimulation duration, at a rate of one 195 

tetanus per second for 25 s. For each muscle, fatigue resistance was calculated as the maximal 196 

force produced in the 25th tetanus as a percentage of the maximal force produced in the 1st 197 

tetanus for the same muscle. Ten minutes after the fatigue run each preparation was 198 

stimulated to produce a further tetanus to determine recovery from the fatigue run. The mean 199 
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recovery of all 30 muscle preparations was 81.1% indicating that reversible fatigue had been 200 

induced. 201 

 At the end of the muscle mechanics experiments, bone and connective tissue were 202 

removed and each muscle preparation was blotted on absorbent paper to remove excess 203 

Ringer’s solution. Wet muscle mass was determined to the nearest 0.1 mg using an electronic 204 

balance (Sartorius, Australia). Mean muscle cross-sectional area was calculated from muscle 205 

length and mass assuming a density of 1060 kg m-3 42. The overall mean cross-sectional area 206 

± s.e. of all 30 muscle preparations was 2.65 ± 0.17 mm2. Maximum isometric muscle stress 207 

(kN m-2) was then calculated for each tetanic response as the maximum tetanic force within 208 

that response divided by mean cross-sectional area. Normalised muscle power output (W kg-209 

1) was calculated as average power output per length change cycle divided by wet muscle 210 

mass. 211 

 212 

Myosin heavy chain concentrations 213 

 We prepared tissue homogenates as described above for measures of citrate synthase 214 

activity. The identification and quantification of slow and fast myosin heavy chain (MHC) 215 

isoforms was performed by capillary electrophoresis in a “Wes” Simple Western System 216 

(ProteinSimple, CA, USA) following the manufacturer's instructions.  The antibodies (all 217 

from Developmental Studies Hybridoma Bank, University of Iowa, USA) we used were: 218 

EB165 to determine fast MHC concentrations; BA-F8 to determine slow MHC 219 

concentrations; 12G10 (α-tubulin) as internal control. We expressed normalised MHC 220 

concentrations by dividing MHC peaks by α-tubulin peaks measured for the same sample on 221 

the same plate. The concentrations of protein extracts was determined using a bicinchoninic 222 

acid assay kit (Sigma-Aldrich, Castle Hill, Australia) following the manufacturer’s 223 

instructions. 224 



 10 

 225 

Statistical analyses 226 

 We analysed data with permutational tests for linear models in the package lmPerm 43 227 

in R 44. Permutational analyses do not make assumptions about underlying data distributions, 228 

but use the data per se to infer significant differences. This approach is preferable to 229 

parametric tests, especially for sample sizes that are small relative to the total population of 230 

all possible samples 45. We analysed all dependent variables (BMI, Ucrit, metabolic rates, 231 

muscle mechanics, MHC concentrations and enzyme activities) with treatment (levels: lean, 232 

obese, obese-lean) as factor. In the analysis comparing power output at different cycle 233 

frequencies, we use treatment as fixed factor, and we used fish id as a random factor within 234 

which we nested the different cycle frequencies to account for repeated measures of the same 235 

muscle preparation at different cycle frequencies. In analyses of Ucrit (in m s-1) we used body 236 

length as covariate, but we show data in units of body lengths s-1. In case of significant 237 

results, we used pair-wise permutational tests for post hoc comparisons, and we used p < 0.05 238 

to indicate significant differences between treatment groups. Sample sizes were based on the 239 

power we achieved using similar techniques on zebrafish in past experiments38,46. 240 

 241 

Results 242 

Obese fish had greater body mass index 243 

 Body mass indices differed significantly between treatments (p < 0.001; Fig. 1), and 244 

lean and obese-lean fish had significantly lower body mass indices than obese fish (both p < 245 

0.001), but there was no difference in body mass index between lean and obese-lean fish (p = 246 

0.63). There was no difference in body mass index between the obese and the obese-lean 247 

groups (p = 0.82) just before the start of diet restriction of the obese-lean group when the 248 

feeding regime was switched from feeding three time per day to once per day. 249 
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 250 

Obesity caused reversible decreases in metabolic scope independently from citrate synthase 251 

activity 252 

 Resting metabolic rates differed significantly between treatments (p = 0.0068; Fig. 253 

2A). Lean and obese-lean fish had similar resting metabolic rates (p = 0.98), and the rates of 254 

both groups were lower than that of the obese fish (p < 0.001 and p = 0.040, respectively for 255 

lean and obese-lean). Maximal metabolic rates also differed between treatments (p = 0.035; 256 

Fig. 1B), and obese fish had significantly lower maximal metabolic rates than lean fish (p = 257 

0.030), but there were no differences between obese-lean and obese (p = 0.72) or lean (p = 258 

0.13) fish. These responses of resting and maximal metabolic rates led to differences in 259 

metabolic scope between treatments (p = 0.0026; Fig. 2C), and lean fish had higher metabolic 260 

scope than obese fish (p = 0.0060), but obese-lean fish did not differ from either of the other 261 

groups (p = 0.13 and p = 0.75, respectively). 262 

 Citrate synthase activity, an indicator of mitochondrial density and metabolic 263 

capacity, did not differ between the treatment groups (p = 0.43; Fig. 2D). 264 

 265 

Obesity caused irreversible changes in locomotor performance and muscle contractile 266 

properties 267 

 There were significant differences in Ucrit between treatments (p = 0.0034; Fig. 3A). 268 

Compared to lean fish, swimming performance was significantly lower in obese (p = 0.044) 269 

and in obese-lean (p = 0.0066) fish, but there was no difference between the latter two groups 270 

(p = 0.27). 271 

 There were significant effects of treatment on muscle isometric stress (force per unit 272 

area; p  = 0.023; Fig. 3F) and muscle work-loop power output (power produced per muscle 273 

mass; p = 0.016; Fig. 3C), and both were lowest in obese-lean fish (lean vs obese-lean: stress 274 
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p = 0.0098, power p < 0.001; obese vs obese-lean: stress p = 0.029, power p = 0.011). There 275 

was a reduction in power and stress in obese fish compared to lean fish, but this was 276 

significant at a one-tailed probability only (stress p = 0.092, power p = 0.086; Fig. 3C and D). 277 

Work loop shapes indicated that most of the difference in normalized power output between 278 

lean and obese-lean fish was due to lean fish generating a higher peak stress in the work loop 279 

and maintaining higher stress during shortening (Fig 3D). Differences in power output 280 

between treatments were apparent only at higher cycle frequencies (interaction between 281 

treatment and cycle frequency p < 0.0001; Fig. 3E). At cycle frequencies of 12 Hz and above, 282 

power output was significantly lower in obese-lean fish compared to lean fish (all p < 0.05), 283 

and obese-lean fish produced less power than obese fish at cycle frequencies of 14 Hz and 284 

above (all p < 0.05; Fig. 3E). Power output of obese fish was variable and we detected no 285 

differences between lean and obese fish (all p > 0.2; Fig. 3E).  286 

 Muscle activation rates were significantly different at a one-tailed probability only (p 287 

= 0.074; Fig. 3G).  Muscle relaxation rates differed significantly between treatments (p = 288 

0.02; Fig. 3H), and relaxation rate was significantly faster in muscle of lean fish compared to 289 

obese-lean fish (p = 0.012); obese fish differed from lean fish with a one-tailed probability (p 290 

= 0.067), but there was no difference in relaxation rate between obese and obese-lean fish. 291 

There were no differences between treatments in muscle fatigue (p = 0.98; Fig. 3B). 292 

 293 

Myosin heavy chains changed irreversibly with obesity  294 

 Obesity treatment had a significant effect on (normalised) slow myosin heavy chain 295 

concentrations (p < 0.001; Fig. 4A).  Lean fish had significantly greater concentrations than 296 

obese (p = 0.012), and obese-lean (p = 0.0062) fish, but there was no difference between the 297 

latter two groups (p = 0.75). Similarly, concentrations of fast myosin heavy chains changed 298 

with treatment (p = 0.044; Fig. 4B), and compared to lean fish obese-lean fish had 299 
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significantly lower concentrations of fast myosin heavy chains (p = 0.025), but the decrease 300 

in obese fish was significant at a 1-tailed probability only (p = 0.078). Muscle composition 301 

changed with treatment (treatment effect p = 0.0096, Fig. 4C), and the ratio between 302 

slow:fast myosin heavy chains was significantly lower in obese (p = 0.029) and obese-lean 303 

fish (p = 0.010) than in lean fish, but obese fish were not different from obese-lean fish (p = 304 

0.96). 305 

 306 

Discussion 307 

 We have shown that declines in metabolic scope in obese individuals are reversed by 308 

weight loss, but declines in muscle contractile function and locomotion are not. These results 309 

indicate that weight gain and loss influence metabolic responses directly, but that the effect 310 

of obesity on muscle phenotypes is not mediated directly by changes in body mass (BMI). 311 

The implication of our finding is that weight loss alone may be an insufficient treatment for 312 

obese pathologies.  313 

 Zebrafish are well established now in the literature as a model for obesity6,7,47, 314 

metabolic disease 48 and exercise 49-51. Overfeeding in zebrafish led to rapid weight gain and 315 

a significant increase in body mass index (1.1-1.3 fold) compared to control fish after 1-2 316 

weeks 7. Similar to the effects of weight gain and obesity in humans, the increase in body 317 

mass resulted in pathophysiological conditions such as hypertriglyceridemia and 318 

hepatosteatosis 7,52. Hence, that level of weight gain (>1.1-1.3 increase from lean body mass 319 

index) may be defined functionally as obese 53,54. As in mice and humans, disruption of the 320 

adipostat system caused obesity in zebrafish6, and leptin receptor deficiency in zebrafish 321 

disrupted glucose homeostasis, but it did not cause hyperphagia 55. Exercise training in 322 

zebrafish increased muscle mass51, myogenin levels, and shifted skeletal muscle to a slower 323 
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and more aerobic fibre type 56.These responses are broadly similar to those of other 324 

vertebrates 2,57, which makes zebrafish a good exercise model for biomedical research 50.  325 

 The (patho)physiological similarities between zebrafish and humans, combined with 326 

the lower cost and increased tractability of conducting experimental and screening studies on 327 

zebrafish compared to rodents or humans47,48,58,59 mean that zebrafish have increasing 328 

translational impact 59,60 Zebrafish are particularly suitable for studies on muscle function and 329 

exercise because the methodologies to determine muscle and locomotor performance are well 330 

estabished in fish 61-63. We recently optimised isometric techniques to measure muscle 331 

performance in zebrafish 38, which we extended here to include the work-loo technique. 332 

These techniques are particularly powerful in a zebrafish model, because here it utilises most 333 

of the locomotory muscle assembly to provide a functional measure of muscle performance, 334 

which is more realistic than approaches that use only single fibres from biopsies as is the case 335 

for human studies. Hence, for our study, as well as for many others47, zebrafish were a 336 

superior model than humans, in terms of quality of data, sample sizes, and practicality in 337 

terms of manipulating weight gain and weight loss under controlled experimental conditions. 338 

 Chronic feeding on high-energy diets and a sedentary lifestyle lead to an imbalance in 339 

glucose metabolism and insulin signaling, which can lead to obesity and metabolic diseases4. 340 

A mechanism by which these effects can be mediated is the action of the SIRT1, which in 341 

association with AMPK activity regulates fatty acid oxidation and energy homeostasis 10. 342 

SIRT1 levels are increased by caloric restriction and are decreased by overfeeding 4. 343 

Adiponectin, the levels of which decrease with obesity but are restored by weight loss 26, 344 

stimulates the SIRT1/AMKP axis 64. Together, the actions of these molecules provide a 345 

mechanistic link between excessive feeding and obesity on the one hand, and metabolic 346 

dysfunction on the other 65, and may explain why metabolic dysfunction is reversible by 347 

decreased feeding and weight loss. Our finding that obesity-induced decreases in metabolic 348 



 15 

scope are reversible by reduced feeding and weight loss are similar to responses from 349 

mammals. The decrease in (mass specific) maximal metabolic rates was expected from 350 

obesity-induced metabolic dysfunction, and from the increase in adiposity in obese 351 

individuals. However, the decreases in maximal metabolic rates were not associated with 352 

decreased citrate synthase activities, which indicates that mitochondrial densities in muscle 353 

were not altered by obesity 34. The observed increases in resting metabolic rate may be due to 354 

increased inflammation and its attendant increase in resting metabolic demand 66, but this 355 

suggestion should be verified in a zebrafish model.  356 

 Surprisingly, the obesity-induced decreases in muscle contractile function and 357 

locomotor capacity were not reversible by weight loss in our zebrafish. High fat diet caused a 358 

shift in myosin heavy chains towards faster isoforms in rhesus monkeys, and that shift was 359 

partly reversed with resveratrol, a drug that stimulates the SIRT1 pathway and promotes 360 

mitochondrial proliferation 67. Decreases in adiponectin and its receptor AdipoR1 can also 361 

decrease oxidative type I myofibres 64. However, if adiponectin and SIRT1 levels are restored 362 

by weight loss, as suggested in the literature, some other mechanisms must regulate muscle 363 

function and myosin heavy chain expression in our zebrafish. Our data indicate that muscle 364 

of obese and obese-lean fish had low myofibrillar density (low MHC concentrations), and 365 

this decrease can explain the decreases in muscle stress and power output. The increasing 366 

difference in power output between treatments with increasing cycle frequency confirm this 367 

suggestion, because the effect of low myofibrillar density would be particularly pronounced 368 

as muscle works harder and at higher cycle frequencies. The cycle frequencies of the work 369 

loop assays are proportional to tail beat frequencies in swimming fish 15, and tail beat 370 

frequencies are proportional to swimming speed 68. Hence, the reduction in myosin heavy 371 

chain concentrations and power output at high cycle frequencies can explain the decreases in 372 

Ucrit we observed in obese and obese-lean individuals. The reduction in MHC concentration, 373 
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and the shift from slow to fast MHC could be due to impaired signalling pathways that 374 

mediate expression of muscle proteins. For example, expression of calcium handling and 375 

contractile proteins in skeletal muscle is regulated by the interaction between myocyte 376 

enhancer factor 2 (MEF2) and histone deacetylases (HDAC) 2. Obesity can lead to a 377 

disruption of the transcriptional regulation of muscle phenotypes, thereby leading to 378 

decreased muscle mass and strength 69, which provides a explanatory model for the changes 379 

in MHC levels we observed that can be tested in zebrafish and other obesity models. 380 

 Tail beat frequency, and hence swimming performance, is sensitive to calcium release 381 

and resequestration into the sarcoplasmic reticulum 68. Obesity can  alter calcium (Ca2+) 382 

concentrations 70 and reduce sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) activity 71, 383 

which provides a second avenue by which obesity can constrain locomotion at higher speeds 384 

(i.e. cycle frequencies - tail beat frequencies).  Muscle contraction is mediated by the release 385 

of Ca2+ from the sarcoplasmic reticulum following neural stimulation of dihydropyridine 386 

receptors and their interaction with ryanodine receptors 72. Free Ca2+ mediates muscle 387 

contraction by binding to troponin in a concentration-dependent manner. Muscle relaxation is 388 

mediated by re-sequestration of Ca2+ into the sarcoplasmic reticulum via SERCA 57. 389 

Disruption of Ca2+ dynamics will attenuate muscle contractile properties 57 and decrease 390 

locomotor performance 68. The reduction in relaxation rate indicates that obesity reduced 391 

SERCA activity and thereby slowed re-sequestration of Ca2+ into the sarcoplasmic reticulum 392 

and muscle relaxation. Similarly, the (one-tailed) decrease in activation rate suggests that the 393 

rate of Ca2+ release from the sarcoplasmic reticulum is reduced following stimulation. 394 

Depletion of Ca2+ stores in the sarcoplasmic reticulum can also reduce stress and power 395 

output 57. However, store depletion is unlikely, because fatigue resistance, which is at least 396 

partly determined by store depletion 73, was not affected by obesity.  397 

 Zebrafish are an excellent model to test obesity-induced changes on skeletal muscle, 398 
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because it is easier to isolate the effects of obesity on muscle per se. In terrestrial animals, 399 

including humans, obesity increases the in vivo strength of postural ‘antigravity’ muscles as a 400 

result of a training effect from the increased load during standing and locomotion 74, which 401 

can obscure the effects of obesity on locomotor muscle. Our data are important because we 402 

show that the effects of obesity persist beyond weight loss. Weight loss is an essential 403 

intervention for obesity, but our data indicate that it is not sufficient to restore healthy, pre-404 

obese phenotypes. The average lifespan of zebrafish is around 5% that of humans 75. Hence, 405 

the period of diet restriction (4-5 weeks) in our experiments represents a reasonably long 406 

time in human terms.  An important outstanding question now is whether the observed 407 

changes, such as myosin heavy chain concentrations and composition, can revert back to pre-408 

obesity levels. Even though there can be a training effect of postural muscle as a result of 409 

supporting larger mass 74, obesity leads to reductions in motor control 76 and it is often 410 

associated with sedentary lifestyles 77 so that the mass-induced training effect would be 411 

minimised 78. Exercise intervention could be effective in restoring muscle function as well as 412 

weight loss 79. An interesting future direction will be to determine the link between 413 

transcriptional regulation of muscle phenotypes and changes in the contractile apparatus of 414 

skeletal muscle during obesity and following weight loss in both the zebrafish model and in 415 

humans directly. Understanding the role of exercise in influencing these pathways during or 416 

following weight loss could lead to developing effective programs to reverse the negative 417 

effects of obesity on muscle function and locomotor capacity.  418 
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 650 

 651 

Figure captions 652 

Figure 1 Body mass indices of the treatment groups. Lean (L) and obese-lean (OL; obese 653 

fish that underwent weight loss) fish had similar body mass indices (BMI), which were 654 

significantly lower that those of obese (O) fish. The BMI of the obese group was not different 655 

from that of the obese-lean group just before diet restriction when the feeding regime was 656 

switched from three time to once per day (OL/O). Means ± s.e. are shown, and letters above 657 

bars indicate significant differences. 658 

 659 

Figure 2 Metabolic responses of zebrafish to obesity and weight loss. Obese (O) fish had 660 

significantly greater resting metabolic rates than lean (L) or obese-lean (OL) fish (A), but 661 

maximal metabolic rates of obese fish were lower than in lean fish (B). Maximal metabolic 662 

rates of obese-lean fish were not different from lean or obese fish. Metabolic scope was 663 

reduced in obese fish (C), but at least partly restored after weight loss in obese-lean fish. 664 

Citrate synthase activity, an indicator of mitochondrial density, did not differ significantly 665 

between treatment groups (D). Means ± s.e. are shown, and letters above bars indicate 666 

significant differences. n = 12 lean, 14 obese, and 9 lean-obese fish for all metabolic rate 667 

measures, and n = 8 fish per treatment group for citrate synthase activity. 668 

 669 

Figure 3 Muscle mechanics and locomotor performance in response to obesity and weight 670 

loss. Sustained swimming performance (Ucrit; A), isometric stress (force per unit area, F), 671 

dynamic muscle power output determined by the work-loop technique (C), and muscle 672 

relaxation rates (H ) were lower in obese (O) individuals compared to lean (L) fish, and 673 
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stayed at a reduced level even after weight loss (obese-lean, OL). An example of a typical 674 

work loop shape (D) demonstrates that muscle of lean fish (broken line) produced greater 675 

stress and maintained stress to a greater extent during shortening (decreasing strain) 676 

compared to obese-lean fish (solid line). Differences in muscle power output between 677 

treatments were apparent at high cycle frequencies (E; significant differences indicated by an 678 

asterisk). Activation rate (G) showed similar reductions in obese and obese-lean individuals, 679 

but the differences were significant at a one-tailed probability only. There was no effect of 680 

treatment on muscle fatigue (B). Means ± s.e. are shown, and letters above bars indicate 681 

significant differences. An hash next to a letter (e.g. a#) indicates differences with a one-682 

tailed probability. For Ucrit, n = 12 lean, 14 obese, and 9 obese-lean fish, and n = 10 fish per 683 

treatment group for measures of muscle mechanics.  684 

 685 

Figure 4 Myosin heavy chain concentrations in response to obesity and weight loss. Slow 686 

(A) and fast (B) myosin heavy chain concentrations (MHC; normalised to -tubulin) were 687 

significantly lower in obese (O) and obese-lean (OL) individuals compared to lean controls 688 

(L). The slow:fast MHC ratio was lower in obese and obese-lean individuals, indicating a 689 

shift in muscle composition (C). Means ± s.e. are shown, and letters above bars indicate 690 

significant differences. An hash next to a letter (e.g. a#) indicates differences with a one-691 

tailed probability. N = 6 individuals for each treatment group.  692 
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