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Abstract

This paper proposes a multi-objective mixed-integer linear programming to model a cold chain with comple-

mentary operations on a hierarchical hub network. Central hubs are linked to each other in the first level of

the network and to the star network of the lower-level hubs. As for a case study, different hub levels provide

various refreshing or freezing operations to keep the perishable goods fresh along the network. Disruption

is formulated by the consideration of stochastic demand and multi-level freshness time windows. Regarding

the solution, a genetic algorithm is also developed and compared for competing the large-sized networks.

Keywords: Cold chain management (CCM), Hierarchical hub location problem, Operational hub,

Perishable goods, Freshness time window

1. Introduction

The ultimate quality of a product is remarkably affected by how well organized logistics and transportation

facilities have been managed. In perishable food industries, improper logistics can be the cause of up to one-

third of spoilage (Rockefeller, 2013). Frozen foods such as fish, meat and poultry are identified as highly

perishable foods, and continuous monitoring of temperature supports the real-time evaluation of product

quality and specifies the remainder of its shelf life. It is well known that using a high-quality logistics system,

the planners can achieve these goals.

The meat distribution crisis during the COVID-19 pandemic in the United States and prolonged waiting

time of trucks to unload their goods into a distribution center validate the importance of an efficient dis-

tribution network and the lack of a proper one in today’s fresh product distribution industry (ABC News,

2020).

This has motivated the academic and real business worlds to determine the concept of cold chain manage-

ment (CCM) (Singh et al., 2017). CCM is defined as a series of managerial decisions taken in a supply chain

(SC) to enhance customer value, including the temperature control operations for the perishable products
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(Bogataj et al., 2005). Determining the location and type of operations for each facility is up to the hub

location problems (HLPs) (Farahani et al., 2013).

HLP concerns the movement of goods, people, or information between origin-destination (O-D) demand

nodes. Hubs in a network are facilities that consolidate, link, and switch nodes for flow between O-Ds.

Although there are several studies on HLPs available in the existing literature, the consideration of both

cold chain requirements and specificities of perishable products have yet to be matured. To the best of the

authors’ knowledge, there is no single study covering HLP mathematical modeling of the CCM concept.

Hub facilities in a network can reduce the transportation cost of each pair of nodes by considering a

routing cost discount factor, α, between hubs (Yaman, 2009). In a hub, freights from various origins to a

similar endpoint are consolidated into one shipment. There are single or multiple allocations of hub settings

in the models (Alumur et al., 2012). In the former, one hub node connects to both the origin and the

destination of the cargo, meaning the flow from its origin to the hub facility and then from that facility to the

destination. In the latter, the freight circulates along the two assigned hub facilities located between the origin

and destination. In this study, the design of the network considers the single allocation setting. The goal

is to select P hubs among a group of predetermined demand nodes in order to minimize the transportation

cost under indivisible demand; i.e. each demand node is assigned to a single hub facility.

The task of designing a network needs to pay specific attention to the perishable nature of goods, such as

fruits, vegetables, seafood, meat, and dairy products, as it impacts both production and distribution activities

(Amorim et al., 2012). The deterioration of these products may start in the early stages of production and

span across the distribution system before reaching the customers. Perishability issues not only impact the

company financially but may also result in customer dissatisfaction. It is worthy to mention that these

products have a freshness time window about which all distributors are concerned (Tsiros and Heilman,

2005). Various cold chain operations, such as refreshing or freezing (depending on the product), are applied

during transportation to avoid exceeding this window. For instance, in the transportation process of seafood

with containers or airtight bags, it is suggested to freeze the products several times to avoid spoilage. This

also works for frozen fruit and vegetables. Naturally, hubs, serving as gathering points of products, are the

best place to provide the extra operations required for keeping the products fresh.

Kuo and Chen (2010) concede that a food cold chain logistics system includes three temperature monitor-

ing categories; frozen food (below −18◦C), chilled food (−2◦C to +7◦C), and fresh food (18◦C constantly).

They also categorize the transportation vehicles into equipped (e.g. refrigerated trucks) and non-equipped

vehicles (e.g. ambient temperature trucks). In a logistics system with the equipped vehicles, the tempera-

ture can be kept constant during travel times. On the other hand, the non-equipped transportation system

requires applying at least two complementary operations (i.e. refreshing and freezing operations) in the con-

solidation warehouses or hubs. Considering that the non-equipped system is more cost effective, we consider

such a food cold chain in our HLP.

As this study is motivated by managing cold chain operations for frozen food industries, we consider a
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hierarchical hub network (Lin and Chen, 2004) with two level hubs distinguishing central hubs from low-level

hubs. In the central hubs, both refreshing and freezing complementary operations can be performed whereas

in the low level, only refreshing is allowed. We restrict the set of operations of the hubs due to underlying

distribution times and costs. Figure 1 displays a hierarchical operational hub network with 15 demand nodes

and five hubs, in which two of them are central hubs (hubs number 1 to 4, respectively).
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Figure 1: Hierarchical operational hub network with 15 nodes and five hubs, two of which are central hubs

In a cold chain, freshness is a primary concern for customers when buying a perishable product (Wu

et al., 2018). Therefore, a complementary operations satisfaction rate is defined for the freshness of goods

in every flow based on applied operations. The freshness of goods is traced along the network. Our model

also examines the effectiveness of each freezing and refreshing operation. Besides freshness, (predetermined)

delivery time windows significantly affect customer satisfaction, and consequently, are considered in the

design of our hierarchical operational hub network (Wang et al., 2017). These windows must include loading,

unloading and processing times at demand nodes and hubs. Minimizing total cost, optimizing delivery

time, and providing a reliable distribution network are the main elements of any supply chain systems

(Albashabsheh and Stamm, 2019; Hamdan and Diabat, 2020; Sabahi and Parast, 2020). While minimizing

transportation time and cost is achievable through the traditional hierarchical hub location model, having a

reliable distribution network is essential to define novel HLPs to handle the network uncertainties (An et al.,

2015; Mohammadi et al., 2014).

The contribution of this paper to the literature is the inclusion of cold chain requirements in HLP models

that considers both refreshing and freezing operations. Furthermore, we are the first to model the occurrence

of disruptions in a cold chain network in which the demand of a pair of nodes is stochastic, and multiple
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freshness time windows are considered. Demand disruption will be mitigated by including stochasticity in

the approach, while the freshness is maintained by the consideration of multiple time windows. Three levels

of freshness time windows are introduced to apply the operations more precisely in the hubs. In a disruption

situation, even when the operations are properly applied, the lack of suitable transportation vehicles could

lead to ineffective refreshing operations. Since in our model the vehicles are assumed to not have refrigeration

equipment, the probable disruption is mitigated by controlling the transportation time between each pair of

nodes and matching them against the freshness time windows.

Several new HLPs are introduced to comply with the above features. To evaluate the effectiveness of the

approach, a few examples are provided. Sensitivity analysis is conducted on the main parameters of the cold

chain (such as discount factor, freshness time window, size of the network, and operations costs), delivering

managerial insights. Finally, developing a solution algorithm based on the Genetic Algorithm and comparing

its performance with a modified Feasibility Pump is another type of the contributions of the current study.

The rest of the paper is organized as follows: Section 2 reviews the most relevant studies available in

the literature regarding HLP models and CCM. Section 3 introduces the base formulation of the proposed

models, both under deterministic and stochastic settings. Section 4 develops realistic numerical examples to

assess the validity and applicability of the models. Lastly, final remarks are presented in Section 6.

2. Literature review

HLPs are a dominant field of network design. In contrast to general network design problems in which

the demand is supplied by a facility, the consideration of user to user/facility demands makes the HLPs

more distinct and valuable (Ortiz-Astorquiza et al., 2018; Karimi-Mamaghan et al., 2020). Since the first

introduction by O’Kelly (1987) and an evolutionary step by Campbell (1994), HLPs have been extensively

studied (see the detailed survey studies in O’Kelly and Miller (1994); Alumur and Kara (2008); Campbell

and O’Kelly (2012); Farahani et al. (2013); Laporte et al. (2015); Torkestani et al. (2016)). The studies

acknowledge a variety of additional considerations in a hub network design, such as travel time and latest

arrival time (Kara and Tansel, 2001), capacity-limited and queuing system in hubs (Rodriguez et al., 2007),

measuring reliability (Kim and O’Kelly, 2009), incapacitated hubs (Contreras et al., 2011; Gelareh and

Nickel, 2011), vehicle routing problem (Rodŕıguez-Mart́ın et al., 2014), competitive and duopoly market

(Mahmutogullari and Kara, 2016), mobility features for facilities (Bashiri et al., 2018), and green HLP

(Dukkanci et al., 2019). Despite such valuable considerations in the HLPs, no research stream can be found

on the treatment of perishable goods in hub networks. As a result, we review the relevant studies in two

separate streams; 1) hierarchical setting of HLPs, aiming at finding important features of the hub network;

2) cold chain requirements for perishable goods flowing in the network.

2.1. Hierarchical hub location problems

The hierarchical HLP is a common type of hub problem introduced by Chou (1990). In a hierarchical

HLP, facilities/users are interrelated in a top-down or bottom-up approach at various levels. To enhance the
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basic hierarchical HLP model, Lin and Chen (2004) propose a time-constrained hierarchical hub-and-spoke

network design problem to provide a time-guaranteed delivery system and minimize operational costs by

ascertaining the truck size and their trip schedules. Later, Yaman (2009) emphasizes the cost efficacy of the

hierarchical hub models and proposes mixed integer programming (MIP) models by introducing a discount

factor between the hubs and considering delivery time windows between every pair of nodes. They note that

the routing cost between two hub nodes can be discounted at a rate (discount factor) to demonstrate the

savings thanks to the hubs operations. In their model, the central hubs are fully connected to lower-level

hubs by a single allocation design and are introduced as fully connected central hubs.

Table 1 summarizes the most important features considered in recent hierarchical HLP studies. As can be

seen, the majority of the studies propose deterministic models. The main reason for this can be traced back

to the potential drawbacks of traditional hub models. Based on the literature, although hub networks can

provide a cost-efficacy network to cover a large group of the distant customers, its hub centers are vulnerable

to disruptions (Rushton et al., 2014; Wonnacott, 1996). However, Farahani et al. (2013) concede that the

consideration of uncertainty or stochasticity is more realistic. Managing unexpected events in strategic plans

can be performed by formulating the problem before the events occur with a robust optimization approach

(Hosseini-Motlagh et al., 2016; Meraklı and Yaman, 2016) and after the events by making strategic decisions

about emergency plans (Zhan et al., 2020; Van Hui et al., 2014). The performance of a supply chain deeply

relies on the efficient management of logistics decisions and operations (Wang et al., 2016). The studies

on hub-and-spoke networks found that using robust optimization to establish a resilient network can deal

with uncertainty both before and after disruption (Hsu and Wang, 2013; Yang and Chiu, 2016). Typically,

the underlying HLP models define three indices which express the links between demand nodes, hubs, and

central hubs. The majority address a single cost-related objective. Although the majority of the studies in

HLP address a single cost-related objective, the literature demonstrates the importance of time-dependent

transportation cost (Lo and Szeto, 2009; Szeto and Lo, 2008; Sun et al., 2018; Ghaffarinasab, 2020) in various

HLP problems. For instance, in the public health field, by considering the impacts of road traffic emissions,

noise, and accidents on public health and medical cost, (Jiang and Szeto, 2015) utilize an artificial bee

colony algorithm to propose a sustainable multi-objective network design framework to incorporate the time-

dependent transportation cost. Contrarily to the consideration of fixed costs and operational costs, costs

associated with delivery time windows are still scarce in the HLP models from the literature. Furthermore,

the literature analyzed with respect to the solution approach illustrates that the heuristic algorithms seem

more applicable in HLPs. The main reason may be rooted in the complexity of the problem regarding large-

scale networks. Chen (2010) designs a tabu search algorithm to deal with complexity in determining the types

of vehicles, vehicle routing, and their schedules, simultaneously. In another study, Fazel Zarandi et al. (2015),

by comparing the performance of the simulated annealing algorithm and iterated local search algorithm on

a hierarchical HLP, stress the applicability of the model on finding a near-optimal solution. In light of the

complexity involved in determining different types of hub locations, allocations, the requested operations,
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and the delivery time constrains, we believe that applying meta-heuristic algorithms to HLP models will lead

to near-optimal solutions in acceptable computational times.

2.2. Cold chains and perishable goods

Cold chain management as a strategic decision-making area seeks desirable service levels at minimum cost

through required planning activities (van der Vorst, 2000). Although the main application of the concept

is in the food industry (Kuo and Chen, 2010), it may also be applied to pharmaceutical products (Bishara,

2006a), vaccines (Duijzer et al., 2018), blood (Ramezanian and Behboodi, 2017) or other perishable products

(Zhang and Lam, 2018). The relevant studies address two main issues: cold chain temperature monitoring

and cold chain logistics. In the first issue, several studies regarding RFID or tracking systems can be found

(e.g. Chen and Shaw (2011)) that provide tactical solutions for the problem. However, the literature lacks

models providing strategic solutions such as network design. There are only a few works on the second issue

(e.g. Singh et al. (2017)), also proposing tactical solutions (rather than strategic), such as managing freezing

and refreshing operations in the facilities.

Supply chain network design (SCND) is an attractive area of research in both the academic and real

business worlds (Jahani et al., 2018, 2019). Govindan et al. (2017) concede that an FLP can be identified as

a type of SCND once it comes in the context of supply chain modeling. The vast literature on the SCND

techniques covers a broad range of approaches considering operational and disruption risks as well as delivery

time windows (Fattahi et al., 2017; He et al., 2019). In addition to the SCND models, other network design

techniques also shed light on the perishability features. Table 2 reports some recent articles in which the

perishability features have been considered. The examples have been selected as a result of having warehouses

or distribution centers similar to hub nodes in the proposed networks. The result of the table explicitly reveals

that organizers need to consider the disruption risk or the uncertainty in the network design stage. Moreover,

the deliberation on the studies affirms the importance of taking delivery time restrictions into account.

Another feature in the models is the freshness or quality of the goods. Ma et al. (2018) confirm the

suitability of the MIP method to model a supply chain network for managing the quality of the food.

The model prescribes whether each facility can provide a specific level of temperature. The application of

perishable product studies in various field such as inventory management, revenue management, production

management and vehicle routing management presents its importance in industry and academia (see column

”Field” in Table 2). Cold chain management is also an essential component of the global pharmaceutical

supply chain (Bishara, 2006b), food supply chain (Mercier et al., 2017), and vaccine supply chain (Lin et al.,

2020). Based on this table, the common method to handle difficulties regarding the distribution of perishable

products is using immediate delivery system and seasonal delivery plans. However, in many cases, covering

distant customers within the freshness time window is impossible.

Aravindaraj et al. (2020) asserted that despite the large production of perishable food products in India,

there is not much study has been done on the cold storage industry. Moreover, the literature specifies

that designing a suitable distribution network is an essential factor for any supply chain to the degree that
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Table 1: Literature review summary of recent hierarchical HLPs

Author(s) (year)
Main objective(s) Variables

Allocation Capacity Model Solution approach Main contribution
Definition No. Type Indices

Lin and

Chen

(2004)

FC,TC,OC SO Det 3 SA LC Binary Implicit enumera-

tion algorithm

Determining the fleet size and schedules in a time-constrained

network

Thomadsen

and Larsen

(2007)

TC SO Det 2 MA LC Binary Branch-and-price

algorithm

Application of hierarchical HLP in designing fully intercon-

nected telecommunication network.

Yaman

(2009)

TC SO Det 3 SA UC MIP Branch-and-

bound*

Locating a predetermined number of hubs and central hubs

to minimize the total routing cost

Chen

(2010)

TC, OC SO Det 3 MA LC Binary Tabu search Designing a heuristic approach to find a near-optimal solution

for time-definite common carrier operation planning problem

Lin (2010) FC, TC SO Det 3 MA LC Binary Implicit enumera-

tion algorithm

Designing a directed network where operating cost is mini-

mized by considering the service time and operations restric-

tions

Sahraeian

and Ko-

rani (2010)

TC SO Det 3 SA UC MIP Branch-and-

bound*

Proposing a heuristic method to minimizing the total cost for

assigning nodes to their top-level hubs with predetermined

cover radius

Chi et al.

(2011)

FC,TC SO Det 2 SA LC Binary Genetic algo-

rithm

Proposing a new model of hierarchical HLP to provide a re-

sponsive and effective humanitarian relief network for disaster

condition

Alumur

et al.

(2012)

FC,TC SO Det 2 SA UC MIP Branch-and-

bound*

Performing sensitivity analysis to illustrate that the locations

of airport hubs are less sensitive to the cost parameters com-

pared to the locations of ground hubs in improving the service

quality

Davari

and Fazel

Zarandi

(2012)

TC SO Fuzzy 3 SA UC Binary Variable neigh-

borhood search

Applying heuristic method to the single allocation hierarchi-

cal HLP with fuzzy demands to manage uncertainty in de-

mand

Saboury

et al.

(2013)

TC SO Det 3 SA UC Binary Hybrid heuristics Applying the hybrid heuristic method to find the optimal

hierarchical hub network in fully interconnected telecommu-

nication industry

Rieck et al.

(2014)

FC,TC,OC SO Det 3 SA LC MIP Genetic algo-

rithm

Extending hierarchical HLP and pick-up and delivery prob-

lems for companies that provide their services through hub

networks

Fazel

Zarandi

et al.

(2015)

TC SO Det 3 SA UC Binary Heuristic algo-

rithm

Highlighting the applicability and efficiency of meta-heuristic

methods in solving hierarchical HLPs due to their complexity

Dukkanci

and Kara

(2017)

TC SO Det 2 SA UC Binary Heuristic algo-

rithm

Proposing a heuristic algorithm to indicated the locations

and allocate the demand in the hub covering problem with a

service time bound

Torkestani

et al.

(2018)

FC,TC,OC SO Sto 3 MA LC MIP Heuristic algo-

rithm

Proposing a robust hierarchical hub network under a site- and

time-dependent disruption probability

Zhong

et al.

(2018)

FC,TC SO Sto 3 SA LC MIP Genetic and Tabu

search algorithm

Application of a meta-heuristic algorithm to design a multi-

level hub network and determine the integration location of

urban and rural public transport hub

Khodemani-

Yazdi et al.

(2019)

FC,TC,MR BO Sto 3 MA LC MIP NSGA-II and

hybrid simu-

lated annealing

algorithm

Application of a meta-heuristic algorithm in solving a bi-

objective hierarchical HLP to minimize the total cost and

maximize route length

Song and

Teng

(2019)

CP SO Det 2 SA LC Binary Genetic algo-

rithm

Proposing a hybrid hierarchy to have higher CP

Ma et al.

(2020)

TC SO Det 3 SA UC MIP GUROBI default

method

A multi-modal hierarchical HLP with time restriction to im-

prove the efficiency and balance the cargo flow of the China

railway network

Ghaffarinasab

(2020)

TC BO Det 2 SA UC MIP Tabu search

heuristic

Proposing a heuristic solution approach for solving a bi-

objective star HLP

This

study

TC, OC, DT MO Sto 3 SA UC MIP Genetic algo-

rithm

Applying a genetic algorithm to solve multi-objective

hierarchical HLPs to minimize total cost and main-

tain the freshness of products in operational centers

* Not specific solution approach is noted in these studies. So, default approach, i.e. branch-and-bound, is considered.

Acronyms: FC: Fixed cost, OC: Operation cost, TC: Transportation cost, MR: Maximum route length, DT: Delivery times, SO: Single-objective, BO: Bi-objective,

CP: Coverage performance, MO: Multi-objective, Det: Deterministic, Sto: Stochastic, SA: Single allocation, MA: Multiple allocation, LC: Limited capacity, UC: Un-capacitated
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Table 2: Example of supply chain studies considering the perishability features.

Author(s)

(year)

Field Delivery

time

window

Product Variable

type

Uncertain

parameter

Model Freshness Strategy

Hwang (2004) Set-covering location X Perishable Sto Availability

of centers

Binary –

Feng and Xiao

(2006)

Pricing and capacity

allocation

Perishable Sto Price MIP –

Law and Wee

(2006)

Production-

inventory planning

X Perishable Det – MIP Immediate delivery

Cai et al.

(2008)

Manufacturing X Perishable Sto Processing

time

Binary –

Chew et al.

(2009)

Inventory allocation

and pricing

Perishable Sto Demand Integer Immediate delivery

Chen et al.

(2009)

Scheduling and vehi-

cle routing

X Perishable

food

Det – MIP Penalty cost of late delivery

Boysen (2010) Zero-inventory cross

docking

X Food Sto Flows Binary Refrigerated outbound

trucks

Ahumada and

Villalobos

(2011)

Production planning

and distribution

X Perishable

agricultural

Sto Freshness Integer Short-term planning in the

harvest season

Amorim et al.

(2012)

Production planning

and distribution

X Perishable Det – MIP Differentiating holding costs

depending on shelf-life

Gunpinar and

Centeno (2016)

Vehicle routing prob-

lem

X Blood Sto Processing

time

MIP Using fully equipped blood-

mobiles

Zahiri et al.

(2017)

Supply chain net-

work design

PharmaceuticalSto Demand MIP Multi-period pharmaceutical

network design

Ma et al. (2018) Cold chain manage-

ment

X Fruit Det – MIP Scheduling of the inter-

modal network of refriger-

ated containers

Wang et al.

(2019)

Supply chain man-

agement

Food Det – MIP Refrigerated transportation

Wei et al.

(2019)

Vehicle routing prob-

lem

X Food Det – MIP Using cold storage and pe-

riodical distribution in cold

chain distribution

Lin et al. (2020) Cold chain manage-

ment

Vaccine Sto Adverse

event

MIP The retailer’s inspection at

the end of transportation

Hamdan and

Diabat (2020)

Supply chain net-

work design

X Blood Sto Demand MIP Minimum time of delivering

blood to hospitals

This study Hierarchical HLP X Perishable Sto Demand MIP Complementary opera-

tions at hubs
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almost 30 percent of the total price of products has a direct relationship with transportation costs (Apte and

Viswanathan, 2000; Rahmanzadeh Tootkaleh et al., 2014). The consideration of uncertainty and disruption

is also a common concern in recent modeling approaches (Boysen, 2010; Gunpinar and Centeno, 2016; Zahiri

et al., 2017; Hamdan and Diabat, 2020; Akbarpour et al., 2020). For instance, Ahumada and Villalobos

(2011) consider the quality or freshness of agricultural food as the uncertain parameter of their MIP model

and introduce some metrics, such as shelf life, color, grade, external appearance, and texture, to quantify the

quality. They point out that a trade-off between the freshness and the transportation cost should be made.

Taking both Table 1 and Table 2 into consideration, we acknowledge that hierarchical hub networks with

special equipment at hub nodes are beneficial for the flow of perishable products. To sum up, the superiority

of the proposed model over the existing one relies on a robust transportation network for perishable goods by

means of operational hub centers in a cold chain that includes delivery time restrictions and product freshness

levels with stochastic demand. To handle the complexity of the problem, our solution approach converts the

multi-objective function into a single one, which will be discussed in detail in the following section.

3. Model formulation

In this section, we formulate the problem systematically by employing the notation described in Table 3.

The model is proposed in terms of a single allocation hierarchical operational hub for a cold chain (hereafter

called the HOH-CC model) which is presented in two main streams. First, we assume that the model is

not inflicted with disruption. Then, in the second approach, the model is extended to cope with disruption.

In contrast with the existing hierarchical HLP models, where hub nodes at different levels provide similar

services, our model’s hubs offer different services for perishable goods. The main assumptions of the HOH-CC

model are summarized as follows (c.f. Table 1 for justifying and referencing these assumptions):

• A three-level hub network shown in Figure 1 is considered in the model, including nodes (I), hubs (H),

and central hubs (C).

• A single allocation hub problem is studied where the non-hub nodes are linked to exactly one hub.

• A central hub cannot be linked to a demand node.

• There is no capacity limitation in the network.

• The number of hubs (P ) and central hubs (Pc) are predetermined.

• There is a cost discount factor between the central hubs denoted by αc and between the remaining hubs

by αh.

• There is a time reduction factor between the hubs which is considered by α′h for the hubs and α′c for

the central hubs.

• There is a predetermined delivery time window (β) between every pair of linked nodes.
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• The flow from a node to its own location is null, and the associated cost and time are zero (wii = 0,

cii = 0 and tii = 0). No goods are transferred through the model’s routes.

• Symmetric cost matrix, i.e. the unit transportation cost from node i to node j is equal to the unit

transportation cost from node j to node i (cij = cji).

• Symmetric time matrix, i.e the arrival time from node i to node j equals to that from node j to i

(tij = tji).

3.1. Deterministic model (without uncertainty; HOH-CC model)

In the first model, demand is constant, and the freshness time window is assumed to be fixed for all

flows. Based on FSIS (Food Safety and Inspection Service) safety and security guidelines for transportation

and distribution of meat, poultry, and egg products1, it is highly recommended that transportation vehicles,

containers, and conveyances should be designed for food transportation and that they should be restricted to

a single commodity to reduce the risk of cross-contamination from previous cargoes. To meet this importance,

the proposed model provides the optimal transportation system for single-type food. However, index f has

been added to the variables that can be affected by food type. We introduce the model in five main steps.

First, the assignment variables and the relevant constraints are defined in Section 3.1.1. Next, the flow of

goods is investigated in Section 3.1.2. Section 3.1.3 presents the delivery time variables and constraints. The

cold chain requirements are added into the model through Section 3.1.4. Lastly, we outline the objective

function of the MILP model in Section 3.1.5. Sets of indices, parameters, and decision variables used in the

model are introduced in Table 3.

3.1.1. Assignment

The location-allocation constraints of the model are formulated as follows:

∑
j∈H

∑
k∈C

Xijk = 1 ∀i ∈ I (1)

Xijk ≤ Xjjk ∀i ∈ I, j ∈ H\{i}, k ∈ C (2)

∑
g∈H

Xjgk ≤ Xkkk ∀j ∈ H, k ∈ C\{j} (3)

∑
j∈H

∑
k∈C

Xjjk = P (4)

1https://www.fsis.usda.gov/shared/PDF/Transportation_Security_Guidelines.pdf
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Table 3: Nomenclature

Sets of indices

I Set of nodes (i = 1, ..., I)

H Set of feasible locations for hub nodes which is a subset of I (H ⊆ I)

C Set of feasible locations for central hubs which is a subset of H (C ⊆ H)

Sn Set of possible scenarios in the model affected by disruption (sn = 1, ..., Sn)

F Set of foods (f = 1, 2, . . . ) Here, this is single-food distribution network (f=1)

General parameters

P The number of hubs to be opened

Pc The number of central hubs to be opened

wij Amount of goods that flowed from node i ∈ I to node j ∈ H

cij Unit transportation cost from node i ∈ I to hub node j ∈ H once node i has been linked to hub j

Crjf Fixed cost of refreshing operation in hub j ∈ H for perishable product f

Cfkf Fixed cost of freezing operation in hub k ∈ C for perishable product f

αh Cost discount factor used between the hubs

αc Cost discount factor used between the central hubs

α′h Time reduction factor used between the hubs

α′c Time reduction factor used between the central hubs

ψsn Probability of occurrence of scenario sn

Assignment variables

Xijk Equals 1 if node i ∈ I is linked to lower-level hub j ∈ H, which has been linked to central hub

k ∈ C, and 0 otherwise.

Flow balance variables

f1ijk Amount of goods that flowed from node i to lower-level hub j, passing through central hub k

f2ikl Amount of goods that flowed from node i to central hubs k, passing through another central hub

l (k 6= l)

Delivery time variables

Atk Arrival time when all flows from hubs and demand nodes linked to central hub k arrives at k

Rtl Release time, i.e. the time at which all flow coming from nodes and hubs linked to l can leave the

central hub towards their destinations

Delivery time parameters

tij Travel time between nodes i and j

ri Time when all flows starting from node i are ready to transmit

Ptjf Complementary operation processing time in hub j

P tkf Complementary operation processing time in central hub k

Lti Loading time in node i

Uti Unloading time in node i

Dtis Delivery time upper limit between every pair of nodes

β Delivery time window between every pair of nodes

11



Table 3: Nomenclature-Continued

Cold chain variables

Zis Equals 1 when a refreshing or freezing operation is needed during the transportation of goods from

node i to node s, and 0 otherwise

Risj Equals 1 if a refreshing operation is needed in hub j when the flow between pair of nodes (i, s)

passes through hub j, and 0 otherwise

Fisk Equals 1 if a freezing operation is needed in central hub k when the flow between pair of nodes

(i, s) passes through central hub k, and 0 otherwise

Sris Complementary operations satisfaction rate of goods’ freshness resulting by using refreshing or

freezing operations on a flow between pairs of nodes (i, s)

Cold chain parameters

Ftf Freshness time window between every pair of nodes

Rsf Refreshing satisfaction rate

Fsf Freezing satisfaction rate

M Large value used for defining some constraints

∑
k∈C

Xkkk = Pc (5)

Xkjk = 0 ∀j ∈ H, k ∈ C\{j} (6)

Xijk = {0, 1} ∀i ∈ I, j ∈ H, k ∈ C (7)

The single allocation assumption is ensured by Constraints (1), which confirm that each demand node is

linked to only one lower-level hub and one central hub. Constraints (2) state that demand node i, hub j and

central hub k can be linked if hub node j and central hub k are linked. Constraints (3) declare that hub j

can be linked to central hub k if the node k is selected as a central hub. Constraints (4) and Constraints (5)

force the number of hubs and central hubs to be equal to predetermined values. Constraints (6) declare one

of the main assumptions that a central hub cannot be linked to a demand node. Constraints (7) define the

allocation of binary values for X in any combination of nodes and hubs.

3.1.2. Flow balance

In order to model the traffic between the nodes, two kinds of flow variables are introduced in the HOH-CC

model. One causes the flow of goods to agree between hubs and central hubs (i.e. f1ijk) and the other one

determines the flow among central hubs (i.e. f2ikl). The model also satisfies the triangle inequality for all
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nodes. The following constraints define the limitation of flow between the nodes:

f1ijk ≥
∑

s∈I\{j}

(wis + wsi)(Xijk −Xsjk) ∀i ∈ I, j ∈ H, k ∈ C\{j} (8)

∑
l∈C\{k}

f2ikl −
∑

l∈C\{k}

f2ilk =
∑
s∈C

wis

∑
j∈H

(Xijk −Xsjk) ∀i ∈ I, k ∈ C (9)

f1ijk ≥ 0 ∀i ∈ I, j ∈ H, k ∈ C (10)

f2ikl ≥ 0 ∀i ∈ I, k ∈ C, l ∈ C\{k} (11)

The amount transferred from node i to hub j and then to central hub k is calculated in Constraints (8).

The flow balance between central hubs is formulated in Constraints (9). Constraints (10) and (11) assure

that the flow variables are non-negative.

3.1.3. Delivery time window

One main objective of designing hub networks is the implementation of just-in-time delivery. Delivery time

is the summation of travel time between two pairs, loading and unloading time, and potential complementary

operation processing time based on the delivery time window. In this regard, we control the arrival and release

time of flow in central hubs. Constraints (12) calculate the latest arrival time at central hub k (Atk) and

Constraints (13) formulate the release time at the next central hub l (Rtl). Constraints (14) confirm that

the delivery time between each pair of linked nodes is restricted to a predetermined delivery time window

(β). Constraints (15) and (16) assure non-negativity of the variables.

Atk ≥
∑
j∈H

(ri + Lti + tij + Ptjf + α′htjk + Ptkf )Xijk ∀i ∈ I, k ∈ C (12)

Rtl ≥ Atk + (α′ctkl + Ptlf )Xkkk ∀l ∈ C, k ∈ C (13)

Rtl +
∑
j∈H

(α′ltlj + Ptjf + tji + Uti)Xijl ≤ β ∀i ∈ I, l ∈ C (14)

Atk ≥ 0 ∀k ∈ C (15)

Rtl ≥ 0 ∀l ∈ C (16)
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3.1.4. Cold chain requirements

Up to this point, the model includes the main concept of a single location-allocation hub network problem

noted in the relevant literature (see the allocation mode in the studies listed in Table 1). However, a cold chain

requires several refreshing and freezing operations. Hereafter, we introduce several variables and parameters

aimed at modeling a cold chain. In the proposed cold chain, the refreshing and freezing operations are offered

in every hub node to guarantee the freshness of perishable goods delivered in demand nodes. Regarding the

temperature control of the cold chain, we assume that the lower-level hubs only perform refreshing operations,

while central hubs provide both refreshing and freezing ones. We also assume that the transportation system

is working with a sufficient number of delivery vehicles (with ambient temperature) to manage cold logistics.

To ensure the minimum freshness of goods, we control travel times (Dtis) between each pair of nodes and

check whether a refreshing or freezing operation is required. When the travel time surpasses the freshness time

window of goods (Ftf ), a refreshing or freezing operation is applied (with the help of Risj and Fisk variables,

respectively). We assume that there is a common sense of quality or freshness of the products in the cold

chain named as complementary operations satisfaction rate, which can be calculated for every pair of nodes

(Sris) and is directly dependent upon the complementary operations. Figure 2 clarifies the dependence of the

customer complementary operations satisfaction rate based on the delivery time. As depicted, if the delivery

time is shorter than the freshness time limit, the network will not apply any complementary operations

therefore, the customer complementary operations satisfaction rate for that pair of nodes would equal to

zero. In case the complementary operations can extend the freshness time limit and delivery time can meet

this extended limit, then of the customer complementary operations satisfaction rate would be calculated

based on the applied operations. Finally, if the delivery time is over the extended freshness time limit, even

complementary operations will not be able to preserve food freshness; therefore, the customer complementary

operations satisfaction rate would be equal to zero.

The model investigates the satisfaction rate for refreshing and freezing operations separately (i.e. by

employing Rsf and Fsf ). The cold chain operational constraints are defined as follows:

Dtis ≥ ri +Xijktij +Xsjktsj ∀i ∈ I, s ∈ I\{i}, j ∈ H, k ∈ C (17)

Dtis ≥ri +Xijktij + α′h(Xijk +Xsgk − 1)(tjh + tgs) +Xsgktsg (18)

∀i, s ∈ I, i 6= s. j, g ∈ H, j 6= g. k ∈ C

Dtis ≥ri +
∑
j

(
(tij + α′htjk)Xijk

)
+ α′ctkl

(∑
j

Xijk +
∑
g

Xsgl − 1
)

+
∑
g

(
(tsg + α′ltgl)Xsgl

)
(19)

∀i, s ∈ I, i 6= s j, g ∈ H, j 6= g l, k ∈ C, l 6= k

Dtis − Ftf ≥M(Zis − 1) ∀i, s ∈ I (20)
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Figure 2: Step-wise satisfaction level based on delivery time.

Dtis − Ftf ≤M(Zis) ∀i, s ∈ I (21)

Fisk ≤
∑
j∈H

Xijk +
∑
g∈H

Xsgk ∀i, s ∈ I, k ∈ C (22)

Risj ≤
∑
k∈C

Xijk +
∑
k∈C

Xsgk ∀i, s ∈ I, j, g ∈ H (23)

∑
k∈C

Fisk +
∑
j∈H

Risj = Zis ∀i, s ∈ I (24)

Sris = Fsf
∑
k∈C

Fisk +Rsf
∑
j∈H

Risj ∀i, s ∈ I (25)

Fisk, Risj , Zis = {0, 1} ∀i, s ∈ I, j ∈ H, k ∈ C (26)

Constraints (17) limit the delivery time of each pair of nodes (i, s) which have been assigned via a common

lower-level hub j. If the pair of nodes (i, s) includes two different lower-level hubs and a common central

hub, the delivery time is limited by the constraints (18). Moreover, if the pair of nodes (i, s) includes two

different central hubs, the delivery time is determined by Constraints (19) that otherwise will be non-active.

Constraints (20) and (21) state that an extra operation is required when it takes more time to transmit the

goods between the nodes (i, s) than the freshness time window will allow. Constraints (22) and (23) determine

the type of operation (refreshing or freezing) needed at lower-level and central hubs. Constraints (24) ensure
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that if an extra operation is required in a hub, only one of the refreshing or freezing operations is performed.

The overall satisfaction rate achieved from the implemented operations is calculated by Constraints (25).

The spoilage rate in our cold chain depends on the difference between the delivery time of each pair of

nodes (Dtis) and the freshness time window (Ftf ). Therefore, let us define a penalty cost per time unit

(Pl) for calculating the spoilage cost in the model. This unit cost will be different depending on the types

of goods transferred in the network. For instance, vital goods such as pharmaceutical products will have a

larger unit penalty cost than agricultural products. Equation (27) calculates the spoilage cost in the model.

Spoilage cost = Pl.
∑
i∈I

∑
s∈I

(Dtis − Ftf ) ; if Dtis > Ftf (27)

3.1.5. Objective function

It is evident that the HOH-CC is NP-hard, since the p-hub median problems are NP-hard (Kara and

Tansel, 2003). The proposed objective function of the current study is multi-objective function including. In

order to simplify the optimization, we convert our multi-objective optimization model into a single objective

problem by using a weighted sum method. The objective function of the proposed model can be defined in two

subcategories. The minimization part attempts to minimize the total transportation cost (first component in

Equation (28)), delivery time (second component in Equation (28)), and operational cost associated with the

refreshing and freezing operations (fourth component in Equation (28)). The second part tries to maximize

the satisfaction rate of customers regarding goods’ freshness (third component in Equation (28)).

For coping with the multi-objective function, we define four positive scalar weights (i.e. P1 to P4 while∑4
i=1 Pi = 1) to present the single objective function of the model in Equation (28). Moreover, to handle

the maximization terms, the negative coefficient of the weight P3 has been included in the Equation (28). As

the overall objective function is a minimization problem, the use of a negative coefficient of the weight P3

indicates that the satisfaction rates should be maximized in the optimization algorithm.

The overall HOH-CC model reads:

Min P1

(∑
i∈I

∑
s∈I

(wis + wsi)
∑
j∈H

cij
∑
k∈C

Xijk (28)

+
∑
i∈I

∑
s∈I

∑
k∈C\{j}

αhcjkf1ijk +
∑
i∈I

∑
k∈C

∑
l∈C\{k}

αccklf2ikl

)
+ P2

∑
i∈I

∑
s∈I

Dtis − P3

∑
i∈I

∑
s∈I

Sris + P4

(∑
i∈I

∑
s∈I

∑
j∈H

RisjCrjf +
∑
i∈I

∑
s∈I

∑
k∈C

FiskCfkf

)
3.2. Classic hierarchical hub model

As stated in the literature review section, the previous hierarchical hub problems do not include the

concepts of cold chains. We call such problem as the classic hierarchical hub (CHH) and can be defined by

ignoring the cold chain-related constraints of Section 3.1.4. The objective function of CHH only includes the

minimization of transportation costs as well as the minimization of the total delivery times.
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Therefore, the CHH model is defined as follows:

Min P1

(∑
i∈I

∑
s∈I

(wis + wsi)
∑
j∈H

cij
∑
k∈C

Xijk +
∑
i∈I

∑
s∈I

∑
k∈C\{j}

αhcjkf1ijk (29)

+
∑
i∈I

∑
k∈C

∑
l∈C\{k}

αccklf2ikl

)
+ P2

∑
i∈I

∑
s∈I

Dtis

Subject to the constraints (1) - (19), (27).

3.3. Model affected by disruption

In this section, uncertainty is considered the demand that will trigger the model HOH-CC and is hereafter

determined as HOH-CC-D. Farahani et al. (2013) concede that the main parameter of a network problem

affected by disruption is demand. It is common to rely on scenario analysis for contemplating demand

disruption in hierarchical network models (Lin and Chen, 2004). We originate several scenarios for the

potential demand and consider different flows between each pair of nodes to assess the effects of disruption.

The second parameter with uncertainty is the freshness time window which is highly related to the origin

demand node. The third parameter is the effectiveness of cold chain operations, which means that freezing

and refreshing operations may be unsuccessful in preventing the deterioration of goods. In this situation, the

model should avoid ineffective operations. With a slight abuse of notation, only the modified version of the

constraints and the objective function of model HOH-CC-D are presented hereafter.

3.3.1. New flow balance constraints

Stochastic demands are considered in the model by applying different scenarios (Sn refers to the number

of scenarios) for the flow balance constraints introduced in Section 3.1.2, as follows:

f1snijk ≥
∑

s∈I|{j}

(wsn
is + wsn

si )(Xijk −Xsjk) ∀i ∈ I, j ∈ H, k ∈ C\{j}, sn ∈ Sn (30)

∑
l∈C\{k}

f2snikl −
∑

l∈C\{k}

f2snilk =
∑
s∈C

wsn
is

∑
j∈H

(Xijk −Xsjk) ∀i ∈ I, k ∈ C, sn ∈ Sn (31)

f1snijk ≥ 0 ∀i ∈ I, j ∈ H, k ∈ C, sn ∈ Sn (32)

f2snikl ≥ 0 ∀i ∈ I, k ∈ C, l ∈ C\{k}, sn ∈ Sn (33)

3.3.2. New cold chain constraints

The HOH-CC model could only accept a specific freshness time window (Ftf ), whereas in the new HOH-

CC-D, we consider a multi-level freshness time window stated in Equation (34) to cope with the disruption

affecting the cold chain. By adding this equation, the travel time of every pair of nodes is compared to
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multi-freshness time windows to ensure that the complementary operations will keep the goods fresh. If the

travel time between origin i to destination s (Dtis) is shorter than the refreshed product lifetime (Ftf2),

the model will apply refreshing operation to keep the product fresh. If the travel time is longer but shorter

than the frozen product lifetime (Ftf3), the model will apply a freezing operation to keep the product fresh.

Subsequently, if the travel time is longer than the frozen product lifetime, complementary operations cannot

prevent deterioration, so no operation will be done.


if F tf1 ≤ Dtis ≤ Ftf2 Do refreshing operation

if F tf2 < Dtis ≤ Ftf3 Do freezing operation

if F tf3 < Dtis None of the operations can prevent deterioration

(34)

Constraints (20) and (21) in the HOH-CC model are converted to Constraints (35) to (38) in the new

model. Constraints (35) state that if the delivery time between a pair of nodes is greater than the lower bound

of the freshness time window (Ftf1), a complementary operation will be required (Zopis = 1). Constraints

(36) to (38) determine the type of complementary operation, which can be refreshing (Z1is = 1) or freezing

(Z2is = 1) or none (Z0is = 1). Constraints (39) and (40) determine the optimal hub nodes for the related

operations. Constraints (41) and (42) assure that only one operation is implemented in the corresponding

route. The overall satisfaction rate achieved from either refreshing or freezing operations is calculated by

Constraints (43).

Dtis − Ftf1 ≤M.Zopis ∀i, s ∈ I (35)

Dtis − Ftf2 ≤M.Z0is ∀i, s ∈ I (36)

Dtis − Ftf3 ≤M.(Z0is + Z2is) ∀i, s ∈ I (37)

Dtis − Ftf3 ≤M.(Z0is + Z2is + Z1is) ∀i, s ∈ I (38)

∑
k∈C

Fisk = Z2is ∀i, s ∈ I (39)

∑
j∈H

Risj = Z1is ∀i, s ∈ I (40)

∑
k∈C

Fisk +
∑
j∈H

Risj = 1 ∀i, s ∈ I (41)

Z0is + Z1is + Z2is = Zopis ∀i, s ∈ I (42)
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Sris = Rsf ∗ Z1is + Fsf ∗ Z2is ∀i, s ∈ I (43)

3.3.3. New objective function

The objective function of the new model (i.e HOH-CC-D) is defined when minimizing the expected value

of the previous four weighted objective functions, introduced in Equation (28), under the potential occurrence

of all scenarios. The overall HOH-CC-D model is formulated as follows:

Min
∑

sc∈Sn

ψsn

(
P1

(∑
i∈I

∑
s∈I

(wsn
is + wsn

si )
∑
j∈H

cij
∑
k∈C

Xijk (44)

+
∑
i∈I

∑
s∈I

∑
k∈C\{j}

αhcjkf1snijk +
∑
i∈I

∑
k∈C

∑
l∈C\{k}

αccklf2snikl
)

+ P2

∑
i∈I

∑
s∈I

Dtis − P3

∑
i∈I

∑
s∈I

Sris + P4

(∑
i∈I

∑
s∈I

∑
j∈H

RisjCrjf +
∑
i∈I

∑
s∈I

∑
k∈C

FiskCfkf
))

Subject to Constraints (1) to (43).

4. Computational experiments

4.1. Data and experiment settings

In this section, we provide several numerical studies using the CAB dataset, introduced by O’Kelly (1987).

Some data from a frozen food company have been added to the dataset to simulate a realistic cold chain.

The company is assumed to distribute several kinds of frozen vegetables (such as baby beans, carrot, corn,

and broccoli) and needs to apply complementary operations during the distribution of the products to keep

them fresh. The temperature of the freezing operation performed in the central hubs is below −18◦C and

the refreshing operation is performed by changing the temperature of the product to less than −2◦C. The

transportation system does not require any freezing equipment and the maximum room temperature for any

delivery trucks has been determined as 5◦C. To comply with the above temperature requirements, a delivery

time window (β = 2760min) and freshness time window (Ftf = 1500min) allows the transportation system

to manage the cold chain.

It is assumed that the company delivers the products to 10 demand nodes (|I| = 10 cities), and six of

those are candidates for lower-level hubs (|H| = 6), whereas only two of the hubs could be central hubs

(|C| = 2). The company has planned to open four hubs (P = 4) with one central hub at the most (Pc = 1).

All cost-discount and time-reduction factors between hubs and central hubs are assumed to have the same

value of αh = αc = α′h = α′c = 0.8. We code and run all tests using a commercial optimization software

(known as GAMS 23.6) on an Intel Core i5 CPU working with 2.53 GHz speed and 4 GB RAM.
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4.2. Results and discussion

In this section, we compare the optimal solution delivered by the classic model (CHH) against the optimal

solution given by the deterministic cold chain model (HOH-CC) on a single instance. We first investigate the

configuration of the HOH-CC model. Figure 3 depicts the optimal hub network of the food cold chain and

illustrates that node 4 has been selected as a central hub with freezing equipment. Nodes 7, 8, and 9 are the

lower-level hubs. Hub 9 is the only one equipped with refreshing facilities (cf. Table 4).

Table 4: Numerical Case Study of the HOH-CC Model: Operations Required in Opened Hubs between Each Pair of Nodes.

Pair of nodes Refreshing center Freezing center

(3,8) 9 -

(10,3) 9 -

(10,8) - 4

Other pairs - -

4

8 5

6

2

3 9

10

7

1

Demand node

Lower level hub

Central hub

Feasible route

Figure 3: Numerical Case Study of the HOH-CC Model: Optimal Network Structure.

In order to assess the consideration of the cold chain’s requirements, we compare the HOH-CC with the

CHH model. Table 5 compares the total cost of two models, which includes spoilage, transportation, and

operational costs for two settings: (1) the freshness time window (Ftf ) lower than the delivery time window

(β); (2) Ftf greater than β.

Naturally, the operational and spoilage costs only incur when the freshness time window is lower than

the delivery time. The spoilage cost of the network is avoided in the HOH-CC model and incurs only by

investing in the freezing or refreshing operations. Given that the transportation cost of both models and

their network structure is the same, a great spoilage cost leads to a greater total cost for the classic model.

It was concluded that the proposed model performs more efficiently when the the freshness time (ft) is lower

than the delivery time window between pairs of nodes (β).
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Table 5: Numerical Case Study: Impact of Including Cold Chain Concepts ($k).

Model Total cost Spoilage Cost Transportation Cost Operational cost

Ftf < β
CHH 841,958 17,780 824,178 0

HOH-CC 828,778 0 824,178 4,600

Ftf ≥ β
CHH 897,206 0 897,206 0

HOH-CC 897,206 0 897,206 0

4.3. Sensitivity analysis of the CHH and HOH-CC models

Discount factors are significant parameters to determine how much of the cost and delivery times can

be reduced in the network because of the hubs. The spoilage rate introduced in Equation (27) is calculated

directly from the difference between the delivery times and the predetermined freshness time window. We

first investigate the effect of discount factors, keeping αh = αc = α′h = α′c = α on the spoilage rate in our

classic model (CHH). The results, demonstrated in Figure 4, validate the model by suggesting a smaller value

for α and a better spoilage rate. The lowest cost discount factor (α) provides the most effective usage of

the hubs in the network. The sensitivity analysis also confirms that increasing the discount factor yields a

higher effect on large-size problems. Consequently, managers should make more efforts to build and sustain

the cooperative work between hubs when the network is large.
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Figure 4: Numerical Case Study of the CHH Model: Effect of Discount Factor (α) on Spoilage Rate With Respect to Different

Network Sizes.

Furthermore, we have investigated the effect of the discount factors (α) and the freshness time window

(Ftf ) on the objective function of the frozen food company. As illustrated in Figure 5, as the discount factor

decreases, the objective function values also decline significantly. This seems logical, as both the transporta-

tion cost and the delivery time-related objectives become less important, whereas the other elements of the

objective function remain constant (see Equation (28)). On the other hand, less of an effect is observed on the
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objective function values as the freshness time window gets bigger. For Ftf ≥ 2760, the objective function

values for each α remains steady because the freshness time window (Ftf ) is greater than the delivery time

window (β), as we have observed in Table 5.
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Figure 5: Numerical Case Study of the HOH-CC Model: Effect of Discount Factor (α) and the Freshness Time window (Ftf )

on the Objective Function.

Figure 5 depicts the result of the frozen food company network with 10 nodes. Additionally, Figure 6

illustrates that a shorter freshness time window would bring more costs in problems with larger network sizes

than with smaller sizes. The trends of the plotted lines also demonstrate that in a larger network size (14

demand nodes), there is still an operational cost in the network, regardless of Ftf ≥ β. This means that

for the goods having higher freshness time windows, the managers should set a higher optimal level of the

delivery time window (here β = 3000min for 14 demand nodes).
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Figure 6: Numerical Case Study of the HOH-CC Model: Freshness Threshold With Respect to Different Network Sizes.
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Operational cost contains the fixed cost of refreshing and freezing operations and plays a key role in

establishing an efficient network. Figure 7 demonstrates that there is a threshold for refreshing fixed cost

when we increase the fixed costs of freezing operations. For instance, when this cost is $200k, increasing

the refreshing fixed cost by $200k would increase the objective function value. Nonetheless, in an instance

where refreshing fixed costs is more than $200k, the same objective function values will be unchanged. In

managerial terms, this threshold means if organizers have budgeted $200k for the freezing equipment of each

central hub, they should spend less than $200k for the refreshing equipment in the lower-level hubs. Figure

7 also illustrates that the threshold of the refreshing fixed cost should be increased for larger freezing fixed

costs, accordingly.
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Figure 7: Numerical Case Study of the HOH-CC Model: Threshold of Refreshing Fixed Cost With Respect to Different Freezing

Fixed Costs.

4.4. Computational considerations for the HOH-CC model

We run the HOH-CC model with several network sizes and numbers of central hubs investigating the

network structure, computational gap, and running time. Hereafter, we assume that every demand node

has the potential to become a lower-level or a central hub. Table 6 indicates that when the size of the

instance increases, the number of central hubs should increase, correspondingly. For example, for instances

over 15 nodes, more than four hubs should be targeted as central hubs to get a better gap and running

time. Regarding such network sizes, we suggest the proposed solution developed in Section 4.5 for solving the

HOH-CC-D model. The table also confirms that the total cost could be decreased by selecting more central

hubs amongst every set of demand nodes.
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Table 6: Numerical Case Study of the HOH-CC model: Different Network Sizes and Computational Gaps/Times.

# of # of Opened hubs Operations
Cost($k) Gap(%) Time(s)

nodes central hubs lower-level/central R* F*

10 1 4,7,8,9/4 ! ! 781,638 0.00 31

10 2 4,7,8,9/4,8 ! ! 780,205 7.00 36

10 3 4,7,8,9/4,7,8 - ! 744,687 5.30 51

10 4 1,4,7,9/1,4,7,9 ! ! 743,856 8.40 7

11 1 4,7,8,9/4 ! ! 911,097 3.66 66

11 2 3,4,6,7/4,6 ! ! 924,922 9.90 8

11 3 4,7,9,11/4,7,11 ! ! 863,156 6.03 468

11 4 1,4,6,7/1,4,6,7 - ! 881,493 9.79 288

12 1 4,7,11,12/11 ! ! 1,731,167 8.08 16

12 2 4,7,8,11/8,11 ! ! 1,764,594 7.60 152

12 3 4,9,11,12/4,9,11 ! ! 1,788,926 4.80 197

12 4 4,5,7,8/4,5,7,8 ! ! 1,772,894 0.22 19

13 1 4,7,11,12/11 ! ! 1,847,193 8.18 30

13 2 4,8,11,12/8,11 ! ! 1,876,576 8.45 528

13 3 4,7,9,12/4,7,12 ! ! 1,932,807 7.33 551

13 4 4,6,7,8/4,6,7,8 ! - 1,955,471 2.60 40

14 1 5,7,11,12/11 ! ! 2,421,765 7.83 46

14 2 1,5,11,12/5,11 ! ! 2,523,219 9.63 820

14 3 1,4,7,12/4,7,12 ! ! 2,568,868 8.79 789

14 4 1,4,7,8/1,4,7,8 ! ! 2,586,832 0.7 145

15 1 5,7,11,12/11 ! ! 2,660,395 7.14 88

15 2 - - - - - -

15 3 - - - - - -

15 4 1,4,7,8/1,4,7,8 ! ! 2,908,999 2.42 457

16 1 - - - - - -

16 2 - - - - - -

16 3 - - - - - -

16 4 4,8,12,13/4,8,12,13 ! ! 2,987,382 9.89 126

17 1 - - - - - -

17 2 - - - - - -

17 3 - - - - - -

17 4 1,4,7,17/1,4,7,17 ! ! 5,172,282 9.95 148

* Complementary operations: Refreshing (R) and Freezing (F)
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As an additional discussion on the proposed model, we conduct additional analyses by changing the

freshness time potentially considering freezing (F+), and refreshing (R+) operations. The results are reported

in Table 7.

Table 7: Analysis of additional operations during the distribution of various types of products with different freshness times

Freshness

time

Freezing

option

Refreshment

option

Customer

Satisfaction*

Total trans-

portation

cost (∗107)

Refreshment

cost

Freezing

cost

Total Freezing

and Refreshment

Costs

1300 F+ R+ 4100 8.895546 1400 1600 3000

1300 F+ - 5500 8.895546 0 4400 4400

1300 - R+ 3300 8.895546 2200 0 2200

1300 - - Infeasible Infeasible Infeasible Infeasible Infeasible

1500 F+ R+ 2600 8.895546 400 1600 2000

1500 F+ - 3000 8.895546 0 2400 2400

1500 - R+ 1800 8.895546 1200 0 1200

1500 - - Infeasible Infeasible Infeasible Infeasible Infeasible

1600 F+ R+ 2300 8.895546 700 1000 1700

1600 F+ - 3000 8.895546 0 2400 2400

1600 - R+ 1800 8.895546 1200 0 1200

1600 - - Infeasible Infeasible Infeasible Infeasible Infeasible

1800 F+ R+ 1150 8.895546 600 200 800

1800 F+ - 1500 8.895546 0 1200 1200

1800 - R+ 1050 8.895546 700 0 700

1800 - - 0 10.42207 0 0 0

2000 F+ R+ 300 8.895546 200 0 200

2000 F+ - 500 8.895546 0 400 400

2000 - R+ 300 8.895546 200 0 200

2000 - - 0 8.895546 0 0 0

2200 F+ R+ 0 8.895546 0 0 0

2200 F+ - 0 8.895546 0 0 0

2200 - R+ 0 8.895546 0 0 0

2200 - - 0 8.895546 0 0 0

* In this case, the complementary operations satisfaction rate for each pair of nodes could be 0 for no complementary

operations, 300 for refreshing operations, and 500 for freezing operations.

The performed analysis confirms the following results:

1. Ignoring refreshing or freezing operations in the distributional hub network may lead to infeasible plans

to deliver products to the customers, or to impose additional transportation costs on the solutions.

2. The freshness time window depends on the food products. The sensitivity analysis on the freshness

time window with respect to operational costs illustrates that products with a lower freshness time will

impose additional operation costs to ensure fresh product delivery to customers, as depicted in Figure
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8, which demonstrates the model robust behavior.

3. Moreover, the sensitivity analysis demonstrates the effect of food types on dissatisfaction costs based

on differences in the freshness time window. As illustrated in Figure 9, it can be observed that the

proposed model can prevent customers’ dissatisfaction cost due to delivery of non-fresh products. This

will be much more important in special situations like pandemics.

Figure ?- Analysis of freshness time as well as additional operations on total operation cost. 

3- Moreover, as illustrated in the figure ??, it can be observed that the proposed model can
prevent customers’ dissatisfaction cost because of receiving non-fresh products. This will be
much more important in special situations like pandemic.
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Figure ??- Analysis of freshness time as well as additional operations on customers’ dissatisfaction cost. 
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4.5. Numerical examples for the HOH-CC-D model

As stated in Section 3.1.5, the HOH-CC-D model extends the HOH-CC model with scenarios. We first

employ an exact approach to solve the model. Table 8 provides numerical examples solved by the GAMS

software considering different network sizes and five demand scenarios. Considering a running time limit

of 1800 seconds, the solver is not able to solve problems with more than 10 demand nodes. Naturally, the

maximum network size of the optimally solvable HOH-CC-D is lower than the maximum instance size of the

HOH-CC model (14 demand nodes - Table 6).

Table 8: Numerical Case Study of the HOH-CC-D model: Different Network Sizes and Computational Times using GAMS

software.

# of # of # of opened hubs Spoilage Total
Time(s)

nodes central hubs lower-level/central Cost($) Cost(k$)

10 1 1,4,7,9/ 4 64,085 929,523 531

10 2 1,4,7,9/ 4,7 57,729 901,532 1004

10 3 1,4,7,9/ 1,4,7 27,733 841,114 880

10 4 1,4,6,7/ 1,4,6,7 27,215 820,838 35

11 1 3,4,5,7/4 185,948 111,164 1006

11 2 - - - -

11 3 - - - -

11 4 1,4,6,7/1,4,6,7 137,771 937,345 88

12 1 4,7,8,11/11 514,979 1,871,519 1008

12 2 - - - -

12 3 - - - -

12 4 4,7,8,12/4,7,8,12 184,921 1,655,444 173

13 1 - - - -

13 2 - - - -

13 3 - - - -

13 4 1,4,7,12/1,4,7,12 153,784 1,768,492 1009

Consequently, it is necessary to employ a heuristic approach to find near-optimal solutions in large-scale

examples (Farahani et al., 2013; Dukkanci and Kara, 2017). Several solution methods have been developed for

the NP-Hard hierarchical hub problems, such as the heuristic algorithm (Dukkanci and Kara, 2017; Saboury

et al., 2013), the Tabu search (Chen, 2010), the Branch-and-price algorithm (Thomadsen and Larsen, 2007),

and the genetic algorithm (GA) (Chi et al., 2011). Farahani et al. (2013) declare that GA is the most

common and beneficial heuristic approach to solve NP-Hard HLP models in the literature. We resort to a

GA method to solve our proposed optimization problem. The GA approach is a population-based heuristic

search algorithm that explores the problem space to find a near-optimal solution with the help of simulating
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the mechanism of natural evolution (Rieck et al., 2014). In this study, we have used a single point crossover, a

roulette wheel selection, and a one-point mutation for the applied genetic algorithm, so its complexity degree

is O(g(nm + nm + n)), with g being the number of generations, n the population size, and m the size of

each chromosome. The pseudo code presented in Algorithm 1 was coded in the MATLAB software.

Algorithm 1: Pseudo Code For the Genetic Algorithm With a Local Search.

Step 1: Generate the initial population.

Step 2: For each solution in the population set, do a local search.

Step 2.1: Find the optimal lower-level of allocations with the nearest facility method.

Step 2.2: Within the local search, repeat steps 2.2.1 to 2.2.3.

Step 2.2.1: Choose the central hubs randomly.

Step 2.2.2: Find the best higher-level allocation.

- Determine the best complementary operation.

- Determine the best hub for the related complementary operation.

Step 2.2.3: Calculate each objective function value of:

- Transportation cost.

- Delivery times.

- Complementary operations cost.

- Satisfaction rates.

Step 3: Perform crossover and mutation operations.

Step 4: Produce a new generation and go to step 2 until reaching a maximum generation.

Step 5: Stopping criterion.

In this study, two main parameters of the algorithm are analyzed, namely the number of population

(npop) and number of generations (iter). So, an experimental design is conducted considering the objective

function value as well as computational time. In the designed experiment, four levels are selected for each

factor. (5,10,15,20) set is selected as the levels of npop and (25,50,75,100) as for the iter. Each experiment is

replicated five times. According to the analysis of variance, shown in Figure 10, it is concluded that the npop

is a significant parameter, while the iter is not statistically significant on the solution quality. Moreover, the

main effect plot for the objective value in each level of npop and iter is depicted in Figure 11. Our analysis of

the computational times and solution quality confirms that there is no significant difference between npop=10

and 15, while the npop=15 needs much more calculation time, so the npop is chosen as 10 and the iter, which

is not significant statistically, is chosen as 50.

The instances of Table 8 have been solved by the new GA, and the results are shown in Table 10. There is

a negligible difference between the results delivered by the algorithm and by the GAMS software in instances

of small network sizes. Furthermore, the algorithm allows us to solve large network size instances. The

opened hubs for the same small network sizes reported in Tables 8 and 10 demonstrate similar results for the
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In this study, two main parameters of the algorithm were analyzed which are 
Number of Population (npop) and number of generations (iter). So, an 
experimental design was conducted considering the objective function value as 
well as computational time. In the designed experiment 4 levels were selected for 
each factor. (5,10,15,20) were selected as levels of npop and levels of iter were 
(25,50,75,100) and each experiment replicated 5 times. According to the 
following Analysis of Variance in figure ???, it is concluded that the npop is a 
significant parameter while the iter is not statistically significant on the solution 
quality. Moreover, Main effect plot for the objective value in each level of npop 
and iter has been depicted in figure ???. Our analysis on the computational time 
and solution quality confirms that there is no significant difference between 
npop=10 and 15 while the npop=15 will need much more calculation time, so 
npop was chosen to be 10 and the iter which is not significant statistically was 
chosen to be 50. 

Figure ???- Statistical analysis of designed experiment for tuning the algorithm 
parameters. 

Factor Information 

Factor  Levels  Values 
npop 4   5, 10, 15,  20 
iter 4  25, 50, 75, 100 

Analysis of Variance 

Source DF    Adj SS    Adj MS  F-Value  P-Value
Model 15  0.259380  0.017292     1.84    0.048 
  Linear 6  0.198694  0.033116     3.52    0.004 
    npop       3  0.192773  0.064258     6.83    0.000 
    iter 3  0.005921  0.001974     0.21    0.889 

2-Way Interactions   9  0.060686  0.006743     0.72    0.691 
    npop*iter 9  0.060686  0.006743     0.72    0.691 
Error    64  0.601694  0.009401 
Total 79  0.861074 

Figure ???- Main effect plot of algorithm parameters in each level on the 
objective function value.  

Figure 10: Statistical analysis of designed experiment for tuning the algorithm parameters.

Figure 11: Main effect plot of algorithm parameters in each level on the objective function value.

GA approach and the exact optimization approach. Comparing the computational times presented in the

last column of Table 8 with those of Table 10, it is clear that reasonable running times are achievable by the

GA method.

Although the spoilage cost generated by the GA method (c.f. Table 10) is greater than that of GAMS on

the HOH-CC-D model (c.f. Table 8), both are remarkably lower than the spoilage cost achieved by GAMS

on the CHH model (c.f. Table 5). This makes it evident that the models equipped with the operations in

hubs (i.e HOH-CC and HOH-CC-D) can more effectively restrain the deterioration rate of the goods in the

network. This impact becomes more noticeable as the networks become larger. Moreover, the performance of

the applied GA is compared to a heuristic algorithm (Modified Feasibility Pump). This algorithm, which has

been proposed by Fischetti et al. (2005), is used to solve the MIP models and tries to find a proper feasible

solution by solving some LP problems, iteratively. The algorithm starts with binary solutions extracted

from linear programming, then enforces the model to achieve binary values for variables in a relaxed linear
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problem. The algorithm for our model is illustrated in Algorithm 2. GA algorithm performance has been

compared with the modified feasibility pump, and the results are reported in Table 9. The results show that

the GA algorithm has an average gap of 17 %, with an average time efficiency of 1082% compared with the

feasibility pump algorithm. It confirms the superiority of the GA algorithm in finding a near-optimal solution

in a reasonable time for the problem.

Table 9: Comparison of the GA algorithm’s performance with the modified feasibility pump heuristic algorithm.

# of GA GA Feasibility Pump Feasibility Pump Solution Time Gap

nodes (ofv *105) Time(s) (ofv *105) Time(s) Efficiency(%) (%)

8 5060.3 31.2 4546.7 24.03 -22.9 11.3

9 6045.6 40.9 5608.7 76.2 86.6 7.8

10 8777.3 49.1 6944.1 215.9 340.1 26.4

11 10264.7 40.8 8049.4 526.0 1189.0 27.5

12 20900.7 52.7 16231.2 1106.3 2000.5 28.8

13 21851.9 84.9 17317.3 1220.0 1337.0 26.2

14 27301.8 88.1 24315.2 1605.3 1722.9 12.3

15 30689.4 178.0 26484.7 1904.1 969.6 15.9

16 32664.8 106.9 29041.4 2202.3 1959.8 12.5

17 60241.7 169.6 54698.3 2270.1 1238.8 10.1

Average - - - - 1082.1 17.9
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Algorithm 2: The modified Feasibility Pump Algorithm for the problem

Step1. Put iteration = 0 and solve LP relaxed problem. Let X∗ijk, Z
∗
is, R

∗
isj , F

∗
isk to be their optimal

values of relaxed decision variables;

Step2. Variables in the previous step will have a binary or real values, so construct a set of indices

of variables with binary values (A1), set of indices of variables with the rounded value of 1 (A2),

and set of indices of variables with the rounded value of 0 (A3). Acquired values for

X∗ijk, Z
∗
is, R

∗
isj , F

∗
isk are considered as parameters (X̂∗ijk, Ẑ

∗
is, R̂

∗
isj , F̂

∗
isk).

if A2 ∪A3 is empty then
Return X∗ijk, Z

∗
is, R

∗
isj , F

∗
isk;

Terminate algorithm.

end

while iteration ≤MaxI do
Let iteration = iteration+ 1 and solve the following mathematical model ;

Min
∑

(i,j,s,k)∈A3

(Xijk + Zis +Risj + Fisk) +∑
(i,j,s,k)∈A2

((1−Xijk) + (1− Zis) + (1−Risj) + (1− Fisk))

s.t.: Original constraints.

Xijk = X̂ijk, Zis = Ẑis, Risj = R̂isj , Fisk = F̂isk ∀(i, j, s, k) ∈ A1

(Xijk, Zis, Risj , Fisk) ≥ 0 ∀i ∈ I, j ∈ H, k ∈ C, s ∈ I

Update the sets of A1, A2, and A3.

if A2 ∪A3 is empty then
Return X∗ijk, Z

∗
is, R

∗
isj , F

∗
isk;

Terminate algorithm.

end

end

if iteration = MaxI then
Fix the Risj = R∗isj in the main model and solve the MIP model.

end
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Table 10: Numerical case study of the HOH-CC-D model: different network sizes and computational times using the GA method.

# of # of Opened hubs Spoilage Total
Time(s)

nodes central hubs lower-level/central Cost($) Cost(k$)

10 1 1,4,7,9/ 4 145,387 955,303 73

10 2 1,4,7,9/ 4,9 135,514 935,213 79

10 3 1,4,7,9/ 1,4,7 113,705 904,584 103

10 4 1,4,6,7/ 1,4,6,7 112,455 873,701 71

11 1 4,7,9,11/4 140,221 1,091,946 88

11 2 4,6,7,11/4,11 120,986 1,089,659 116

11 3 4,7,9,11/4,7,11 105,383 1,050,302 81

11 4 1,4,7,9/1,4,7,9 103,071 1,020,891 98

12 1 4,7,11,12/ 11 555,420 1,855,591 86

12 2 4,7,11,12/11,12 483,145 1,846,292 123

12 3 4,7,8,12/4,7,8 467,841 1,802,674 111

12 4 4,7,8,12/4,7,8,12 421,565 1,784,018 126

13 1 4,7,8,11/11 555,105 2,018,430 79

13 2 4,7,11,12/4,11 563,835 1,992,161 149

13 3 4,7,8,12/4,7,8 521,763 1,970,959 141

13 4 1,4,7,8/1,4,7,8 443,313 1,922,997 137

16 1 4,11,12,13/4 788,765 3,211,288 131

16 2 4,8,9,13/4,8 756,238 3,202,272 226

16 3 1,4,7,12/1,4,7 731,694 3,021,179 249

16 4 1,4,7,8/1,4,7,8 617,704 2,928,967 221

19 1 4,8,13,17/4 1,538,433 5,888,332 171

19 2 1,4,11,17/4,17 1,636,058 5,900,431 352

19 3 1,4,11,17/1,4,17 1,259,919 5,590,577 339

19 4 1,4,7,17/1,4,7,17 1,243,325 5,422,699 317

22 1 4,12,18,22/4 2,026,698 7,838,931 206

22 2 4,7,12,18/4,7 2,018,753 7,755,460 476

22 3 1,4,17,19/1,4,17 1,777,464 7,626,428 509

22 4 1,4,18,19/1,4,18,19 1,765,504 7,501,960 478

25 1 4,12,18,21/4 2,481,420 9,585,433 281

25 2 4,12,18,21/4,21 2,494,339 9,498,682 1059

25 3 1,4,8,18/1,4,18 2,269,800 9,160,403 663

25 4 1,4,18,19/1,4,18,19 2,104,488 9,027,061 770
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To determine the efficiency of the solution for the HOH-CC-D model, which has been equipped with the

cold chain operations, Figure 12 demonstrates a comparison between the HOH-CC-D model (i.e. equipped

hub network) and the CHH model (i.e. non-equipped hub network).
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Figure 12: Numerical case study of the HOH-CC-D and CHH models: Comparing spoilage rates using the GA method.

As delineated in Figure 12, the spoilage rate in the cold chain-equipped network is reduced nearly by half.

Moreover, the spoilage cost increases in larger network sizes as the delivery times for each pair of nodes get

larger (see Equation (27)).

We also conduct another sensitivity analysis for investigating the effect of considering a multi-level fresh-

ness time window defined in our stochastic model. Herein, we calculate the number of ineffective freez-

ing/refreshing operations incurred in the HOH-CC-D model by comparing the models considering single and

multi-level freshness time windows. The analysis shows that the model with multi-level freshness time win-

dow can prevent ineffective operations in the hub nodes. Moreover, Figure 13 illustrates that a larger network

yields more ineffective operations, which could be reduced by determining more central hubs in the network.

5. Comparisons and managerial implications

For highlighting the contributions of this study, we generally compare our results with the related findings

provided in the prior literature. Table 11 demonstrates the comparisons in which we only focus on the practical

(and not the solution or methodological) implications of our study and compare it with at least one set of

similar results in recent publications.

Several main managerial implications can be drawn from this study. As the main implication in line with

cold chain logistics operations, in our proposed model, there is no need to operate complementary operations

inside the vehicles to keep the temperature of the products within a recommended temperature range. Given

that in cold chain logistics companies transportation cost includes a major portion of the total cost compared

with the production or inventory costs (Singh et al., 2017), in an effort to trim this cost, our model proposes
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Figure 13: Numerical case study: Number of ineffective operations incurred using a single level freshness time window instead

of a multi-level freshness time window in the HOH-CC-D model.

employing non-equipped vehicles for logistics. Therefore, depending on the perishable product, the cost of

using any type of vehicles, and the distance between the network facilities, planners can employ any vehicles

that maintain a constant temperature. For instance, unpasteurized milk has a short shelf life, and in any

stage of the logistics chain, it cannot be stored for a long period. Accordingly, more expensive refrigerated

trucks are required to ensure the maintenance of the freshness of the product, especially for long distances.

In comparison with the consequent noticeable transportation cost, using our model with costs of freezing or

refreshing operations in hubs would be more economical.

According to the recent effects of the Covid-19 pandemic on US meat supply, it has been discussed that

the pandemic has significantly disrupted the food supply chain (ABC News, 2020). Empty grocery shelves

were the direct result of the logistic and inventory insufficiency rather than food shortages. To point out

the fundamental problem in the perishable food distribution system during the Covid-19 pandemic, it was

reported that some perishable food manufacturers needed to pay for trucks to stay for days to unload their

goods into a distribution center. Based on the applicability of hub networks in demand fluctuations and

providing freezing and refreshing operations at hubs, our model demonstrates the compatibility of hubs to

operate as efficient distribution centers that can mitigate the impact of pandemic-related demand disruptions.

As another implication, results highlighted that the settings for the freshness time window (Ftf ) and the

delivery time window (β) between every pair of nodes are crucial in a cold chain to minimize/remove any

spoilage. These parameters are highly related to the physical assets used in the given network that each has

an optimum efficient working life. For instance, the thermal efficiency of trailers and containers diminishes

throughout their useful life until the operator replaces them with a more modern unit. Our model optimizes

the network and transmissions according to the existing physical assets in a planning horizon. Therefore,

under reasonable settings for the working life of physical assets, our model would be able to provide practical
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Table 11: Comparison of this study’s results with the related findings provided in the prior literature

Main finding of this re-

search

Reference

(this

study)

Compared

with an-

other

study

Characteristics of the

study as per the find-

ing

Remarks from the verification of

this study

No spoilage/waste by us-

ing refreshing and freezing

operations at hubs

Section 4.2 -

Table 5

Ma et al.

(2018)

No waste by controling

the freshness and quality

of perishable food and

trade-offs between trans-

portation temperature

and transport mode.

Transportation accompanied with re-

frigeration, which causes greater CO2

emissions.

Less spoilage/waste by us-

ing hubs with lower dis-

count factors

Section 4.3 -

Figure 4

Janssen

et al. (2018)

Waste reduction in gro-

cery stores for quickly per-

ishable goods.

The waste is lower in the micro-periodic

replenishment policy, which needs gro-

cery retailers to be located close to their

regional distribution centers for better

collaboration (compared to lower dis-

count factors in hubs).

Minimum total cost for

perishable products with

smaller freshness time

windows

Section 4.3

- Figures 5

and 6

Chen et al.

(2018)

Optimal freshness-keeping

cost per unit of perishable

product and per unit time

is investigated.

A higher freshness-keeping cost is re-

quired to increase the storage time of

perishable products.

Minimum total cost for

networks with higher re-

freshing and freezing costs

Section 4.3 -

Figure 7

Wang et al.

(2019)

3 replenishment strategies

(separate, joint leader-

follower, and joint coali-

tion of retailers) are dis-

cussed.

Minimum total cost gained for the net-

work, but by using refrigerated trans-

portation services.

Higher customer satisfac-

tion by using refreshing

and freezing operations at

hubs

Section 4.4 -

Table 7

Lin et al.

(2020)

Inspect the quality of the

vaccine by retailer (cus-

tomer) in case of using

a cold chain or non-cold

chain.

Similar results (higher customer satis-

faction by using cold chain), but with

special decisions made by retailers.

Minimum spoilage rate

and total cost in disrup-

tion situations

Section 4.5 -

Table 10 and

Figures 12

Maihami

et al. (2019)

Minimize the deteriora-

tion costs for manufactur-

ers and distributors in a

probabilistic environment.

Similar results (both deterioration and

total cost are minimized).

Lower number of ineffec-

tive complementary oper-

ations in hubs by using a

multi-level freshness time

window in disruption situ-

ations

Section 4.5 -

Figure 13

Hamdan

and Diabat

(2020)

Minimizing the time and

cost of delivering blood to

hospitals after disruption.

Minimizing costs, but with no consider-

ation of ineffective operations in blood

collection centers and blood banks.
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guidance for efficient product cold chain compliance.

As a theoretical implication, the results of considering an HLP model for a cold chain (HOH-CC model)

demonstrates that the consideration of hub nodes instead of distribution centers in the models is more

beneficial for the cold chains, as the hub facilities can serve demand nodes with a lower number of links.

This helpful assumption not only develops an efficient cold chain but also helps managers in mitigating the

number of disruptions occurring in the logistics system. Hubs are also loading and unloading, transshipment,

and consolidation points in the network and can decrease the cost of inventories or establishing warehouses.

Therefore, finding efficient hubs and allocating the demand nodes to them would be a helpful way to solve

the issue of high inventory costs in the network redesigning process.

Our proposed hierarchical HLP model is applicable for distribution companies of perishable products

facing high customer demand uncertainty. As every supply is dependent on a proper estimation of demand,

the consideration of possible scenarios for the demand is crucial, especially for products with short shelf

lives, such as food. Under this setting, companies must be prepared for the worst-case scenarios. Moreover,

the quality or freshness of a perishable product can distort the demand. Although our model’s multi-level

freshness time window approach can maintain a desired quality level of excellence, the refrigeration equipment

maintenance should be accurately arranged to ensure the least disruption on demand.

6. Conclusions and suggestions for future work

In this study, motivated by a case from a frozen food company, we introduce a hierarchical operational hub

location problem for managing a cold chain of perishable products and configure an applicable distribution

network. The respective mathematical model considers a complete network for central hubs that are connected

to the other hubs. A discount factor on cost and time of flow between hubs is incorporated. Demand nodes

are linked to the hubs with a single allocation strategy. Moreover, to be able to maintain the freshness of

products at desirable level, hubs may also have additional services for perishable goods including refreshing

and freezing operations. In the proposed MIP optimization model, these complementary operations are

applied once the delivery time of each pair of nodes exceeds the freshness time window. As a consequence,

the spoilage rate is reduced and the satisfaction rate, as well as freshness of goods, increases. Furthermore,

to have a robust network in a disaster situation, the p-hub median problem is amended to a model affected

by disruption. Both models with and without complementary operations are compared against each other.

It is concluded that once the operations are applied, the total cost is reduced due to a significant decrease of

the spoilage rate.

To the best of the authors’ knowledge, most of the presented models in the literature did not consider the

perishability feature of the transported good in designing hierarchical hub networks ((Lin and Chen, 2004;

Wang et al., 2017; Dukkanci and Kara, 2017; Khodemani-Yazdi et al., 2019)). In fact, the proposed models

did not support the freshness time window of products. Improper logistics can be the cause of up to one-third

of spoilage in perishable food industries ( (Rockefeller, 2013)). Without a freshness time limit, our findings
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support the results of the previous hierarchical hub location problem modeling presented by Yaman (2009);

Alumur et al. (2012). By considering the freshness time limit, our findings supplement that using a high-

quality equipped logistics system can help planners meet freshness time limits through the transportation

network. The proposed model and algorithm in the present study have been moved forward to satisfy the

freshness time limit beside satisfying basic hierarchical requirements. The proposed model and algorithm in

the present study go beyond the satisfaction of basic hierarchical requirements and are capable of applying

proper complementary operations on good flows that exceed freshness time limit in addition to minimizing

travel time and travel cost to meet delivery time restriction.

Several sensitivity analyses are performed to investigate the validity of the model and draw some manage-

rial insights. We realize that the lower the discount factors are, the lower the spoilage rate is. Furthermore,

the freshness time window has a negative relationship to the total cost. For the freshness time windows that

are longer than the delivery time windows, the spoilage and operational costs would be zero; however, in the

large networks, the limits could increase correspondingly. Freezing and refreshing costs also have a threshold

that determines the efficient investment for the fixed operational costs.

The proposed stochastic model is solved on larger networks by both the GAMS software and a customized

genetic algorithm to address the computational burden. We observe that the genetic algorithm has a com-

parable result for the small network sizes and can comply with the medium-size networks by improving the

running time and gap of the GAMS software’s solutions. Beside the running time, our proposed GA algo-

rithm is also capable of solving any large-size instances, whereas the exact optimization method of the GAMS

solver cannot provide a solution in a reasonable time.

As a limitation for our study, in the temperature control levels, we remarked on two levels of operations

to maintain the goods freshness level through refreshing and freezing operations, which could be extended

according to Kuo and Chen (2010) as future research, with three or four operations (adding cooling and deeply

freezing to the operations, for instance). As another limitation of this study, in the food types, we considered

single-product transportation to meet FSIS guidelines, however, including multi-product distribution network

as a potential future study direction can enhance the generalizability of the proposed model. Moreover, our

proposed models are based on the incapacitated facilities in the network, while, according to Table 1, HLP

models could consider limited facilities. In our model the cost of freezing and refreshing operations are fixed,

but variable operational cost based on the volume or number of goods could be further examined.

Our proposed network will be able to manage the deterioration rate by applying freshness and freezing

operations on goods if it is needed. Moreover, by considering stochastic demands of pair of nodes in the

network, our model mitigates the catastrophic effects of disruption in the logistic network. The internet of

things and all revolution regarding the industry 4.0 has lead to a significant change in the transportation

industry, especially for perishable products. According to Bouzembrak et al. (2019), it is concluded that

the IOT is going to be an effective technology for focusing on food safety as well as cold chain products’

traceability and, finally, their quality monitoring. Considering such technologies and revolutions will lead to
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a significant improvement of the food transportation industry. As another direction for future work, novel

recent multi-criteria decision-making can be employed for the solution approach regarding the proposed HLP

problem (Zhang et al., 2020a,b).
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