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Sustainable industrial and operation engineering trends and challenges towards Industry 4.0: 1 

a data driven analysis 2 

 3 

Abstract 4 

This study supplies contributions to the existing literature with a state-of-the-art bibliometric 5 

review of sustainable industrial and operation engineering as the field moves towards Industry 6 

4.0, and guidance for future studies and practical achievements. Although industrial and 7 

operation engineering is being promoted forward to sustainability, the systematization of the 8 

knowledge that forms firms’ manufacturing and operations and encompasses their wide 9 

concepts and abundant complementary elements is still absent. This study aims to analyze 10 

contemporary sustainable industrial and operations engineering in Industry 4.0 context. The 11 

bibliometric analysis and fuzzy Delphi method are proposed. Resulting in a total of 30 indicators 12 

that are criticized and clustered into eight study groups, including lean manufacturing in Industry 13 

4.0, cyber-physical production system, big data driven and smart communications, safety and 14 

security, artificial intelligence for sustainability, the circular economy in a digital environment, 15 

business intelligence and virtual reality, and environmental sustainability.  16 

Keywords: Sustainable industrial and operation engineering; Industry 4.0; data driven analysis; 17 

fuzzy Delphi method; Bibliometric analysis18 
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Data source (Scopus)

Content analysis – search 
term identification

Result 
(436 publications)

Bibliometric analysis:
 48 keywords 
 Eight clusters 

FDM analysis:
 30 indicators
 Eight study groups
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Sustainable industrial and operation engineering towards Industry 4.0

Study trend and challenges:
 Lean manufacturing in Industry 4.0, 
 Big data driven and smart communication,
 Cyber-physical production system, 
 Safety and security, 
 Artificial intelligence for sustainability, 
 Circular economy in digital environment, 
 Business intelligence and virtual reality, 
 Environmental sustainability

 19 
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Sustainable industrial and operation engineering trends and challenges towards Industry 4.0: 20 

a data driven analysis 21 

 22 

1. Introduction 23 

Sustainable industrial and operation engineering is understood as the map out and 24 

production of goods or services, along with the installation and improvement of integrating 25 

systems that based on high-quality, high-fidelity, and real-time data, optimize the operational 26 

efficiency in manufacturing systems to create sustainable value and economic growth (Junior et 27 

al., 2019; Chauhan et al., 2021). This is imperative process to pursue sustainable development 28 

goals since it enables the transformation of original materials into desirable products in order to 29 

maintain the life quality and modernization while not causing negative environmental impacts 30 

like traditional industrial engineering (Enyoghasi and Badurdeen, 2021). Due to the widespread 31 

application of new digital technologies, technological capabilities are important for enabling the 32 

transition of industrial and operation engineering to a well-organized, stable, efficient, 33 

sustainable, and autonomous form. Revolutionary changes in communication techniques have 34 

brought capabilities to firms, giving them greater control and monitoring abilities throughout 35 

their production procedures and resulting in more effective operations. 36 

Industry 4.0 (I4.0) is a huge technological concept with novel innovations, and involves both 37 

digital and physical environment combined by cyber-physical systems (CPS). This 38 

accomplishment fosters automated procedures, clever systems having analytical competences 39 

through the integration of information technologies, the knowledge from different domains, and 40 

a deep interconnection between these domains (Benitez et al., 2020; Onu and Mbohwa, 2021). 41 

Alcácer and Cruz-Machado (2019) claimed that I4.0 leads to a digitalization that ends 42 

conventional applications, and in which digital technologies allow the connection among objects 43 

and enable factory communications to build up the smart manufacturing ecosystem paradigm. 44 

Enyoghasi and Badurdeen (2021) and Chauhan et al. (2021) argued that I4.0 is a motivation for 45 

sustainable manufacturing in the industrial scenario since it focuses on creating smart products 46 

as well as procedures and offering capabilities for product reuse, remanufacture, recycling, and 47 

reduction. Therefore, as a consequence of I4.0 penetration, the need for operations planning 48 

schemes to cope with the complexity of industrial environments is highlighted. 49 

I4.0 competence has provided firms with ideal opportunities to strengthen sustainable 50 

industrial and operations engineering (Sharma et al., 2020). Digitizing manufacturing and 51 

business processes by using smarter devices are revealed to offer various advantages, such as 52 

effective resource consumption, waste reduction, more efficient control of the production 53 

system, output maximization and minimization of resource utilization, overproduction decrease, 54 

and energy saving (Kamble et al., 2020). Industrial digitization is proposed to help firms reduce 55 

the cost and complexity of waste, achieve energy sustainability across manufacturing processes, 56 

diminish defects, and increase the speed of delivering products and services (Ghobakhloo, 2020). 57 

Nara et al. (2021) argued the role of I4.0 technologies in catering to better operations control, 58 

allowing thereby for real-time adaptation and flexibility based on demands. Thus, integrating I4.0 59 

principles to enhance sustainable industrial and operations engineering enables the 60 

maximization of economic, environmental and social benefits (Enyoghasi and Badurdeen, 2021).  61 

In recent years, many studies with regard to engineering and manufacturing topics have 62 

been implemented. For example, Alcácer and Cruz-Machado (2019) reviewed I4.0 in 63 
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manufacturing environments in enabling technologies and based on the smart factory concept, 64 

focused on the fashionable and upcoming trends. Junior et al. (2019) presented the industrial 65 

engineering problems related to discrete-event entities’ behavior and discussed the way to 66 

transport and modify these entities in specific processes adopted for the industrial engineering 67 

and production management optimal control scheduling throughout the supply chain. However, 68 

the studies on sustainable industrial and operation engineering in the I4.0 context are still in the 69 

infant phase; in addition, there is a lack of understanding of its effectiveness and only scattered 70 

and fragmented mention of practical examples (Rosa et al., 2020). The reviews on the topic of 71 

sustainable industrial and operational engineering are still lacking and to provide the scope of 72 

opportunities and future study avenues for enhancing sustainability performance, need to be 73 

analyzed based on the I4.0 principles and technologies (Enyoghasi and Badurdeen, 2021). A 74 

holistic concept overview describing the most appropriate indicators to advance sustainable 75 

industrial and operations engineering through the fulfillment of I4.0 is essential. 76 

In the industrial and operation engineering area, the enabling I4.0 technologies like CPSs, big 77 

data, IoTs, comprise a complex system with high independence and collaboration that enable the 78 

management of this system and the uncertainty of infrastructure delivery (Alcácer and Cruz-79 

Machado, 2019; Oztemel and Gursev, 2020). Since sustainable industrial engineering, operations 80 

engineering and I4.0 are wide concepts with abundant complementary indicators, to address the 81 

challenges of growing complexity, dynamics, high dimensionality, and disorganized structures, 82 

an appropriate tool focusing on the conceptualization of the literature is required. This study 83 

suggests a compound method, which includes content along with bibliometric analysis, and a 84 

fuzzy Delphi method (FDM), to analyze the contemporary sustainable industrial and operations 85 

engineering toward I4.0. Content analysis is used to capture the appropriate information more 86 

accurately and enables the recognition of important topics through manual or semiautomatic 87 

approaches (Bui et al., 2021). An apparent, static and systematic description of the literature is 88 

offered by utilizing bibliometric analysis. Through this method, founded on data from Scopus 89 

database and by employing VOSviewer to cater visual outcomes, sustainable industrial and 90 

operation engineering indicators are identified (Bui et al., 2020). Furthermore, using a systematic 91 

approach, a network analysis in a bibliometric literature review is conducted to enhance future 92 

studies by deeply analyzing the associations among papers, keywords, citations to transform 93 

thoroughly information in the area into clusters comprising study aspects (Tseng et al., 2021). 94 

However, this validation of the indicators can be a highly challenging task, as data provided in 95 

many different formats may suffer from various types of ambiguities and inconsistencies. Thus, 96 

the FDM is employed to validate more necessary indicators by calculating experts’ linguistic 97 

evaluations (Tseng et al., 2020). 98 

There are two objectives in this study:  99 

 To examine the fashionable sustainable industrial and operations engineering towards I4.0, 100 

as revealed in the literature; 101 

 To determine arguments and trends for improving future studies. 102 

There are two contributions in this study, encompassing (1) useful directions for future 103 

studies are suggested by, founded on a review relating to extant literature, providing bibliometric 104 

status relating to sustainable industrial and operations engineering toward I4.0; and (2) the 105 

decisive matters in need of further investigations are identified for both scholars and practices. 106 
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There are 4 remaining sections in this study. Methodologies, data gathering procedure, 107 

suggested analysis steps are thoroughly clarified in second section. Bibliometric analysis, content 108 

analysis, FDM results are presented in third section. Then, literature review discourse and the 109 

argumentation on upcoming study tendencies are shown in fourth section. Finally, last section 110 

gives conclusions, impediments and presentations for imminent studies.  111 

 112 

2. Method 113 

In second section, analysis stages are presented; data gathering, content and bibliometric 114 

analysis, FDM are explained rigorously.  115 

2.1. Suggested analysis stages 116 

Content and bibliometric analysis, FDM were used to examine sustainable industrial and 117 

operation engineering towards I4.0. Lively diagrams were formed and data consistency was 118 

ensured by utilizing VOSviewer software. 119 

The analysis stages are presented below. 120 

1. For deductive coding in content analysis, an appropriate search term is determined to 121 

gather publication knowledge from database of Scopus. 122 

2. Via utilizing VOSviewer software, bibliometric analysis is carried out for classifying 123 

sustainable industrial and operation engineering towards an I4.0 literature structure. 124 

Keywords, co-occurrence frequencies and keyword clustering are investigated to indicate 125 

implications for future studies. 126 

3. By using a questionnaire, the assessments of experts about suggested indicators are carried 127 

out. FDM is employed for validating more vital indicators. 128 

 129 

Data source (Scopus)

Content analysis – search 
term identification

Search on database: Result - 
436 publications

Bibliometric analysis 
(VOSviewer)

 Network analysis

 Co-wording analysis

FDM analysis
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 130 

Figure 1. Proposed analysis steps 131 
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2.2. Data collection 132 

This study employed content analysis to show a detailed and complete overview of the 133 

current knowledge concerning sustainable industrial and operation engineering towards I4.0. 134 

Content analysis is utilized for completely describing essences of full-text papers and developing 135 

an inherent structure for the main papers relating to forming prejudged classes from tightening 136 

sizable bundle of texts together with words (Bui et al., 2021). Main characteristic regarding 137 

content analysis is to arrange various words within text into much lesser classes. Inductive coding 138 

together with deductive coding are two kinds of coding in contemporary employment of content 139 

analysis with difference in the means categorizations are obtained. In this study, to find 140 

sustainable industrial and operation engineering toward I4.0 literature from the database, the 141 

deductive method is first applied for predefined search terms.  142 

On the account of wider publication collection well as more associated bibliometric 143 

framework, Scopus database is exerted in this study (Bui et al., 2020). Collected data include 144 

various identifiers, such as title, abstract, author, author affiliation, citation record, author 145 

keywords, publishing year, country. Thus, Scopus data are appropriate to evaluate the knowledge 146 

of sustainable industrial and operation engineering towards I4.0 literature. This study adopts the 147 

search boundary limited before December 26, 2020; narrowed to English-language papers 148 

together with reviews. Search terms used were the following: “(“industr*” OR “operat*”) AND 149 

(“engineering”) AND (“sustain*”) AND (“Industry 4.0” OR “smart technology” OR “smart 150 

production” OR “smart manufacturing” OR “internet of things” OR “big data” OR “Artificial 151 

intelligence” OR “digital” OR “cyber-physical” OR “Cloud*”). 152 

2.3. Bibliometric analysis 153 

Thanks to bibliometric analysis, a quantitative approach for managing completely growing 154 

literature in particular field and offers science mapping, with a focus more on the studies’ aims 155 

and patterns is provided (Zupic and Cater, 2015). A full picture of the ongoing study scope is 156 

presented, explicit along with objective theoretical complex relating to the discipline are 157 

provided and the fundamental clusters in the field are disclosed by a comprehensive bibliometric 158 

analysis (Rejeb et al., 2020). This method encourages the analysis of current trends in the 159 

literature concerning a certain field, and presenting visual information in the results, it provides 160 

directions as well as motivations for future studies. VOSviewer software is a suitable tool for 161 

dealing with large data amounts and provides many advanced choices to acquire better 162 

bibliometric vivid-image outcomes. 163 

2.3.1. Network Analysis 164 

Network analysis is adopted to categorize the clusters and show data variety in study area 165 

via indicating distinctions among the publications’ keywords. While conventional qualitative 166 

methods employ some determined biased elements, this method offers an unbiased way to 167 

concentrate and conceptualize the literature into clusters (Tseng et al., 2021). Thus, bibliometric 168 

together with network analysis are applied for generally discovering potential research areas and, 169 

to be exact, structuring sustainable industrial and operation engineering study tendencies. The 170 

transferring process of the input data into valuable information is illustrated by bibliometric 171 

graphic visuality built from keyword network analysis. 172 

2.3.2. Co-Word Analysis 173 

Being an inductive content analysis approach, document keywords are utilized in co-word 174 

analysis for communicating the scientific framework of a study field. Word understandings 175 
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presenting co-occurrence associations in the framework are derived founded on the words’ 176 

repetitiveness in the paper. A keyword is a unit of a co-word analysis, and for organizing the 177 

network relationships among varied keywords, keyword frequencies in set of data are employed 178 

(Zupic and Cater, 2015). A keyword is depicted by a node in the structure, the frequentness of 179 

keywords’ co-occurrence is illustrated by magnitude of each node. Among the keywords, a 180 

cluster is built for interpreting these keywords’ close interrelationships in comparable forms.  181 

This study made use of VOSviewer with version 1.6.11 for constructing bibliometric systems 182 

and investigate the literary framework of sustainable industrial and operation engineering 183 

towards I4.0, thus catering learning gaps as promising future study tendencies. 184 

2.4. Fuzzy Delphi Method 185 

For solving problem relating to fuzziness of expert judgments, FDM was beneficial in 186 

decreasing the interviews’ amount along with investigation duration, offered a more 187 

comprehensive indication regarding the judgments from experts. With an aim of assuring the 188 

reliability of assessment process, 15 experts were contacted in face-to-face meetings (shown in 189 

Appendix A). The expert panel consisted of 8 practice experts from various industries with 10 or 190 

more years of experience in sustainable industrial and engineering operations, 7 experts from 191 

academia with more than 10 years of study experience in related fields. 192 

The importance value of indicator 𝑥 which is assessed by expert 𝑦 is 𝑗𝑥𝑦 = (𝑎𝑥𝑦; 𝑏𝑥𝑦; 𝑐𝑥𝑦), in 193 

which: 194 

𝑥 = 1,2,3, … , 𝑛; 195 

𝑦 = 1,2,3, … , 𝑚; 196 

a, b, c: triangular fuzzy numbers adopted from linguistic scale 197 

𝑎𝑥𝑦, 𝑏𝑥𝑦, 𝑐𝑥𝑦: triangular fuzzy numbers of indicator 𝑥 is assessed by expert 𝑦 198 

Then, weight 𝑗𝑥 of indicator 𝑥 is 𝑗𝑥 = (𝑎𝑥; 𝑏𝑥; 𝑐𝑥), where: 199 

𝑎𝑥 = 𝑚𝑖𝑛(𝑎𝑥𝑦); 200 

𝑏𝑥 = (∏ 𝑏𝑥𝑦
𝑚
1 )

1/𝑚
; (m: the number of experts) 201 

𝑐𝑥 = 𝑚𝑎𝑥(𝑐𝑥𝑦), 202 

Table 1 shows the linguistic scale to alter the linguistic terms into triangular fuzzy numbers 203 

(TFNs). 204 

 205 
Table 1. Transformation table of linguistic terms 206 

Linguistic terms (performance/importance) Corresponding triangular fuzzy numbers 

Extreme (0.75, 1.0, 1.0) 

Demonstrated (0.5, 0.75, 1.0) 

Strong (0.25, 0.5, 0.75) 

Moderate (0, 0.25, 0.5) 

Equal (0, 0, 0.25) 

 207 
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The convex combination value 𝐸𝑥 is counted as follows: 208 

𝐸𝑥 = ∫(𝑝𝑥, 𝑣𝑥) = 𝜀[𝑝𝑥 + (1 − 𝜀)𝑣𝑥] (1) 209 

In which: 210 

𝑝𝑥 = 𝑐𝑥 − 𝛾(𝑐𝑥 − 𝑏𝑥)                                                                                                      (2) 211 

𝑣𝑥 = 𝑎𝑥 − 𝛾(𝑏𝑥 − 𝑎𝑥)                                                                               (3) 212 

𝜀  is adopted to address the decision makers’ optimistic level and to create a judgment 213 

balance among the expert group. 214 

The 𝛾 generally ranges from 0 to 1 founded on if perceptions from experts are positive or 215 

negative. To express 𝛾 under the common condition, this study uses 0.5.  216 

Finally, the threshold 𝜎 is calculated to validate more necessary indicators. 217 

 𝜎 = ∑ (𝐸𝑥/𝑛)𝑛
𝑥=1  (n: the number of indicator) (4) 218 

 If 𝐸𝑥 ≥ 𝜎, indicator 𝑥 is accepted. 219 

 If 𝐸𝑥 < 𝜎, indicator 𝑥 is eliminated. 220 

 221 

3. Results 222 

The results of data collection, network analysis, co-word analysis and the FDM analysis are 223 

revealed in this part. 224 

 225 

3.1. Bibliometric 226 

3.1.1. Network Analysis Results 227 

In the data collection process, 436 articles and reviews were approached. The result from 228 

VOSviewer shows that 48 keywords appeared at least three times, and their distribution is 229 

displayed through bibliographic framework. 230 

Figure 2 indicates that I4.0, IoTs, artificial intelligence (AI), cloud computing, virtual reality, 231 

and sustainable manufacturing had the highest frequency occurrences. These nodes are in the 232 

central places, which connect with other indicators. Sustainable industrial and operation 233 

engineering term has not yet been clarified in the literature. Indeed, this concept is the 234 

combination of small nodes in the network, such as engineering education, software engineering, 235 

and smart manufacturing. Indicators include I4.0, sustainable manufacturing, digital 236 

transformation, digitalization, and deep learning at the yellow points represent the latest 237 

considered subjects since 2019.238 
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 239 

Figure 2. Co-occurrence of author keywords by publication year 240 

 241 
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3.1.2. Co-word analysis  242 

In total, 48 keywords are withdrawn from the databases and formed in eight groups of clusters. Figure 3 presents a dataset of 243 

indicators and the relationship structure in a conceptual network. 244 

 245 

Figure 3. Co-occurrence of author keywords by clusters246 
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The detailed labeling of eight clusters is conducted in Table 2. Cluster 1 is labeled lean 247 

manufacturing in I4.0. This cluster explores the innovation in manufacturing towards 248 

sustainability, covering decision support systems, digitalization, renewable energy and 249 

simulation. Cluster 2 promotes big data-driven and smart communication which is attributable 250 

to innovative technologies like IoTs, cloud computing, and software engineering. This cluster also 251 

pays attention to energy consumption and energy efficiency, which finally leads to sustainable 252 

manufacturing. Cluster 3 goes deeper in this area by focusing on data mining, interoperability, 253 

optimization, smart manufacturing, and sustainable manufacturing. This cluster clarifies the 254 

cyber-physical production system (CPPS) in industrial engineering. Cluster 4 turns back to the 255 

safety and security issues occurring throughout the digital transformation. Human factors are 256 

also reflected in this cluster since this process requires the coordination between human and 257 

modern machines. Cluster 5 introduces another new I4.0 technique aimed at innovation and 258 

sustainability and named AI for sustainability. This cluster presents an important smart 259 

manufacturing method for improving process safety and automatic management. Cluster 6 260 

emphasizes the circular economy (CE) in a digital environment by concentrating on digital 261 

transformation, engineering education and I4.0 topics. Cluster 7 illustrates the learning process 262 

needed for digitalization through deep learning, machine learning, and virtual reality. This cluster 263 

considers business intelligence and virtual reality. Finally, cluster 8 concerns environmental 264 

sustainability, mentioning smart cities and the technological environment. This cluster provides 265 

a platform to support sustainable industrial and operational engineering. 266 

 267 
Table 2. Co-occurrence of author keywords 268 

ID Keyword Cluster Occurrence 
Average 

published year 

1 
decision support 

system 

lean manufacturing in 

industry 4.0 

4 2016.75 

2 design 4 2016 

3 digitalization 6 2019 

4 efficiency 3 2016 

5 integration 3 2019 

6 lean 4 2019 

7 manufacturing 6 2019.167 

8 renewable energy 4 2017.25 

9 simulation 8 2018.25 

10 big data big data driven and 12 2017.583 
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11 cloud computing smart communication 10 2016.9 

12 energy consumption 3 2019.667 

13 energy efficiency 6 2018.667 

14 green manufacturing 3 2016.333 

15 
information 

technology 
3 2016.333 

16 internet of things 18 2018.056 

17 software engineering 4 2017 

18 
wireless 

communication 
3 2018 

19 cyber-physical systems 

cyber-physical production 

system 

8 2018.75 

20 data mining 4 2017.5 

21 interoperability 4 2018 

22 optimization 4 2017 

23 product life cycle 3 2016.333 

24 smart manufacturing 5 2016.6 

25 
sustainable 

manufacturing 
9 2019.111 

26 digital twin 

safety and security 

5 2020 

27 human factors 5 2018.8 

28 maintenance 3 2019.667 

29 safety 5 2017.4 

30 security 3 2016.333 

31 systems engineering 3 2018 

32 blockchain 5 2019.6 

33 education 5 2015.2 
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34 
building information 

modelling 

artificial intelligence for 

sustainability 

7 2018.571 

35 artificial intelligence 13 2018.154 

36 skills 3 2019.333 

37 innovation 6 2015.833 

38 sustainability 48 2017.313 

39 circular economy 

circular economy in 

digital environment 

4 2019.25 

40 engineering education 5 2018.8 

41 digital transformation 5 2019.2 

42 industry 4.0 35 2019.457 

43 deep learning 

business intelligence and 

virtual reality 

5 2019.6 

44 remote sensing 4 2012.75 

45 machine learning 4 2018 

46 virtual reality 7 2017.429 

47 environment environmental 

sustainability 

3 2017.333 

48 smart city 4 2018.25 

 269 

The results reveal that topics related to these clusters were all researched in recent years, 270 

including indicators that are studied quite a great deal and others that have just begun to 271 

popularize. Concerning Table 2, the higher weight and average published year reveal that there 272 

are newer indicators, such as the following:  digitalization, integration, and lean manufacturing 273 

from cluster 1; energy consumption from cluster 2; sustainable manufacturing from cluster 3; 274 

digital twin, maintenance, and blockchain from cluster 4; skills in cluster 5; CE, digital 275 

transformation, and I4.0 in cluster 6; and deep learning in cluster 7. The latest cluster is CE in a 276 

digital environment, revealing the currently considered studies that need more attention. 277 

 278 

3.3. FDM results 279 

From the bibliometric analysis and co-word analysis, 48 keywords are proposed for 280 

evaluation based on the experts’ judgments. The FDM process for the original set of indicators is 281 

explained in Table 3 by using equations (1)-(4).  282 

 283 
Table 3. FDM screening out for indicators 284 
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Indicators l u D Decision 

decision support 

system 
-0.036 0.911 0.691 Accepted 

design -0.256 0.756 0.504 Unaccepted 

digitalization 0.329 0.921 0.780 Accepted 

efficiency -0.004 0.879 0.670 Accepted 

integration 0.038 0.837 0.641 Accepted 

lean -0.036 0.911 0.691 Accepted 

manufacturing -0.273 0.773 0.516 Unaccepted 

renewable energy 0.000 0.500 0.333 Unaccepted 

simulation 0.000 0.500 0.333 Unaccepted 

big data -0.055 0.930 0.704 Accepted 

cloud computing 0.021 0.854 0.652 Accepted 

energy consumption -0.284 0.784 0.523 Unaccepted 

energy efficiency -0.084 0.959 0.723 Accepted 

green manufacturing 0.000 0.500 0.333 Unaccepted 

information 

technology 
0.005 0.870 0.664 Accepted 

internet of things 0.296 0.954 0.803 Accepted 

software engineering -0.370 0.870 0.580 Unaccepted 

wireless 

communication 
-0.031 0.906 0.688 Accepted 

cyber-physical systems -0.039 0.914 0.693 Accepted 

data mining -0.392 0.892 0.595 Unaccepted 

interoperability -0.403 0.903 0.602 Unaccepted 

optimization 0.337 0.913 0.775 Accepted 
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product life cycle -0.281 0.781 0.520 Unaccepted 

smart manufacturing -0.042 0.917 0.695 Accepted 

sustainable 

manufacturing 
0.017 0.858 0.655 Accepted 

digital twin -0.325 0.825 0.550 Unaccepted 

human factors 0.055 0.820 0.630 Accepted 

maintenance -0.254 0.754 0.503 Unaccepted 

safety -0.102 0.977 0.735 Accepted 

security -0.093 0.968 0.729 Accepted 

systems engineering -0.329 0.829 0.552 Unaccepted 

blockchain -0.093 0.968 0.729 Accepted 

education -0.316 0.816 0.544 Unaccepted 

building information 

modelling 
0.000 0.500 0.333 Unaccepted 

artificial intelligence -0.042 0.917 0.695 Accepted 

skills -0.273 0.773 0.516 Unaccepted 

innovation -0.076 0.951 0.717 Accepted 

sustainability -0.067 0.942 0.711 Accepted 

circular economy -0.084 0.959 0.723 Accepted 

engineering education 0.000 0.500 0.333 Unaccepted 

digital transformation -0.067 0.942 0.711 Accepted 

industry 4.0 -0.067 0.942 0.711 Accepted 

deep learning -0.055 0.930 0.704 Accepted 

remote sensing 0.000 0.500 0.333 Unaccepted 

machine learning -0.020 0.895 0.680 Accepted 

virtual reality -0.093 0.968 0.729 Accepted 
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environment -0.047 0.922 0.698 Accepted 

smart city -0.072 0.947 0.715 Accepted 

Threshold 0.618  

 285 

Table 4 illustrates 30 critical indicators belonging to 8 clusters with values over the threshold 286 

of 0.618. These clusters include the following:  lean manufacturing in I4.0; big data driven and 287 

smart communication; CPPS; safety and security; AI for sustainability; CE in a digital environment; 288 

business intelligence and virtual reality; and environmental sustainability. 289 

 290 
Table 4. FDM result for indicators and clusters 291 

Indicator Cluster 

I1 decision support system 

lean manufacturing in industry 4.0 

I2 digitalization 

I3 efficiency 

I4 integration 

I5 lean 

I6 big data 

big data driven and smart 

communication 

I7 cloud computing 

I8 energy efficiency 

I9 information technology 

I10 internet of things 

I11 wireless communication 

I12 cyber-physical systems 

cyber-physical production system 
I13 optimization 

I14 smart manufacturing 

I15 sustainable manufacturing 

I16 human factors safety and security 
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I17 safety 

I18 security 

I19 blockchain 

I20 artificial intelligence 

artificial intelligence for 

sustainability 
I21 innovation 

I22 sustainability 

I23 circular economy 

circular economy in digital 

environment 
I24 digital transformation 

I25 industry 4.0 

I26 deep learning 
business intelligence and 

virtual reality 
I27 machine learning 

I28 virtual reality 

I29 environment 
environmental sustainability 

I30 smart city 

 292 

4. Discussion and implications 293 

This section discusses eight study fields comprising the following:  lean manufacturing in I4.0; 294 

big data driven and smart communication; CPPSs; safety and security; AI for sustainability; CE in 295 

a digital environment; business intelligence and virtual reality; and environmental sustainability.  296 

 297 

4.1. Lean manufacturing in Industry 4.0 298 

Lean manufacturing has the major aim of identifying and eliminating waste in time, money 299 

and other resources by recognizing any unneeded activities, simplifying the process, and 300 

establishing standardized routines (Buer et al., 2018; Sony and Naik, 2020). Lean manufacturing 301 

execution’s center is full engagement of all internal along with external stakeholders in order to 302 

get success. The concept offers a firm-wide approach that enhances reliability and flexibility while 303 

decreasing lead times and inventory carrying costs; in addition, it enables firms to attain a 304 

competitive edge by utilizing resources, cutting costs, boosting productivity and quality, 305 

expanding efficiency, profitability, efficacy (Tseng et al., 2020). 306 

As a necessary basis for I4.0 execution, lean manufacturing is employed since the streamlined 307 

and waste-free process and standardized procedure attained throughout a lean transformation 308 

eases future attempts to automatize and digitalize the manufacturing process (Buer et al., 2018). 309 

However, the synergy between the two mechanisms needs to be taken into consideration to aim 310 
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at operational excellence, as I4.0 targets accelerate information flows and lean manufacturing 311 

concentrates on waste elimination to promote physical flows. Optimistic synergistic association 312 

between advanced production technologies and lean disciplines in anticipating operational 313 

achievement regarding expense, lead period, product quality, flexibility is supported. By the 314 

interactions between information technologies with lean practices, reciprocacity between 315 

production technologies and lean procedures is shaped and manipulated (Khanchanapong et al., 316 

2014). Thus, the value to customers is added, and resources are optimally utilized in the interest 317 

of combination of lean manufacturing with I4.0 application, resulting in greatly responsive 318 

synthesis and creating value-added streams in the most efficient way (Sony and Naik, 2020). 319 

Lean manufacturing is an achievable approach for firm endurance in I4.0. Prior studies have 320 

focused on how I4.0 is related to lean manufacturing together with its effects on firm 321 

accomplishment. Despite high costs together with challenges in its implementation, lean 322 

digitization, characterized as the integration of lean manufacturing and digitalization, eventually 323 

gives firms better competitiveness (Ghobakhloo and Fathi, 2020). For example, lean 324 

manufacturing practices are affiliated with I4.0 technologies positively with simultaneous 325 

application resulting in greater performance improvements (Tortorella and Fettermann, 2019). 326 

I4.0 technologies moderate lean manufacturing impact on operational attainment enhancement 327 

in contrasting paths. In particular, technologies pertaining to product or service moderate 328 

influence concerning flow operations on achievement positively while process-pertained 329 

technologies moderate influence of low-setup operations on achievement negatively. When lean 330 

manufacturing disciplines are widely executed in the firm, it is easier to adopt higher levels of 331 

I4.0. However, the firms’ readiness to apply contemporary technologies is lower in case 332 

procedures are not strongly devised and consecutive enhancement practices are not set up. 333 

Furthermore, both factory digitalization and lean manufacturing possess restricted capability for 334 

separately creating a competitive edge. Enabling impact of lean manufacturing on I4.0 as well as 335 

I4.0 empowering effect on lean manufacturing are investigated with a thoroughly pairwise 336 

investigation at level of practice-technology. A reality demonstration of cloud computing in the 337 

I4.0 technology and a main lean measure (Kanban) integration introduces a cloud-founded 338 

Kanban decision support system (Shahin et al., 2020). 339 

Nevertheless, inspecting promising attainment implications are indispensable to assess I4.0 340 

and lean manufacturing synthesis in further empirical studies. Key issues are the evaluation of 341 

the rewards brought about by incorporating lean manufacturing and I4.0, a comparison relating 342 

to performance effects of pure I4.0 or lean manufacturing to examine whether a favored 343 

implementation order of the two mechanisms is needed (Buer et al., 2018). Enablers of vertical 344 

integration founded on lean manufacturing, algorithms relating to end-to-end engineering 345 

consolidation and lean manufacturing, drivers relating to horizontal integration, should be 346 

thoroughly analyzed in future studies (Sony and Naik, 2020). Together with studies verifying the 347 

extent to which I4.0 technologies strengthen lean principles implementation and the firms’ 348 

productivity, recommending I4.0 technologies’ modern applications to additionally promote such 349 

principles at three levels such as control, optimization, autonomy is necessitated (Rosin et al., 350 

2020). Moreover, moderator role of I4.0 technologies in exploring lean manufacturing’s influence 351 

on the sustainable achievement of firms should be also noted (Kamble et al., 2020).  352 

 353 
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4.2. Big data driven and smart communication 354 

The requirement for enhancing sustainable performance pushes the firms to explore 355 

operational data-driven approaches as well as optimized communication methodology (Kamble 356 

et al., 2021). Under the I4.0 background of supporting sustainable development, the amount of 357 

various data resources obtained through the IoT is increasing the magnitude of big data along 358 

with new communication technologies (Ma et al., 2020). Big data-driven communication refers 359 

to a communicating approach based on a great volume of data including all structured and 360 

unstructured information with high quantity, speed, diversity and veracity, which is generated 361 

and collected with speedy processing (Majeed et al., 2021). 362 

Huge attention has been placed on big data technology during the explosive growth of 363 

information in I4.0; however, how to apply this technique in the manufacturing area is only in 364 

the beginning stage (Wang et al., 2020). There are different opinions on the nature of an 365 

organization’s operations, and big data analytics have been proven to potentially assist in 366 

transforming and advancing manufacturing and service systems by helping firms make intelligent 367 

decisions related to production and management (Srinivasan et al., 2019). I4.0 technologies have 368 

become the encouragement for building competitive advantages with outstanding applications 369 

like big data analytics or IoT (Kamble et al., 2021). Big data technique for information storing, 370 

examining and communicating are emphasized to establish actionable awareness for firms and 371 

governmental agencies (Srinivasan et al., 2019). Indeed, the efficient operating of big data is 372 

essential to strongly connect with cloud computing technology for better large-scale information 373 

researching and analyzing (Zhou and Zhao, 2020). Cloud computing supports the fundamental 374 

layer for big data sources and offers necessary data for IoT devices; in adverse, big data supplies 375 

application platforms to promote cloud computing (Hajjaji et al., 2021). Since the big data 376 

collection through appropriate, timely, and consistent process is imperative for enforcing new CE 377 

models, there is a recent need for studies on the collaboration among this concept and circular 378 

framework designs (Rosa et al., 2020; Kamble et al., 2021). 379 

The significance of communication studies is necessary towards smart manufacturing, as it 380 

brings advantages to various domains by facilitating the adoption of communication 381 

technologies, such as those technologies meeting the different requirements of applications, and 382 

support the achievement of long-term operational strategies. As an efficient and reliable 383 

communication protocol, smart communications also sustain coverage and lower power 384 

consumption to better satisfy customers and react to changes in marketplace (Oztemel and 385 

Gursev, 2020). For example, the wireless sensor network is seen as a common communication 386 

application which provides large coverage and consume a low power level (Lau et al., 2019). 387 

However, prior studies were only concerned with defining the conditions of adopting highly 388 

technological methods to improve existing approaches, but did not propose solutions to deal 389 

with current barriers. Despite certain solutions have been provided, modern productions with 390 

smart machines are not enough to comprehensively promote all the expected I4.0 benefits, and 391 

there is still a need to enable the generation of new powerful smart communication networks.  392 

Big data-driven and smart communication in a supply chain is argued to help to increase 393 

economic benefits, such as cost savings, a strengthening of coordination and a faster adapting to 394 

market demands (Tseng et al., 2019). While IoT is acknowledged to facilitate the reliable transfer 395 

of information between “things and processes”, the combination between IoTs and big data-396 

driven approaches acts as an important resource for firms to operate remanufacturing and 397 
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recycling processes (Wang et al., 2020; Bag et al., 2021). Smart communications generate an 398 

efficient interacting system that ensures instant action and smooth information exchange. Since 399 

smart communication enhances the collaboration among all stakeholders through information 400 

sharing and communication, it highlights the capability of facilitating CE manufacturing in firms 401 

(Kamble et al., 2021). Applying the IoT and big data technology to manufacturing area creates an 402 

“Internet of manufacturing things” context, in which various data of resource and energy are 403 

accessible for production planning, thus improving sustainable industrial and operational 404 

efficiency (Ma et al., 2020). As IoT devices and the expectations towards smart systems increase, 405 

communication issues between machines inevitably emerge; however, the solutions for these 406 

issues are still lacking and call for further studies. 407 

 408 

4.3. Cyber-physical production system 409 

Traditional production systems are experiencing a digital transformation. In this context, CPS 410 

is a fundamental element of I4.0 exertion, since in the appropriate systems, the concept merges 411 

imaging and control functionalities, with the key characteristics of reacting to any feedback 412 

created, favoring the immediate control and analysis of process feedback to achieve the 413 

anticipated outputs (Oztemel and Gursev, 2020). The CPS application in manufacturing 414 

environments leads to the term CPPS in which cyber and physical objects are unified as well as 415 

governed by manufacturing implementation systems together with informational schemes with 416 

an aim to attaining energetic and adaptable manufacturing featured by intelligence, 417 

responsiveness, connectivity, to internal together with external alterations (Okpoti and Jeong, 418 

2021). Full manufacturing process components, such as equipment, produces, procedure, 419 

systems, persons are connected in an informative environment by integrating real and virtual 420 

production, which could have a thorough effect on a firm’s strategic, tactical, and operational 421 

decisions. 422 

Because of the need to comply with the vigorously changing production environment and to 423 

adopt to external disruptions and an unstable market demand, smart manufacturing has turned 424 

into an unavoidable tendency in I4.0, actualizing synergy between cyber and physical has also 425 

become necessary (Tao et al., 2019). CPSs provide an indispensable technological basis to 426 

promote smart manufacturing by linking virtual and real environments (Ying et al., 2021). 427 

Currently, facing an increasing need for sustainability awareness and rising environmental 428 

pressure, firms are greatly attempting to focus on matters relating to sustainability without giving 429 

up the consumers’ demands and market competitive ability. In such situations, smart 430 

manufacturing provides a competitive advantage for firms and makes the industry more efficient 431 

and sustainable by enhancing productivity, quality, flexibility and the ability to attain customized 432 

products at a wide-ranging scale with improved resource use. 433 

Obviously, CPPSs are crucial to future manufacturing systems. To realize this anticipation, 434 

further study and development together with information technology activities are needed, and 435 

socio-ethical facets of CPSs together with CPPSs must also be comprehensively examined. I4.0 436 

led by intelligent devices and smart manufacturing is capable of diminishing manufacturing 437 

waste, overproduction and energy consumption. Hence, more studies showing how waste may 438 

be cut down are necessary. In addition, fostering schemes to integrate smart manufacturing 439 

networks in such a manner that they prosper by shared resources, such as natural materials, 440 

power plants, the labor force should be concentrated in future studies. Furthermore, the 441 
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contribution of I4.0 to more sustainable manufacturing value generation in the extant literature 442 

is mostly related to economically and environmentally sustainability pillars. I4.0 has an immense 443 

ability to actualize sustainable manufacturing value generation in social pillar (Kamble et al., 444 

2020). Investigating chances for improving sustainability in varied degrees by using I4.0 445 

technologies is till restricted and as a result, examining the I4.0 technology influences on various 446 

criteria regarding sustainability at product, procedure, system level is limited in extant literature 447 

(Enyoghasi and Badurdeen, 2021). 448 

 449 

4.4. Safety and security 450 

 Safety and security in I4.0 are defined as the secure interaction between independent 451 

systems and humans and the avoidance of the interference of digital networks that create 452 

damage and an interruption of procedures, including and up to the destruction of manufacturing 453 

systems (Weber et al., 2019). In the process of implementing I4.0 with highly independent and 454 

collaborative components, the management of complex infrastructure to ensure safety and 455 

security factors is required (Oztemel and Gursev, 2020). The academic and empirical study 456 

efforts, along with production innovation, all aim to create smart factories which support cost-457 

effective, sustainable, safe and secure manufacturing systems (Tuptuk and Hailes, 2018). The 458 

integration with I4.0 capabilities empowers a safe and secure environment that encourages more 459 

ethical and moral behaviors that can increase sustainability through mutual cooperation. 460 

 Focusing on a smart system design under development or demonstrating a failure effect 461 

model for investigating cause and effect, prior studies have analyzed safety and security as issues. 462 

For example, the safety aspect is emphasized to protect the system from unexpected faults, 463 

whereas the security aspect includes protection from both foreseen and unforeseen hazards 464 

throughout the application of cyber-physical system (Kavallieratos et al., 2020). Security issue is 465 

considered as a secondary matter rather than a vital element of deployment operation, while the 466 

existing industrial and manufacturing systems are easily vulnerable to cyber-based attacks in 467 

poorly trained and prepared firms (Tuptuk and Hailes, 2018). Further, there is a shortcoming in 468 

reporting this aspect as a key driver of further implementation of I4.0 and digitalization 469 

procedures, although the indicators of safety and security are still being developed to improve 470 

process performance (Lee et al., 2019). A recurring obstacle of the existing studies on the joint 471 

security and safety concerns that need to be overcome is that these studies do not identify 472 

conflicts and largely neglect the examination of the fulfilment of distinct security objectives 473 

(Kavallieratos et al., 2020). 474 

 The increasing number of cyber-attacks is a main challenge to I4.0 implementation, and 475 

applying advanced technology devices without caring of safety and security makes the industrial 476 

engineering among the highest vulnerable industries, highlighting the need for more secure and 477 

reliable frameworks for machines and operators in industrial manufacturing systems. Safety and 478 

security in networks are necessary because they help to prevent employees from dangerous 479 

situations when working in manufacturing industry (Khalid et al., 2018). The consideration of 480 

safety and security is seen as a continuing procedure starting at or before designing step, and the 481 

occurrence of new barriers requires a basic evaluation of the entire plant's security (Tuptuk and 482 

Hailes, 2018). Although IoTs provide firms with insight of the way their systems truly operate 483 

throughout the entirety of procedures, the study on safety and security issues related to IoT 484 

programs concluded that in complicated platforms with multi data flows, most approaches 485 
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lacked a consideration of security issues (Ogonji et al., 2020). As one of core I4.0 technologies, 486 

blockchain has been adopted to guarantee security and solve numerous traditional threats by 487 

creating attack-resistant and digital data storage and by providing a sharing platform that 488 

employs linked block structures to verify and synchronize data (Bhushan et al., 2020). 489 

 Furthermore, the human factors of safety and security also need examination because 490 

humans can be harmed by inaccurate operation systems, or severe injuries can occur during the 491 

interaction process with autonomous systems (Weber et al., 2019). Studies researching human 492 

factor application generally find that both the human outcomes and the system benefits gained 493 

are considerably greater. While safety issues and security issues are argued to be key factors in 494 

the development of modern systems, the failure to adequately address human factor issues in 495 

working environment also causes serious risks in operationalization procedures; nonetheless, 496 

there is still lack of studies on this topic when researching I4.0 area (Neumann et al., 2021). 497 

Further, in I4.0 transition, whereas studies on the machine-centered manufacturing industry 498 

highlighted the smart factory concept of the future as digitized and comprising automated 499 

systems, human factors and their well-being were neglected; thus, need further attention (Kadir 500 

and Broberg, 2021). 501 

 502 

4.5. Artificial intelligence for sustainability  503 

 AI is usually connected to the concept of data analysis, machine learning, and refers to 504 

human-like intelligent programmed systems; thus, AI for sustainability is acknowledged as a 505 

group of computational and statistical devices that help computers implement sustainable goals 506 

normally done by human intelligence (Liu et al., 2020). Since AI appearance promotes knowledge 507 

creation, this technology is believed to significantly increase economic tenet, one objective of 508 

sustainable development. In the I4.0 revolution, AI development is focused on innovative, green, 509 

and mutual factors to enhance smart manufacturing (Mao et al., 2019). AI applications offer three 510 

major advantages: (1) permitting the imperative but repeated and waste-of-time works to be 511 

done automatically; (2) disclosing essential and critical information among big amounts of 512 

unstructured data which people once have to handle by themself; and (3) addressing the most 513 

complicated issues by integrating various systems and data resources (Nishant et al., 2020). 514 

Furthermore, AI systems enable natural language processing to ease communication, store 515 

information, automate reasoning, and facilitate machine learning to comply with different 516 

business environment (Loureiro et al., 2020). 517 

Prior studies have applied AI experiments for theoretical processes as well as realistic 518 

solutions (Goralski and Tan, 2020). Although AI is not a new academic field of study, it has only 519 

recently been acknowledged for a set of applications in technological developments. AI 520 

applications are an attention field of study involving computational intelligent techniques used 521 

to design and manufacture products in traditional sectors (Jimeno-Morenilla et al., 2021). For 522 

example, studies on AI for sustainability mainly focused on machine learning techniques and 523 

algorithms in order to present the way devices examine and gain knowledge from collected 524 

information (Nishant et al., 2020). In fashion industry, AI is adopted to deal with difficult problems 525 

in all manufacturing process stages, which then could be completed in a shorter time under AI 526 

than under the traditional approach. Studies in chemistry manufacturing show the AI function in 527 

greater and quicker synthesizing new organic compounds to produce medicament drugs (Lenoir 528 

et al., 2020). However, the potential of disruptive AI technology to enhance sustainable 529 



23 
 

manufacturing is still shortcoming. Although AI has a positive effect on sustainability goals 530 

through technological innovations, studies on this issue are still lacking (Liu et al., 2020). Thus, 531 

there is a need for robust study methodology to evaluate AI's longstanding impact and address 532 

the privacy issues resulting from AI application. 533 

 In the I4.0 era, AI is seen as one of the most progressive techniques that will have remarkable 534 

effects in several fields, and the support of big data has enhanced AI power as well (Duan et al., 535 

2019). Big data is capable of changing the approach firms use to handle conventional supply 536 

networks, whereas AI enables a system to collect and achieve knowledge from various data 537 

sources to further accomplish specific tasks; thus, big data and AI integration enhances 538 

sustainability opportunities throughout production area (Bag et al., 2021). This concept is 539 

considered not only an internal technological innovation but also an external cause that 540 

promotes other innovations and is therefore critical for manufacturing firms to maintain stability 541 

(Liu et al., 2020). AI is argued to be critical for smart manufacturing through the improvement of 542 

safety control and efficiency in consuming materials and energy (Mao et al., 2019). Further, AI 543 

applications also assist manufacturing systems in predicting long-term demands and deciding 544 

production quantity every day to decrease unnecessary operations (Frank et al., 2019). AI 545 

positively affects manufacturing in low-income countries since it offers new opportunities to 546 

break the cycle of poverty; however, in advanced countries, it is considered negatively due to the 547 

fear of job loss (Ahmad et al., 2021). Consequently, whereas AI is a potential motivation for 548 

sustainability improvement, the adoption of this technology still creates unwanted results that 549 

require deep study to find solutions. 550 

 551 

4.6. Circular economy in a digital environment 552 

 Since a high level of competition in business requires firms to change their manufacturing 553 

process, one of the best ways to utilize resources is by applying CE practices within operations 554 

(Rosa et al., 2020). While current system links with the linear perspective enduring industrial 555 

manufacture, CE is seen as a more sustainable model and an appropriate selection to take place 556 

of the linear model, in which resources are circulated (Sarja et al., 2021). CE in a digital 557 

environment is considered as a method applying emerging innovative technologies to recover 558 

usable material from used products and redistribute them in the production line (Chauhan et al., 559 

2021). The benefits of this concept consist of decreasing environmental effects, boosting financial 560 

performance, adopting recycled and recovered resources to lessen sustainability pressure 561 

through an overall system change. While CE is argued to support the circularity in manufacturing 562 

processes, I4.0 is presented as a digital environment that enhances CE development. 563 

Nonetheless, promoting I4.0 technologies to manage the operational process is still vulnerable 564 

since it is complicated to define valid measurement and elements’ interrelationship to comprise 565 

this process (Bui et al., 2020). Thus, a multidisciplinary approach is urgent to improve sustainable 566 

performance by combining I4.0 and CE. 567 

 Although there are firm links between CE and sustainability, there is still theoretical and 568 

practical uncertainty regarding its principles (Sarja et al., 2021). Innovation business models are 569 

implied to enable firms adapting to CE principles; yet, available analysis on how to strategically 570 

implement and systematically understand organizational obstacles and the catalyst for CE-571 

related changes is still lacking (Centobelli et al., 2020). Furthermore, there is also an emphasis on 572 

the significance of CE and emerging technologies such as I4.0, which promote efficient waste in 573 
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smart cities; nevertheless, lack of studies considered CE in I4.0 with smart waste management 574 

(Chauhan et al., 2021). In addition, the advantage of digitalization on CE enhancement is 575 

comparatively untouched, despite CE is on the rise, and I4.0 is acknowledged as the most 576 

imperative attribute in digitalizing procedure (Bag et al., 2021). 577 

 Firms need to transform to remain competitive since I4.0 has driven a wave of technologies 578 

that lead to the digitization and simplification in business (Bag et al., 2021). Digital transformation 579 

or digitization through innovative technologies shared between the physical and real 580 

environment has supported firms to achieve competitive advantage and differentiate a firm from 581 

competitors. The significant digital transformations in I4.0 are argued to result in numerous 582 

advantages (Ghobakhloo, 2020). For example, digitization enables a fully digital CE 583 

accomplishment through higher transparency of process centralization and requires firms to 584 

improve key indicators of flexibility, efficiency, productivity, and quality and to establish critical 585 

security measures (Dutta et al., 2020). However, in the CE transition process, the study of firms 586 

changing from the old industrial styles to inter-connected enterprises in I4.0 era is neglected 587 

(Frank et al., 2019). Further, the implications of this process for the firm's capacity and innovative 588 

performance are also not clear and need to be exploited in the future (Fernández-Rovira et al., 589 

2021). It is essential for a well-understood digitization standard, and each stage of this process 590 

needs to be clarified and proceeded. 591 

 I4.0-based techniques have been revealed to develop smart manufacture for CE, as it 592 

declares a revolution related to a novel function on how to collaborate production and digitalized 593 

progress to maximize output with minimum materials (Sony and Naik, 2019; Bag et al., 2021). 594 

Although new technology transformations create challenges to I4.0 implementation, they still 595 

guide firms to achieve lasting competitiveness and adaptation to changes of operating 596 

environment. However, implementing CE in I4.0 requires the development of different and more 597 

specialized skills (Sony and Naik, 2020). Nevertheless, from such a perspective and in the context 598 

of the attention to human factors and ergonomics, a study of this topic characterized as a 599 

sociotechnical system that contains both social and technical aspects is still missing. 600 

 601 

4.7. Business intelligence and virtual reality 602 

 As the business environment becomes more competitive and the information advantage 603 

increases, business intelligence, which applies data analytics techniques to create decisive 604 

information to support and optimize decision-making, contributes to strategic planning process 605 

of a firm. Business intelligence is considered an effective solution that provides a valuable tool 606 

and fundamental approach to increase a firm’s value by facilitating the understanding of a firm’s 607 

information assets, including customer and supply chain data, manufacturing, sales, marketing 608 

information and other operational data sources, allowing firms to integrate a consistent 609 

framework for real-time reporting combined with a detailed analysis (Chen and Lin, 2020). The 610 

concept enables firms to actively sense changing business circumstances and transform business 611 

processes for optimal resource allocation and utilization, which drives the firms’ operations to 612 

achieve profitability and competitiveness. 613 

 I4.0 involves the digital transformation of production processes via incorporating production 614 

systems, appliances along with data analytics for facilitating the ability of manufacturing 615 

machines to make choices founded on provided data together with machine learning algorithms 616 

(Papananias et al., 2020). Particularly, machine learning emphasizing the principles that form an 617 
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algorithm can grasp and forecast the consequence by identifying an underlying archetype in input 618 

information and by generating logical associations through employing statistical method (Injadat 619 

et al., 2021). As a potential answer to contemporary manufacturing system challenges, such as 620 

growing complexity, dynamic, high dimensionality, and disorganized structures, machine 621 

learning’s advantages and disadvantages from a manufacturing perspective are discussed. 622 

Machine learning methods are an encouraging approach favoring the manufacturing industry 623 

concerning the entire operations and processes (Sharp et al., 2018). For manufacturing systems, 624 

the execution of a machine learning algorithm enables a machine or other gadget to grasp its 625 

baseline along with working states spontaneously and can generate and promote a knowledge 626 

base during production process (Chen, 2020). Machine learning is also employed in many aspects 627 

of additive manufacturing to enhance the whole design and manufacturing workflow (Goh et al., 628 

2020).  629 

 Deep learning, as an advance in AI, presents distinguished performance for many 630 

applications, like speech recognition, natural language processing, and image replication; it 631 

comprises a group of machine learning techniques that apply artificial recurrent neural networks 632 

with a more complicated architecture grasping complex features by connecting the data and 633 

computationally efficient training algorithms (Lin et al., 2020). Production is converted into 634 

greatly optimal smart facilities offering advantages in terms of decreasing operating expenses, 635 

matching with unstable customer need, enhancing capacity, attaining better visibility, 636 

diminishing spare time, obtaining more operations’ value for international competition by virtue 637 

of breakthrough analytics supported by deep learning. Moreover, by enabling the transformation 638 

of the unprecedented data amount into actionable and intelligent information, this concept also 639 

provides contemporary visibility into operations together with real-time attainment means as 640 

well as costs for decision-makers (Wang et al., 2018).  641 

 Virtual reality as a unique approach for connecting with the developing digital landscape is 642 

characterized as technologies’ set that facilitate people not only to immersive sight beyond 643 

reality but also to hear, touch and even to communicate with virtual objects (Guo et al., 2020). 644 

Virtual reality tools are part of smart functionality in I4.0 relating to the employees’ tasks, 645 

allowing them to become more energetic and responsive in order to follow requirements of 646 

manufacturing system (Frank et al., 2019). In business, technology is anticipated to be imperative 647 

because of its basic reimagination in the manners firms associate with consumers and 648 

improvement in the manufacturing process, product design, prototyping (de Regt et al., 2020). 649 

Furthermore, the integration of human-robot simulation with virtual reality assists in estimating 650 

cycle time, establishing process plans, layout optimization and developing robot control 651 

programs, making it a promising technology with a growing capability to make maximum sense 652 

of the capability of artificial reality in changing how humans perform activities (Malik et al., 2019). 653 

 However, strategies addressing challenges connecting to human resource such as exercising 654 

safety situations, training technical processes along with skills, reconstructing how human 655 

resources obtain modern skills, boosting compassionate behaviors relating to customer service, 656 

easing employee hiring, remain unclear in the literature (de Regt et al., 2020). Further analysis 657 

on the application of business intelligence is needed to better understand how business 658 

intelligence enables firms to gain competitiveness in business operations. Future study should 659 

bring in more interesting findings in case more factors beyond the sense-transform-drive 660 

conceptual framework are taken into account (Chen and Lin, 2020). With data availability in each 661 



26 
 

product life-cycle’s phase and advancements relating to algorithms as well as software 662 

instruments, machine learning is a suitable, potential means for more lean, agile and energy-663 

effective production schemes which requires more studies and applications with a more focus 664 

on life-cycle or firm-wide (Sharp et al., 2018). Further, more studies are needed on how to 665 

manage the overwhelming data connected with the manufacturing industry through the deep 666 

learning execution and deployment for applications in reality, such as smart manufacturing based 667 

on data considerations, model choice, generic model development, incremental studying, model 668 

imaginativeness (Wang et al., 2018). Despite the achievements in the literature, there is still a 669 

lack of a more profound analysis and advancement in industrial application scenarios, particularly 670 

in I4.0 (Guo et al., 2020). 671 

 672 

4.8. Environmental sustainability  673 

 The conservation and viability of ecological system functions for the human base of life are 674 

characterized as environmental sustainability. This concept acknowledging the interplay 675 

between environmental effects and economic prosperity is essential viewpoint in the firms’ 676 

decisions (Luo et al., 2021). Environmental sustainability in I4.0 has been examined in the 677 

literature. In particular, disruptive technologies enable the release of the full potential of 678 

environmental sustainability. Digital transformation initiated by I4.0 assists environmental 679 

sustainability by bettering resource efficiency together with increasing utilization in renewable 680 

energy (Beier et al., 2017). Information gathering and processing improvements enable better 681 

management of energy efficiency, the improvement of water quality, and the reduction via 682 

automatic production processes, in air pollution and heavy metals (Gobbo et al., 2018). 683 

Moreover, I4.0 technologies facilitate efficient resource allocation, decrease usage of resource, 684 

expand the usage of renewable together with recovering resources (Nara et al., 2021).  685 

 As information ecological mechanisms in which various institutions and industrial systems 686 

are highly integrated and automatically operate, smart cities also require an astute infrastructure 687 

to improve life quality accompanied by a sustainable environment for their inhabitants (Fu and 688 

Zhu, 2020). This need has resulted in the provision of technology platforms to support sustainable 689 

industrial and operation engineering by I4.0 as the core of the smart cities’ applications, allowing 690 

for collecting information from various sources and the consequential data analysis as a means 691 

to cater context-founded optimum answers to peculiar problems (Abbate et al., 2019). To be 692 

specific, IoT buildings block for smart cities have the potential to capitalize on sustainable 693 

information and communication technologies to supervise and manage physical and information 694 

flows (Onu and Mbohwa, 2021). Municipalities, firms, and citizens can obtain, assess and handle 695 

data in real time for the purpose of making better choices based on a large IoT-based network 696 

(Cha et al., 2021). Firms derive more benefits by using advanced infrastructures, larger 697 

collaboration, networking, as smart city supports a greater proportion of innovation, coherence, 698 

and creativity. 699 

 Moreover, smart cities are acknowledged as an opportunity for cost reduction, a mechanism 700 

for the improvement of service quality and a method to attain a decrease in environmental 701 

effects during manufacturing processes (Nižetić et al., 2019). Lessening pollution while securing 702 

operations and non-restorable energies’ sustainability, modern cities are giving attention to 703 

sources of renewable energy (Silva et al., 2018). Therefore, modern smart cities’ primary 704 

concerns encompass maintaining the resources together with ecosystem by diminishing 705 
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pollution and competently exploiting resources, reducing the environmental effects of 706 

manufacturing. However, policies that improve energy, environmental sustainability and 707 

technological innovation as the foundation for intensifying the smartness of cities are still lacking. 708 

 Overall, the I4.0 implications concerning environmental sustainability necessitate further 709 

examination. The enhanced quality of life and the rapidly increasing world population have given 710 

rise to an ever-growing raw materials and energy demand, conceivably restraining the efficiency 711 

effect of digitization. This scenario requires public policy and multilateral agreements to handle 712 

the unanticipated environmental sustainability effects of I4.0 (Ghobakhloo, 2020). Moreover, 713 

current methods for environmental sustainability evaluation, including the life cycle assessment, 714 

environmental track, the eco-efficiency index, that is used to instruct firms in environmental 715 

control and product determination, show certain limitations. In this context, future studies 716 

should concentrate on designing a multi-facet approach and a hybrid assessment scheme (Luo et 717 

al., 2021). The smart cities’ potentiality relating to solving environmental dilemmas together with 718 

waste management should be explored with reference to investigating impacts regarding policy, 719 

rule, technology schemes, product planning strategies. A strong plan of action to design smart 720 

cities for strengthening comprehensive citizen engagement in framing, building and devoting 721 

smart city technologies is encouraged for further study.  722 

 723 

5. Concluding remarks 724 

Despite the importance of sustainable industrial and operation engineering in the firms' 725 

activities, this concept is still underdeveloped. Industrial and operational engineering is being 726 

promoted forward to sustainability; yet, the systematic knowledge that orients necessary 727 

practices is not completely developed. Since comprehensive understanding of the literature 728 

review is critical to solve the existing gap, this study is implemented to clarify the current status 729 

of sustainable industrial and operation engineering; then, give suggestion for next studies. In 730 

which, 436 publications are reviewed through VOSviewer. Totally, 48 keywords appear at least 731 

three times; among these keywords, I4.0, IoTs, AI, cloud computing, virtual reality, and 732 

sustainable manufacturing had the highest occurrences. FDM was adopted to arrange critical 733 

indicators into eight clusters: lean manufacturing in I4.0; big data driven and smart 734 

communication; CPPS; safety and security; AI for sustainability; CE in a digital environment; 735 

business intelligence and virtual reality; and environmental sustainability. 736 

This study’s contributions are providing bibliometric status concerning sustainable 737 

industrial and operation engineering towards I4.0; suggesting guidance for upcoming studies and 738 

realistic achievements. There are totally 48 keywords derived from the databases which were 739 

grouped into eight clusters such as lean manufacturing in I4.0; big data driven and smart 740 

communications; CPPS; safety and security; AI for sustainability; CE in a digital environment; 741 

business intelligence and virtual reality; and environmental sustainability. This study supports 742 

firms in making decisions on utilizing I4.0 technologies to achieve sustainable industrial and 743 

operational engineering. Furthermore, both professionals and practitioners can take advantage 744 

of these results for future examination and investigation in the field of industrial and operation 745 

engineering towards I4.0 linked with sustainability. Following are the gaps and directions for 746 

upcoming study. 747 

 Further studies should pay attention to rewards from lean manufacturing and I4.0 748 

integration, I4.0 technologies’ latest applications to stimulate lean principles at control, 749 
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optimization, and autonomy level. Validating the extent to which technologies consolidate 750 

the lean principles’ employment and the firms’ productivity is needed. Investigating 751 

technologies’ moderator role in effect of lean manufacturing on the firms’ sustainable 752 

achievement should also be explored further. 753 

 Big data-driven and smart communications help generate an efficient interacting system, 754 

thus, improving sustainable industrial and operational efficiency. However, there is still a 755 

lack of studies on new powerful smart communication networks to enhance all the 756 

expected I4.0 goals. Moreover, the increasing communication issues between machines 757 

also call for further studies. 758 

 Further study of the information technology activities, the socio-ethical features of CPSs 759 

together with CPPSs is needed. An examination of conceptual structures of incorporating 760 

smart manufacturing systems benefiting from shared resources is needed. The ability of 761 

I4.0 to create sustainable industrial merit generation in societal aspects is lacking. The 762 

indicators regarding product, process and system sustainability are still limited from the 763 

viewpoint of I4.0 technologies. 764 

 Future studies on joint security and safety should pay attention to identifying conflicts and 765 

the fulfilment of security's distinct objectives. Process of engineering design and 766 

management frequently separates with human factor, although the failure to adequately 767 

address this factor can lead to serious problems in operationalization procedures; thus, 768 

further studies are needed. 769 

 The topics related to AI for sustainability should focus on the effect of this technology on 770 

promoting sustainability-related manufacturing, along with robust study methods to 771 

examine the long-term effect and to ensure the consideration of the privacy issues in AI 772 

application data. In addition, the implementation of this technology in developed countries 773 

still leads to unwanted results that require studies to determine appropriate solutions. 774 

 For CE in digital environments, more studies are required on multidisciplinary approaches 775 

to integrate CE and I4.0 with smart waste management. A good understanding of standard 776 

digitization obligations, the development of different and specialized skills, an attention to 777 

human factors and ergonomics, and a clear road map of CE implementation are suggested. 778 

 Further examination of business intelligence utilization is needed on how business 779 

intelligence facilitates firms to attain competitiveness. This examination should include the 780 

machine learning adoption of a life-cycle or firm-wide center for capitalizing on increasing 781 

data magnitude. Adopting and using deep learning regarding data issues, model choice, 782 

generic model development, incremental studying, model imaginativeness is needed. 783 

Virtual reality and the ways in which it rearranges how human resources gain new skills 784 

require more thorough analysis. Increasing employee recruitment, practicing safety 785 

schemes, developing technical training procedures, and improving empathic behaviors in 786 

customer service to advance industrial application and human resource challenges are 787 

areas requiring urgent attention.  788 

 A multi-facet approach and a hybrid environmental sustainability assessment plan, as well 789 

as public policy and multilateral agreements for managing the unpredictable environmental 790 

sustainability influences of I4.0, require further examination. The smart cities’ potentiality 791 

in dealing with ecological matters and waste management needs to be investigated with a 792 
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consideration of the effects of policy, rule, technology arrangement, product planning 793 

strategies, and extensive citizen involvement. 794 

 There are some limitations for this study. First, the Scopus database was used in this study. 795 

Despite its broad scope, it also includes low impact sources. Therefore, future studies should 796 

employ other databases or incorporate different sources to enhance the generalizability of the 797 

results. Second, only articles and review papers were utilized in the review process; hence, to 798 

expand the data coverage, pertinent books along with book chapters should be embedded in 799 

future study. Third, the expert panel comprising only 15 members is able to induce analysis 800 

prejudice as a result of their understanding, practice, familiarity with the study area. To prevent 801 

such problems, increasing the number of respondents is recommended for future studies. 802 
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 1021 

 1022 
APPENDIX A. Respondents’ demographic for FDM result 1023 

Expert Position 
Education 

levels 

Years of 

experience 

Organization type 

(academia/practice) 

Major operation/research 

field 

1 Manager PhD 20 Practice Electronics 

2 Manager Master 23 Practice Food processing  

3 Professional Master 10 Practice Electronics 

4 Professional Master 11 Practice Leather and footwear 

5 Professional Master 16 Practice Automobile   

6 Professional Bachelor 10 Practice Seafood processing 

7 Professional Bachelor 12 Practice Electronics 

8 Professional Bachelor 22 Practice Textile and garments 

9 Researcher PhD 13 Academia Sustainable manufacturing  

10 Researcher PhD 16 Academia Sustainable development 

11 Researcher Master 11 Academia 
Production, supply chain and 

engineering 

12 Researcher Master 11 Academia 
Industrial technology and 

management 

13 Researcher Master 12 Academia 
Sustainable supply chain 

management 
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14 Researcher Master 12 Academia 
Production and operations 

management 

15 Researcher Master 15 Academia 
Digitalization, Industry 4.0 

technologies 
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