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ABSTRACT 
 

A Fuzzy Cognitive Map (FCM) is a causal knowledge graph with feedback. Its robust 

characteristics make it an effective approach to reasoning and decision making in diverse 

application domains. However, the capabilities of a conventional FCM for modelling and 

reasoning real-world problems in the presence of uncertain data is limited as it relies on a 

Type 1 Fuzzy Set (T1FS). In this thesis, the capability of FCM for capturing more 

uncertainties is extended by introducing Type 2 Fuzzy Sets based on z slices (zT2FSs) 

which are capable of capturing higher degrees of uncertainties compared to T1FS. This 

extension is carried out through two stages. In Stage 1, the Interval Agreement Approach 

(IAA) is used to generate zT2FSs that model the weights of causal relations in the FCM. 

In this stage, the FCM’s reasoning is carried out using an iterative reasoning algorithm with 

the defuzzified values of generated zT2FSs. In Stage 2, a new reasoning algorithm is 

introduced for the FCM which is proposed in Stage 1, where the reasoning operates with 

the fuzzy values of the weights without defuzzification. To demonstrate the proposed FCM 

in Stage 1, a new case study for early diagnosis of autism was created. Using the secondary 

data for an autism diagnosis, published in the literature, the accuracy of the diagnosis is 

increased by 5.46% when the proposed FCM is used. The results demonstrate that the 

proposed method outperforms conventional FCMs used for the same purpose. To 

demonstrate the new reasoning algorithm developed in Stage 2, the proposed FCM in Stage 

1 was applied with the new reasoning algorithm in a new created case study for the 

evaluation of module performances across mathematical modules in a higher education 

institution. It was found that the results obtained have a higher correlation with domain 

experts’ subjective knowledge than both an FCM with weights modelled using T1FS and 
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statistics currently used for evaluating module performances. The correlation between the 

domain experts and the results obtained when the proposed reasoning algorithm is applied 

is 0.34, while in cases when a T1FS and currently used statistics are used it is 0.08 and 

0.28, respectively. In addition, sensitivity analysis is conducted to investigate the 

propagation of uncertainty in the proposed reasoning algorithm. The results demonstrate 

that the FCM that uses the new reasoning algorithm preserves the propagation of 

uncertainty captured from input data effectively. It was observed that changes in 

uncertainties of zT2FS weighted links impacted the value of the decision concept in the 

FCM with different degrees depending on the structure of the FCM and its links. The 

contributions of this research, which are obtained from the abovementioned two stages, 

are: (1) new extensions of FCM where the weights represented by zT2FSs outperform the 

conventional FCM, and (2) a new non-iterative reasoning algorithm for FCM that 

effectively propagates the uncertainty while reasoning and hence enhances the capability 

of FCM for reasoning similar to human. 
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Chapter 1 Introduction 

1.1 Background 

Reasoning and decision-making processes are fundamental in major aspects of our life. 

Taking an optimal decision is very important as there are consequences based on this 

decision. The mechanism of reasoning process and its algorithm play a vital role in 

inferencing the more accurate decision.  However, there are factors which may affect the 

process of reasoning and decision making, for example, the imprecise or lack of 

information, the hesitancy of the decision-makers (experts) based on their experiences. 

Indeed, in the domain where the decision is taking by a group of people, the existing 

uncertainties are classified into Inter- uncertainty (the uncertainty among the group of 

decision-makers) and intra-uncertainty (the uncertainty an individual decision-maker 

has)(Wagner, Miller, and Garibaldi 2013a). Therefore capturing and then handling these 

uncertainties; i.e. “reducing their effects”(Mendel 2001) lead to take the optimal 

decision/solution. 

There are different types of uncertainties in different domains and each could be handled 

by a certain theory; for example, uncertainty which relates to randomness, and this can be 

handled by Probability Theory and the uncertainty which relates to fuzziness, lack of 

definite distinction or linguistic uncertainties, and this can be handled by Fuzzy Set Theory. 

1.1.1 Fuzzy sets 

Fuzzy Sets (FSs) are tools that provide a robust way to deal with uncertainties and 

imprecisions (Zadeh 1965). Literature reveals that there is a progression in the development 
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of FSs since proposed in (Zadeh 1965) and different types of FSs have been defined, for 

example Type 1 Fuzzy Sets (T1FSs) and Type 2 Fuzzy Sets (T2FSs) . T1FS is a set which 

is characterised by membership function that has grades’ values between 0 and 1 (Zadeh 

1965), which later progress to T2FS which is characterised by membership functions that 

is T1FS (Zadeh 1975). Applications of FSs have a noticeable success in the domain of 

reasoning and decision making in presence of uncertainties as presented in (Klir and Yuan 

1995). In this surge, different approaches based on FSs have been introduced for modelling 

in presents of uncertainties and hereafter reason to make the decision. A well-defined 

approach in this area is a Fuzzy Cognitive Map (FCM). 

1.1.2 Fuzzy Cognitive Map 

The FCM was introduced by Bart Kosko in1986 as a directed graph with feedback. The 

FCM consists of nodes that represent the main aspects of the modelled domain linked by 

weighted links that represent the causal relations between them. The reasoning using FCM 

relies on values of its nodes and links. These characteristics of the FCM’s structure provide 

it with dynamicity and simplicity to understand even by a non-technical person. 

FCMs have gained a noticeable attention by researchers in different domains’ application. 

In each application, the FCM is constructed for a purpose based on one of the following 

functions: prediction, strategic, explanatory or a reflective purpose (Codara 1998). 

1.1.2.1 Drawbacks of Fuzzy Cognitive Map 

Despite the effective capabilities of FCMs, they have some drawbacks that limit their 

effectiveness and efficiency to handle high levels of uncertainties associated with domains 

of high imprecise data or a multi-meaning environment , for example as in Medicine 
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(Salmeron 2010) and Business (Hajek and Prochazka 2016) and thereafter hinder their 

abilities to reason effectively.  

One of the drawback of the FCM is its disability to model real world problem of causal 

relations that are neither linear nor monotonic. To cope with this drawback and hence 

improve the performance of the FCM in reasoning, some extensions and learning 

algorithms have been proposed (Papageorgiou 2012). Researchers pursuing to overcome 

these drawbacks and hence enhance the capabilities of the Fuzzy Cognitive Map. They 

have been proposing several extensions and learning algorithms for the FCM. Therefore, 

the FCM which was introduced by Kosko, known as conventional FCM has been extended 

in different ways. 

1.1.2.2 Extensions of Fuzzy Cognitive Map 

As the weights of the causal links of the FCM are crucial for knowledge propagations while 

reasoning in the FCM, various studies have been conducted to improve the representation 

of the weight of the causal relation and hence improve its effectiveness in modelling and 

reasoning. Researchers attempted to use different representation for weights. For example, 

the study in (Miao et al. 1999) introduced Dynamic Cognitive Network (DCN) to extend 

the capability of FCM via enhancing the dynamicity of the causal relations among the 

concepts and by allowing the concepts to adjust their values based on the requirement of 

the system. The causal relations in DCN are represented by dynamic model based on 

Laplacian transformation where the causal relationships inform how long the cause will 

take effect and how the cause will take effect. To tackle a disability of the FCM in 

representing causal relations different than monotonic relation among the concepts, 

Carvalho and Tome, (2000) proposed Rule-based Fuzzy Cognitive Map (RBFCM), where 
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fuzzy rules are used to determine the relations among the concepts and made the 

mechanism of feedback compatible with different types relations and hence reduce the 

complexity of modelling the system. Later, the standard reasoning mechanism of RBFCM 

is improved and a new mechanism is proposed in (Zdanowicz and Petrovic 2018), which 

makes RBFCM s more flexible for modelling the complex number. 

To improve the representation of the causal relations of the Fuzzy Cognitive Map and 

handling their uncertainty, (Salmeron 2010) incorporated the FCM with Grey System 

Theory and proposed Fuzzy Grey Cognitive Map (FGCM), where imprecise relations 

among the concepts were represented by Grey intervals rather than fuzzy singletons as in 

the conventional FCM. Thus, the concepts and weights of conventional FCM are extended 

to grey concepts and grey weights. Comparing to the conventional FCM, the FGCM is 

better in dealing with unclear or absent relations between the concepts as it relies on Grey 

Theory, thus it expresses the existing casual relation by grey weight and the absence 

relation between concepts by zero.  

Though the FGCM shows its effectiveness in handling imprecise data with a high level of 

uncertainty by using the Greyness as a measure of uncertainty, this capability is limited to 

be used only with little data available. The work in (Papageorgiou and Iakovidis 2013), 

extended the FCM to Intuitionistic Fuzzy Cognitive Map (iFCM )by introducing hesitancy 

to the values of its concepts and weight of the edges. The concepts and weights in the iFCM 

are represented by Intuitionistic Fuzzy Sets (IFSs) and conventional reasoning algorithm 

of the FCM is modified accordingly to be compatible with the use of IFSs. The hesitancy 

of outputs’ concepts in the iFCM, enhances the quality of the decision-making process. 
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To enhance the process of aggregating the information required for constructing the FCM 

and for better representation of the uncertainty, the Dempster-Shafer Evidence Theory was 

combined with FCM and the  Evidential Cognitive Map (ECM) was proposed in (Kang et 

al. 2012). The representation of the concepts in the ECM is more flexible than their 

representation in FCM, as they are represented by intervals in the ECM rather than the 

crisp values as in the FCM. The evidence theory was combined with the method of 

combining belief functions (Deng, Jiang, and Sadiq 2011) and used in the process of 

determining the causal relations among the concepts, which helped in representing unclear, 

difficult and even not existing causal relations due to ability of the ECM to measure the 

indeterminacy. Though the success of developing and using the ECM in some applications 

(Zhang et al. 2018), it required more modelling effort from the experts to combine the fuzzy 

aspects of the FCM and Evidential theory aspects. Moreover, it still needed to be enhanced 

by training the map using the appropriate learning algorithms.  

The concept of the FCM was extended to the Granular Cognitive Maps (GCM) in (Pedrycz 

and Homenda 2014) where the links between the concepts were described using 

information granules. GCM succeeded in enhancing the conventional FCM by making its 

formation in presence of several sources more flexible. 

The work in  (Yesil, Dodurka, and Urbas 2014) used a fuzzy number with the triangular 

membership function (triangular fuzzy number) to represent the weight of interrelation 

between the concepts of the FCM. The representation of the proposed FCM using the 

triangular fuzzy number enhanced the efficiency of the conventional FCM by reducing the 

required number of iterations in the reasoning algorithm as the operations using the 

triangular membership function are easier and make the defuzzification process faster. 
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Indeed, it made the process of constructing the FCM more flexible when there is a need to 

aggregate knowledge from different experts. Though the success of the FCM using a 

triangular fuzzy number was recognised, the defuzzification of a triangular fuzzy number 

in each of its simulations process to use it in the reasoning process leads to missing some 

of the information captured by the triangular fuzzy number. 

One study by Peter Hajak, (Hajek and Prochazka 2016) aimed to overcome the uncertainty 

of determining the values of concepts and weights of the FCM by extending the 

conventional FCM to the Interval-valued FCM, where the values of concepts and weights 

were represented by intervals with lower and upper values and the reasoning algorithm was 

modified accordingly. The proposed Interval-valued FCM gave better and results closer to 

the reality comparing to the  conventional FCM ,but it failed to provide a dynamic inference 

mechanism as demonstrated in (Hajek and Froelich 2019). The Interval-valued FCM was 

enhanced in (Wang and Guo 2018) and the Ensemble interval-valued FCM was introduced, 

where the evidential reasoning  was used to aggregate the ensemble maps (Yang and Xu 

2013) and (Fu, Huhns, and Yang 2014). It was shown that the Ensemble interval-valued 

FCMs were effective in modelling complex systems with uncertainty from various fields. 

To capture the uncertainty of concepts values in the FCM and hence improve its capability 

in the domain of decision making, the work in (Marchal et al. 2016) proposed using the 

non-singleton fuzzification approach to determine the values of the concept of the DCN 

where the concepts had dynamic causal relations. It was proved that using the non-

singleton FCM provided results that matched better to the decisions made by the experts 

in the same field, for example, when the FCM was used as a Decision Support System for 

the process of production of virgin olive oil. 
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1.1.2.3 Learning algorithms for FCM 

Learning capabilities enhance FCMs for decision making and modelling. The learning 

capabilities of FCMs rely on modifying the weights of the causal relations among the 

concepts to produce learned weights. Based on the literature (Papageorgiou 2012) , there 

are three categorisations of learning algorithms developed for FCMs based on the learning 

paradigm applied. They are Hebbian-based, population based, and hybrid, which combines 

the aspects of Hebbian-based- and population-based learning algorithms. These algorithms 

are used to train the FCMs and their success in this surge pinpointed in different 

applications, for example, modelling the behaviour (Koulouriotis, Diakoulakis, and Emiris 

2001), control problem in the industry (Papageorgiou, E.I. Groumpos 2005), real-world 

problems of partner selection as in (Zhu and Zhang 2008) and prediction of Autistic 

disorder (Kannappan, Tamilarasi, and Papageorgiou 2011). 

1.1.2.4 FCM Applications Domain 

FCMs play a vital role in solving different problems in diverse paradigms. The FCMs are 

used as tools for prediction, classification, modelling, decision support, analysing or 

reasoning in different domains such as Business(Hajek and Prochazka 2016), Production 

Systems (Luo, Wei, and Zhang 2009a), Engineering (Jetter 2006), Medicine (Amirkhani 

et al. 2017) and Education  (Laureano-Cruces, Ramírez-Rodríguez, and Terán-Gilmore 

2004). 

1.1.3 The Gap 

However, in all the above mentioned extensions of the FCMs, the weight of causal relations 

are represent by T1FSs and hence the capability of the FCM to capture and propagate the 
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uncertainties of knowledge is hindered. As the weights play a crucial role in knowledge 

propagation in the FCM and T2FSs have more advantages over T1FSs in capturing more 

uncertainties, this thesis contributes to the enhancement of the FCM by introducing T2FSs 

to its causal relations’ weights and the reasoning algorithm 

1.2  Motivation 

As the improvement of the FCM is dependent on using the words to describe the world as 

emphasised in (Medsker 2012) and T2FSs are equipped with a further potential over T1FSs 

to model the uncertainties of words and people’ perceptions, the author’s target is to exploit 

modelling advantages of both the FCM and T2FSs in extending the conventional FCM to 

FCM based on T2FSs. Therefore, this extended FCM inherits the capabilities of both the 

standard FCM and T2FSs. That motivated the author to introduce T2FSs to represent the 

weights of the causal links in the FCM. Furthermore, and the iterative reasoning algorithm 

of the conventional FCM is enhanced to a new reasoning algorithm based on T2FSs. Thus, 

the conventional FCM is extended to a new proposed FCM based on T2FSs (particularly 

T2FSs based on z slices (zT2FSs) (Wagner et al. 2015)). 

1.3 Research Questions and Objectives 

The aim of this thesis is to develop extensions to the FCM that are capable of handling 

more uncertainties during the reasoning and infer an output that is more close to the human 

decision. This thesis aims to address the following questions:  

• Can the FCM be extended to incorporate data driven aggregation models for 

handling different types of uncertainties from different sources (experts), for 

example: inter uncertainty of more experts on the same domain and intra 
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uncertainty of one expert exposed over time and, hence, to facilitate a more 

complete information representation? 

• Can the reasoning algorithms of the FCM be improved to better support a decision 

making process? 

 

The main objectives of this thesis’s research are as follows: 

• Analyse the effectiveness of using zT2FSs in modelling of uncertainty. 

• Analyse Interval Agreement Approach (IAA) and its application to generate the 

weights of the links in the FCM represented as zT2FSs. 

• Develop an iterative reasoning algorithm for FCMs with weights represented using 

zT2FSs and analyse its effectiveness by creating it in novel case study 

• Develop a new non-iterative reasoning algorithm for the FCMs with weights 

represented using zT2FSs that operates without defuzzification.  

• Demonstrate that the FCM with the proposed new non-iterative reasoning 

algorithm outperforms the conventional FCM by creating a novel case study. 

• Investigate the effectiveness and analyse the sensitivity of the new reasoning 

algorithm and its capability in allowing the uncertainty to propagate.  

1.4 Scope  

This thesis aims to extend the capability of the conventional FCM to capture more 

uncertainties during reasoning and therefore become more appropriate for reasoning and 

decision making mimicking better human (i.e. experts/ decision makers). The author 

proposes using zT2FSs generated using IAA to represent the weights of the FCM and then 

carry out reasoning with it using the standard iterative reasoning algorithm. Furthermore, 
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the values of weights represented as zT2FSs will be used in a new reasoning process 

without defuzzification that will keep and operate with uncertain weights. The rationale of 

this is the capability of zT2FSs generated by IAA to represent the level of agreement 

between the experts while determining the weights’ values and thus capture more 

uncertainties in compared to T1FSs. 

In this thesis, the validation of the proposed approach to extend the conventional FCM is 

of two folds as follows: 

• The weights of FCM are represented by zT2FSs generated by IAA. Then their 

defuzzified values are use in the conventional iterative reasoning algorithm of the 

FCM. To demonstrate this proposed FCM, a case study for Autism diagnosis is 

generated. The results obtained by using this FCM and the conventional iterative 

reasoning algorithm are compared with the results of the conventional FCM 

reported in the literature and used for the same purpose. 

• The former proposed FCM based on zT2FSs is extended by proposing new non- 

iterative reasoning algorithm which uses the Type 2 fuzzy values of the weights 

rather than their defuzzified values. Then the validity of this new reasoning 

algorithm is demonstrated in the context of Module performance. A new FCM to 

determine Module performance is generated and results obtained are compared 

with other approaches used for the same purpose.  

It is worth to note that the new non –iterative reasoning algorithm for the FCM is proposed 

for the Map with links’ weights represented using zT2FSs that are generated using IAA.    
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1.5 Contribution 

The novelties of this research are related to the FCM and its reasoning algorithm. They are 

presented and supported by results of two newly generated cases studies as detailed and 

discussed in Chapter 5 and Chapter 6 of this thesis. The contribution to the knowledge 

of the FCM can be outlined as follows: 

• Introducing new extensions to the conventional FCM. The proposed FCMs were 

demonstrated in the two cases studies and the results demonstrated that the two 

proposed extensions of FCM outperformed the conventional FCM. 

• A new non- iterative reasoning algorithm for the FCM is proposed. Its effectiveness 

in propagating the uncertainty during the reasoning and hence enhancing the 

capability of the FCM for reasoning similar to human are demonstrated. 

1.6 Structure of the Thesis 

Toward achieving the objectives of this research, the rest of this thesis is outlined as 

follows: 

Chapter 2 includes a background about the FSs. It reviews the definition of the FSs, their 

membership functions and their main operations, such as union, intersection and 

complement. Furthermore, this chapter presents the types of FSs and their roles in capturing 

the uncertainties of the modelled domain. 

Chapter 3 shows how FSs can play an essential role in Computing with Words. The chapter 

presents the existing fuzzy approaches for capturing the human subjective data. The 

differences between these approaches are discussed. The chapter emphasises the effective 

role of zT2FSs that are generated by IAA in capturing the uncertainties. Furthermore, a 
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numerical example on how to use the IAA to generate z slices from interval valued data is 

included in the chapter. 

Chapter 4 this chapter introduces the FCM and its structure. It discusses the advantages 

and drawbacks of the conventional FCM. The chapter presents some of the previous 

extensions of the conventional FCM which were introduced to overcome its limitations. 

Indeed, the learning algorithms which used to train the FCM are briefly presented in this 

chapter. Furthermore, the chapter presents some applications in which the FCM was used.   

Chapter 5 presents a new extension of the FCM proposed that is called FCM based on 

zT2FSs (zT2FCM). This chapter shows how IAA can be used to generate zT2FSs to 

represent the weights of the links. A case study on Autism diagnosis is created and used to 

validate the approach. The chapter provides a step by step description of the proposed 

method. 

Chapter 6 extends the proposed zT2FCM in Chapter 5 by introducing a new non- iterative 

reasoning algorithm where the zT2FSs values of the weights are used without 

defuzzification. To validate this reasoning algorithm, a novel case study on evaluating 

Module Performance using the FCM with zT2FSs’ weights with new reasoning algorithm 

is generated, named Module Performance Fuzzy Cognitive Map. Indeed, this chapter 

includes the comparison between Module Performance FCM and other approaches used 

for the same purpose. For further validation, the sensitivity analysis of the proposed 

approach is carried out and obtained results are discussed in this chapter.   

Chapter 7 summarises the contribution and results of this thesis. Indeed, it presents the 

future work and direction of this research. 
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Chapter 2 Background on Fuzzy Sets  

2.1 Introduction  

The concept of Fuzzy sets (FS) emerged in Zadeh’s seminal paper in 1965 (Zadeh 1965). 

Since then, FSs and Fuzzy set theory have become one of the essential areas in the domain 

of information processing (Pedrycz, Witold. and Gomide 1998). The Fuzzy set theory 

emerged after the development of Probability theory which was the essential tool for 

deciphering and capturing  uncertainty before 1965 (Ross, T. J., & Ross 2016). It is very 

important to distinguish between the Fuzzy set theory and Probability theory. Probability 

theory is effective to manage and handle only random uncertainties, whereas Fuzzy set 

theory is used to handle  linguistics uncertainties and sometimes the Fuzzy set theory is 

applicable to handle random uncertainties when the fuzzy system may use noisy 

measurements (Mendel 2007a). Therefore, it is worth noting here that the fuzzy set theory 

is not a replacement for probability theory. 

The recognition of the significance of FSs in modelling uncertainty and their robust role in 

reducing the complexity of the model and hence increasing its credibility, pushed scientists 

to explore and widely use FSs. FSs have been successfully used in different applications, 

for example, Medicine (John and Coupland 2012), Controls (Tanaka, K. and Wang, H.O., 

2001), Pattern Recognition (Papakostas et al. 2008), and Engineering (Stylios and 

Groumpos 2000).  

FSs are the main objects of fuzzy set theory.  The FS differs from a crisp set (also known 

as a classical set) by having membership degrees, where an element of FS is subject to a 

degree of belonging known as a grade of membership. Diagrams in Figure 2.1 show the 
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difference between the precise and imprecise boundary of a classical set and a fuzzy set in 

universal set E (universe of discourse). For example in Figure 2.1 (a), considering an 

element ‘a’ of a crisp set A, it is clear that 𝑎 ∈ 𝐴 and 𝑏 ∉ 𝐴 as‘a’ is inside the boundary of 

A and ‘b’ is outside the boundary. In Figure 2.1. (b) of a fuzzy set B, it is clear that 𝑎 ∈ 𝐵 

and 𝑏 ∉ 𝐵, but there is a doubt about belonging of ‘c’ to the set B, as it is partially belonging 

to the set B; therefore,  ‘c’ has a partial membership to the fuzzy set B. 

 

(a) 

 

(b) 

Figure 2.1 Difference between the boundary of crisp set and boundary of fuzzy set 

 

The crisp set is characterised by a function that assigns a value of either 0 or 1 to an element 

in the universal set, while the FS is characterised by a membership function which assigns 

a grade (value) of between 0 and 1 inclusively to an element in the universal set, where 0 

represents no membership of the element and 1 represents the full membership of the 

element. Therefore, every crisp set is a fuzzy set but the reverse does not hold. 

The literature reveals that FSs can be effectively used  to represent and handle uncertainties 

and as per Mendel (Mendel 2001), handling uncertainties using fuzzy sets and fuzzy 

systems means the ability to model these uncertainties and reduce their effects. 
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The FS which was introduced in 1965 was called Type 1 Fuzzy set (T1FS) and it is  capable 

of modelling uncertainties and imprecision (John and Coupland 2012). Later in 1975, 

Zadeh emphasized in his work (Zadeh 1975) that T1FSs are incapable of modelling the 

high level of uncertainty associated with linguistic variables. He, therefore, introduced the 

Type 2 Fuzzy sets (T2FSs) to cope with this deficiency. 

Concepts of T1FSs and T2FSs that are related to this thesis and their different 

representations are presented in the following sections. 

2.2 Type 1 Fuzzy Set 

T1FS, which was introduced by Zadeh in 1965, is an ordinary fuzzy set. Given the universe 

of discourse E, a T1FS 𝐴 is defined as a set of ordered pairs as follows: 

𝐴 = {(𝑥, 𝑢𝐴(𝑥))| 𝑥 ∈ 𝐸} (2.1) 

 

where 𝑢𝐴: 𝑥 ↦ [0,1] is a membership function of a set 𝐴 and 𝑢𝐴(𝑥) is the grade of the 

membership of an element 𝑥 to the set A. 

Various shapes of membership functions of T1FS have been proposed. The selection of an 

appropriate one relies on its adequacy of use in the required domain. The most famous 

shapes of T1FSs are determined by popular type-1 membership functions like triangular, 

trapezoidal and Gaussian as presented in Figure 2.2. 
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Triangular membership function 

 

Trapezoidal membership function 

 

Gaussian membership function 

Figure 2.2 Type-1 membership functions 
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Each shape of these membership functions of a T1FSs can be defined by certain 

parameters, for example, centre and width are required parameters to define a Gaussian 

function (John and Coupland 2012). T1FSs and their logics have been used widely in 

different real-world applications for various purposes, for example, in Medicine (Navarro 

and Wagner 2019) to deal with the linguistic uncertainties that arise from the patients 

during describing the symptoms and from physicians when classifying these symptoms to 

determine the required therapy plan. Also, T1FSs have been used in pattern recognition 

(Papakostas et al. 2008) to classify the structure of the data which might be with vague 

boundaries.  

Standard set operations such as union, intersection and complement were defined for 

T1FSs using their membership functions as follows: 

 Given two T1FS 𝐴, 𝐵 with their membership functions 𝑢𝐴 and 𝑢𝐵 respectively in a 

universe of discourse X, the union 𝐴 ∪ 𝐵 is defined by the membership function 𝑢𝐴∪𝐵 , 

where 

𝑢𝐴∪𝐵 = 𝑚𝑎𝑥[𝑢𝐴(𝑥), 𝑢𝐵(𝑥) ] ∀ 𝑥 ∈ 𝑋  (2.2) 

 

as depicts in Figure 2.3(a). 

The intersection 𝐴 ∩ 𝐵 is defined by the membership function 𝑢𝐴∩𝐵 , where 

𝑢𝐴∩𝐵 = 𝑚𝑖𝑛[𝑢𝐴(𝑥), 𝑢𝐵(𝑥) ] ∀ 𝑥 ∈ 𝑋  (2.3) 

as depicts in Figure 2.3(b). 

The complement of  𝐴 is defined by the membership function 𝑢𝐴̅ , where 



 

18 
 

 uA̅ =1- uA̅  (2.4) 

  

 
 

(a) (b) 

Figure 2.3 (a) The union of T1FSs    (b) The intersection of T1FSs 

 

For further information on FSs , their logics and their  operations, the reader may refer to 

(Rossand Ross 2016) and (Klir and Yuan 1995). 

Although T1FS was used successfully in various applications, there was criticism about its 

crisp membership function; it does not reflect any uncertainty in assigning the value to an 

element in the set and thus contradicts the word “fuzzy” (Mendel 2001). Indeed, this 

hinders the modelling ability of T1FS in the domain that involves a high level of 

uncertainty. This shortcoming of T1FS led to the extension of T1FSs through the 

introduction of a higher level of fuzzy sets where the grade of the membership is uncertain. 

The evolution of these higher fuzzy sets will be presented in Section 2.3. 

2.3 Type 2 Fuzzy Set 

In 1975, Zadeh incorporated uncertainty with the definition of the membership function of 

T1FS and introduced the concept of T2FS (Zadeh 1975) which is a generalization of T1FS. 
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Thus, if there is no uncertainty about the membership function, the T2FS is reduced to 

T1FS. Indeed, Zadeh proposed a generalized TnFS where, n=3, 4, 5… 

Various investigations in the area of T2FSs and their logics show their ability to effectively 

deal with uncertainty in different real-world applications. Some of these investigations are 

introducing a new representation of T2FS, termed z slices and use this representation to 

transit from IT2FS logics and systems to T2FS logics and systems as presented in (Wagner 

and Hagras 2010). This transition allows to facilitate the application of T2FS in different 

real world applications, for example improving the combining and classification accuracy 

of support vector machines (Hassani et al. 2017) and measuring the agreement between the 

experts in decision making domain(Navarro and Wagner 2019). 

A review of the literature in this area reveals the gradual transition from using T1FSs to 

T2FSs in the last two decades. The reason for this transition is that T1FSs are incapable of 

handling a high level of uncertainty because they are characterised by crisp membership 

functions. Conversely, T2FSs are characterised by fuzzy membership functions and thus 

they are capable of modelling a high level of uncertainty where determining the precise 

membership of the fuzzy set is difficult or even impossible. 

Given the universe of discourse E, the T2FS Ã is defined in the three dimensional space as 

a set of ordered pairs as follows: 

Ã = {((𝑥, 𝑢Ã(𝑥)), 𝜇Ã(𝑥, 𝑢Ã(𝑥)) ) | ∀𝑥 ∈ 𝐸 𝑎𝑛𝑑 ∀ 𝑢Ã(𝑥) ∈ 𝐽𝑥, 𝐽𝑥 ⊆ [0,1] } (2.5) 

 

where 0 ≤ 𝜇Ã ≤ 1 is a type-2 membership function of Ã.  
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At each 𝑥, 𝑢Ã is called a primary membership function and it is the domain of  𝜇Ã  which 

is called a secondary membership function. It is noticeable from this definition that T2FS 

has three dimensions for the representation, compared to T1FS which has two dimensions. 

Based on the literature, this T2FS is known as the General Type 2 Fuzzy set (GT2FS) to 

distinguish it from other representations of T2FS as will be presented later in this chapter. 

It is clear from the former definition of T2FS that a degree of the belonging of an element 

(membership) to T2FS is represented by T1FS as there is uncertainty about the degree of 

membership, while the membership degree in T1FS is certain and is represented by a crisp 

value (singleton). Therefore, the T2FS could be viewed as T1FS where the membership of 

each element is a T1FS in the universe of discourse (John and Coupland 2012). 

Although T2FSs provide a robust framework to handle uncertainties compared to T1FSs, 

its third dimension requires more effort for computations and that makes the representation 

and use of their systems difficult. Therefore, most studies undertaken 20 years ago only 

focussed on the theoretical concepts of T2FSs. After that, there was a noticeable transition 

in the study of both theoretical and applied types of research of T2FSs, especially after 

defining the concept of type reduction by Karnik and Mendel (Karnik, Mendel, and Liang 

1999). Type reduction of FS is a process in which the higher order of FS is reduced to 

ordinary FS (T1FS) which then defuzzify to a single value which represent the uncertainty 

that captured in the set.   

One of the challenges of T2FS development is to provide a framework that allows the 

comparison between T1FS and T2FS (John and Coupland 2012) in order to help users 

decide which sets to use. This comparison framework is important for users as T1FS is 
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easier in terms of computation efforts compared to T2FSs. In the surge to cope with this 

challenge, (Lynch, Hagras, and Callaghan 2007), (Lynch, Hagras, and Callaghan 2005) 

and (Melgarejo R. and Peña-Reyes 2004), used a hardware implementation such as Field 

Programmable Gate Array to offer a type reduced set, but that required more computations 

too. 

 The third dimension is vital to T2FS as it provides an additional degree of freedom to 

represent uncertainties (Mendel and John 2002), but it complicates the process of 

determining the parameters of T2FSs as they are characterised by three-dimensional type 

2 fuzzy membership functions. To reduce this difficulty, two main representations of T2FS 

were introduced, namely the vertical-slice representation and wavy-slice representation. 

The vertical-slice representation is used more for computational purposes, whereas the 

wavy-slice is more used for theoretical purposes (Mendel 2007a). The vertical slice 

representation relies on dividing the T2FS into vertical slices in such a way that their union 

represents the original T2FS itself. The wavy slice representation is known as Mendel-John 

Representation Theorem (Mendel and John 2002) and it relies on dividing the T2FS into 

simpler embedded T2FS; therefore, wavy slices are avoided for computational purposes. 

To minimize the computational efforts required to deal with T2FSs and hence employ them 

in fuzzy systems, several vertical representations were proposed, for example, Interval 

Type 2 Fuzzy set (IT2FS) (Mendel 2001), Geometric representation (Coupland and John 

2007), Alpha-plane (Mendel and Liu 2008) and z Slices (Wagner and Hagras 2010). 

Later, Mendel introduced the wavy slice to represent the third dimension of T2FS which is 

more suitable to be used in the theoretical representation (Mendel 2007a).  
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  Note that the secondary membership function at each 𝑥 in T2FS (2.5) is a vertical slice 

which is a two dimensional plane between 𝑢𝐴̃ and 𝜇𝐴̃ (Mendel and John 2002). The union 

of all the vertical slices represents the T2FS. This representation, introduced by (Mendel 

2001), helped to simplify and reduce the complexity of T2FS computations. 

 As per (Mendel 2007a) and (Mendel, Liu, and Zhai 2009), IT2FS  and Alpha-plane could 

be interpreted by both vertical slice and wavy slice representations. 

 The IT2FS and z slices are widespread representations of T2FS as the computations of 

their third dimension are less complex comparing to other representations of T2FS 

(Wagner and Hagras 2008), and, therefore, and for the purpose of this thesis, these two 

types of T2FSs will be presented only. 

2.4 Interval Type 2 Fuzzy Set 

IT2FS, introduced by Mendel (Mendel 2001), provides the membership grades within an 

interval; therefore, IT2FS has a wider scope for capturing uncertainty compared to T1FS.  

The IT2FS is generated by blurring a T1FS (up and down/ right and left) which produces 

two type-1 membership functions: lower membership function (LMF) and upper 

membership function (UMF). The area bounded by LMF and UMF captured all the 

uncertainty of IT2FS and is known as the footprint of uncertainty (FOU) and the IT2FS is 

defined by its FOU. 

Blurring directions result in different types of secondary membership functions. Indeed, 

the blurring notion gives the membership functions of the IT2FS a view that they are type-

1 membership functions whereas their membership grades are type 1 fuzzy sets. The third 
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dimension of IT2FS set is fixed as 1, hence IT2FS is a GT2FS where the third dimension 

is fixed as 1. Therefore, when 𝜇Ã(𝑥, 𝑢Ã(𝑥)) = 1 in (2.5), the T2FS Ã becomes an IT2FS. 

Given the universe of discourse E, the IT2FS 𝐴̃ is defined in the three dimensional space 

as a set of ordered pairs as follows: 

{𝐴̃ = ((𝑥, 𝑢𝐴̃(𝑥)), 1 ) | ∀𝑥 ∈ 𝐸 𝑎𝑛𝑑 ∀ 𝑢𝐴̃(𝑥) ∈ 𝐽𝑥, 𝐽𝑥 ⊆ [0,1] } (2.6) 

 

 

Figure 2.4 IT2FS and its FOU 

 

The IT2FS is known as first- order uncertainty fuzzy set and GT2FS is known as second-

order uncertainty fuzzy set. Figure 2.4 presents an IT2FS in two dimensions. 

IT2FSs are used in different applications, and their success in modelling systems with high 

uncertainty is noticeable. Some of these applications are presented in (Mendel 2007a), (Liu 

and Mendel 2008) and (Coupland, Mendel, and Wu 2010).  

In spite of the fact that IT2FSs offer a wide scope for capturing uncertainty and accurately 

representing them, several studies have suggested the necessity of moving to an alternative 

FOU 
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representation of T2FS where the third dimension is used to capture more uncertainties. 

The fuzzy set then becomes more capable of an accurate representation of uncertainties 

required for knowledge representation, approximate reasoning and decision making. Hence 

efforts were made to enhance the representation of GT2FSs and limit their complexity. 

Coupland and John (Coupland and John 2007), represented the GT2FS using the geometric 

representation like polygons and polylines which made the execution of computational 

operations faster. Later, the T2FSs were represented using alpha planes as introduced 

by(Mendel and Liu 2008), which overcame the complicated computation that is associated 

with set operations and type reduction for the T2FS. 

In order to further reduce the immense computations required for  GT2FS and effectively 

use the third dimension in capturing more uncertainty, z Slices representation of GT2FSs 

(zT2FS)  and their fuzzy logics were introduced by (Wagner and Hagras 2008) .The z slices 

representation allows the smooth transition from IT2FS to GT2FS and helps to utilise the 

third dimension for capturing higher uncertainty, but it keeps the level of complexity at the 

level of interval T2FS. The following sections include more details about zT2FSs and their 

applications.   

2.5 The z Slices Type 2 Fuzzy Set 

A zT2FS is generated by slicing the third dimension 𝑧 of GT2FS into a series of vertical 

slices 𝑍𝑖 each at level 𝑧𝑖 where 0 < 𝑧𝑖 < 1. These slices called z slices and each slice 𝑍𝑖  is 

equivalent to an IT2FS but its third dimension is equal to 𝑧𝑖 not 1. Hence, (2.5 ) is modified 

to define z slices 𝑍𝑖   as follows: 

𝑍𝑖 = {((𝑥, 𝑢𝑖(𝑥)), 𝑧𝑖 ) | ∀𝑥 ∈ 𝐸 𝑎𝑛𝑑 ∀ 𝑢𝑖(𝑥) ∈ 𝐽𝑥, 𝐽𝑥 ⊆ [0,1] } (2.7) 
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In the discrete universe of discourse, there is a finite number of z slices and hence,  

𝑧𝑇2𝐹𝑆 =∑ 𝑍𝑖
0≤𝑖≤𝐼 

 (2.8) 

and in the continuous universe of discourse, there is an infinite number of z slices and 

hence 

𝑧𝑇2𝐹𝑆 = ∫𝑍𝑖
0≤𝑖≤𝐼 

  𝐼 → ∞ (2.9) 

Note that  ∑and ʃ represent the union of the slices. 

For example, as shown in part (a) of Figure 2.5, a point 𝑥′ has membership function 𝑢0 of 

values within an interval [𝑙0, 𝑟0] in the second dimension 𝑦. Then the interval [𝑙0, 𝑟0]is 

sliced in third dimension to 4 vertical slices 𝑍𝑖 each at level 𝑧𝑖 where 0 < 𝑧𝑖 < 1 as 

presented in Figure 2.5(b). Hence 0 < 𝜇0(𝑥
′ ) < 1 in the third dimension is a set of  

 4 z slices. 

 

Figure 2.5 (a) Front view of zT2FS      (b) Third dimension at x of zT2FS 
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Figure 2.6 presents a 3 dimension view for a zT2FS of three slices. 

 

Figure 2.6 3D view for zT2FS of 3 slices 

The z slices model GT2FS to a degree of accuracy which only depends on the number of z 

slices i.e. as the number of z slices is increased, the accuracy of  inference is increased and 

this effectively facilitates the use of GT2FS in the application of fuzzy logic systems as 

proved in (Wagner and Hagras 2008). Indeed, the concept of Multilevel agreement is 

developed for z slices (Wagner and Hagras 2011) and thereafter z slices play a robust role 

to model Multilevel Agreement in different real applications. The reason for this success 

is that z slices offer an additional degree of freedom to model the uncertainties associated 

with the opinions of decision makers in the third dimension. The work of (Wagner and 

Hagras 2010) provides a complete representative framework of zT2FSs and their fuzzy 

logic system.  
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the GT2FS, in particular zT2FSs were used in different application, for example,(Bilgin et 

al. 2016) (Hassani et al. 2017) (Adams and Bank 2020) where T1FSs was not possible to 

use in these applications which  have high level of uncertainty that well captured by 

zT2FSs. 

2.5.1 Defuzzification 

In applications of fuzzy systems, the output needs to be crisp (Mendel 2001) and this is 

accomplished by defuzzification. Defuzzification is a method in which the fuzzy set is 

represented by a crisp number. There are different types of defuzzifications, but the most 

used are, centroid (centre of gravity), weighted average, and mean of maxima. for a purpose 

of this thesis, the author discusses the centroid method, particularly for zT2FS for further 

details on other methods, the reader may refer to (Roychowdhury and Pedrycz 2001).  

  Defuzzification of T2FS relies on reducing it to T1FS which makes the computation of 

its centroid easier. The process of defuzzifying the T1FS and IT2FS is easier than in T2FS, 

as the latter involves several embedded T1FSs. Thus computing the centroid of T2FS could 

be intensive if there are enormous numbers embedded  T1FS (Mendel 2001). To reduce 

the complexity of computing the centroid of T2FSs, some approaches, such as the random 

sampling (Karnik and Mendel 2001) and vertical slice-centroid-type reduction (Lucas, 

Centeno, and Delgado 2007) have been proposed particularly for IT2FSs.  

The zT2FSs are defuzzified using a centroid which represents the linear combination of 

centroids of all  z slices, as proved in Theorem 1 in (Wagner and Hagras 2010). Thus, the 

centroid of z T2FS which has N slices  𝑍𝑖 , where each 𝑍𝑖 is at level 𝑧𝑖, 1 ≤ 𝑖 ≤ 𝑁  is 

calculated as follows: 
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𝐶zT2FS =∑𝑧𝑖/𝐶𝑍𝑖

𝑁

𝑖=1

 

 

(2.10) 

 

where 𝐶𝑍𝑖 is the centroid of 𝑍𝑖 slice. 

2.6 Conclusion 

Using the three-dimensional view the following fuzzy sets have been defined: 

If the membership grade of each element 𝑥 in the universe of discourse is a singleton (a 

crisp value) in the second dimension y and there is no uncertainty about its value, i.e. the 

third dimension value is fixed to be 𝑧 = 1, then the results set is T1FS. 

If the membership grade of each element 𝑥 in the universe of discourse is a crisp interval 

in the second dimension y and there is no uncertainty about its values, i.e. the third 

dimension values corresponding to the interval values are fixed to be 𝑧 = 1, then the 

resultant set is IT2FS. 

If the membership grade of each element 𝑥 in the universe of discourse is a T1FS of support 

belonging to [0, 1], i.e.  the values of z belong to [0, 1], then the resultant set is GT2FS. 

Figure 2.7 shows by using the three dimensions view, the diffrence between the value of 

input p in a universe of discourse using T1FS, IT2FS and GT2FS. 
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Figure 2.7 Value of input p using three types of Fuzzy Sets 

 

The type of the data and the level of imprecision and uncertainty within them inform the 

decision of whether to use T1FS or T2FS to model a specific system. As the  level of 

uncertainties and imprecision increase, the T2FSs have more leverage compared to T1FS 

to offer a suitable paradigm to represent the system (Robert and Coupland 2008). 

Several representations for GT2FSs have been proposed to reduce the complexity of using 

it in the applications, for example, IT2FS and z T2FS are more used representations of 

GT2FS. 

The literature review (McCulloch, Ellerby and Wagner 2019) reveals that IT2FS and the 

zT2FS are widely used via specific approaches, for example, in Interval Approach and 

Interval Agreement Approach to model the agreement between the decision makers about 

the word/ concept meaning and/or an aspect of the designed system, as presented in 

 Chapter 3. 
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Chapter 3 Fuzzy sets based approaches to 

capturing human subjective data 
 

3.1 Introduction 

Fuzzy logic systems are based on rules governed by words with uncertain meaning. Based 

on this precept, Zadeh (Zadeh 1975) introduced the concept of ‘Computing with Words’ 

(CWW), as a process where words were used for computing rather than numbers. He 

emphasized that fuzzy sets and fuzzy logics were powerful methodologies for CWW. The 

concept of CWW and Mendel’s notion that “words mean different things to different 

people” (Mendel 1999) demonstrate the potential of a fuzzy set that is capable of capturing 

the semantic uncertainties of a word and hence strengthening the process of decision 

making where words or perspectives are used rather than numbers. There are notable works 

that have used fuzzy sets to model these words and /or concepts for reasoning as a part of 

the CWW applications. Some of these applications used T1FSs (Herrera et al. 2009), 

(Herrera, Herrera-Viedma, and Martínez 2000) and (Lawry 2001) whilst some CWW 

applications used T2FSs (Mendel and Wu 2010) (Miller et al. 2012). The literature reveals 

that proficiency of T2FS is higher than of T1FS for accurately capturing the uncertainties 

of meaning and opinions associated with the word. The reason is that T2FSs are 

characterized by an additional degree of freedom which allows them to handle more 

uncertainty and hence provide more accuracy in the representation. In this line, the work 

of (Mendel 2007b) presented two approaches to collect data about words or concepts from 

a group. They are: the person-membership function approach and interval endpoints 

approach. Both approaches represented the semantic uncertainties using IT2FSs in 

combination with statistics in what has been called fuzzistics.  
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There are various techniques which have been developed for accurately capturing people’s 

opinions about words and concepts using surveys tools to create a fuzzy-based model. 

There are two types of uncertainties that can be captured using the survey tool. They are 

intra-uncertainty (uncertainty a person has during iterative surveys) and inter-uncertainty 

(uncertainty a group of people have during iterative surveys).  The works of (Liu and 

Mendel 2008), (Coupland, Mendel, and Wu 2010), (Miller et al. 2012) and (Wagner et al. 

2015), proposed approaches to create a fuzzy model from interval-valued survey data 

where each interval described a specific word or a participant’s beliefs. These approaches 

are based on aggregating the intervals that capture uncertainties of the participants’ 

responses to generate fuzzy sets that represent the agreement/ consensus of their responses. 

The widely used techniques in the surge of creating fuzzy agreement models from surveys 

are Interval Approach (IA) and its extension (Liu and Mendel 2008). Enhanced Interval 

Approach (EIA) (Coupland, Mendel and Wu 2010) and Interval Agreement Approach 

(IAA) (Wagner et al. 2015). Each of these approaches takes different method to generating 

FSs and making different assumption about the nature of the data. For example, IA, EIA 

and their extensions create IT2FS from interval-valued survey data, where IAA uses 

interval values data obtained from a survey to construct zT2FS.  

  More about IA, EIA and IAA will be included in the following sections. 

3.2 Interval Approach and its Extensions 

The IA proposed in (Liu and Mendel 2008) is an approach towards modelling uncertainties 

in survey data. It maps each response’s intervals to T1FS and then represents the union of 

all T1FSs as an IT2FS. The IA comprises two parts: data part and fuzzy part. In the data 

part, there are two main steps where the collected intervals of responses are reprocessed 
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and the statistics of the remaining interval data (after the reprocessing) are computed. The 

step of reprocessing of the data includes the following four stages: (1) removing the 

outliers, (2) removing bad data (data that is not relative to the analysis), (3) removing the 

intervals which do not overlap with other intervals (known as non- reasonable intervals) 

and (4) removing intervals that do not fit the tolerance threshold functions. The step of 

statistics in data part includes assigning a probability distribution to each of the remaining 

intervals after the step of reprocessing. The fuzzy part is executed through nine stages (Liu 

and Mendel 2008) as follows: (1) the intervals are mapped to appropriate T1FSs (usually 

with triangle, left or right shoulder membership function) using the mean and the standard 

deviation of the probability distribution of the interval created in the data part. (2) Then 

measures of uncertainty of T1FSs are established and they are the mean and standard 

deviation of the corresponding probability distributions. (3) Calculate the measures of 

uncertainty (mean and standard deviation) of created T1FSs. (4) Then the mean and 

standard deviation of T1FS is equated to each interval. (5) Establishing the nature of FOU, 

where each interval is classify either to triangular, left or right shoulder FOU. (6) Compute 

the embedded T1FS. (7) Remove the T1FSS that outside the desired range. 8) Aggregate 

T1FSs to create to IT2FS. (9) Compute FOU which capture the uncertainty of IT2FS 

(Mendel 2007a) by determining the LMF and UMF of FOU based on representation 

theorem for an IT2FS as presented in Chapter 2. Therefore, the sets generated by IA model 

the inter-uncertainty and intra -uncertainty of surveys’ respondents in FOU.   

 Later, the IA was enhanced by the EIA method (Coupland, Mendel, and Wu 2010), where 

the statistical test in data part is stricter compared to IA, and by improving the process of 

computing  the apex of the LMF in fuzzy part. Both methods, IA and EIA, capture both 
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intra and inter uncertainties in the produced mathematical model in FOU of IT2FS, but in 

EIA, the resulting IT2FSs are less wide than those which result using IA and the height of 

their membership function is higher compared to the IT2FS generated by IA. Thus EIA 

overcomes the limitation of IA which produces too imprecise fuzzy sets to be of use in 

inference. 

 It is worth noting that the data part of both IA and EIA includes data reprocessing, where 

outliers are removed using a Box and Whisker Test (Walpole et al. 1993). However, this 

may lead to loss of some important information as it is not always the case that outliers are 

bad data or do not include useful information. The reason for reprocessing of survey data 

in IA and EIA is because both methods attempt to capture the meaning of words by the 

survey and thus there are some responses which are not useful to consider. Detailed 

descriptions of the IA and EIA are presented in (Liu and Mendel 2008) and (Coupland, 

Mendel, and Wu 2010) respectively. 

The work of (Hao and Mendel 2016) proposed the HM Approach (HMA) which shares 

with EIA the stages of pre-processing of the data but it enhanced EIA by assigning a high 

membership value to the intervals with high agreement among the respondents of the 

survey to be more useful and provide more accurate representation of the data. 

3.3 Interval Agreement Approach 

The IAA is proposed in (Wagner et al. 2015) as a tool to create an agreement model based 

on T1FSs  or zT2FSs from interval-valued survey data. This approach produces a data-

driven model that captures both intra and inter uncertainties associated with the modelled 

domain. The literature (Miller et al. 2012, Wagner et al. 2015) demonstrates that IAA 
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outperforms IA and EIA because IAA creates the fuzzy sets solely from the data without 

reprocessing or removing the outliers as in IA and EIA. Therefore, the generating 

agreement model includes all the information obtained from the data. Further, the IAA 

distinguishes between intra-uncertainty and inter-uncertainty as each uncertainty is 

represented on a different axis, compared to the IA and EIA methods where all the 

uncertainties are captured in FOU. This distinction fortifies the quality of the model 

generated from survey data. 

Former characterisations make IAA an ideal and useful approach in the domain of 

reasoning and decision making. The work in (Wagner et al. 2015) extended IAA’s 

capability from  modelling the uncertainty of crisp intervals as in (Miller et al. 2012) to 

model intervals with uncertain endpoints. The intervals are obtained as survey responses 

from a single source as well as multiple sources without the need for data pre-processing 

and/or outliers’ removal. The IAA method reduces any need of assumption during the 

creation of the model as it generates the desired fuzzy sets from the available data without 

a requirement to choose a specific fuzzy set type with, for example, triangular or Gaussian 

membership function. Consequently, the resultant fuzzy sets will capture more 

uncertainties and hence more potential information (Klir and Folger 1988).  

The IAA includes two phases, in which the result of each phase captures a type of model 

uncertainty including intra and inter-uncertainty. These phases are: 

Phase 1. Creating T1FSs in which each of them includes intra- uncertainty of each of the 

survey respondents. 
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Phase 2. Aggregate former T1FSs to generate the z slices that capture inter- uncertainty of 

all the survey respondents. 

Thus the generated zT2FS agreement model contains both intra and inter respondent 

uncertainty.  

Each type of uncertainty are modelled on two separate axes and thus, the IAA allows for 

an additional degree of freedom for each uncertainty as there are three dimensions for 

representing and handling the uncertainty. 

The survey used to collect the required data to generate the zT2FS agreement model using 

IAA is designed so that each question’s response is collected by drawing an ellipse on a 

Likert scale (Likert 1932) ranging from 0 to 100 or the respondent may provide the answer 

as an interval (e.g. [𝑎, 𝑏], where 𝑎 ≥ 0, 𝑏 ≤ 1) . The respondents can thus express their 

uncertainties about the answers to each question as an interval rather than a crisp value. 

The width of the interval reflects the extent to which the respondents are certain about their 

responses. For example, wide intervals show that respondents are less certain (more 

uncertain) about their responses as presented in Figure 3.1 (a), where narrower intervals 

reflect that respondents are more certain (less uncertain) about their responses as presented 

in Figure 3.1 (b).  
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Figure 3.1 Uncertainty represented by intervals 

Based on the literature, (Wagner, Miller and Garibaldi 2013a) it can be assumed that 

multiple iterations of the survey on the same topic offer more accurate information about 

the surveyed topic as the surveyed experts may have better information or their level of 

understanding of the concepts increases over time. Thus for a purpose of IAA and to 

capture more intra-uncertainty of experts, there are multiple iterations of the designed 

survey. 

  For 𝑁 respondents of a survey (experts) who are surveyed 𝑆 times, the IAA’s phases are 

executed as follows. In the first phase, it is assumed that each expert answers using S 

intervals that are aggregated to generate a T1FS to capture an expert intra-uncertainty. The 

generated T1FS is modelled in a 2 dimensional space (𝑥 and 𝑦 axis) with the membership 

degree 𝑦𝑖 =
𝑖

𝑆
,  where 𝑖 ∈ {1,2, … , 𝑆} as follows: union of all the intervals has a membership 

degree  𝑦1 =
1

𝑆
 , union of all 2-tuple intersections of intervals has an associated membership 

degree   𝑦2 =
2

𝑆
 , union of all 3-tuple intersections of intervals has an associated 
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membership degree   𝑦3 =
3

𝑆
 , and so on for membership degrees 𝑦4,…, 𝑦𝑆. Note that 𝑦𝑆 =

1. It is worth noting here that the primary membership degree 𝑦𝑖 reflects the number of 

overlapped intervals of an expert’s responses. Therefore, the T1FS that models intra- 

uncertainty of the agreement in  𝑆 intervals responses  from a particular respondent (for 

example, the respondent A, who provides 𝐴𝑖  intervals and 𝑖 ∈ {1,2, … , 𝑆}) is characterised 

by a primary membership function which calculated as follows: 

 

𝑢(𝐴) = 𝑦1/⋃ 𝐴𝑖1

𝑆

𝑖1=1

  + 𝑦2/⋃ ⋃ (𝐴𝑖1 ∩ 𝐴𝑖2)

𝑆

𝑖2=1+𝑖1

𝑆−1

𝑖1=1

 

+ 𝑦3

/⋃ ⋃ ⋃ (𝐴𝑖1 ∩ 𝐴𝑖2 ∩ 𝐴𝑖3) + ⋯

𝑆

𝑖3=1+𝑖1

𝑆−1

𝑖2=1+𝑖1

𝑆−2

𝑖1=1

+ 𝑦𝑛/⋃⋯⋃(𝐴𝑖1 ∩⋯∩ 𝐴𝑖𝑆)

𝑆

𝑖𝑆

1

𝑖1

 

 

(3.1) 

where ∪and ∩ denote the union and intersection of the intervals respectively and + denotes 

the union operation that is used to find the standard union between the created T1FSs.   

At the end of Phase 1, there are 𝑁 T1FSs generated. In Phase 2, 𝑁 T1FSs generated in 

Phase 1 are aggregated to produce 𝑁 z slices using a similar process as in Phase 1, where 

each slice 𝑍𝑗 has a membership degree of 𝑧𝑗 on z axis, where 𝑗 ∈ {1,2, … ,𝑁} and 𝑧𝑗 =
𝑗

𝑁
  is 

the secondary membership degree that reflects the overlap of the above-mentioned 𝑁 

T1FSs , representing the level of agreement among the 𝑁 experts as per the agreement 
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principle (Wagner and Hagras 2011). Therefore the secondary membership function of 

generated zT2FS, 𝐵𝑗 , from aggregating the  𝑁 T1FSs, where 𝑗 ∈ {1,2, … ,𝑁}  is calculated 

as follows: 

𝜇(𝐵𝑗 ) = 𝑧1/⋃ 𝐵𝑗1

𝑁

𝑗1=1

  + 𝑧2/⋃ ⋃ (𝐵𝑗1 ∩ 𝐵𝑗2)

𝑁

𝑗2=1+𝑗1

𝑁−1

𝑗1=1

 

+ 𝑧3

/⋃ ⋃ ⋃ (𝐵𝑗1 ∩ 𝐵𝑗2 ∩ 𝐵𝑗3) + ⋯

𝑁

𝑗3=2+𝑗1

𝑁−1

𝑗2=1+𝑗1

𝑁−2

𝑗1=1

+ 𝑧𝑛/⋃⋯⋃(𝐵𝑗1 ∩⋯∩ 𝐵𝑗𝑁)

𝑁

𝑗𝑁

1

𝑗1

 

 

(3.2) 

Note that the number of slices is equivalent to the number of experts, capturing experts’ 

inter-uncertainty in form of zT2FSs. It is clear from the above mentioned phases that the 

zT2FS agreement model, namely Z, which is generated using IAA, captures both intra and 

inter uncertainties of experts and combines all the slices. Therefore, as 𝑁 experts surveyed 

to generate Z model using IAA, there are N slices (𝑍𝑗), where 𝑗 ∈ {1,2, … ,𝑁}. Hence,  

𝑍 =⋃𝑍𝑗

𝑁

𝑗=1

 

 

(3.3) 
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3.3.1 Illustrative example of using IAA to generate zT2FS 

For the purpose of this thesis, this section presents a numerical example on how IAA is 

used to produce zT2FSs agreement model from crisp interval valued survey data.  

Assume that 3 participants A, B and C are surveyed twice for answering a survey designed 

as explained earlier in Section 3.3 and the extracted intervals from the survey are as shown 

in Table 3.1.  

Table 3.1 Response intervals of the participats 

 

Participants 

 

1st survey 

 

2nd survey 

A [0.50, 0.85] [0.41,0.78] 

B [0.22, 0.88] [0.15,0.89] 

C [0.61,0.71] [0.29,0.90] 

 

Hence, by using the construction process detailed in the earlier section, 𝑁 = 3, 𝑆 = 2 , 𝑦1 =

1

2
= 0.5 and 𝑦2 =

2

2
= 1, the IAA’s phases are executed as follows: 

In Phase 1, three T1FSs are created where each captures the intra-uncertainty of each of N 

participants.  Each of these T1FSs is characterized by its membership 𝑢. Therefore, T1FSs 

for the participants  𝐴, 𝐵 and 𝐶 are defined by the membership functions 𝑢(𝐴), 𝑢(𝐵)and 

𝑢(𝐶) respectively; their membership degree values are  𝑦1 = 0.5 and 𝑦2 = 1. 

The T1FSs of the participants 𝐴, B and C (denoted by 𝑢(𝐴), 𝑢(𝐵) and (𝐶) ) are defined as 

follows: 
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𝑢(𝐴) = 0.5/([0.50, 0.85] ∪ [0.41, 0.78]) + 1/([0.50, 0.85] ∩ [0.41, 0.78]) 

𝑢(𝐴) = (0.5/[0.41,0.85] + 1/[0.50, 0.78]), 

𝑢(𝐵) = 0.5/([0.22, 0.88] ∪ [0.15, 0.89]) + 1/([0.22, 0.88] ∩ [0.15, 0.89]) 

𝑢(𝐵) = (0.5/[0.15,0.89] + 1/[0.22, 0.88])  and 

𝑢(𝐶) = 0.5/([0.61, 0.71] ∪ [0.29, 0.90]) + 1/([0.61, 0.71] ∩ [0.29, 0.90]) 

𝑢(𝐶) = (0.5/[0.29, 0.90] + 1/[0.61, 0.71]).  

The details of intra-uncertainty captured by T1FS are summarised in Table 3.2. 

Table 3.2 Intra uncertainty of each participant 

 

Participants 

 

1st survey 

 

2nd survey 

 

𝒚𝟏 = 𝟎. 𝟓 

 

𝒚𝟐 = 𝟏 

A [0.50, 0.85] [0.41,0.78] [0.41, 0.85] [0.50,0.78] 

B [0.22, 0.88] [0.15,0.89] [0.15, 0.89] [0.22,0.88] 

C [0.61,0.71] [0.29,0.90] [0.29,0.90] [0.61,0.71] 

 

Figure 3.2 depicts the generated T1FSs that capture the intra-uncertainty of the participant 

A, B and C. 
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Figure 3.2 T1FSs of the participants’ responses 

 

In Phase 2 of IAA method, T1FSs which captured intra- uncertainty of experts 𝐴, 𝐵 and C 

that are produced in Phase 1 are aggregated to produce z slices of zT2FSs. As in this 

example, there are three participants; then, as explained earlier in Section 3.3 there are 

three slices 𝑍1, 𝑍2 and 𝑍3 at level 𝑧1 =
1

3
, 𝑧2 =

2

3
 and 𝑧3 = 1, respectively. Three slices 

𝑍1, 𝑍2 and 𝑍3 are created as follows: 

𝑍1 =
1

3
/ (𝑦1/([0.41 ,0.85] ∪  [0.15, 0.89]  ∪ [0.29,0.90]) + 𝑦2/([0.50,0.78] ∪

[0.22,0.88] ∪ [0.61,0.71]))  

𝒁𝟏 =
𝟏

𝟑
/(
𝟏

𝟐
/([𝟎. 𝟏𝟓, 𝟎. 𝟗𝟎]) + 𝟏/([𝟎. 𝟐𝟐, 𝟎. 𝟖𝟖])) 

𝑍2 =
2

3
/ (𝑦1/(([0.41 ,0.85] ∩  [0.15,0.89])  ∪ ([0.41, 0.85] ∩ [0.29, 0.90]) ∪

([0.15, 0.89] ∩ [0.29, 0.90]))) + 𝑦2 /(([0.50, 0.78] ∩ [0.22, 0.88])  ∪ ([0.50 ,0.78] ∩

[0.61, 0.71]) ∪ ([0.22, 0.88] ∩ [0.61, 0.71]))  
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𝐙𝟐 =
𝟐

𝟑
/(
𝟏

𝟐
/([𝟎. 𝟐𝟗, 𝟎. 𝟖𝟗]) + 𝟏/([𝟎. 𝟓𝟎, 𝟎. 𝟕𝟖])) 

𝑍3 = 1/(𝑦1/([0.41 ,0.85] ∩  [0.15, 0.89]  ∩ [0.29, 0.90]) + 𝐲𝟐/([0.50, 0.78] ∩

[0.22, 0.88] ∩ [0.61,0.71]))  

𝒁𝟑 = 𝟏/(
𝟏

𝟐
/([𝟎. 𝟒𝟏, 𝟎. 𝟖𝟓]) + 𝟏/([𝟎. 𝟔𝟏, 𝟎. 𝟕𝟏])) 

The result of the previous calculations of z slices are summarised in Table 3.3.  

 

Table 3.3 Inter uncertainty of all participants 

Slice 𝒛𝒊 𝒚𝟏 = 𝟎. 𝟓 𝒚𝟐 = 𝟏 

𝑍1 1/3 [0.15, 0.90] [0.22, 0.88] 

𝑍2 2/3 [0.29, 0.89] [0.50, 0.78] 

𝑍3 1 [0.41, 0.85] [0.61, 0.71] 

 

The level in the third dimension represents the level of agreement among the participants. 

The generated fuzzy set 𝒁 contains the three slices, and is defined as follows:  

𝒁 = 𝒁𝟏 ∪ 𝒁𝟐 ∪ 𝒁𝟑 

Figure 3.3(a) and Figure 3.3 (b) depict the 2D and 3D visualization of the aggregated slices. 
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Figure 3.3 Aggregation of Z slices 

The centroid of the set 𝑍 (𝐶𝑍 ), is obtained using (2.10) as follows: 

𝐶𝑍 =
(
1
3) 𝐶𝑍1 + (

𝟐
𝟑) 𝐶𝑍2 +

(𝟏)𝐶𝑍3

(
1
3 +

2
3 + 1)

= 0.6231  

where: 

𝐶𝑍1 = (
(0.5) (

0.15 + 0.9
2 ) + (1) (

0.22 + 0.88
2 )

(0.5 + 1)
) = 0.5417, 

𝐶𝑍2 = (
(0.5) (

0.29 + 0.89
2 ) + (1) (

0.50 + 0.78
2 )

(0.5 + 1)
) = 0.6233 

and 
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𝐶𝑍3 = (
(0.5) (

0.41 + 0.85
2 ) + (1) (

0.61 + 0.71
2 )

(0.5 + 1)
) = 0.65 

Note that 𝐶𝑍1 , 𝐶𝑍2 and 𝐶𝑍3 are centroids of the slices 𝒁𝟏, 𝒁𝟐 and 𝒁𝟑 respectively.  

3.4 Application of IAA 

IAA has been used in different applications as a potential approach to accurately model 

uncertainties that exist in the information. one of the practical application of IAA presented 

in (Wagner, Miller, and Garibaldi 2013b), where the IAA used to create word and concept 

model with similarity measures to evaluate services of restaurants. Other applications of 

IAA are presented in (Navarro et al. 2016) (Navarro et al. 2017),where the IAA used to 

model the perceptions of linguistics from different groups (e.g. doctors and patients) in 

medical domain  to show similarity and difference between understanding the word by the 

groups. 

As presented in Section 3.3, IAA has a potential to accurately model the uncertainties of 

interval valued surveys in the generated zT2FS model. Therefore, it is clear that this 

generated fuzzy model captures more uncertainties around the accurate answers of survey’s 

questions (McCulloch, Ellerby, and Wagner 2019). This push the author to utilise IAA for 

modelling the weights of link of Fuzzy Cognitive Map and its reasoning algorithm as 

present in Chapter 5 and Chapter 6 of this thesis. Thus the proposed FCM inherent the 

advantages of IAA.   
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3.5 Conclusion  

The above-mentioned sections discussed approaches to using interval-valued data to create 

models capable of capturing more uncertainty of the collected data and then using it for 

reasoning and making decisions to arrive at correct decisions. 

IA is used as a method to create a model capturing uncertainties about the meaning of 

words. However, generated IT2FSs are wide with a low height of membership values, and 

thus its capability to offer better and useful representation is hindered. To overcome the 

limitation of IA, the EIA was developed. The EIA enhanced IA by refining the reprocessing 

of the data and IT2FSs thus generated are less wide and have higher membership value 

compared to IA. However, the EIA may skip assigning maximum grades of membership 

to more overlapping intervals (where there is more agreement among survey respondents). 

To resolve this shortcoming, HMA. IA is proposed whose extensions reprocess the data 

that may lead to loss of useful information as it is not always the case that outliers include 

poor information. 

  The IAA generates zT2FSs based agreement model which captures the uncertainties of 

the complete data without any reprocessing. Thus, the representation of the generated 

model is closer to the original data. The IAA shows clearly the agreement, partial 

agreement or disagreement among the survey participants. Indeed, the IAA captures the 

standard deviation of the raw data. Based on these discussions, it can be concluded that 

IAA is ideal for generating an agreement/ consensus model capturing uncertainties of 

opinions and perceptions of survey participants. It can be used for reasoning, especially in 

survey contexts where there is a high level of uncertainty. 
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Chapter 4 Fuzzy Cognitive Map 

4.1 Introduction 

The concept of a Fuzzy Cognitive Map (FCM) emerged in 1986 by Kosko (Kosko 1986) 

as an extension of Cognitive Map (CM) introduced by Axelrod (Axelrod 1976). Kosko 

introduced fuzziness in the causal relations among the concepts of CM and then extended 

it to FCM. The motivation for that extension is the fact that the causal relations of a 

modelled system involve uncertainty, especially if they are based on classifications or 

causes which cannot always be represented by singletons (crisp values) unlike fuzzy sets 

which are more capable of such representation. Indeed, the propagation of uncertainty in 

the reasoning process of a CM could not be described accurately (Wang and Guo 2018). 

The FCM extends the CM in two aspects; first, by representing the interrelation by fuzzy 

values and second, by introducing the dynamicity of the system (Gray, Zanre, and Gray 

2014). Thus, the FCM evolves with time. 

The FCM is a soft computing paradigm that combines the properties of a CM and Fuzzy 

Logics that are required for knowledge representation and reasoning. Over the past three 

decades, the FCM has attracted a considerable research attention and it has been used in 

various fields (Papageorgiou et al. 2006). The reasons for that are dynamicity of the FCM, 

its learning capabilities and the perceivable meaning of its structure that can be understand 

by non-technical people 

As emphasised by Codara, the FCM plays the role of one of the following four functions 

based on the purpose that the FCM is designed for; (1) explanatory: focus on modelling 

the system based on the experts' understanding and their directions for the appropriate 
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decision, (2) reflective, focus on checking the adequacy of the modelled situation and do 

the early changes if required  (3) prediction: focus on prediction decisions or actions for 

the future  and (4) strategic: focus on providing more accurate explanation for a complex 

situation,. 

The FCM has demonstrated its capability as an effective approach for decision making 

(Dabbagh and Yousefi 2019), (Iakovidis and Papageorgiou 2011), prediction (Goeman, 

Vandierendonck, and De Bosschere 2001), (Papageorgiou and Froelich 2012), 

classification (Papageorgiou and Froelich 2012), (Oikonomou and Papageorgiou 2013) and 

modelling (Papageorgiou and Salmeron 2014a), (Stylios and Groumpos 2004a). FCMs 

have been used in different applications, for instance, Agriculture (Markinos et al. 2007), 

(Jayashree et al. 2015), Engineering (Stylios and Groumpos 2000), Medicine (Amirkhani 

et al. 2017), Management and Business (Xirogiannis and Glykas 2004), Politics 

(Neocleous and Schizas 2012) and Education (Tan and Wu 2011), (Mendonca et al. 2015). 

The flexibility of the FCM is represented in its ability to allow for removing and/or adding 

concepts as per further mapping required to enhance the resolution of the system modelled 

by the FCM (Groumpos 2010a). 

Different FCMs developed to model a specific domain can be merged to generate a single 

FCM which can incorporate the advantages of the individual FCMs.  Thus the FCM allows 

the synthesis of the knowledge and perceptions from different experts and/or stakeholders 

of the modelled domain and hence the reasoning and inference capabilities of the generated 

FCM is enhanced (Stach, Kurgan, and Pedrycz 2010). 
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Although Koskos’ (1986) FCM (known as the conventional FCM) was used in various 

applications, for example: engineering (Stylios and Groumpos 2004b), medicine (Iakovidis 

and Papageorgiou 2011), education (Lq et al. 2008), its drawbacks were seen in some 

applications requiring a high level of uncertainty and /or where the relations of the 

modelled domain are nonlinear and/or non-monotonic. This motivated researchers to 

enhance the conventional FCM by introducing new extensions and learning algorithms to 

address these drawbacks. 

This chapter aims to define the structure of FCM and its components. It discusses the 

drawbacks of the conventional FCM and presents some of FCM’s extensions proposed to 

overcome these drawbacks. Additionally, this chapter presents some of the learning 

algorithms used to train the FCM. Furthermore, this chapter presents FCM’s applications 

in some domains. 

4.2 Fuzzy Cognitive Map structure 

The structure of a FCM consists of nodes and weighted and directed links between them. 

The nodes represent the main aspects of the modelled system and are known as concepts 

of the FCM.  The links represent the direction of causal interrelations among the nodes and 

the weights of the links are represented by fuzzy values that reflect the degree of the 

causality and/ or influence among the linked concepts. Therefore, the mathematical 

structure of the FCM comprises  𝑚 concepts 𝐶𝑖 , 𝑖 = 1,2, … ,𝑚 which are linked by the 

weighted and directed edges 𝑒𝑖𝑗, where each edge 𝑒 𝑖𝑗   of a causal relation from a cause 

concept 𝑗 to effects concept 𝑖,   𝑖 = 1,… ,𝑚  and 𝑗 =  1, … ,𝑚 − 1, has a causal 

weight 𝑊𝑖,𝑗 , as presented in Figure 4.1  
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Figure 4.1 The structure of FCM 

 

If the concept 𝐶𝑗 does not affect the concept 𝐶𝑖  then 𝑊𝑖,𝑗 = 0. As concept  𝐶𝑖 does not affect 

itself,  𝑊𝑖,𝑖 = 0 for all 𝑖 = 1,2, … ,𝑚. The values of all concepts fall in the interval [0,1] 

but the value of weights fall in the interval [−1,1] as the weights represent the degree and 

the direction of influence between the concepts.  

Therefore the relation between a concept 𝐶𝑗and the concept 𝐶𝑖 in the FCM is described by 

one of the following: 

1. Positive relation, if 𝑊𝑖,𝑗 > 0. 

2. Negative relation, if 𝑊𝑖,𝑗 < 0. 

3. No relation, if 𝑊𝑖,𝑗 = 0. 

The weights  𝑊𝑖,𝑗 can be arranged in a connection matrix 𝑊 (known as weight matrix) as 

follows: 

𝑊 = [

𝑊1,1   𝑊1,2   … 𝑊1,(𝑚−1) 
𝑊2,1   𝑊2,2   … 𝑊2 ,(𝑚−1)

…
𝑊𝑚,1   𝑊𝑚,2   … 𝑊𝑚,(𝑚−1)

] (4.1) 
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Cause and effect concepts are classified based on the impact among them as following: 

• Input concepts: These are concepts that impact other concepts although they are not 

influenced by other concepts. The green nodes in Figure 4.1 represent input 

concepts of the FCM.  

• Intermediate concepts: These are concepts that impact other concepts and are 

influenced by other concepts. The orange nodes in Figure 4.1 represent intermediate 

concepts of the FCM.  

• Decision concepts: These are concepts which are only influenced by other concepts, 

but do not impact other concepts and represent the output of the modelled system. 

The red node in Figure 4.1 is the decision concept of the FCM. The FCM can has 

more than one decision concept and that depends on the modelled system.  

During the process of designing the FCM for a specific problem, the determination of the 

required concepts and the causal relations among them is tackled by experts who 

sometimes combine their experiences about the aspects of the modelled system with the 

existing system’s related historical data (Papageorgiou 2011a). It is worth noticing that 

different topologies of an FCM can be obtained from different groups of experts who are 

involved in creating the FCM for the same problem (Penn et al. 2013). The reason for this 

is that different experts might have different opinions based on their experiences and 

knowledge and thus identify their own criteria for a specific problem. This leads to 

variations in how the topology of the FCM is defined and, therefore, current research is 

looking at ways to consolidate multi- criteria group decision making processes in the 

generation of FCMs (Penn et al. 2013). 
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After the identification of the FCM concepts that are required to model the system, the 

experts describe each causal relation between the concepts by linguistic values. These are 

then aggregated to produce the overall weight which is defuzzified to a numeric value by 

the defuzzification method of Centre of Gravity. 

After the construction of the FCM, the concepts of FCM interact with each other to produce 

the value of the output concept (the decision concept) using the following iterative 

reasoning algorithm: 

𝐶𝑖
(𝑘+1) = 𝑓

(

 
 
𝐶𝑖
(𝑘)
+ ∑ 𝐶𝑗

(𝑘) ∗ 𝑊𝑖,𝑗

𝑚−1

𝑗=1
𝑖≠𝑗 )

 
 

 

 

(4.2) 

where 𝐶𝑖
(𝑘+1)

 is the value of the concept 𝐶𝑖 at time 𝑘 + 1 and 𝐶𝑖
(𝑘)

 is the value of the concept 

𝐶𝑖 at time 𝑘 of the iterative reasoning process; 𝑊𝑖,𝑗 is the weight of the link from concept 

 𝐶𝑗 to concept  𝐶𝑖; and 𝑓 is the sigmoid threshold function which is required to squash the 

value of the concept between 0 and 1 and it is calculated as follows: 

𝑓(𝑥) =
1

1 + 𝑒−𝑚𝑥
 

 

(4.3) 

where 1 ≤ 𝑚 ≤ 5 is typically determined empirically by the FCM’s designers and 

𝑓(𝑥) has a value between 0 and1 (Miao and Liu 2000). 

In the situation where the concept values could fall within the interval[−1,1], the threshold 

function  𝑓  could be calculated as follows: 
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𝑓(𝑥) = 𝑡𝑎𝑛ℎ 𝑥 (4.4) 

The process of reasoning in (4.2) involves iteratively updating the concept values 

until 𝐶𝑖
(𝑘+1) − 𝐶𝑖

(𝑘) < 𝑒, where 𝑒  is the residual value. This process causes the FCM to 

converge to a steady state and its output value is used to inference the decision concept. 

It is worth mentioning that (4.2) is the most common function used for reasoning in the 

FCM and it extends the reasoning algorithm (4.5), which is proposed by Kosko, (1986)  by 

including the value of the concept 𝐶𝑖 at time 𝑘 in evaluating its value at time 𝑘 + 1 (Stylios 

and Groumpos 2004a). 

 

𝐶𝑖
(𝑘+1) = 𝑓

(

 
 
∑ 𝐶𝑗

(𝑘) ∗ 𝑊𝑖,𝑗

𝑚−1

𝑗=1
𝑖≠𝑗 )

 
 

 

 

(4.5) 

The mechanism of establishing the FCM allows for evolving its structure through the 

modification of concepts and the links between them and thus the process of enhancing the 

model of the system based on the FCM becomes flexible (Miao et al. 2001) (Groumpos 

2010b). Indeed, that model gains the dynamic property that is inherent in the FCM. 

The FCMs has been used as Decision Support Systems (DSS) for different applications. A 

review of the literature reveals that the FCM architectures that have been as DSS are as 

follows:  
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1. FCMs based on learning algorithms. 

These FCM types are trained by learning algorithms and thus their connection matrix is 

updated to enhance the DSS to generate a good decision. These architectures of FCMs have 

been used in medical applications; for example, non-linear hebbian learning algorithm used 

to train FCM used for the autism prediction (Kannappan, Tamilarasi, and Papageorgiou 

2011) and the unsupervised active Hebbian learning algorithm used in classifying tumor 

grade of urinary bladder (Papageorgiou et al. 2006). 

2. Competitive FCMs. 

The Competitive FCM (CFCM) classifies the concepts of FCM into two types: factor 

concepts and decision concepts. The factor concepts stand for the main aspects of the DSS 

and their values are updated dynamically during the process of interaction of the CFCM 

(Stylios et al. 2008). Thus factor concepts of the CFCM are a combination of input and 

intermediate FCM concept types as mentioned earlier in this section.  In the CFCM, 

decision concepts represent the output concepts. The structure of the CFCM reveals that it 

is capable of a differential decision where the decision-making process is complex and 

involves other considerations of interrelations among the concepts. It worth noting here 

that reasoning process of CFCM is the same as in the standard FCM. Some of the 

applications where CFCM is used are diagnosis of the knee injuries as presented in 

(Anninou, Groumpos, and Polychronopoulos 2013) and  for dyslexia and  language 

impairment as presented in (Stylios et al. 2007). 
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3. Distributed m-FCMs 

A distributed m-FCM is used to model a complex system which consists of other complex 

sub-systems. These subsystems have some common aspects between them. Each 

subsystem represents a concept of m-FCM and the inter-relation between these subsystems 

stands for the links of the m-FCM. The m-FCM integrates the subsystems of the complex 

system and their relationships to infer the final decision for the main complex system. The 

distributed m-FCM is effective for differential diagnosis and it showed success in diagnosis 

in the domain of speech and language pathology as demonstrated in (Stylios et al. 2007). 

4.3 Advantages and Drawbacks of Fuzzy Cognitive Maps 

The FCM has been widely recognised and adopted due to its simplicity and flexibility in 

construction that allows it to enhance the model representation and to generate the output 

value by adding and /or removing concepts when required. Indeed, the low computation 

time of the FCM and its ability to combine different views from different experts about the 

modelled system during the construction process credits its rapid recognition. Furthermore, 

its dynamicity and capability of learning empower it to be an efficient and effective tool 

that can be used in diverse domains. Although the FCM has these advantages, including its 

strong mathematical structure, it is not capable of  modelling real-world problems of causal 

relations that are neither linear nor monotonic (Papageorgiou and Salmeron 2013). In 

addition to this drawback, the conventional FCM is represented by singletons, thus its 

ability to represent and control knowledge with high randomness and uncertainties between 

the concepts is hindered. Moreover, conventional FCMs cannot handle more than one 

interrelationship between the concepts and it cannot model a grey domain environment (an 

environment with multi-meaning). To overcome these drawbacks and limitations and 
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improve the performance of FCM, various extensions and learning algorithms have been 

proposed that target either its causal weights, design or reasoning process as presented in 

Section 4.4 and Section 4.5. 

4.4 Fuzzy Cognitive Map Extensions 

The extensions of FCM can be classified into three categories based on the types of 

drawbacks it aims to overcome  (Papageorgiou and Salmeron 2014a). For example, to 

overcome the drawbacks of modelling the uncertainty and handling more relations between 

the concepts, FCM has been extended to Evidential FCM, Intuitionistic FCM, Fuzzy Grey 

Cognitive Map and Interval-valued FCM. To solve dynamicity issues, the FCM has been 

extended to Dynamic Cognitive Map and Dynamic Random FCM. To overcome 

drawbacks related to rule-based knowledge representation, Fuzzy rules-based FCM and 

Fuzzy Rules Incorporated with FCM have been proposed.  

For a purpose of this thesis, following sections present some FCM extensions that attempt 

to enhance the representation of the weights of the causal links in the FCM for a better 

representation of the knowledge and increase its capability to capture more uncertainties. 

4.4.1 Fuzzy rule based Fuzzy Cognitive Map 

Fuzzy rule based FCM (RBFCM) was introduced by Carvalho (Carvalho and Tome 2000) 

to tackle the disability of conventional FCMs to model real-world problems involving 

causal relations that are neither linear nor monotonic. The RBFCM enhances the 

conventional FCM by introducing fuzzy causal relations and new operations, named fuzzy 

carry accumulation to cope with the accumulative nature of causality as the traditional 

fuzzy operations do not implement the causality as in the FCM. Later on, the effect of time 
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was introduced to RBFCM  (Carvalho and Tomé 2001) to improve the representation of 

FCM dynamicity. For that purpose a concept of B-Time is defined in the RBFCM to 

enhance the resolution of the system’s simulations after incorporating the time with the 

iterative reasoning process of FCM. 

The reasoning mechanism of RBFCM was enhanced by (Zdanowicz and Petrovic 2018) 

for a better impact accumulation. Although the RBFCM enhances the qualitative 

representation of the knowledge about causal relations by using fuzzy sets, its effectiveness 

in representing the linguistic nature of some phenomena is limited, as RBFCM relies on 

T1FS which has limited potential to deal with linguistic uncertainties. 

4.4.2 Fuzzy Grey Cognitive Map 

Fuzzy Grey Cognitive Map (FGCM) combines the advantages of both FCM and Grey 

System Theory (GST). It was proposed by Salmeron (Salmeron 2010) where  its usefulness 

to forecast using small, incomplete and uncertain data sets was demonstrated. The grey 

number’s accurate value is unknown but it falls within a known interval of values, thus in 

general it is known as a grey interval. 

Concepts in the FGCM are represented by grey variables and the grey interrelations among 

them are represented by directed causal links. The weights of causal links are represented 

by grey intervals, which enhance the capability of the FGCM to represent the uncertain 

knowledge. The FGCM can represent relations among the concepts even if there is no 

causal relation and/ or unknown intensity, where the conventional FCM ability is hindered 

to measure the intensity of the existing causal relation. The FGCM shows success in the 

decision-making domain, for example it used as DSS for planning radiotherapy process 
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(Salmeron and Papageorgiou 2012) and (Papageorgiou and Salmeron 2012). Although the 

FGCM is adapted to handling uncertainty, it is incapable of modelling dynamic and 

nonlinear relations. Its capacity to model the domain of big data is also limited. 

4.4.3 Intuitionistic Fuzzy Cognitive Map 

Intuitionistic Fuzzy Cognitive Map (iFCM) is a fusion of Intuitionistic Fuzzy Sets (IFSs) 

and FCM. It was proposed by Iakovidis and Papageorgiou (2011) as a tool for modelling 

in domains that involve uncertainty, imprecision or missing information. IFS’s 

membership function determine the membership and non-membership degrees of an 

element in the universe of discourse and in addition to that it define hesitancy degree that 

express the indeterminacy degree of the membership of the element (Atanassov 1999). The 

iFCM extends the FCM by introducing IFSs to represent the weights of causal relations 

among the concepts. Thus, the weight of a causal link in the iFCM is represented by the 

hesitancy weight and influence weight which are aggregated and then defuzzified by the 

method of Centre of Gravity. The influence weight defines the fuzzy relation between the 

concepts, where the hesitancy weight define the hesitancy of the experts to define this 

relation. Therefore, (4.2) is reformulated to combine the former weights as mentioned in 

(Iakovidis and Papageorgiou 2011). Introducing hesitancy to define the weights of the links 

support experts when there is difficulty to express their hesitancy about the relationships 

between the concepts. The hesitancy weight of that relation is assumed to be 0.5 rather than 

0. This iFCM, known as iFCM-I, was extended later to iFCM-II by introducing IFSs to 

represent the concept values when the modellers are hesitant to determine the values of the 

concept. To compensate for the problem of missing values, the concepts with unknown 

values have to be given a value of 0.5 instead of zero, so the difference between the exact 
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value of the concept (which its value unknown) and 0.5 is belong to [0, 0.5]. Indeed, in 

iFCM-II, the iterative reasoning algorithm is modified to be compatible with the IFSs that 

introduced for both concepts and weights as presented in (Papageorgiou and Iakovidis 

2013) . (Papageorgiou and Iakovidis 2013) had experimentally demonstrated that iFCM-II 

outperforms iFCM-I especially in medical domain as DSS for determining the criticality 

of pneumonia infection as its results match  physicians’ decisions more accurately than 

FCM and iFCM-I. Although iFCM is less affected by missing input data compared to the 

conventional FCM, the reasoning process of iFCM for each iteration involves complex 

computation due to the complex operations of IFSs. Hence, complexity is the cost as the 

number of iterations to address the problem is between 17 and 24 (Papageorgiou and 

Iakovidis 2013). 

4.4.4 Evidential Cognitive Map 

To cope with the limitation of the FCM in handling uncertainties from different sources, 

Dempster-Shafer proposed the evidence theory, DS-ET (Gordon and Shortliffe 1984). It 

has been incorporated with the FCM into the Evidential Cognitive Map (ECM) (Kang et 

al. 2012). Due the ability of DS-ET to fuse and represent imprecise and uncertain 

knowledge, the ECM extends the capability of FCM to handle and aggregate modelling 

information from different experts. The concepts in the ECM are represented by intervals 

and the weights of interrelated links among them are estimated based on the causal relation 

that could be described by one of the following four cases in the DS-ET (Kang et al. 2012): 

• Positive causal relation 

• Negative causal relation 

• No causal relation 
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• No idea about the causal relation 

 Although the ECM outperforms the FCM in handling imprecision from different sources, 

incorporating belief aspects of DS-ET to FSs while dealing with high conflict between the 

knowledge from different sources is difficult and decreases its effectiveness. 

4.4.5 Granular Cognitive Map 

As a part of the surge to cope with the deficiency of the FCM in handling knowledge from 

different sources as in the ECM, (Pedrycz and Homenda 2014) introduced granular 

computing (Bargiela et al. 2003a) (Bargiela et al. 2003b) and (Bargiela and Pedrycz 2005) 

to the FCM and extended it to the Granular Cognitive Maps (GCM). The links between the 

concepts of GCM are described using intervals and T1FS as information granules and that 

made the construction of the CM flexible by incorporating several sources and developing 

more alignment with the reality of the modelled system. In GCM the reasoning algorithm 

(4.2) is reformulated, where the weights 𝑊𝑖,𝑗 replaced by their granular counterparts and 

the operations of addition and multiplication include information granules and defined 

accordingly. Note that the output of GCM is information granules 

4.4.6 Interval- valued Fuzzy Cognitive Map 

(Hajek and Prochazka 2016) aimed to overcome the uncertainty of determining the values 

of concepts and weights of the FCM by extending the conventional FCM to Interval-valued 

FCM, where the values of concepts and weights are represented by intervals with lower 

and upper values and the reasoning algorithm is modified accordingly. The proposed 

Interval-valued FCM gave a closer result to the reality compared to the conventional FCM 

and iFCM as interval- valued FCM allows for additional freedom to capture more 
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uncertainties while determining the values of concepts and weights and thus it will offer 

more accurate result to the reality. though this advantage of Interval Valued FCM, it failed 

to provide a dynamic inference mechanism (Hajek and Prochazka 2016). 

4.4.7 Dynamic Cognitive Network 

To alleviate the deficiency of conventional FCMs in representing the dynamicity of causal 

influence among the concepts effectively, Miao and Liu introduced the dynamic causal 

relations and extended the FCM to Cognitive Network (DCN) (Miao et al. 1999)(Miao et 

al. 2001).  

The DCN allows concepts to adjust their values based on the requirement of the modelled 

system, where these values can be FSs or intervals.  Indeed, the influence of cause concept 

on an effect concept is represented by the dynamic system which makes the process of 

modelling a causal system more flexible. The former characterisations of DCN made it an 

optimal tool to be used in analysing stock markets (Miao et al. 2001). However, the DCM’s 

ability to model some systems is limited because it is difficult to incorporate their 

dynamicity properties, which rely on Laplacian framework with the iterative reasoning 

algorithm of FCM. 

4.4.8 Triangular Fuzzy Number Fuzzy Cognitive Map 

The FCM has been extended to Triangular fuzzy number FCM (TFNFCM) in (Yesil, 

Dodurka, and Urbas 2014), where the weight of causal relations among the concepts are 

represented by a triangular fuzzy number (TFN) and its reasoning algorithm is modified 

accordingly. Hence, the ability of the TFNFCM to represent the uncertainties about the 

influences between the concepts of modelled system is higher compared to the FCM which 
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is characterised by fuzzy singletons (crisp) or interval weights. The TFNFCM improves 

the capability of conventional FCM to capture more uncertainties during the construction 

but its iterative reasoning algorithm which execute via four simulations requires early 

defuzzification of the TFN through iterations. This may lead to loss of information and 

restricts the full propagation of uncertainty during the reasoning process. 

4.5 Learning algorithms 

Learning algorithms have been developed as methodologies to improve the FCM by 

modifying its connection matrix which represents the causal relations among the concepts. 

The trained FCM becomes more flexible and enables modelling of nonlinear relations. 

Hence training makes it optimal for decision making, prediction  and modelling 

(Papageorgiou 2012)(Papageorgiou and Salmeron 2014b).  

The learning algorithms that are used to evolve the FCM consider weights from three 

directions: historical data, experts’ intervention, and  the production of weight matrices by 

combining expert knowledge and historical data (Stach et al. 2005).  

The literature reveals that the learning algorithms that are used to train the FCM could be 

categorised based on the type of the knowledge used as follows: 

1. Population-based learning algorithms which rely on existing historical data in the 

application domain to find the optimal weights matrix of FCM (Papageorgiou 

2012). These algorithms trained the FCM with less/no intervention from experts. 

Some of these algorithms are Genetic algorithm (GA) (Mateou, Moiseos, and 

Andreou 2005), Particle Swarm Optimization (PSO) (Parsopoulos et al. 2003), 
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Genetic Strategies (Koulouriotis, Diakoulakis, and Emiris 2001) and Memetic 

algorithm (Petalas et al. 2005)  

2. Hebbian- type learning algorithms modify the weight matrix iteratively based on 

the experiences of experts in such a way as to converge to the desired target. Some 

of these algorithms are Differential Hebbian Learning (DHL) (Dickerson and 

Kosko n.d.), which was improved to Balanced Differential algorithm (BDA) 

(Dickerson and Kosko n.d.), Real-coded genetic algorithm (RCGAs) and nonlinear 

Hebian learning approach (NHL) (Papageorgiou, Stylios, and Groumpos 2003).  

3. Hybrid algorithms combine aspects of Hebbian algorithms and population 

algorithms. Hybrid algorithms modify the weight matrix based on both the experts’ 

knowledge and the existing historical data. For example, NHL-RCGAs (Zhu and 

Zhang 2008) is a hybrid algorithm that combines NHL and RCGAs. Indeed, NHL- 

Differential Evolution (Papageorgiou, E.I. Groumpos 2005) is a hybrid learning 

algorithm used to train the FCM’s connection matrix by combining differential 

evolution (DE) with NHL.  

Each category of former learning algorithms has its advantages and disadvantages, which 

therefore determines its suitability for training a specific FCM. For instance, Population-

based learning algorithms provide a high quality learned model in the context of 

dynamicity, but they require complicated calculations which consume the time and may 

provide non interpretable solution. Hebbian- type learning algorithms are fast as they rely 

on experts’ knowledge but sometimes these algorithms update the weights while reasoning 

considering only the influence between each pair of the concepts and neglect the impact of 

other concepts. Hybrid algorithms inherit the advantages of Population and Hebbian 
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algorithms and (Papageorgiou 2012) emphasizes that hybrid approaches are more practical 

and reasonable for designing FCMs due to their capabilities for offering accurate 

representation of FCMs and enhancing their reasoning capabilities. Learning algorithms 

have achieved promising results in training the FCMs in different applications  

(Papageorgiou 2011b) , (Froelich and Juszczuk 2009) and (Luo, Wei, and Zhang 2009b). 

For example, GA have been used to train FCM that used for pattern recognition as in  

(Papakostas et al. 2008) through adjusting the weights matrix to improve the required 

classification process. The Active Hebbian learning used to train the FCM that used to 

simulate the evaluation of credit risk of the companies in (Zhai, Chang, and Zhang 2009) 

and the results demonstrated the enhancement of the FCM capabilities for the 

classifications. Indeed, NHL- Differential Evolution algorithm has been used to train the 

FCM in different applications and the results showed the effectiveness of NHL- 

Differential Evolution in enhancing the FCM’s capabilities for reasoning and modelling as 

emphasised in (Papageorgiou, E.I. Groumpos 2005). 

In addition to the above-mentioned extensions of FCMs and learning algorithms to enhance 

conventional FCM capabilities, current research is focussed on exploring ways to 

consolidate multi-criteria group decision-making processes in the generation of FCMs to 

overcome the issue of imprecise data of different criteria. For this purpose, interval 

intuitionistic fuzzy sets are incorporated with FCM (Hajek and Froelich 2019).  

4.6 Applications Areas 

FCMs emerged in different domains to solve different applications’ problems as revealed 

by the literature (Papageorgiou 2011a) This noticeable surge toward using FCMs in these 

applications is due to the advantages of FCMs which are represented in their learning 
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capabilities, easiness to understand by non-technical people and their effectiveness in 

reasoning as humans in diverse domains.  

As an FCM is designed for a practical purpose, it has been playing a role in prediction, 

classification, modelling, decision support, analyzing and reasoning. 

Following are selected widely used applications’ domains where the conventional FCM, 

trained FCM or an extension of FCM has been used for any of the formerly mentioned 

purposes. 

4.6.1 Medicine 

In the medical domain, there is a high chance for medical errors to have happened, due to 

lack of required information, the existence of huge data/ medical records to be analysed or 

doctors’ uncertainties due to their lack of experience or hesitancy in taking the decision. 

Thus there is a necessity to design an efficient and effective Medical Decision Support 

System (MDSS) to support the doctors in decision making. 

The FCM and its extensions emerged in the Medical domain as an effective tool for MDSS 

to effectively reason in the presence of imprecise or incomplete data. The literature 

(Amirkhani et al. 2017) revealed that the structure of FCMs that have been used in medical 

areas have one of the three architectures of FCM, namely CFCM, m-FCM and the trained 

FCM as mentioned in Section 4.2. Some of FCM’s extensions are used in the medical 

domain’s application. For example, iFCM has been used to predict Pneumonia risk 

(Iakovidis and Papageorgiou 2011) and its effectiveness to predict in the existence of 

missing output was proved. However, relatively complex mathematical calculations of IFs 

that represent its concept and weight values hinder its use, particularly when there are many 

experts involved in the designing process. A trained FGCM is also used in the medical field 
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to model the radio therapy process (Papageorgiou and Salmeron 2012) using its 

effectiveness to model the experts’ uncertainty. A FGCM could handle small data of the 

domain, which is not always the case in the medical domain, also the FGCM requires 

experts’ feedback to determine the number of grey concepts and weights. Therefore, the 

capability of FGCM in the medical domain is limited. Also, FCMs which are trained by 

learning algorithms have been used for different purposes in the medical domain as 

mentioned in Section 4. Although the effective performance of these trained FCMs in the 

medical domain were recorded, they are limited in some applications as they used to update 

the weights’ matrix based on initial weights of the causal relations that were obtained using 

historical data without considering the experts’ opinions (Amirkhani et al. 2017) and hence 

more information about the modelled system were lost. 

4.6.2 Business 

The FCM gained momentum in the business field due to its capability as a tool for 

prediction, analysis and reasoning, which are core requirements for the planning process 

of any business. The study in (Wei, Lu, and Yanchun 2008) used the FCM to model and 

evaluate trust dynamics in the virtual enterprises and though there was an acceptable 

performance in evaluating the trust, there was a necessity to consider the fuzzy setting 

when dealing with the weights of the causal relation. However, this was neglected when 

creating the FCM. This was considered as a limitation of FCM in this application. 

The FCM was trained by a Genetic Algorithm to analyse the what-if process of forward - 

backwards problem in the supply chain domain (Kim et al. 2008). Though this proposed 

FCM showed high accuracy, there was a source of inaccuracy that came from the 

inadequate weight learning time. An interval-valued FCM was proposed in (Hajek and 
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Prochazka 2016) to cope with the uncertainties while reasoning in the business domain. In 

this study, the weights of causal relations of the FCM were represented by intervals to 

capture more uncertainties in determining these causal relations. The interval-valued FCMs 

were used in two case studies, namely supplier selection and performance modelling, 

where the outputs were close to the real decisions. Despite this success, Interval-valued 

FCM fails to address the issue of using interval values of weights and concepts with 

dynamic inference mechanisms as there was a lack of well-defined operations required to 

deal with interval values of the concepts and weights. 

4.6.3 Education 

The study in (Lq et al. 2008) uses a FCM to learn style recognition and prove the efficiency 

of the FCM in this application. In (Cai et al. 2010), the FCM was extended to an 

Evolutionary FCM (E-FCM) by introducing probability of the causal relations between the 

FCM’S concepts, and then used to create a game for science learning. The E-FCM 

outperformed the conventional FCM by allowing different update time schedule for each 

concept, so it evolved in a dynamic way. Furthermore, real time variable state was 

simulated. Also, a conventional FCM trained by Hebian learning algorithm (HL) was 

created to design a game based learning system in (Luo, Wei, and Zhang 2009a). The 

rationale of training this FCM by HL for this application was disability of the FCM to get 

new knowledge from the available data. 

4.6.4 Engineering 

FCMs are widely used in engineering, particularly for modelling and control. For example, 

the work in (Stylios and Groumpos 2004b) used a FCM to control a supervisory system. 

The FCM was trained by nonlinear Hebian algorithm for modelling an industrial process 
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control problem (Papageorgiou, Stylios, and Groumpos 2006). Indeed, the hierarchal 

architecture of FCM was used to model online design and self fine-tuning of Fuzzy Logic 

Controllers to generate  controllers which were capable to produce the optimal controller 

(De Tre, Hallez, and Bronselaer 2014). 

In addition to applications domains mentioned above, an FCM and its extensions were used 

for different purposes in different domains, for example telecommunication (Li et al. 2009), 

information technology (Bueno and Salmeron 2008) and solar energy (Jetter and 

Schweinfort 2011). Table 4.1 presents some of Application domains of FCMs and the 

purpose of using them in the specific domains. 

Table 4.1 Application domains of FCM 

Application Domain Purpose (problem solving) 

Medicine 

Prediction, decision making, knowledge 

representation, classification and reasoning 

(Amirkhani et al. 2017) 

Business 

Prediction, modelling and analysis 

(Wei, Lu, and Yanchun 2008) and  (Kim et al. 2008) 

Education Modelling (Cai et al. 2010) 

Engineering 

Control and modelling 

(Stylios and Groumpos 2004) and  

Environment and Agriculture Prediction and classification (Markinos et al. 2007) 

Information Technology 

Analysis and Modelling  

(Aguilar, J. and Contreras, J. 2010) 

Solar Energy Modelling ( Jetter, A. and Schweinfort, W 2011) 
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4.6.5 Discussions 

 Though the success of the conventional FCM and its extensions in diverse applications, it 

can be noticed that they have drawbacks. Some of these drawbacks are represented in the 

disability of the FCM to model efficiently the subjective opinions of the experts about the 

causal relations among the concepts, as these opinions may change over time or vary 

depending on the level of expertise that experts have. Indeed, there is a need to measure 

the uncertainties associated with weights and concepts. Further, the designers of the FCM 

have to select a slope value in the threshold function (4.3) and such selection depends on 

the designers’ preferences and ultimately affect the number of iterations during the 

reasoning using (4.2) (Papageorgiou 2011a). Moreover, the discrete values that represent 

the FCM’s concepts’ values and links’ weights (defuzzified values of T1FSs which were 

used initially to represent concepts and weights), hinder the capability of the existing FCMs 

to handle the uncertainties of the modelled system efficiently.  

Former drawbacks highlight the necessity to incorporate new approaches to the 

conventional FCM and extend it to overcome these drawbacks, particularly with respect to 

discrete values of the concepts and weights that are incapable to represent the uncertainties 

and the iteration process during the reasoning. Motivated by the advantages of IAA in 

generating zT2FSs which capture well the inter and intra- uncertainties while modelling 

the data, the author proposed in this thesis using the zT2FSs to represent the weight in the 

FCM and then use their values without defuzzification in the reasoning process, as 

presented in Chapter 5 and Chapter 6 of this thesis.                 
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4.7 Conclusion 

The FCM is a soft computing tool with feedback that has a promising application in the 

domain of modelling and reasoning. Although the extensions of FCMs that are summarised 

in Table 4.2 achieved a noticeable success in enhancing the FCM’s reasoning capabilities 

in the presence of imprecise or missed information, their structures rely on T1FSs which 

hinder their ability to capture a high level of uncertainty and to aggregate information from 

different sources associated with real-world application domains. 

It is worth noting that the strength of the knowledge propagation in the FCM and hence the 

accuracy of the output relies on the weights of the causal links. Thus, the weights of the 

causal links of the FCM is crucial.  Motivated by former findings and to extend the 

conventional FCM, this thesis proposes a Type 2 Fuzzy Cognitive Map (T2FCM). First, 

this involves incorporating zT2FSs to represent the causal relation which enhances the 

acquisition of information about this relation and enhances its qualitative representation. 

Second, this requires a development of a new non-iterative reasoning algorithm that is 

compatible with the use of zT2FSs. The ability of the proposed FCM to mimic human 

reasoning will be demonstrated through sensitivity analysis. 
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Table 4.2 FCM Extensions 

FCM’s extension How and why is the extension carried out 

Fuzzy Rule Based Fuzzy Cognitive Map (FRBFCM) 

(Carvalho and Tome 2000) 

To model causal relations that are neither linear nor 

monotonic by fuzzy if-then ruled and new operations 

Fuzzy Grey Cognitive Map (FGCM) 

 (Salmeron 2010) 

To model weights  by grey intervals to be effective in 

forecasting using small, incomplete and uncertain data 

Intuitionistic Fuzzy Cognitive Map (i-FCM) 

 (Papageorgiou and Iakovidis 2013) 

To extends the FCM by IFSs to represent the weights of 

causal relations among the concepts modelling in 

domains that involve uncertainty and hesitancy of 

modelers 

Evidential Cognitive Map (ECM) 

 (Kang et al. 2012). 

To handle the limitation of the FCM in handling 

uncertainties from different sources by introducing DS-

ET 

Granular Cognitive Map (GCM)  

(Pedrycz and Homenda 2014) 

To cope with the deficiency of the FCM in handling 

knowledge from different sources by introducing 

granules (intervals and T1FSs) to represent the link’s 

weights) 

Interval Valued FCM 

(Hajek and Prochazka 2016) 

To use  intervals to represent the values of concepts and 

weights  to overcome the uncertainty of determining the 

values of concepts and weights of the FCM 

Dynamic Cognitive Network (DCN) 

 (Miao et al. 1999) 

To introduce dynamic causal relations to represent the 

dynamicity of causal influence effectively 

Triangular Fuzzy Number Fuzzy Cognitive Map 

(TFNFCM) (Yesil, Dodurka, and Urbas 2014) 

To use TFN to represent weights of causal relations and 

hence capture more uncertainties 
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Chapter 5 Fuzzy Cognitive Map Enhanced by 

Type 2 Fuzzy Set based on z slices 
 

5.1 Introduction 

In reviewing the literature, it can be noticed that the structure of existing FCMs relies on 

T1FSs to represent the weight of causal relations among the concepts. Therefore, the ability 

of FCM to handle high levels of uncertainties is hindered during the construction, reasoning 

and then production of accurate results. To overcome these shortcomings and to address 

the research question of this thesis, the author introduced a Fuzzy Cognitive Map based on 

zT2FSs (zT2FCM) as an extension of the conventional FCM, where zT2FSs are used to 

represent the weights of the causal relations. These zT2FSs are generated using IAA and 

hence they capture all the information and uncertainties of experts’ opinions about the 

weights without any data reprocessing. This extension of the conventional FCM is a part 

of the novelty of this thesis.  

This chapter aims to present the proposed zT2FCM and details the process of its 

construction. To demonstrate and analyse the effectiveness of the proposed zT2FCM, a 

case study of Autism diagnosis, i.e. to identify early a risk of developing Autism is used. 

A detailed description of the conduct of this case study is presented in this chapter. 

Additionally, a method for collecting data for the case study is presented. Also, an overview 

about some aspects related to the domain of the case study are presented to explicate the 

construction process of the proposed z T2FCM for the case study. 
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5.2 Construction of Fuzzy Cognitive Maps based on zT2FSs 

Based on the fundamentals of the FCM’s structure mentioned in Section 4.2, to design 

zT2FCM to model a problem or a system, the first step is to identify the main aspects of 

the system that required to be modelled. Then, these aspects are represented by the concepts 

of the zT2FCM. After that, the causal relations among the concepts are identified. As 

mentioned in Chapter 4, the identification of the concepts and the interrelations among 

them relies on the experts’ knowledge and/ or existing historical data about the modelled 

system. After identifying the concepts and the causal relations between them, the weights 

of the links in zT2FCM are determined. For this purpose, an interval-valued questionnaire 

is designed in such a way that the aim of each question is to identify the weight of a single 

relation of zT2FCM. Hence, the number of questions in the questionnaire is equal to the 

number of the existing links in the zT2FCM.  

For the zT2FCM that comprises 𝑚 concepts, the weights 𝑊𝑖,𝑗, where 𝑖 = 1,2,3, . . 𝑚 and 

𝑗 = 1,2,3, …𝑚 − 1 are identified as follows:  

𝑁 experts responded to the questionnaire that is designed for identifying the weights of the 

𝐿 causal links in the zT2FCM. The questions were designed to support the collection of the 

required data from the experts. For example, each question may require a single response 

or multiple responses based on given criteria of the question (e.g. the question has 

subsections). The experts offer their responses to each question and / or its subsections by 

drawing an ellipse on a Likert scale (Likert 1932) ranging from 0 to 100 to determine the 

weight which reflects the strength of the causality of the link between the two concepts 

mentioned in that question. Hence, for a single link, there are either N or 𝑡𝑁 (if the question 

has t subsections) ellipses, in which each extracted response interval represents the 
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uncertainty of the corresponding expert in determining the weight of the link. The process 

of collecting the responses to the questions may be repeated after a specific period of the 

time, to capture the intra-uncertainty of experts in determining the weights of the links. The 

inclusion of experts’ intra-uncertainty was considered as they might possibly had better 

insights about a topic in their area of specialization  (Wagner, Miller, and Garibaldi 2013a). 

After this step, the response intervals were converted to T1FSs and then aggregated across 

each question using IAA as detailed in Section 3.3 to capture the intra-uncertainty and 

inter- uncertainty of the experts about assigning the weights of the links between two 

concepts. The output of IAA is a zT2FS. The produced zT2FS represents a fuzzy agreement 

model of the weight of the relation between the two concepts which corresponds to that 

question. The generated fuzzy agreement model captures both the intra and inter-

uncertainties of the experts with respect to the weight of the relation. zT2FSs were used to 

represent the weights in zT2FCM because of their ability to capture more uncertainties 

compared to the T1FSs as they offer additional degree of freedom for modelling by using 

the third dimension. Note that the third dimension of the generated zT2FSs which represent 

the weights in the zT2FCM, reflects the level of agreement among the experts in 

determining the weights of the causal relations between the concepts.  

After the zT2FS is generated, it is defuzzified by centroid to a crisp value using (2.10). The 

obtained crisp value represents the weight of the link, i.e. weight of the causal relation 

between the linked two concepts.  

By following these steps, the weights of the zT2FCM’s links are obtained using the 

response intervals from N experts for each question in the questionnaire. 
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After the identifications of the concepts and determining the weights of the links between 

them the construction of zT2FCM is completed. The zT2FCM is ready to receive the 

concepts’ values and to carry on the reasoning using the iterative formula (4.2). In this way, 

the output value is inferred. 

It is worth noting that in the zT2FCM the conventional FCM is enhanced via representing 

its weights by zT2FSs, but its reasoning algorithm remains the same as in the conventional 

FCM where the crisp values (centroids) of zT2FSs are used for weights’ values. 

To demonstrate the use and effectiveness of the zT2FCM, a case study on Autism diagnosis 

was created. The zT2FCM is proposed as a decision tool to identify early the risk of 

developing autism among children. The following sections detail and discuss this case 

study and the questionnaire created for the purpose of collecting data required to represent 

weights in the generated zT2FCM.  

Furthermore, a comparison between the results obtained using the zT2FCM and the 

conventional FCM, used for the same purpose, is provided in order to demonstrate the 

accuracy of the proposed zT2FCM over the FCM. 

5.3 Case Study: Autism Diagnosis using Fuzzy Cognitive Map based on 

zT2FSs 

As mentioned earlier in this chapter, to demonstrate the proposed zT2FCM, the author 

created a case study where zT2FCM can be used for early diagnosis of a child with an 

Autism Spectrum Disorder (ASD). The main aim of this case study is to demonstrate that 

representing the weights of FCM’s links by zT2FSs enhances its capability for handling 

and aggregating uncertain information from different sources and hence improves the 



 

75 
 

ability of FCM in mimicking human decisions effectively. Required aspects to understand 

this case study are presented in Section 5.3.1 and process of construction zT2FCM for 

Autism Diagnosis is presented in Section 5.3.2 and Section 5.3.3. 

5.3.1 Background 

5.3.1.1 Autism 

ASD is a complex neurodevelopmental disorder that appears in the early years of a child’s 

life. Children with ASD tend to have abnormalities represented by impairments in the 

social interaction and communication, severely restricted interests and highly repetitive 

behaviour (Birx et al. 2011). Their understanding capacity of non-verbal activities is lower 

than that of normal children and this restricts their communication and interaction with 

others in the society. Early diagnosis of Autism can help Autistics to reach their 

developmental potential, engage with others, and integrate into society. The process of 

diagnosing ASD is challenging due to the existence of different qualitative and quantitative 

data sources that need to be elicited and analysed in order to diagnose the severity of the 

condition. Moreover, the different opinions of stakeholders such as therapists, parents, and 

doctors may vary and need to be taken into account. The aforementioned reasons suggest 

the necessity to create a decision model based on combining key indicators contributing to 

a diagnosis, which can be used to identify early signs, type and severity of the ASD. It was 

shown in the literature that a conventional FCM can be trained by learning algorithms and 

used for classifying the risk of developing ASD (Kannappan, Tamilarasi, and Papageorgiou 

2011) and (Papageorgiou and Kannappan 2012). The author decided to create zT2FCM for 

the same problem to demonstrate its capability in compare to conventional FCM to capture 
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uncertainties about ASD’s diagnosis and classifications and hence offers an output that is 

more accurate and closer to doctors’ decisions. 

5.3.1.2 The Modified Checklist for Autism 

The Modified Checklist for Autism in Toddlers (MCHAT) is a screening tool recognized 

by the American Academy of Paediatrics as a tool for diagnosing if a child between 16 

months and 30 months of age is at risk of developing Autism (Birx et al. 2011). MCHAT 

is a questionnaire containing 20 questions that require crisp inputs namely yes/no regarding 

the behaviour, unique skills and difficulties of the child. Based on the responses of parents 

on the MCHAT, the physicians follow subsequent evaluation flow charts to reach a 

decision on diagnosis.  

This decision can be imprecise and intuitive in nature, based on the perception and 

experiences of the given physicians. These procedures can also be time consuming with a 

high degree of information loss in the assessment procedure due to its dependence on crisp 

inputs. To overcome the shortcomings of the existing MCHAT, the responses to each 

question are modified to three options a, b and c in (Kannappan, Tamilarasi, and 

Papageorgiou 2011), each refer to frequency of experienced symptoms as presented in 

Appendix 1 instead of dichotomous options (e.g. a. Certainly not, b. At times and c. 

Always). For the purpose of this case study, the MCHAT used in (Kannappan, Tamilarasi, 

and Papageorgiou 2011) (known as Modified MCHAT) is extended and modified again in 

order to allow the experts to express the fuzzy nature of their decisions based on parents’ 

responses; this fuzziness should factor into decisions for diagnosis of autism. The extended 

and modified MCHAT questionnaire for a purpose of this case study is called Fuzzy 
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MCHAT (F-MCHAT). It is created and used to identify the concepts of the proposed 

zT2FCM and to determine the weights in zT2FCM. 

The F-MCHAT questionnaire is given in the Appendix 2. It comprises 20 questions that 

are designed to collect the experts’ decisions with respect to diagnosing the development 

of autism in the child based on the responses of his/her parents to the questions of the 

modified MCHAT. 

It is worth noting here that the respondents to F-MCHAT (presented in Appendix 2) which 

created for the case study of this thesis are the experts (doctors) assuming that parents 

respond to corresponding modified MCHAT (presented in Appendix 1)questions and each 

of the three options for each question, where the respondents to standard MCHAT and 

modified MCHAT in (Kannappan, Tamilarasi, and Papageorgiou 2011) are the parents. 

For example, in F-MCHAT each question requires each of the experts to represent his/her 

decision about the possibility of autism development considering the response of the parent 

to the corresponding question in modified MCHAT. The parents response is either option 

a, b or c. The experts express their decision by drawing an ellipsis on Likert scale, ranging 

from 0 to indicate no possibility for autism, to 1 to indicate the certainty of the child 

developing autism. For example, to identify the weight of the relation between the concept 

“enjoy being swung and decision concept “Autism Diagnosis”, each experts need to 

express his/her decision by drawing ellipsis on three Likert scales if the parents’ response 

to the corresponding modified MCHAT question is a. certainly not, b. At times and c. 

Always as shown in Figure 5.1. 
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Figure 5.1 Sample question 

 

The motivation for this extension and modification of modified MCHAT to F-MCHAT is 

to capture all the uncertainties about the diagnostic decision, taking into account all the 

possible responses from the parents about the frequency and/or degree of symptoms 

experienced by their child. Indeed, collecting the responses in term of the intervals gives 

the experts a chance to express their uncertainty about the diagnostic decisions. 

It is worth noting here that for each option of a question in F-MCHAT used to determine 

the weight of the causal relation between zT2FCM’s concepts, the number of responses by 

experts is equal to the number of experts who respond to the questionnaire F-MCHAT. 

Therefore, for option ‘a’ of each question, there are N responses that would be aggregated 

to produce intra- uncertainty model based on T1FS on option ‘a’; similar is the case for 

option ‘b’ and option ‘c’. Then the three produced T1FSs are aggregated to capture inter-

uncertainty of the experts for the options using IAA. The generated zT2FS represents the 

fuzzy agreement model of the weight of the link between the two concepts which mention 

in the question. 
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5.3.2 The concepts of zT2FCM for Autism Diagnosis 

To identify the concepts of zT2FCM for this case study, the F-MCHAT was used as a 

standard tool to derive the required concepts. F-MCHAT comprises questions for doctors 

on 20 major aspects that can inform decisions on the classification of Autism. Therefore, 

the proposed zT2FCM contains 20 inputs concepts and one concept as an output concept 

representing the decision concept. These concepts are listed in Table 5.1, where each  

𝐶𝑖, 𝑖 = 1,2, … , 21 is a symptom of Autism diagnosis and corresponds to a concept of the 

proposed zT2FCM. For example, 𝐶1 is a concept correspond to the symptom “Enjoy being 

swung” and 𝐶21 is the decision concept that correspond to the Autism Diagnosis. 

As each question in F-MCHAT contributes to determining the diagnosis of Autism by the 

doctors based on the parents' response on these 20 aspects in the corresponding modified 

MCHAT, there is a link from each input concept to the decision concept. 

Therefore, the constructed zT2FCM which is designed for Autism diagnosis contains 21 

concepts and 20 links as shown in Figure 5.2. Based on these concepts and links, this 

designed zT2FCM is a competitive FCM (refer to Section 4.2) that focuses on emphasising 

the influence between each cause concept and the decision concept only with no cyclic 

relations among the concepts (Stylios et al. 2007). 
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Table 5.1 Concepts of zT2FCM used for Autism diagnosis 

C1 Enjoy being swung  

C2 Take an interest in other children  

C3 Climbing on things  

C4 Pretend to be other things  

C5 Pointing with index finger  

C6 Indication of interest  

C7 Bringing objects to parents  

C8 Walking 

C9 Oversensitive to noise  

C10 Smile in response to parents face 

C11 Imitate  

C12 Respond to the name  

C13 Looking at a toy when pointing  

C14 Eye contact 

C15 Look at things you are looking at  

C16 Unusual finger movement near his/her face 

C17 Attract your attention  

C18 Deafness 

C19 Understanding what others say  

C20 Look to your face to check reaction  

C21 Autism Diagnosis 
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Figure 5.2 Structure of zT2FCM for Autism Diagnosis 

 

5.3.3 The weights of zT2FCM for Autism diagnosis 

Based on the process of constructing zT2FCM mentioned in Section 5.2, in order to 

determine the weights of the 20 links in constructed zT2FCM and for the purpose of this 

case study, three doctors from Sultan Qaboos University Hospital (SQUH) in Oman 

responded to the F-MCHAT questionnaire about the risk of developing Autism.  

Following the concept of responding to the F-MCHAT mentioned in Section 5.3.1.2, to 

determine the weight of the link from the concept 𝐶𝑗, j =  1, … ,20 to the decision 

concept 𝐶21, each of the three doctors provided a response to each question by drawing 

ellipses on Likert scales to determine the impact of the value of the concept 𝐶𝑗 given in 

options ‘a’, ‘b’ and ‘c’ on the decision concept 𝐶21. Note that each option represents the 

parents’ response on the corresponding question in modified MCHAT. In other words, the 

doctors determine the impact of the concept 𝐶𝑗 on the concept 𝐶21 in a specific question 𝑄𝑗 

in F-MCHAT if the parents response to  𝑄𝑗  in modified MCHAT is ‘a’, ‘b’ or ‘c’.  
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Figure 5.3 is an example of a doctor’s response to a question 1 in F-MCHAT which 

presented in Figure 5.2. 

 

Figure 5.3 Example of a doctor response 

 

The intervals were then extracted from the ellipses given by all the doctors. For each 

question, there were a total of nine intervals representing the responses of the three doctors 

to that question, where each doctor gives his/her opinions for all three options: ‘a’, ‘b’ and 

‘c’. These intervals represent the doctors’ opinions about the relation between the causal 

concept and the decision concept. The response intervals of the three doctors for the 20 

questions are presented in Appendix 3. 

Collecting the opinions as intervals gives the doctors a greater chance to express their 

uncertainties about assigning the weights of the causal relations due to imperfect 

information. Thus, the width of the interval reflects the uncertainty that a doctor has in 

answering a question. For example, a narrow interval represents less uncertainty (more 

certainty), where a wider interval represents more uncertainty (less certainty) in answering 

a question.  
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After that, for each question  𝑄𝑗, the nine intervals, three replies for each of the three 

options from the three doctors, were aggregated using IAA. A zT2FS is generated, which 

represents the doctors’ agreement model about the weight of the link from the concept 𝐶𝑗 

and the decision concept 𝐶21determined by question  𝑄𝑗. Note here and as mentioned 

earlier, the number of the questions in F-MCHAT is equal to the number of causal concepts. 

The zT2FS weight is generated using IAA as follows:  

For each 𝑄𝑗, the responses of the three doctors D1, D2 and D3 are collected across each of 

the three options: ‘a’, ‘b’ and ‘c’. Hence, for the option ‘a’, there are three intervals, noted 

as  𝐷1𝑎𝑗 , 𝐷2𝑎𝑗 , 𝐷3𝑎𝑗 , for the option ‘b’ there are three intervals noted as   𝐷1𝑏𝑗 , 𝐷2𝑏𝑗 , 𝐷3𝑏𝑗 

and for the option ‘c’, there are three intervals, noted as   𝐷1𝑐𝑗 , 𝐷2𝑐𝑗 , 𝐷3𝑐𝑗 (i.e.  𝐷1𝑎1, 

represents the response interval to the option ‘a’ of  𝑄1 by D1 and so on). 

For each option ‘a’, ‘b’ and ‘c’, the responses of the three doctors were collected and 

aggregated using the first phase of IAA detailed in Section 3 where S=3 to generate a T1FS, 

namely M, with membership degrees𝑦1, 𝑦2  and𝑦3, where 𝑦1 =
1

3
  for the union of all three 

intervals cross each option, 𝑦2 =
2

3
  for union of intersection of all 2-tuple intervals cross 

each option and 𝑦3 = 1 is for the intersections of the three intervals for each option. This 

T1FS, M captured the option’s intra uncertainty as shown in Figure 5.4.  
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Figure 5.4 Capturing intra-uncertainty of each option 

 

Therefore, for each question, three T1FSs are generated, namely 𝑀𝑎 , 𝑀𝑏 and 𝑀𝑐  , which 

captures the uncertainty of the responses of the three doctors to the question’s options ‘a’, 

‘b’ and ‘c’, respectively. They are created as follows:  

𝑀𝑎 =
1

3
/ (  𝐷1𝑎 ∪ 𝐷2𝑎 ∪ 𝐷3𝑎)

+
2

3
/((  𝐷1𝑎 ∩ 𝐷2𝑎) ∪ (  𝐷1𝑎 ∩ 𝐷3𝑎) ∪ (  𝐷2𝑎 ∩ 𝐷3𝑎))

+ 1/(  𝐷1𝑎 ∩ 𝐷2𝑎 ∩ 𝐷3𝑎) 

 

(5.1) 

𝑀𝑏 =
1

3
/ (  𝐷1𝑏 ∪ 𝐷2𝑏 ∪ 𝐷3𝑏)

+
2

3
/((  𝐷1𝑏 ∩ 𝐷2𝑏) ∪ (  𝐷1𝑏 ∩ 𝐷3𝑏) ∪ (  𝐷2𝑏 ∩ 𝐷3𝑏))

+ 1/(  𝐷1𝑏 ∩ 𝐷2𝑏 ∩ 𝐷3𝑏) 

 

(5.2) 
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𝑀𝑐 =
1

3
/ (  𝐷1𝑐 ∪ 𝐷2𝑐 ∪ 𝐷3𝑐)

+
2

3
/((  𝐷1𝑐 ∩ 𝐷2𝑐) ∪ (  𝐷1𝑐 ∩ 𝐷3𝑐) ∪ (  𝐷2𝑐 ∩ 𝐷3𝑐))

+ 1/(  𝐷1𝑐 ∩ 𝐷2𝑐 ∩ 𝐷3𝑐) 

 

(5.3) 

After that,  𝑀𝑎 , 𝑀𝑏 and 𝑀𝑐, generated for each question are aggregated using the second 

phase of IAA defined in Section 3.3, where 𝑁 = 3. Their aggregation produces zT2FS that 

captures the inter uncertainty of the doctors’ responses to all the question’s options. Indeed 

the produced zT2FS represents the weight 𝑊 of the link between the two concepts, the 

causal concept and the decision concept, determined by the corresponding question as 

follows: 

𝑊 =
1

3
/ (𝑀𝑎 ∪𝑀𝑏 ∪𝑀𝑐 ) +

2

3
/((𝑀𝑎 ∩𝑀𝑏 ) ∪ (𝑀𝑎 ∩𝑀𝑐 ) ∪ (𝑀𝑏 ∩𝑀𝑐 ))

+ 1/(𝑀𝑎 ∩𝑀𝑏 ∩𝑀𝑐 ) 

 

(5.4) 

The generated 𝑊 in (5.4) is a zT2FS of the three slices, namely 𝑍1 , 𝑍2 and𝑍3 , where 

𝑍1 =
1

3
/(𝑀𝑎 ∪𝑀𝑏 ∪𝑀𝑐 ) 

 

(5.5) 

 

𝑍2 =
2

3
/((𝑀𝑎 ∩𝑀𝑏 ) ∪ (𝑀𝑎 ∩𝑀𝑐 ) ∪ (𝑀𝑏 ∩𝑀𝑐 )) 

 

(5.6) 
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𝑍3 = 1/(𝑀𝑎 ∩𝑀𝑏 ∩𝑀𝑐 ) 

 

(5.7) 

Therefore, 

𝑊 = 𝑍1 ∪ 𝑍2 ∪ 𝑍3  

 

(5.8) 

 

Here, 𝑊 represents the fuzzy agreement model considering the responses of the three 

doctors about the weight of the link between the causal concept and decision concept. It is 

worth noting here that the third dimension reflects the level of agreement between the 

doctors on the relation between the causal concept and the decision concept. 

By repeating these steps for all the questions, the weights of the zT2FCM’s links as zT2FSs 

are determined as given in Appendix 4. 

Thereafter, each of the zT2FSs is defuzzified using (2.10) to obtain the crisp value of the 

corresponding weight between the causal and decision concepts. 

5.3.3.1 Illustrative example of determining the weight between two 

concepts in the zT2FCM for Autism Diagnosis 
 

This section presents an illustrative example of determining the weight between two 

concepts in the proposed zT2FCM for Autism Diagnosis using the doctors’ responses to 

F-MCHAT. For example, to determine the weight 𝑊21,14 of the directed link from the 

concept 𝐶14 (Eye contact) to the decision concept 𝐶21 (Autism Diagnosis), the three doctors 

responded to 𝑄14  which presented in Figure 5.5. 
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Figure 5.5 𝑄14 in F-MCHAT 

 

Then the interval responses of the three doctors D1, D2 and D3 to 𝑄14 , are extracted as 

presented in Table5.2. 

Table 5.2 the doctors responses to 𝑄14 

𝑸𝟏𝟒 D1 D2 D3 

a [0.32, 0.55] [0.27, 0.45] [0.35, 0.57] 

b [0.55, 0.75] [0.42, 0.68] [0.32, 0.55] 

c [0.17, 0.37] [0.41, 0.65] [0.37, 0.55] 

 

After the data collection, the three T1FSs, namely 𝑀𝑎 , 𝑀𝑏  and𝑀𝑐 , which capture the intra-

uncertainty for options ‘a’, ‘b’ and ‘c’, respectively are calculated using (5.1), (5.2) and 

(5.3) respectively as follows: 
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𝑀𝑎 =
1

3
/ ([0.32, 0.55] ∪ [0.27, 0.45] ∪ [0.35, 0.57]) +

2

3
/(([0.32, 0.55] ∩

[0.27, 0.45]) ∪ ([0.32, 0.55] ∩ [0.35, 0.57]) ∪ ([0.27, 0.45] ∩ [0.35, 0.57])) + 1/

([0.32, 0.55] ∩ [0.27, 0.45] ∩ [0.35, 0.57])  

𝑀𝑎 =
1

3
/ [0.27,0.57] +

2

3
/[0.32, 0.55] + 1/[0.35, 0.45] 

 

𝑀𝑏 =
1

3
/ ([0.55, 0.75] ∪ [0.42, 0.68] ∪ [0.32, 0.55]) +

2

3
/(([0.55,0.75] ∩

[0.42,0.68]) ∪ ([0.55,0.75] ∩ [0.32, 0.55]) ∪ ([0.42, 0.68] ∩ [0.32, 0.55])) + 1/

([0.55,0.75] ∩ [0.42,0.68] ∩ [0.32,0.55])  

𝑀𝑏 =
1

3
/ [0.32, 0.75] +

2

3
/[0.42, 0.68] + 1/[0.55, 0.55] 

 

𝑀𝑐 =
1

3
/ ([0.17, 0.37] ∪ [0.41, 0.65] ∪ [0.37, 0.55]) +

2

3
/(([0.17,0.37] ∩

[0.41,0.65]) ∪ ([0.17,0.37] ∩ [0.37,0.55]) ∪ ([0.41,0.65] ∩ [0.37, 0.55])) + 1/

([0.17, 0.37] ∩ [0.41, 0.65] ∩ [0.37, 0.55])  

𝑀𝑐 =
1

3
/ [0.17, 0.65] +

2

3
/[0.41, 0.55] 

 

The three T1FSs, 𝑀𝑎 , 𝑀𝑏  and 𝑀𝑐 were then aggregated using (5.4) to capture the inter-

uncertainty of the responses to the three options. Hence, the weight 𝑊21,14 was generated 



 

89 
 

as the zT2FS containing three slices 𝑍1, 𝑍2 and 𝑍3 at 𝑧1 =
1

3
, 𝑧2 =

2

3
 and 𝑧3 = 1, 

respectively as follows: 

𝑍1 =
1

3
/ (

1

3
/([0.27, 0.57] ∪ [0.32, 0.75]  ∪ [0.17, 0.65]) +

2

3
/([0.32, 0.55] ∪

[0.42, 0.68] ∪ [0.41, 0.55]) + 1/([0.35, 0.45] ∪ [0.55,0.55]))  

𝒁𝟏 =
𝟏

𝟑
/(
𝟏

𝟑
/([0.17, 0.75]) +

𝟐

𝟑
/([0.32, 0.68]) + 𝟏/([0.35, 0.45] ∪ [0.55, 0.55])) 

𝑍2 =
2

3
/ (𝑦1/(([0.27,0.57] ∩ [0.32,0.75])  ∪ ([0.27,0.57] ∩ [0.17,0.65]) ∪

( [0.32,0.75]  ∩ [0.17,0.65]))) + 𝑦2/(([0.32,0.55] ∩ [0.42,0.68])  ∪ ([0.32,0.55] ∩

[0.41,0.55]) ∪ ([0.42,0.68] ∩ [0.41,0.55])) + 𝑦3/([0.35,0.45] ∩ [0.55,0.55])  

𝐙𝟐 =
𝟐

𝟑
/(
𝟏

𝟑
/([0.27, 0.65]) +

𝟐

𝟑
/([0.41, 0.55])) 

𝑍3 = 1/(𝑦1/([0.27,0.57] ∩  [0.32,0.75]  ∩ [0.17,0.65]) + 𝐲𝟐/([0.32,0.55] ∩

[0.42,0.68] ∩ [0.41,0.55]) + 𝑦3/([0.35, 0.45] ∩ [0.55,0.55]))  

𝒁𝟑 = 𝟏/(
𝟏

𝟑
/([0.32, 0.57]) +

𝟐

𝟑
/([0.42, 0.55])) 

The result of the previous calculations are presented in Table 5.3 where  ∅ indicates the 

empty intersections of intervals. It reflects the agreement/disagreement among the experts 

in deciding the weight 𝑊21,14 
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Table 5.3 𝑊21,14 

Slice of 𝑾𝟐𝟏,𝟏𝟒 𝒛𝒊 𝒚𝟏 = 𝟏/𝟑 𝒚𝟐 = 𝟐/𝟑 𝒚𝟑 = 𝟏 

𝑍1 𝑧1 = 1/3 [0.17, 0.75] [0.32, 0.68] [0.35, 0.45] ∪ [0.55, 0.55] 

𝑍2 𝑧2 = 2/3 [0.27, 0.65] [0.41, 0.55] ∅ 

𝑍3 𝑧3 = 1 [0.32, 0.57] [0.42, 0.55] ∅ 

 

As mentioned earlier, 𝑊21,14  presented in Table 5.3, is a zT2FS, where 𝑊21,14 = 𝑍1 ∪

 𝑍2 ∪ 𝑍3  is a fuzzy agreement model that captures the uncertainty of the doctors in 

assigning the weight of the link from 𝐶 14 (the causal concept, Eye Contact) to 𝐶21 (the 

decision concept, Autism Diagnosis) based on the responses of the doctors to 𝑄14. 

After that the generated zT2FS is defuzzified to calculate the crisp value of the 

weight 𝑊21,14. 

Using (2.10) as follows: 

𝐶𝑊21,14 =
(
1
3)
(0.4808) + (

𝟐
𝟑)
(0.2366) + (𝟏)(0.2358)

(
1
3 +

2
3 + 1)

= 0.2769  

where (0.4808), (0.2366) and (0.2358) are centroids of the slices 𝒁𝟏, 𝒁𝟐 and 𝒁𝟑, 

respectively.  

Hence 𝑊21,14 = 0.2769 . By following the abovementioned procedure for all the links 

from 𝑪𝒋 to   𝑪𝟐𝟏, where =  1,2, … ,20 , all weights  𝑊21,𝑗 are calculated as listed in Table 

5.4.  
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Table 5.4 𝑊21,𝑗 

𝒋 1 2 3 4 5 6 7 8 9 10 

𝑊21,𝑗 0.0875 0.0847 0.1271 0.1 0.0917 0.1854 0.1306 0.209 0.1028 0.1083 

𝒋 11 12 13 14 15 16 17 18 19 20 

𝑊21,𝑗 0.1319 0.1063 0.1 0.2769 0.2215 0.0681 0.1271 0.1458 0.1478 0.0938 

 

Now the zT2FCM for Autism Diagnosis was constructed as in Figure 5.6 to prepare it for 

receiving the concept values and then conduct reasoning to determine the value of the 

decision concept.  

 

Figure 5.6 zT2FCM for Autism Diagnosis 

Based on Figure 5.6, it can be noticed that the link of the weight  𝑊21,14 is the strongest 

link and the link of the weight  𝑊21,2 is the weakest link and therefore the concept 𝐶14, Eye 
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contact, has more impact on the Autism diagnosis while the concept 𝐶2, Take interest in 

other children, has less impact on the Autism diagnosis. 

5.3.4 Results of Simulations 

The zT2FCM that was constructed for Autism Diagnosis is used to predict the risk of 

developing autistic disorder as follows: 

In each iteration, the influence of the causal concepts to the decision concept within 

zT2FCM is determined by the conventional iterative reasoning algorithm (4.2) to obtain 

the value of decision concept 𝐶21 as follows: 

𝐶21
(𝑘+1) = 𝑓 (𝐶21

(𝑘)
+∑𝐶𝑗

(𝑘) ∗ 𝑊21,𝑗

20

𝑗=1

) 

 

(5.9) 

where 𝑓 here is the threshold function (4.3) and 𝑚 = 1, as it is, based on (Miao and Liu 

2000), the best option for classification reasoning which is used for a purpose of this case 

study. 

The process of reasoning in (5.9) iteratively updates the concept values until zT2FCM 

converges to a steady state. Its output value is used to infer the decision about developing 

the risk of autism. The value of decision concept 𝐶21 classifies the risk of developing the 

Autism (Autism Diagnosis) as in Table 5.5 
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Table 5.5 Classification of risk of developing the Autism based on 𝐶21 value 

𝑪𝟐𝟏 value Classification 

0 ≤ 𝐶21 ≤ 0.33 No Autism 

0.33 < 𝐶21 ≤ 0.50 Probable Autism 

0.50 < 𝐶21 ≤ 1 Definite Autism 

 

This classification follows the same classification for decision concept 𝐶21 in (Kannappan, 

Tamilarasi, and Papageorgiou 2011) for a comparison purposes as it will explained in this 

section and Section 5.5.3. 

The constructed zT2FCM that presented in Figure 5.6 was used to predict the risk of 

developing Autism for the same 40 datasets in (Kannappan, Tamilarasi, and Papageorgiou 

2011). It used the same initial values of these datasets for the concepts 𝐶1 to  𝐶20 to 

calculate the decision concept 𝐶21 which has an initial value of 0.  

It worth noting that for each dataset, there are three decisions about the classification for 

risk of developing Autism using three different approaches. They are: 

• Decision by the doctors regarding the case depending on standard MCHAT’s 

responses by the parents (conventional approach). 

• Decision based on output value of decision concept using the conventional FCM in 

(Kannappan, Tamilarasi, and Papageorgiou 2011) 

• Decision based on output value of decision concept using proposed zT2FCM. 

For example, the initial values for 𝐶1 to  𝐶20 of one of the cases in (Kannappan, Tamilarasi, 

and Papageorgiou 2011) were used as initial values of the factor concepts in the proposed 
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zT2FCM, where the initial value of C21 is 0 as listed in Table 5.6.  These values are then 

iterated using (5.9) as shown in Table 5.7. The concepts reached equilibrium after seven 

iterations. The decision concept C21 of the proposed zT2FCM resulted in a final value of 

0.9356 which falls in the Definite Autism category, based on the thresholds for 

classification given in Table 5.5. Actually, this case was classified as Definite Autism by 

the doctors and it classified as Probable Autism using conventional FCM. Hence, it can be 

concluded that the result of the reasoning for this case using the proposed zT2FCM 

matched the diagnosis of the doctors for the same case. 

 

Table 5.6 An Example for initial values of concepts 

Concept 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔 𝑪𝟕 𝑪𝟖 𝑪𝟗 𝑪𝟏𝟎 

Initial 

value 

0.3 0.55 0.6 0.2 0.69 0.73 0.86 0.1 0.57 0.4 

Concept 𝑪𝟏𝟏 𝑪𝟏𝟐 𝑪𝟏𝟑 𝑪𝟏𝟒 𝑪𝟏𝟓 𝑪𝟏𝟔 𝑪𝟏𝟕 𝑪𝟏𝟖 𝑪𝟏𝟗 𝑪𝟐𝟎 

Initial 

value 

0.5 0.62 0.6 0.71 0.9 0.15 0.25 0.45 0.49 0.62 
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Table 5.7 An example for iterations of initial values 

Iteration 1 2 3 4 5 6 7 

C1 0.3000 0.5744 0.6398 0.6547 0.6581 0.6588 0.6590 

C2 0.5500 0.6341 0.6534 0.6578 0.6588 0.6590 0.6590 

C3 0.6000 0.6457 0.656 0.6584 0.6589 0.6590 0.6590 

C4 0.2000 0.5498 0.6341 0.6534 0.6578 0.6588 0.6590 

C5 0.6900 0.666 0.6606 0.6594 0.6591 0.6591 0.6591 

C6 0.7300 0.6748 0.6626 0.6598 0.6592 0.6591 0.6591 

C7 0.8600 0.7027 0.6688 0.6612 0.6595 0.6592 0.6591 

C8 0.1000 0.525 0.6283 0.6521 0.6575 0.6587 0.6590 

C9 0.5700 0.6388 0.6545 0.6580 0.6588 0.659 0.6590 

C10 0.4000 0.5987 0.6454 0.6560 0.6584 0.6589 0.6590 

C11 0.5000 0.6225 0.6508 0.6572 0.6586 0.6590 0.6590 

C12 0.6200 0.6502 0.6571 0.6586 0.6589 0.6590 0.6590 

C13 0.6000 0.6457 0.656 0.6584 0.6589 0.6590 0.6590 

C14 0.7100 0.6704 0.6616 0.6596 0.6592 0.6591 0.6591 

C15 0.9000 0.7109 0.6706 0.6616 0.6596 0.6592 0.6591 

C16 0.1500 0.5374 0.6312 0.6528 0.6576 0.6587 0.6590 

C17 0.2500 0.5622 0.6370 0.6541 0.6579 0.6588 0.6590 

C18 0.4500 0.6106 0.6481 0.6566 0.6585 0.6589 0.6590 

C19 0.4900 0.6201 0.6502 0.6571 0.6586 0.6589 0.6590 

C20 0.6200 0.6502 0.6571 0.6586 0.6589 0.6590 0.6590 

C21 0.6591 0.6590 0.659 0.6590 0.6590 0.6590 0.9356 
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The above-mentioned procedure of simulation was performed with the same dataset of 40 

diagnosed cases used for Autism Diagnosis in the study (Kannappan, Tamilarasi, and 

Papageorgiou 2011). The collected simulation using zT2FCM resulted in 22 cases of 

Definite Autism, 11 cases of Probable Autism and three cases of No Autism. 

5.3.5 Comparison of zT2FCM and a conventional FCM for Autism 

diagnosis 
 

To demonstrate the effectiveness of the proposed zT2FCM that relies on zT2FSs’ weights 

compared to a trained FCM that relies on T1FSs’ weights (Kannappan, Tamilarasi, and 

Papageorgiou 2011) when both of the FCMs are used for the same purpose, the accuracy 

of their classification ability as the doctors (experts) is calculated.  

In the dataset used for the 40 diagnosed cases by the doctors in (Kannappan, Tamilarasi, 

and Papageorgiou 2011) for developing Autism’s risk , there are 23 reported cases 

diagnosed as definite Autism, 13 cases diagnosed as probable Autism and 4 cases 

diagnosed as not Autism. 

The results of using FCM with the same dataset for the same purposes as presented in the 

(Kannappan, Tamilarasi, and Papageorgiou 2011) resulted in 20 cases of Definite Autism, 

10 cases of Probable Autism and 3 cases of No Autism. As mentioned earlier in Section 

5.3.4, using the proposed zT2FCM with the same dataset resulted in 22 cases of Definite 

Autism, 11 cases of Probable Autism and 3 cases of Not Autism.  
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Table 5.8 presents summery of the number of the cases that reported as definite Autism, 

probable Autism and not Autism using diagnosis of the doctors, conventional FCM and 

zT2FCM 

Table 5.8 Results of Autism diagnosis using the three approaches 

 

Doctors 

(ground of 

truth) 

FCM zT2FCM 

Autism 23 20 22 

Probable 

Autism 

13 10 11 

No Autism 4 3 3 

 

Therefore, the accuracy of the classification (AC) using conventional FCM and proposed 

zT2FCM for developing Autism’s risk is calculated respectively as follows: 

𝐴𝐶 𝑜𝑓 𝐹𝐶𝑀 = (

20
23 +

10
13 +

3
4

3
) × 100 = 79.63% 

 

(5.10) 

𝐴𝐶 𝑜𝑓 𝑧 𝑇2𝐹𝐶𝑀 = (

22
23 +

11
13 +

3
4

3
) × 100 = 85.09% 

 

(5.11) 
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The summary of AC results using the conventional FCM in (Kannappan, Tamilarasi, and 

Papageorgiou 2011) and the proposed zT2FCM comparing to doctors’ decisions is 

presented in Table 5.9. 

Table 5.9 Summary of AC results 

 
FCM zT2FCM 

Autism 20 23⁄  22 23⁄  

Probable 

Autism 

10 13⁄  11 13⁄  

No Autism 3 4⁄  3 4⁄  

 

Based on (5.10) and (5.11), it is clear that the classification accuracy of the zT2FCM is 

higher in this case study than the classification accuracy of the FCM. Indeed, it can be 

noticed that the FCM in (Kannappan, Tamilarasi, and Papageorgiou 2011)failed in 

diagnosing seven out of the 40 cases, whereas zT2FCM failed in diagnosing only four cases 

out of the 40 cases; hence the accuracy of diagnosis (AD) of the FCM and the z T2FCM in 

comparison to the actual diagnosis by the doctors (decision makers) is calculated, 

respectively, as follows: 

𝐴𝐷 𝑜𝑓 𝐹𝐶𝑀 = (
33

40
) ∗ 100 = 82.5% 

 

(5.12) 



 

99 
 

𝐴𝐷 𝑜𝑓 𝑧𝑇2𝐹𝐶𝑀 = (
36

40
) ∗ 100 = 90% 

 

(5.13) 

Therefore, the AD achieved by the zT2FCM is higher than the AD achieved by the FCM. 

The abovementioned results demonstrate that the zT2FCM that relies on zT2FS 

outperforms the conventional FCM in producing results with high accuracy and more close 

to the decision makers. 

The concise results of this chapter have been published and presented at (Al Farsi et al. 

2017)  

5.4 Conclusion 

This chapter proposed incorporating IAA to determine the weights of a FCM and represent 

them using zT2FSs. In this way the conventional FCM is extended to the zT2FCM. The 

proposed approach improved the accuracy of the FCM weights and has therefore enhanced 

the capability of the FCM to offer more accurate output.  

To demonstrate the proposed zT2FCM and analyse its effectiveness, a case study on 

Autism Diagnosis was conducted. This involved improving the traditional existing 

approach of MCHAT to form an interval valued questionnaire for the purpose of collecting 

required data to generate the weights of zT2FCM. In this chapter, the MCHAT has 

improved to F-MCHAT. The F-MCHAT has increased the expressivity and reduced the 

complexity of the MCHAT. Furthermore, it improved the accuracy of the modelling 

weights of the zT2FCM. 

The results reported in this chapter using zT2FCM were compared with results using 

standard MCHAT by the doctors and conventional FCM for the same purpose of Autism 
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Diagnosis. The results of the case study showed that zT2FCM is more accurate than FCM 

for Autism diagnosis. Based on the results obtained in this chapter, it can be concluded that 

zT2FCM outperform conventional FCM in capturing more uncertainties and reasoning as 

decision makers.  
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Chapter 6 A Non-Iterative Reasoning Algorithm 

for Fuzzy Cognitive Maps using Type 2 Fuzzy Sets 

and Late Defuzzification (NILD) 
 

6.1 Introduction  

In Chapter 5, the extension of the FCM to the zT2FCM by representing the weights of its 

causal links through zT2FSs was explicated. The results demonstrated that the zT2FCM 

can capture more uncertainties from different sources and, hence, it is capable of 

performing more appropriate reasoning in the presence of uncertainty compared to the 

conventional FCM. This motivated the author to explore possibilities for a further 

improvement of the zT2FCM in order to increase its capability for reasoning in the 

presence of uncertainties or imprecise information. To this end, the following questions are 

raised: What is the need to defuzzify the zT2FS values of the weights to crisp values? Can 

weights represented using zT2FSs be used in reasoning and then defuzzify the final output 

at the end of the reasoning process, i.e., carry out late defuzzification? Does late 

defuzzification enhance FCM capabilities for handling higher orders of uncertainties about 

the modelled system and hence improve the reasoning models for supporting the decision 

making process? Towards answering these questions and achieving the objectives of this 

thesis, a Non-Iterative Reasoning Algorithm (NILD) for zT2FCM is developed. The new 

NILD reasoning algorithm that is has been developed relies on late defuzzification of the 

fuzzy values of weights. 

To demonstrate the capabilities of the proposed new reasoning, a case study on Module 

Performance has been conducted and the proposed zT2FCM with NILD is verified. 
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This chapter presents the structure (Topology) of the zT2FCM considered and its new 

reasoning algorithm NILD. The chapter also details the process of creating the case study 

that was conducted for the purpose of demonstrating the proposed reasoning algorithm 

NILD. In this case study, a zT2FCM with proposed NILD is constructed for evaluating the 

performance of a module and it called MPFCM. Indeed, for the purposes of the further 

validation of NILD reasoning algorithm, this chapter includes results of comparison of the 

MPFCM, the conventional FCM, existing statistical method and the experts’ decisions that 

have been used for the same purpose. In addition, the sensitivity analysis has been used to 

demonstrate the reasoning capability of NILD, and the propagation of the uncertainties in 

MPFCM.  

6.2 Topology of zT2FCM with the proposed NILD   

The structure of zT2FCM with proposed NILD is the same as the generic structure of FCM 

that was mentioned in Section 4.2. Therefore, there are 𝑚 concepts 𝐶𝑖, 𝑖 = 1,2, …𝑚 in 

zT2FCM which represent the main aspects of the modelled system.  These concepts are 

linked by directed links that have zT2FSs causal weights 𝑊𝑖,𝑗 , where 𝑊𝑖,𝑗 is the causal 

weight of the link directed from a concept 𝐶𝑗  𝑗 = 1,2, … ,𝑚 − 1 to a concept 𝐶𝑖 , 𝑖 =

1, 2, …𝑚. The concepts of zT2FCM and the directed links between them are identified by 

the experts of the modelled domain. Initially the values of 𝐶𝑖 are crisp values between 0 

and 1, but the values of 𝑊𝑖,𝑗  in zT2FCM are zT2FSs as proposed in Chapter 5. An interval 

valued survey is designed, where the response intervals are extracted and aggregated using 

IAA as detailed in Chapter 2 to determine the weight of the causal relations between the 

linked concepts.  The weights of zT2FCM capture all the uncertainties the experts have 

about the causal relations between the concepts.  
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As stated earlier, the zT2FCM with NILD is an extension of the conventional FCM, in 

particular zT2FCM by reasoning using the actual zT2FSs that represent weights. For this 

purpose, the conventional reasoning algorithm (4.2) is modified to a new reasoning 

algorithm named NILD to accommodate the fuzzy sets representation of the weights. NILD 

is a non- iterative algorithm that relies on if- then relations existing in the FCM which are 

neglect while using the conventional iterative reasoning. Therefore, the topology of 

zT2FCM with NILD is crucial to start reasoning using NILD. For this purpose and based 

on the classification of FCM’s concepts and the relations between them that is defined in 

Section 4.2, zT2FCM may have one of the following topologies: 

• Topology1. There are all  three types  of the concepts: input concepts, intermediate 

concepts and decision output as depicted in Figure 4.1  

• Topology 2. There are intermediate concepts and output concept, but no input 

concepts as depicted in Figure 6.1(a). 

• Topology 3. All concepts are inputs and there is one decision concept as the 

proposed zT2FCM depicted in Figure 5.2 and used for identifying the Autism Risk 

developing.  

• Topology 4. There are cyclic relations as in Figure 6.1(b). 

After determining the concepts and the zT2FSs weights of the causal links in zT2FCM, 

initial values of the concepts are received and the NILD reasoning is performed. The details 

of the proposed NILD considering the listed topologies are presented in Section 6.3. 
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(a) (b) 

Figure 6.1 Examples of z T2FCM’s Topology 

 

6.3 Reasoning Algorithm NILD 

NILD is developed by the author to incorporate the zT2FSs that represent the values of the 

weights in the reasoning process of the zT2FCM. The NILD comprises three phases, as 

follows:   

Phase 1 

In this phase, the values of all causally linked concepts with the exception of decision 

concept 𝐶𝑚, are evaluated. In other words, all the values of the concepts   𝐶𝑗 (antecedent), 

𝑗 =  1, … ,𝑚 − 1and the concept  𝐶𝑖 (consequent), 𝑖 =  1, … ,𝑚 − 1 of the if- then causal 

relation within the zT2FCM are evaluated, excluding the output concept 𝐶𝑚. In this phase, 

the topology of zT2FFCM determines which concept in the existing causal relations the 

NILD is starting from as follows: 
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If zT2FFCM has Topology 1, start the reasoning from an input concept which has the 

highest initial value comparing to other existing input concepts and causes an effect to an 

intermediate concept. Therefore, the input concept has to be in the antecedent of if- then 

relation. After that, evaluate the values of the concepts of the causal relations followed 

from the former relation until there is no relation other than relations with the decision 

concept. Then, do repeat the same steps for other input concepts if they exist. Using this 

procedure the values of all the zT2FFCM’s concepts are calculated, except a value of the 

decision concept. 

If zT2FFCM has Topology 2, start the reasoning from the causal relation in which an 

intermediate concept with the highest value among the rest of the other intermediate 

concepts represents the antecedent part of the if- then relation of the causal relation. Then 

follow the consequences of this causal relation until there is no relation other than relations 

with the decision concept. After that, do repeat the same steps for other intermediate 

concepts that are not involved in the previous evaluation. Using this procedure the values 

of all the FCM’s concepts are calculated, except a value of the decision concept. 

The question which may raise here if in Topology 1 handling the rest of the concepts after 

determining the input concept to start NILD is either input or intermediate concepts, why 

do I need Topology 2 then? The answer is just to determine the starting point of reasoning 

using NILD. 

If zT2FFCM has Topology 3, start the reasoning from the input concept with the highest 

value. Actually as there is no intermediate concept which may affected by the input 

concept, the reasoning in this topology may start from any input concept to the decision 

concept and then continue with the rest concepts. 
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If zT2FFCM has Topology 4, first the resultant of weights 𝑊′ within each cyclic relation 

between any two concepts, 𝐶𝑖  𝑎𝑛𝑑  𝐶𝑗 , has to be found.  The resultant 𝑊′ is calculated as 

intersection of the two zT2FSs which represent the weights of the two links 

between 𝐶𝑖 𝑎𝑛𝑑  𝐶𝑗 , namely  𝑊𝑖,𝑗 and 𝑊𝑗,𝑖 . This intersection is defined in Table 6.3 given 

later in this section. The rationale of evaluating the resultant relation as intersection is that 

both relations are between the same concepts, but in the opposite direction, which means 

that both concepts have a causal relation between themselves. In this way the cyclic 

relations between 𝐶𝑖  𝑎𝑛𝑑  𝐶𝑗 are reduced to a single relation with the weight 𝑊′.  It will be 

directed from the concept with a higher value among them. For example: 

- If 𝐶𝑖  >   𝐶𝑗 , then the causal relation will be directed from 𝐶𝑖   𝑡𝑜  𝐶𝑗 with the 

weight  𝑊′
𝑗,𝑖 

- If 𝐶𝑖  <   𝐶𝑗 , then the causal relation will be directed from 𝐶𝑗   𝑡𝑜  𝐶𝑖 with the 

weight 𝑊′
𝑖,𝑗  

By applying the former steps, the Topology 4 of the zT2FCM becomes either Topology 1 

or Topology 2. Hence, the reasoning is continued according to the resulted topology as 

mentioned earlier. 

It is worth noting, that the topology of the zT2FCM determines the path of the reasoning 

algorithm and its starting step. 

After determining the initial relation to start the reasoning with, the reasoning is carried out 

for each if – then causal relation directed from causal concepts 𝐶𝑗, 𝑗 = 1…  𝑚 − 1  to the 

affected concept 𝐶𝑖, = 1…  𝑚 , by calculating pre and post values of concepts 𝐶𝑖 as follows: 
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   𝑪𝒊
(𝒑𝒐𝒔𝒕  )

=    𝑪𝒊
(𝒑𝒓𝒆 )

+∑ (𝑪𝒋  ⋆ 𝑾𝒊𝒋)
(𝒎−𝟏)

𝒋=𝟏
𝒊≠𝒋

 (6.1) 

where    𝐶𝑖
(𝑝𝑟𝑒 )

 is the pre value of concept 𝐶𝑖   before it is affected by concept 𝐶𝑗   and 

   𝐶𝑖
(𝑝𝑜𝑠𝑡 )

 is the post value of concept 𝐶𝑖  after it is affected by concept 𝐶𝑗. Note that ∑ 

indicates the aggregation (union) considering the impact of all causal concepts on an 

affected concept. For the purpose of NILD algorithm, the union operator is defined in a 

novel way as follows: 

Let two zT2FSs 𝐴 and 𝐵 be given, where each of them is generated using IAA. The number 

of slices of 𝐴 and 𝐵 is depending on the number of the participants and the number of 

survey’s iterations. For the purpose of this definition, let us assume that 𝐴 and 𝐵 are 

generated using IAA based on responses in the form of intervals from three participants 

surveyed twice. Hence, A and B can be represented as presented in Table 6.1. 

In order for the proposed definition of aggregation (union) of A and B, 𝐴 + 𝐵, to generate 

a zT2FS that is compatible with the new reasoning algorithm,  it is defined as presented in 

Table 6.2.  
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Table 6.1 zT2FSs: A and B 

Slice of 

set A 

Level of 

the slice 

𝒚𝟏 = 𝟎. 𝟓 𝒚𝟐 = 𝟏 

 

Slice of 

set B 

Level of 

the slice 

𝒚𝟏 = 𝟎. 𝟓 𝒚𝟐 = 𝟏 

𝑍1 𝑧1 =
1

3
 [𝑎1, 𝑏1] [𝑐1 , 𝑑1] 

 

𝑍1 𝑧1 =
1

3
 [𝑎2, 𝑏2] [𝑐2, 𝑑2] 

𝑍2 𝑧2 =
2

3
 [𝑒1, 𝑓1] [𝑔1, ℎ1] 

 

𝑍2 𝑧2 =
2

3
 [𝑒2, 𝑓2] [𝑔1, ℎ2] 

𝑍3 𝑧3 = 1 [𝑖1, 𝑗1] [𝑘1, 𝑙1] 

 

𝑍3 𝑧3 = 1 [𝑖2, 𝑗2] [𝑘2, 𝑙2] 

 

Table 6.2 The union of two zT2FSs 

Slice Level of the slice 𝒚𝟏 = 𝟎. 𝟓 𝒚𝟐 = 𝟏 

𝑍1 𝑧1 =
1

3
 [𝑎1, 𝑏1] ∪ [𝑎2, 𝑏2] [𝑐1 , 𝑑1] ∪ [𝑐2, 𝑑2] 

𝑍2 𝑧2 =
2

3
 [𝑒1, 𝑓1] ∪ [𝑒2, 𝑓2] [𝑔1, ℎ1] ∪ [𝑔2, ℎ2] 

𝑍3 𝑧3 = 1 [𝑖1, 𝑗1] ∪ [𝑖2, 𝑗2] [𝑘1, 𝑙1] ∪ [𝑘2, 𝑙2] 

 

Further on, a new operator that represents the compatibility of a causal node value A with 

the causal weight B, denoted by ⋆  is defined, where A and B are zT2FSs given in Table 

6.1, as presented in Table 6.3.  
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Table 6.3 The compatibility * of two zT2FSs 

Slice Level of the slice 𝒚𝟏 = 𝟎. 𝟓 𝒚𝟐 = 𝟏 

𝑍1 
𝒛𝟏 =

𝟏

𝟑
 [𝑎1, 𝑏1] ∩ [𝑎2, 𝑏2] [𝑐1 , 𝑑1] ∩ [𝑐2, 𝑑2] 

𝑍2 
𝒛𝟐 =

𝟐

𝟑
 [𝑒1, 𝑓1] ∩ [𝑒2, 𝑓2] [𝑔1, ℎ1] ∩ [𝑔2, ℎ2] 

𝑍3 𝒛𝟑 = 𝟏 [𝑖1, 𝑗1] ∩ [𝑖2, 𝑗2] [𝑘1, 𝑙1] ∩ [𝑘2, 𝑙2] 

 

To find  𝐶𝑖
(𝑝𝑜𝑠𝑡) in (6.1), the following steps are performed: 

Step 1:  

For 𝑗 = 1…  𝑚 − 1, where 𝐶𝑗 affects 𝐶𝑖Find   𝐶𝑗  ⋆ 𝑊𝑖𝑗  

If 𝐶𝑗  is singleton  Then 

If 𝐶𝑗  ∈ 𝑊𝑖𝑗 (value  𝐶𝑗   belongs to any 𝑥-interval of 𝑊𝑖𝑗  slices) Then 

 

𝑆 = (𝐶𝑗   ⋆ 𝑊𝑖𝑗)  

where the resultant 𝑆  is a zT2FS that includes those intervals of  𝑊𝑖𝑗 that include 

𝐶𝑗   

 Else 𝑆 = 0   

End If 

Else If 𝐶𝑗  is zT2FS 
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create resultant zT2FS S where each 𝑥-interval of 𝑆 is the intersection of the 

corresponding  𝑥-interval of 𝐶𝑗 and 𝑥- interval of 𝑊𝑖𝑗 (see Table 6.3) 

End If 

End for 

Step 2: Find  𝐶𝑖
(𝑝𝑟𝑒) + 𝑆. (Note that + indicates the union i.e. the aggregation of 

impacts). 

This step depends on the resultant zT2FS S calculated in Step 1 as considered in the 

following two cases: 

Case 1: S has a slice where 𝑦 = 1 and 𝑧 = 1  

If  𝐶𝑖
(𝑝𝑟𝑒)  belongs to 𝑥-interval of S where 𝑦 = 1 and 𝑧 = 1 Then 

𝑆 = 𝐶𝑖
(𝑝𝑟𝑒) + 𝑆  

𝐶𝑖
(𝑝𝑜𝑠𝑡) = 𝑆  

Else 𝑥-interval of S where 𝑦 = 1 and 𝑧 = 1 is extended to include 𝐶𝑖
(𝑝𝑟𝑒)  as follows: 

Let us assume that 𝑥-interval of S where 𝑦 = 1 and  𝑧 = 1 is an interval (𝑎, 𝑏): 

 If 𝐶𝑖
(𝑝𝑟𝑒) < 𝑎 Then 

𝑥-interval of S becomes 𝑆∗ = (𝐶𝑖
(𝑝𝑟𝑒) , 𝑏) 

 If 𝐶𝑖
(𝑝𝑟𝑒) > 𝑏 Then 

𝑥-interval of S becomes 𝑆∗ = (𝑎, 𝐶𝑖
(𝑝𝑟𝑒) ) 

End If 

 𝑆∗ = 𝐶𝑖
(𝑝𝑟𝑒) + S 

 𝐶𝑖
(𝑝𝑜𝑠𝑡) = 𝑆∗ 

Note that in Case 1, 𝐶𝑖
(𝑝𝑜𝑠𝑡) becomes zT2FS. 
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Case 2: 𝑆 does not have a slice where 𝑦 = 1 𝑎𝑛𝑑 𝑧 = 1  

Add to S a slice((𝐶𝑖
(𝑝𝑟𝑒) , 𝐶𝑖

(𝑝𝑟𝑒 )),1,1) 

𝑀 = 𝐶𝑖
(𝑝𝑟𝑒) + 𝑆, where M is a zT2FS, and  𝐶𝑖

(𝑝𝑟𝑒) + 𝑆 is    

calculated as union of two zT2FSs as defined above. 

𝐶𝑖 
(𝑝𝑜𝑠𝑡) = 𝑀  

The former steps, Step 1 and Step 2, show that after 𝐶𝑗 impacts 𝐶𝑖, the value of  𝐶𝑖
(𝑝𝑜𝑠𝑡) is 

either a singleton (crisp), or zT2FS. In Phase 1 the values of all concepts except the decision 

concept are calculated.  

Phase 2 

The result of the reasoning algorithm in Phase 1 is used to determine the value of the 

decision concept 𝐶𝑚 as follows (note that initial value of 𝐶𝑚 = 0). 

The value of decision concept  𝐶𝑚 is determined based on the weights  𝑊𝑚𝑖  of the link 

from the concepts 𝐶𝑖
(𝑝𝑜𝑠𝑡), 𝑖 = 1,2, … ,𝑚 − 1, (determined in Phase 1), to decision 

concept 𝐶𝑚. Therefore, it is calculated as: 

      𝑪𝒎
(𝒑𝒐𝒔𝒕)

= 𝑪𝒎
(𝒑𝒓𝒆)  
⏟  
=𝟎

+∑ (𝑪𝒊  ⋆ 𝑾𝒎𝒊)
(𝒎−𝟏)

𝒊=𝟏
                       (6.2) 

where ∑ of z 2TFSs is defined above. Therefore, 𝐶𝑚
(𝑝𝑜𝑠𝑡)

 is a z T2Fs. 

Phase 3 

By applying Phase 1 and Phase 2, the uncertainty of both concepts and weights are 

captured by postponing any defuzzification until the end of the reasoning. The zT2FS that 
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represents the post value of 𝐶𝑚 is defuzzified at the end of the reasoning by using the 

centroid defuzzification method for z slices as in (2.10). 

In conventional reasoning of FCMs, the values of weights and concepts are crisp due to 

early defuzzification. Thus, most of information captured in zT2FSs may be lost. The late 

defuzzification of the proposed reasoning algorithm NILD supports preserving and 

propagating information and input uncertainties until the end of the reasoning process to 

affect the value of the decision outcome. To demonstrate the effectiveness of proposed 

NILD, it used with zT2FCM that created for evaluating Module Performance as presented 

in Section 6.4. 

6.4 Case Study: Evaluating Module Performance 

To demonstrate the effectiveness and accuracy of NILD, the author created a case study 

for evaluating the performance of Mathematical modules offered by the Department of 

Mathematics and Applied Sciences (MASC) at Middle East College (MEC) in Oman. In 

this case study NILD and other approaches that can be used to evaluate the performance of 

the modules, including statistical approach used by MEC and conventional FCM and their 

effectiveness are compared to the experts’ decision about the performances of the same 

module. 

Section 6.4.1 includes preliminaries of aspects that are required in order to understand the 

case study. Section 6.4.2 illustrates the process of developing zT2FCM with the proposed 

NILD for the evaluation of module performance, and the validation of it is presented in 

Section 6.5. 
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6.4.1 Background  

6.4.1.1 Module Performance  

In an academic institution, determining the Module Performance (MP) is a very important 

indicator that influences students’ progression on a course. Therefore, each institution has 

subjective quantitative and qualitative mechanisms to evaluate the MP and usually they use 

percentage of MP to indicate the level of performance i.e., 0% means the performance of 

students in the module is poor, where 100% means excellent performance. In most 

institutions, the decision about the MP relies on simple statistics of the modules, such as 

marks average and standard deviation. However, this may not capture the importance and 

causal influence of different factors affecting the module performance as well as account 

for the subjective decision makers’ (lecturers) points of view related to it. FCMs have the 

potential to capture the interplay of these factors. Therefore, NILD ability to extend and 

operate with this capability which facilitates more effective capture, aggregation and 

reasoning of lectures subjective opinions for determining MP is analysed. 

6.4.1.2 Students Information System (SIS) and Traffic Light System 

(TLS) at MEC 

In MEC, results that students achieve in each of their taught modules are recorded in the 

Student Information System (SIS). At the end of each semester, students’ results for a given 

module are recorded and the following statistical summaries are calculated: CW - the total 

mark for the module course work, ESE – total end semester examination result, AVE - the 

average of both results, CW and ESE, SD - standard deviation of the results, PP - pass 

percentage, and ATT - the attendance of the students in each module, i.e. percentage of 
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attended module lectures by the students. At MEC, the MP is evaluated using Traffic Light 

System (TLS) that is based on PP and SD calculated for each module in SIS. TLS classifies 

the MP into three colour codes: green, amber and red using the ranges for PP and SD as 

given in Table 6.4.  

Table 6.4 TLS colour code system and intervals 

Colour Pass percentage PP Standard deviation SD Module performance MP 

Green 

 

≥ 90% 

 

8 − 12 66.6 ≤ MP ≤ 100 

Amber 

 

80%− 89% 

5 − 8  or 

12 − 16 33.33 < MP < 66.6 

Red 

 

< 80% < 5  or > 16 0 ≤ MP ≤ 33.33 

 

As per the practice at MEC, one of the colours in the TLS is assigned to a module, taking 

into account both PP and SD achieved. In other words, the results need to fall within both 

the PP and SD ranges of a colour.  In the case the result does not fall in both ranges of PP 

and SD of a colour, the SD is taken into account to assign the performance colour code to 

the module. For example, if a module has PP of 72% and SD of 27.49, then both conditions 

are satisfied and the performance classification of the module is red. However, if a module 
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has a PP of 81.25% and SD of 16.55, then the performance colour code of the module is 

still classed as red rather than amber, because of the value of the SD. 

 For the purpose of this research, to make the results obtained from TLS compatible for 

comparison between results obtained by using zT2FCM with NILD evaluating MP, a 

conventional FCM and Experts' evaluation , the scale of the resulting MP score obtained 

by using TLS, ranging from 0 to 100, is split into three equal length sized intervals. The 

colour of each module is mapped to a corresponding interval as shown in Table 6.4. 

6.4.2 Development of Fuzzy Cognitive Map using type 2 fuzzy sets for 

Module Performance – MPFCM 

As mentioned earlier in this chapter, as a step to validate the proposed NILD reasoning 

algorithm, a case study to evaluate MP at MEC is generated, where zT2FCM with NILD 

is proposed by the author to evaluate the performance of mathematical modules offered by 

MASC. and it called MPFCM as it used for evaluating MP. For this purpose, three lecturers 

from MASC at MEC are polled to define the required concepts of the MPFCM and identify 

the relations among them as will be detail in Section 6.4.2.1 and Section 6.4.2.2. 

6.4.2.1 Concepts of MPFCM 

To build MPFCM, three lecturers were polled to define the concepts of MPFCM that were 

required for determining the MP and the causal relations among them. The lecturers agreed 

that the required concepts are Attendance of the students (ATT), Coursework Results of 

the Module (CW) and the results of the End Semester Examination (ESE). Indeed, the 

lecturers agreed the following causal relations among these three defined concepts and the 

decision concept MP: 
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1. The ATT has a direct effect on the module results in CW and ESE, but it does not 

has direct effect on the MP. 

2. There is no effect between the results of CW and ESE, but each of them has a direct 

effect on the MP. 

Therefore, based on the classification of the FCM’s concepts which are mentioned in 

Section 4.2, the concept ATT is an input concept, CW and ESE are intermediate concepts 

and MP is the decision concept. Figure 6.2 presents the structure of MPFCM that comprises 

of these concepts and the causal relations between them. 

 

 

Figure 6.2 MPFCM 

6.4.2.2 Weights of MPFCM 

The next step after identification of the concepts and the causal relations between them is 

the determination of the weight of the causal relations, namely 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 ,𝑊𝐶𝑊,𝐴𝑇𝑇,𝑊𝑀𝑃,𝐶𝑊 

and 𝑊𝐸𝑆𝐸,𝑀𝑃. For that purpose, an interval-valued survey is designed to collect the 

lecturers' opinions about each causal relation in MPFCM. As there are four causal relations 

(see Figure 6.2), the survey contains four questions , given in Appendix 5, where each of 

the question aims to determine to which level the concept 𝐶𝑗  affects the concept 𝐶𝑖 in a 



 

117 
 

specific causal relation. Each of the three lecturers has to respond to each question by 

drawing an ellipse on a Likert scale, and, hence, the intervals which reflect the causal 

relations between the two concepts in the question are identified. Figure 6.3 shows an 

example of one of the survey’s question that is used to determine the weight of the causal 

relation between CW and MP, and Table 6.5 shows the extracted intervals from the 

survey’s responses by the three lecturers to this question. 

 

Figure 6.3 An Example of the question to determine weight of causal relation from CW to 

MP 

 

Table 6.5 Intervals Responses to determine the weight of causal relation from CW to MP 

 First Iteration of the Survey Second Iteration of the Survey 

Lecturer 1 [0.38, 0.72] [0.45, 0.65] 

Lecturer 2 [0.60, 0.88] [0.60, 0.80] 

Lecturer 3 [0.30, 0.75] [0.40, 0.65] 

 

The rationale of collecting the responses as intervals is to allow capturing more uncertainty 

about assigning the weight of the causal relation. To capture the intra uncertainties of the 

lecturers in providing the responses’ intervals, the survey is circulated among the same 

lecturers after four weeks and the intervals extracted again from the lecturers for the second 

iteration as shown in the example presented in Table 6.5. The collected responses’ intervals 
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of the three lecturers to each of the four questions in both iterations are presented in 

Appendix 6. 

Referring to Section 3.3, for determining the weight as zT2FS of each causal relation in 

MPFCM, the author applies IAA with  𝑁 = 3, 𝑆 = 2  as three lecturers are surveyed twice 

and, therefore, 𝑦1 =
1

2
 and 𝑦2 = 1. It is worth noticing that the generated zT2FS of each 

causal relation represents the fuzzy agreement model of its weight, which captures both the 

inter-uncertainty and intra-uncertainty of the lecturers about assigning the weight of the 

causal relation. Indeed, the third dimension of the resulted zT2FS represents the level of 

the agreement between the lecturers about assigning the weight of the causal relation.    

  For example, Table 6.6 presents the weight 𝑊𝑀𝑃,𝐶𝑊 of the causal relation from CW to 

MP as zT2FS generated by IAA using intervals represent the lecturers’ responses to 

determine this causal relation (presented in Table 6.5). The reader may refer to the synthetic 

example in Section 3.3.1 for further illustration on generating z slices using IAA. The 

representation of the MPFCM’s weights as zT2FSs are presented in Appendix 7. 
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Table 6.6 Weight 𝑊𝑀𝑃,𝐶𝑊 

Slice of 

𝑾𝑴𝑷,𝑪𝑾 

𝒛𝒊 

 

𝒚𝟏 = 𝟎. 𝟓 

 

𝒚𝟐 = 𝟏 

 

𝒁𝟏 
1

3
 [0.30, 0.88] [0.40, 0.80] 

𝒁𝟐 
2

3
 [0.38, 0.75] [0.45, 0.65] 

𝒁𝟑 1 [0.60, 0.72] [0.60, 0.65] 

 

Once, the weights of MPFCM are determined, the concepts values of each module can be 

input and then the reasoning using NILD can be carried out to infer the decision about the 

performance of the module. 

6.4.2.3 Application of NILD to MPFCM 

Reasoning using NILD in MPFCM to infer MPs is validated using thirty mathematical 

modules that are selected by the author. Their statistic recorded in SIS are used as input 

values of the MPFCM’s concepts. For example, the input values of the concepts required 

for determining MP of Module 22 using MPFCM which obtained from SIS are presented 

in Table 6.7. The inputs values for all modules are presented in Appendix 8.  
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Table 6.7 inputs values of Module 22 

Module 22 

ESE 0.72 

CW 0.796 

ATT 0.81 

 

For each module, the values of the ESE, CW and ATT are input to MPFCM and the 

reasoning is performed using NILD and the outcome of the concept MP is achieved to 

represent the evaluation of the performance of the module. Thereafter, the resulted zT2FSs 

of MP of all the thirty modules are defuzzified and their crisp centroids are calculated. Note 

that the value MP is zT2FS that captures all the uncertainties about the MP; the reasoning 

process incorporates the initial values of the concepts and weights, without any 

reprocessing. This is the main aim of the new NILD algorithm that avoids early 

defuzzification as it leads to the loss of information that should be kept in reasoning. 

Section 6.4.2.4, includes an example to illustrate how an MP decision outcome is achieved 

using NILD for one module, namely Module 22. The results for evaluating the performance 

of each of the thirty modules are presented in Appendix 9. Additionally, their centroids are 

presented in Table 6.9 as 𝑆1 

6.4.2.4 Example 

Data required for the reasoning algorithm to determine the MP for Module 22, was 

collected from the SIS (refer to Table 6.7) as follows: 𝐶𝑊 = 0.796, 𝐸𝑆𝐸 = 0.72 

and 𝐴𝑇𝑇 = 0.81. Note that these values represent the pre values of the MPFCM’s concepts 

CW, ESE and ATT, respectively. Recall that the weights 𝑊𝐶𝑊,𝐴𝑇𝑇,𝑊𝐸𝑆𝐸,𝐴𝑇𝑇,𝑊𝑀𝑃,𝐶𝑊 
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and 𝑊𝑀𝑃,𝐸𝑆𝐸 were generated as illustrated in Section 6.4. Using MPFCM shown in Figure 

6.2 and following NILD algorithm i.e., the phases detailed in Section 6.3, post values of 

𝐴𝑇𝑇 (𝑝𝑜𝑠𝑡), 𝐶𝑊 (𝑝𝑜𝑠𝑡), 𝐸𝑆𝐸 (𝑝𝑜𝑠𝑡),  and 𝑀𝑃 are obtained as follows: 

𝐴𝑇𝑇(𝑝𝑜𝑠𝑡) = 𝐴𝑇𝑇(𝑝𝑟𝑒) = 0.81, as 𝐴𝑇𝑇 is input concept that is not affected by other 

concept (refer to Section 6.3) and thus its post value equals to its pre value. 

𝐶𝑊(𝑝𝑜𝑠𝑡) = 𝐶𝑊(𝑝𝑟𝑒) + (𝐴𝑇𝑇(𝑝𝑜𝑠𝑡)  ⋆ 𝑊𝐶𝑊,𝐴𝑇𝑇),  

𝐶𝑊(𝑝𝑟𝑒) = 0.796 and as  𝐴𝑇𝑇(𝑝𝑜𝑠𝑡) ∈ 𝑊𝐶𝑊,𝐴𝑇𝑇 , then based on Phase 1, Step 1 of NILD 

algorithm, (𝐴𝑇𝑇(𝑝𝑜𝑠𝑡)  ⋆ 𝑊𝐶𝑊,𝐴𝑇𝑇) and 𝐶𝑊(𝑝𝑜𝑠𝑡) become z T2FS as shown in Table 6.8. 

Table 6.8 Calculation of (𝐴𝑇𝑇(𝑝𝑜𝑠𝑡)  ⋆ 𝑊𝐶𝑊,𝐴𝑇𝑇) and  𝐶𝑊(𝑝𝑜𝑠𝑡) 

𝑨𝑻𝑻(𝒑𝒐𝒔𝒕)  ⋆ 𝑾𝑪𝑾,𝑨𝑻𝑻  𝑪𝑾(𝒑𝒐𝒔𝒕) 

Slice 

Level of 

the slice 

𝑦1 = 0.5 𝑦2 = 1  Slice 

Level of 

the slice 

𝑦1 = 0.5 𝑦2 = 1 

𝑍1 𝑧1 =
1

3
 [0.47,0.82] 𝜙  𝑍1 𝑧1 =

1

3
 [0.47,0.82] 𝜙 

𝑍2 𝑧2 =
2

3
 𝜙 𝜙  𝑍2 𝑧2 =

2

3
 𝜙 𝜙 

𝑍3 𝑧3 = 1 𝜙 𝜙  𝑍3 𝑧3 = 1 𝜙 [0.796,0.796] 

 

Therefore, using Case 2 of Step 2 of the NILD algorithm,  𝐶𝑊(𝑝𝑜𝑠𝑡) becomes a zT2FS as 

presented in Table 6.8. 
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𝐸𝑆𝐸(𝑝𝑜𝑠𝑡) is calculated as follows: 

𝐸𝑆𝐸(𝑝𝑜𝑠𝑡) = 𝐸𝑆𝐸(𝑝𝑟𝑒) + (𝐴𝑇𝑇(𝑝𝑜𝑠𝑡)  ⋆ 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇)  

As 𝐴𝑇𝑇(𝑝𝑜𝑠𝑡) ∉ 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 based on Step 1 in Phase 1 of the NILD algorithm, 

𝐴𝑇𝑇(𝑝𝑜𝑠𝑡)  ⋆ 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇  = 0 and, therefore, 

𝐸𝑆𝐸(𝑝𝑜𝑠𝑡) = 0.72 + 0 = 0.72. 

Following Phase 2 of NILD algorithm, the MP of Module 22 is calculated as follows: 

𝑀𝑃(𝑝𝑜𝑠𝑡) = 𝑀𝑃(𝑝𝑟𝑒) + ((𝐶𝑊(𝑝𝑜𝑠𝑡)  ⋆ 𝑊𝑀𝑃,𝐶𝑊) + (𝐸𝑆𝐸
(𝑝𝑜𝑠𝑡)  ⋆ 𝑊𝑀𝑃,𝐸𝑆𝐸)). 

where 𝑀𝑃(𝑝𝑟𝑒) = 0. By following Step 1 in Phase 1 of the reasoning algorithm, the z slices 

of 𝐶𝑊(𝑝𝑜𝑠𝑡)  ⋆ 𝑊(𝑀𝑃,𝐶𝑊) and 𝐸𝑆𝐸(𝑝𝑜𝑠𝑡)  ⋆ 𝑊(𝑀𝑃,𝐸𝑆𝐸) are obtained as follows: 

𝑪𝑾(𝒑𝒐𝒔𝒕)  ⋆ 𝑾𝑴𝑷,𝑪𝑾  𝑬𝑺𝑬(𝒑𝒐𝒔𝒕)  ⋆ 𝑾𝑴𝑷,𝑬𝑺𝑬 

Slice 

Level of 

the slice 

𝑦1 = 0.5 𝑦2 = 1  Slice 

Level of 

the slice 

𝑦1 = 0.5 𝑦2 = 1 

𝑍1 𝑧1 =
1

3
 [0.47,0.82] 𝜙  𝑍1 𝑧1 =

1

3
 [0.38,0.90] [0.55, 0.80] 

𝑍2 𝑧2 =
2

3
 𝜙 𝜙  𝑍2 𝑧2 =

2

3
 [0.50,0.85] [0.65, 0.75] 

𝑍3 𝑧3 = 1 𝜙 𝜙  𝑍3 𝑧3 = 1 [0.58, 0.77] [0.68, 0.72] 
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Following Phase 2 and Phase 3 of the reasoning algorithm (union operation defined in 

Table 6.2), MP is calculated as zT2FS and defuzzified, respectively as follows: 

 

 

𝑴𝑷 

 

Slice 

Level of 

the slice 

𝒚𝟏 = 𝟎. 𝟓 𝒚𝟐 = 𝟏 

Centroid 

of the slice 

Overall 

centroid 
 

𝑍1 𝑧1 =
1

3
 [0.38,0.90] [0.55,0.80] 

1

3
/0.6633 

 

 

0.686944 

 

 

 

𝑍2 𝑧2 =
2

3
 [0.50,0.85] [0.65,0.75] 

2

3
/0.6917  

𝑍3 𝑧3 = 1 [0.58,0.77] [0.68,0.72] 1/0.6917  

 

Hence,  𝑀𝑃(𝑝𝑜𝑠𝑡) = 0.686944444 . 

 Therefore, the performance of the module 22 is MP = 68.69% 

6.5 Validation of NILD 

To validate the proposed NILD for zT2FCM, the author compared its effectiveness to 

match experts’ decision comparing to the conventional FCM where weights are represented 

using T1FSs and statistical methods that are used in SIS, described above. The following 

methods are applied to the problem of evaluating module performances and compared with 

evaluations generated by MPFCM and NILD algorithm: 

T1FCM: Construct an FCM that has the same topology and same purpose as MPFCM, but 

it relies on T1FSs weights (T1FCM). These weights are obtained from a single second 
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iteration of the survey given in Appendix 5. The standard iterative reasoning algorithm 

(4.2) is used. It is worth noting that the centroids of these T1FSs are used as the weights of 

T1FCM.  The rationale of using the second iteration is that, the author believes that the 

lecturers may have better understanding and information about the survey’s questions in 

the second iteration compared to the first iteration. The values of the input concepts of the 

constructed T1FCM are obtained by SIS. 

Lecturers’ evaluation: Collect the opinions of selected lecturers about selected module 

performances given the values of the module statistics obtained by SIS. The subjective 

opinions of the lecturers are collected through an interval survey designed for this purpose 

presents in Appendix 10. The lecturers provided the intervals’ answers based on their 

experiences on evaluating the performance of selected mathematical modules. After the 

responses’ intervals are collected, they are aggregated using IAA. In this way the fuzzy 

agreement model of each module is created as a T2FS, which captures lecturers’ opinions 

on the MP. These generated T2FSs are defuzzified and their centroids are recorded.  

TLS used in MEC: Obtain evaluation of MPs of the selected modules delivered at MEC’s 

Mathematical department from SIS.  

The results obtained from each of the above-mentioned methods are collected and 

comparison is conducted using Pearson correlation 𝜌, where 𝜌 between the results of the 

Lecturers’ evaluation and the results of MPFCM with NILD, results of T1FCM and results 

of TLS at MEC are calculated as present in Section 6.5.4. 

The motivation of using the model of lecturers’ opinion on modules’ performance as a 

benchmark for this comparison is of two folds; first, there is no ground of truth for this 
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evaluation, and, second, the aim is to determine which of the listed methods generates 

decisions that are more correlated to humans’ decisions. 

6.5.1 T1FCM 

As pointed earlier in Section 6.5, the results of the MPFCM will be compared with the 

reasoning’s results obtained using the T1FCM created for the same purpose of the modules’ 

performances. T1FCM has the same structure as the MPFCM, but the weights in T1FCM 

are represented by T1FSs obtained from a single second iteration of the survey that used to 

determine the weights of MPFCM (the survey presented in Appendix 5). The rationale for 

selecting the responses of a second iteration is the author assume that by the time when the 

second survey is conducted, the lecturers may have better understanding about the survey’s 

questions and hence their responses are with less uncertainty. 

The intervals’ responses of the three lecturers for the second iteration of the survey are 

collected as presented in Appendix 6. Taking into account each of the four questions 𝑄𝑠, 

where  𝑠 = 1,2,3,4 , the response’s intervals are aggregated using the first phase of IAA 

(presented in Section 3.3) to generate T1FS of the corresponding question’s weight as 

follows: 

Given that the response interval of lecturer 𝑙  to answer question  𝑄𝑠 is 𝐼 𝑄𝑠
𝑙 , where 𝑙 = 1,2,3 

as there are three lecturers, the T1FS generated for each  𝑄𝑠 (𝑇1𝐹𝑆 𝑄𝑠) is calculated as 

follows; 
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𝑇1𝐹𝑆 𝑄𝑠 =
1

3
/(𝐼 𝑄𝑠

1 ∪ 𝐼 𝑄𝑠
2 ∪ 𝐼 𝑄𝑠

3 ) +
2

3
/ ((𝐼 𝑄𝑠

1 ∩ 𝐼 𝑄𝑠
2 ) ∪ (𝐼 𝑄𝑠

1 ∩ 𝐼 𝑄𝑠
3 ) ∪ (𝐼 𝑄𝑠

2 ∩ 𝐼 𝑄𝑠
3 ))

+ 1/(𝐼 𝑄𝑠
1 ∩ 𝐼 𝑄𝑠

2 ∩ 𝐼 𝑄𝑠
3 ), 𝑠 = 1,… ,4 

 

(6.3) 

The complete calculations of generating the four 𝑇1𝐹𝑆 𝑄𝑠 that represent the four weights of 

causal links in T1FCM are presented in Appendix 11.     

Subsequently, the centroid of each generated T1FSs is calculated to be used in the iterative 

reasoning process (See Appendix 11). 

In this way, the T1FCM is prepared for reasoning; it receives the inputs from the SIS of 

the same thirty modules used in PMFCM using the iterative reasoning algorithm (4.2).  The 

results of this reasoning process are captured in Table 6.9 as 𝑆2 

6.5.2 Agreement model of the lectures’ opinions 

As stated in Section 6.5, to compare the effectiveness of MPFCM over other methods for 

evaluating module performance, the author aims to compare their results of reasoning with 

the decision of humans performed for the same purpose. 

For this reason, a fuzzy agreement model of the lecturers on the performance of each of 

the thirty modules, based on the values provided by SIS and subjective lecturers’ responses 

to the survey questions is generated using IAA. These 30 agreement models represent the 

benchmark of the MPs for this case study as there is no ground truth for assessing the 

performance of the modules. 

An interval-valued survey is designed to collect the opinions of the three lecturers, who 

polled earlier to design the MPFCM, about the MP given the same inputs values provided 
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for MPFCM. For example, each lecturer is asked to express his/her view about a specific 

MP given the module values of ESE, CW, and ATT. The survey designed for this purpose 

is provided in Appendix 10. Figure 6.4 shows a survey questions that is used to generate 

the agreement model about the MP of Module 22. 

 

Figure 6.4 A Question to determine the MP of Module 22 based on the teachers 

experiences 

 

Thereafter, the intervals of the responses from the three lecturers are obtained for each 

module. They are aggregated using IAA to generate fuzzy agreement models that reflect 

and capture the inter uncertainties of the lecturers about their decision on MPs of the 

selected modules.  

Those agreement models are used as benchmark in this case study; their centroids 𝑆3 are 

calculated as listed in Table 6.9. 

6.5.3 Statistical view on MP using TLS 

As a further step in demonstrating the potential benefits of using NILD for reasoning more 

similar to lecturers’ reasoning, the MP of the same thirty modules based on TLS are 

collected as described earlier in Section 6.4.1.2. It is worth reminding that TLS relies on 

the statistical attributes PP and SD only to appraise MP. 
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 After collecting data for the modules using the TLS and SIS system and determining the 

modules’ colours and the corresponding intervals, the centroid of each interval is calculated 

as the midpoint of the corresponding interval. The results of MP using TLS in SIS are 

presented in Table 6.9 as 𝑆4. 

6.5.4 Results and Comparison 

As mentioned earlier the lecturers’ opinions are used as the benchmark to perform the 

comparison with the results of the methods presented in Section 6.4 and Section 6.5 to 

evaluate the MP. Applying the methods listed above, namely MPFCM, T1FCM, Lecturers’ 

agreement and TLS results i.e., output values that represent MP of each of the 30 modules 

are obtained and presented in Table 6.9  
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Table 6.9 Centroids of the methods' results 

Module 

MPFCM 

with NILD 

algorithm 

 

(𝑺𝟏) 

T1FCM 

with 

iterative 

reasoning

(𝑺𝟐)  

lecturers’ 

opinions 

 

 

(𝑺𝟑) 

Traffic 

Light 

System 

 

(𝑺𝟒) 
1 0.4363889 0.8636053 0.6773333 0.1666667 

2 0.4513889 0.8592155 0.679375 0.1666667 

3 0.6697222 0.8584359 0.67075 0.1666667 

4 0.2727778 0.8584454 0.5774167 0.1666667 

5 0.635 0.8585328 0.6420833 0.1666667 

6 0.1105556 0.857563 0.6165 0.1666667 

7 0.4430556 0.8581518 0.7150833 0.1666667 

8 0.4513889 0.8595942 0.7938333 0.5 

9 0.2905556 0.8583725 0.557125 0.1666667 

10 0.2808333 0.8588445 0.70205 0.1666667 

11 0.2875 0.858565 0.739525 0.5 

12 0.2393176 0.8576333 0.5529167 0.1666667 

13 0.1622222 0.8599275 0.5348667 0.1666667 

14 0.4363889 0.8587458 0.6812667 0.1666667 

15 0.4363889 0.8586817 0.6975833 0.5 

16 0.2952778 0.8570444 0.8038167 0.1666667 

17 0.2783333 0.8582224 0.7750833 0.1666667 

18 0.6088889 0.8583158 0.6920333 0.1666667 

19 0.285 0.8583158 0.459225 0.1666667 

20 0.4141667 0.8579079 0.5869167 0.1666667 

21 0.2783333 0.8581532 0.64475 0.5 

22 0.6869444 0.8574953 0.7572833 0.1666667 

23 0.2783333 0.8584507 0.613175 0.1666667 

24 0.2783333 0.8577901 0.588175 0.1666667 

25 0.5068556 0.85739 0.6063833 0.1666667 

26 0.635 0.8577283 0.6372417 0.1666667 

27 0.2808333 0.8581545 0.6507833 0.5 

28 0.1827778 0.857078 0.6360917 0.1666667 

29 0.4513889 0.8585852 0.6360917 0.5 

30 0.2905556 0.8577709 0.5411667 0.1666667 

 

For this purposes, the Pearson correlation coefficient ρ is used to evaluate the strength of 

the relation between the results produced from the lecturers’ opinions (𝑆3) and the results 

of the other three methods, namely MPFCM with NILD algorithm (𝑆1), T1FCM with 

iterative reasoning (4.2) (𝑆2) and TLS (𝑆4). 
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Generally, Pearson correlation test is conducted to determine the strength of the relation 

between two variables X and Y as present in Table 6.10 

Table 6.10 Correlation values 

𝝆𝑿,𝒀 
Strength of the 

relation 

0 < 𝜌 < 0.3 Low 

0.3 ≤ 𝜌 < 0.5 Medium 

0.5 ≤ 𝜌 ≤ 1 High 

where 

𝜌𝑋,𝑌 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)
𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2
𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2

𝑛
𝑖=1

 (6.4) 

𝜌𝑋,𝑌 is correlation coefficient between the variables X and Y, 

 𝑥𝑖   and 𝑦𝑖 are values of X variable and Y variable respectively in the sample and 

 𝑥̅ and 𝑦̅ are means of the values of the X variable and Y variable respectively. 

 Therefore, by using (6.4), the values of 𝜌𝑆1,𝑆3, 𝜌𝑆2,𝑆3 and 𝜌𝑆4,𝑆3 are calculated and the 

results are presented in Table 6.11  

Table 6.11 Correlations results 

 
𝝆(𝑺𝟏,𝑺𝟑) 

 
𝝆(𝑺𝟐,𝑺𝟑) 

 
𝝆(𝑺𝟒,𝑺𝟑) 

0.34 0.08 0.28 
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These results indicate that MPFCM has a moderate correlation of 0.34 with the lecturers’ 

opinions. It is the highest correlations comparing to the low correlation of 0.28 and 0.08 

between the lecturers’ opinions and each of TLS and T1FCM, respectively. 

Above mentioned results of correlation indicate that the proposed NILD algorithm applied 

to MPFCM has more potential to imitate the lecturers decisions comparing to TLS and 

T1FCM. 

To explore the ability of NILD in preserving and propagating the uncertainties derived 

from the changes in uncertainty of participants’ responses, a sensitivity analysis is 

conducted as presented in Section 6.6. 

6.6 Sensitivity analysis 

In order to check if the proposed NILD allows for the uncertainty propagation, a sensitivity 

analysis is conducted as is detailed in this Section 6.6. The conducted sensitivity analysis 

relies on investigating how the value of the decision concept in zT2FCM with NILD is 

affected if there is a change in uncertainties of each of the weight in zT2FCM. The 

coefficient of the determination 𝑅2 is used to address to which level is the proposed 

zT2FCM with NILD sensitive to the change in the uncertainties. 

To further investigate and understand how proposed NILD algorithm operates in the 

presence of changes FCM’s weights and how it allows for the uncertainty to propagate, a 

sensitivity analysis is performed. For this purpose, the MPFCM is used to conduct the 

sensitivity analysis. The uncertainty of each weight in the MPFCM is changed by δ, where 

δ= 0.01, 0.025, 0.05, 0.07, 0.1. The change of the weights is created by extending the 



 

132 
 

response intervals for each question from each lecturer by the above mentioned values of 

δ and then aggregated using IAA to produce the corresponding weights in the form of 

zT2FSs as described in Section 6.4. This emulated increasing the  uncertainty of each 

weight as the widths of the intervals are increasing (Miller et al. 2012). 

The process of performing the sensitivity analysis was carried out in the following steps: 

Step 1: The width of response intervals of each question from the lecturers are changed 

by 𝛿 keeping the centre of the interval the same, i.e., boundaries of the interval are extended 

by 𝛿. Consequently, the uncertainty of the intervals are increased. It is worth noting here 

that in case the boundary value becomes less than 0, it is fixed as 0, and in case it is more 

than 1, it is fixed to be 1. The rationale of this is that  weights’ values generated from 

intervals represent the percentage of the MP which  belong to interval [0,100] that is 

normalised to a value in interval [0, 1]. The response intervals of the lecturers after 

changing their width by 𝛿 are presented in Appendix 12. 

Step2: The produced intervals in Step 1 are aggregated as to produce zT2FS for each weight 

of MPFCM as detailed in Section 6.4.2.2. The generated weights after each change of the 

responses’ intervals by 𝛿 are presented in Appendix 13. In this step, the values of the 

weights are prepared to be used in MPFCM for reasoning on the MP. 

Step 3: Reasoning on MPFCM using NILD is performed to determine the value of the 

decision concept MP for each module considering one changed weight from the weights 

produced in Step 2 and keeping the remaining weights the same. For example, the value of 

 𝑊𝑀𝑃,𝐶𝑊 is used when its uncertainty is changed by 𝛿 = 0.01 and the values of the 
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remaining weights,  𝑊𝐶𝑊,𝐴𝑇𝑇,𝑊𝐸𝑆𝐸,𝐴𝑇𝑇and 𝑊𝑀𝑃,𝐸𝑆𝐸 are kept the same, as obtained in 

Section 6.4.2.2.  

Step 4: Step 3 is repeated for the rest of the weights for each change of the uncertainty in 

the weights using parameter𝛿. 

6.6.1 Example for process of performing the sensitivity analysis  

This example presents how to perform the sensitivity analysis using above-mentioned 

steps when the uncertainty of  𝑊𝑀𝑃,𝐶𝑊 is changed by 𝛿 = 0.01.  

Step 1, the width of response intervals from the lecturers to determine the weight of 

causal relation from CW to MP which presented in Table 6.5 becomes as follows: 

 First Iteration 
Second Iteration  

Lecturer 1 [0.37, 0.73] [0.44, 0.66] 

Lecturer 2 [0.59, 0.89] [0.59, 0.81] 

Lecturer 3 [0.29, 0.76] [0.39, 0.66] 

 

Step 2, the intervals which obtained in Step1 are aggregated to produce zT2FS that 

represent the value of  𝑊𝑀𝑃,𝐶𝑊 when its uncertainty is changed by 𝛿 = 0.01as follows: 
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Slice Level 𝒚𝟏 = 𝟎. 𝟓 𝒚𝟐 = 𝟏 

𝑍1 𝑧1 = 1/3 [0.29, 0. 89] [0.39, 0.81] 

𝑍2 𝑧2 = 2/3 [0.37, 0.76] [0.44, 0.66] 

𝑍3 𝑧3 = 1 [0.59, 0.73] [0.59, 0.66] 

 

Step 3, the value of   𝑊𝑀𝑃,𝐶𝑊 which obtained in Step 2 are used in reasoning on MPFCM 

using NILD, where the values of the remaining weights,  𝑊𝐶𝑊,𝐴𝑇𝑇,𝑊𝐸𝑆𝐸,𝐴𝑇𝑇and 𝑊𝑀𝑃,𝐸𝑆𝐸 

are kept the same, as obtained in Section 6.4.2.2. Then the results of this reasoning 

process are collected for the 30 Modules as presented in Appendix 14. 

Step 4, repeat Step 3 for the rest of the weights for each change of the uncertainty in the 

weights using parameter δ.  

The results of sensitivity analysis using former Steps with all weights are presented in 

Appendix 14. For this purpose, a software is developed and implemented using 

MATLAB as presented in Appendix 15. 

The observations and discussions on these results are provided in next Section 6.6.2.  

6.6.2 Results and Discussions 

The following observations and conclusions are made: 

• The change of uncertainty in 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 by  𝛿 = 0.01  and 0.025 does not affect the 

decision concept value. Changing the uncertainty by 𝛿 = 0.05, 0.7, 0.1 changes the 
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decision concept’s value only for a small number of modules, for example Module 

6, Module 12, Module 16, Module 20, Module 22, Module 25, Module 26, Module 

28 and Module 30 (refer to Appendix 14). The Pearson correlation coefficient 

between the original values of the decision concept and its values after changing 

the uncertainty of 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 is 1 when 𝛿 = 0.01  and 0.025 , which represents a 

strong association. However, it starts declining slightly when 𝛿 = 0.05, 0.7 and 0.1, 

from 0.97 to 0.9 as these changes in uncertainty in 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 affected some 

modules, as mentioned earlier. 

• The change of uncertainty in 𝑊𝐶𝑊,𝐴𝑇𝑇 by 𝛿 = 0.01 affects the decision concept 

value for some modules, but with higher increases from  𝛿 = 0.025 to 𝛿 = 0.1, the 

decision concept’s value is changed for almost 90% of the modules (refer to 

Appendix 14). The Pearson correlation coefficient between the original values of 

the decision concept and its values after changing the uncertainty of 𝑊𝐶𝑊,𝐴𝑇𝑇 

is 0.98, when δ = 0.01 and it start declining when 𝛿 is increased, but it still reflects 

a high association. Although both weights 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 and 𝑊𝐶𝑊,𝐴𝑇𝑇 link input concept 

ATT and intermediate concepts CW and ESE, it can be observed that the impact of 

changing uncertainty in 𝑊𝐶𝑊,𝐴𝑇𝑇 is a fraction higher than the impact when  

𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 is changed. The reason is that the level of agreement (modelled by 

overlapping intervals) in 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 is a fraction higher than the agreement 

in 𝑊𝐶𝑊,𝐴𝑇𝑇, as it is presented in Appendix 7. Hence, the influence of increasing 

uncertainty in 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 is a fraction smaller than the influence of increasing 

uncertainty in 𝑊𝐶𝑊,𝐴𝑇𝑇. 
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• The change of uncertainty in 𝑊𝑀𝑃,𝐶𝑊 by 𝛿 = 0.01  and 0.025   slightly affects the 

decision concept value for some modules, but by increasing 𝛿 further, there is a 

noticeable change in the decision concept’s values for most modules. The Pearson 

correlation coefficient between the original values of the decision concept and its 

values after changing the uncertainty in 𝑊𝑀𝑃,𝐶𝑊 is 0.93, when δ = 0.01. It declines 

by increasing δ to reach 0.32 when δ = 0.1, hence the correlation between the values 

declines from a high (0.93) to a medium value (0.32).  

• The change of uncertainty in 𝑊𝑀𝑃,𝐸𝑆𝐸  affects the decision concept’s value for most 

modules. By increasing δ, the Pearson correlation coefficient between the original 

values of the decision concept and its values is declined from 0.91 to 0.69, thus it 

could be concluded that this association is still high. However, the impact of 

changing the uncertainty in 𝑊𝑀𝑃,𝐶𝑊 is higher than the impact when uncertainty in 

𝑊𝑀𝑃,𝐸𝑆𝐸  is changed. This could be justified as follows. There is more uncertainty 

in the agreement (width of the intervals is higher) in 𝑊𝑀𝑃,𝐶𝑊 than in 𝑊𝑀𝑃,𝐸𝑆𝐸. 

Hence, increasing the uncertainty in 𝑊𝑀𝑃,𝐶𝑊 led to more overlap with other 

intervals generated from intersection and union of the concept (𝐶𝑊𝑃𝑂𝑆𝑇) and 

weight 𝑊𝑀𝑃,𝐶𝑊 during NILD using (6.1) and consequently there was a more effect 

on the value of decision concept. 

• The impact of changing uncertainty in weights of direct links to the decision 

concept, such as  𝑊𝑀𝑃,𝐶𝑊 and 𝑊𝑀𝑃,𝐸𝑆𝐸 , is higher than the impact of changing 

uncertainty in weights of links between input and intermediate concepts, such as 

weights 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 and 𝑊𝐶𝑊,𝐴𝑇𝑇. However, the effect of changing uncertainty in 

𝑊𝐶𝑊,𝐴𝑇𝑇 (where there was less agreement in its zT2FS and, therefore, more 
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uncertainty) is combined with the effect of changing uncertainty in 𝑊𝑀𝑃,𝐶𝑊, and 

the decision concept value is therefore, affected more. 

The coefficient of determination  𝑅2 is also calculated to determine to what level the 

outputs are affected by changes in input uncertainties based on linear regression. The 

coefficient of determination 𝑅2 is calculated between the original values of MP, when there 

are no changes in weights, and its values when changes by δ are applied. Table 6.12 

presents the values of 𝑅2 between the original values of MP and its values when there is a 

change of δ in a weight. The value of 𝑅2 is used to determine the percentage of modules 

with values of MP not affected by changing the uncertainty of a specific weigh, and 

consequently, the percentage of the modules which are affected (1 − 𝑅2). For example, 

𝑅2 between the original values of MP and its values when there is a change in weight 

𝑊𝐶𝑊,𝐴𝑇𝑇 by δ=0.05, is 0.845 as presented in Table 6.12. This indicated that with a change 

in uncertainty of weight 𝑊𝐶𝑊,𝐴𝑇𝑇 by 5%, MP of 84.5% of the 30 modules (around 25 

modules) remained the same, while it changed for 15.6% modules (5 modules) when 

uncertainty in 𝑊𝐶𝑊,𝐴𝑇𝑇is changed by δ=0.05. 

Table 6.12 Values of 𝑅2 

𝜹 𝑾𝑬𝑺𝑬,𝑨𝑻𝑻 𝑾𝑪𝑾,𝑨𝑻𝑻 𝑾𝑴𝑷,𝑪𝑾 𝑾𝑴𝑷,𝑬𝑺𝑬 

0.010 1 0.958 0.869 0.824 

0.025 1 0.908 0.659 0.740 

0.050 0.952 0.845 0.369 0.540 

0.070 0.789 0.747 0.227 0.530 

0.100 0.814 0.747 0.105 0.476 
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From Table 6.12, we can observe the following:  

1) In most of the cases, as δ is increasing,  𝑅2 is decreasing (1 − 𝑅2 is increasing). 

Therefore, as the uncertainty in the weights increase, the change in MP’s values increase 

too.  

2) When uncertainty in 𝑊(𝐸𝑆𝐸,𝐴𝑇𝑇) and 𝑊(𝐶𝑊,𝐴𝑇𝑇) is changed by δ, from 0.01 to 0.1 (this 

represents a change in uncertainty from 1% to 10%), there is a slight change in the output 

value of MP, but the regression was still high; the values of 𝑅2 decrease from 1 to 0.814 

and from 0.958 to 0.747, when these uncertainties change to 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 and 𝑊𝐶𝑊,𝐴𝑇𝑇, are 

applied, respectively. Therefore, we can conclude that MP is less sensitive to changes in 

uncertainty in the weights 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 and 𝑊𝐶𝑊,𝐴𝑇𝑇.  

3) By increasing the uncertainty in 𝑊𝑀𝑃,𝐶𝑊 and 𝑊𝑀𝑃,𝐸𝑆𝐸 , there is a considerable change 

in the output values of MP. The values of 𝑅2 drop from 0.869 to 0.105 and from 0.824 to 

0.476, when uncertainty changes in 𝑊𝑀𝑃,𝐶𝑊 and 𝑊𝑀𝑃,𝐸𝑆𝐸  are increased from 1% to 10%, 

respectively. Hence, we can conclude that the value of MP is more sensitive to the changes 

in uncertainty in the weights 𝑊𝑀𝑃,𝐶𝑊 and  𝑊𝑀𝑃,𝐸𝑆𝐸  compared to changes in uncertainty in 

the weights 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇  and 𝑊𝐶𝑊,𝐴𝑇𝑇. 

The previous observations showed that the proposed NILD algorithm propagated well the 

uncertainty in weights and the decision concept values obtained were sensitive to changes 

in the uncertainty of FCM’s weights. Greater sensitivity to uncertainty changes in weights 

of a direct link to the decision concept was observed. It was also observed that a 

considerable change in the value of the decision concept could occur when the cause 
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concept was intermediate. In this case, the intermediate concept was previously affected 

by other concepts while uncertainty was propagated between other affected concepts and 

finally to the decision concept. 

6.7 Conclusion 

This chapter proposed a new approach to reasoning in FCMs where the weights of links 

are zT2FSs generated by IAA. NILD can be applied to zT2FCMs of different topology. 

New operations in NILD are defined in such a way as to make the reasoning compatible 

with zT2FS. NILD preserves the captured uncertainties throughout the causal reasoning 

process by delaying the defuzzification to the end of the process. This makes the new 

reasoning algorithm more robust in comparison to the conventional iterative reasoning 

methods which rely on early defuzzification, where information/uncertainties maybe lost.  

To evaluate the effectiveness of the proposed reasoning algorithm, a case study of 

evaluating module performance was conducted using real data about module performance 

obtained from MASC in MEC. This data is used to construct a new FCM, MPFCM, with 

the decision concept that represents module performance. The new reasoning algorithm 

NILD is used to determine performance of 30 selected modules. The experiments 

demonstrated the ability of the proposed NILD to produce results that were more correlated 

to experts’ decisions compared to the results obtained by using TLS currently used at MEC 

and a new FCM with T1FSs weights (T1FCM) created for the same purpose. This 

underpins the ability of NILD to better mimic human reasoning in the presence of intra and 

inter uncertainties in the opinions of domain experts. Sensitivity analysis is conducted to 

further validate NILD and analyses its ability to help propagate input uncertainties within 

the FCMs structure which impact the decision concept. The results of the sensitivity 
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analysis showed that both changes in uncertainties in zT2FS represented weighted links 

direct from intermediate concepts to the decision concept and from input to intermediate 

concepts impacted the value of the decision concept to different degrees. Indeed, the results 

demonstrated that NILD algorithm enabled a propagation of uncertainty in weights which 

affected outcome decisions.  

The results of the conducted experiments analysed in this chapter demonstrated that NILD 

is capable to capture and propagate uncertainties while reasoning and thus determines 

decisions that mimic human reasoning in the presents of uncertainty. Consequently, 

zT2FCM with NILD can outperform the conventional FCM in reasoning.  
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Chapter 7 Conclusions 

7.1 Conclusion 

This thesis presents extensions to the conventional FCM by introducing zT2FSs to model 

the weights of the links among the concepts in order to improve its capabilities to capture 

more uncertainties and reasoning to infer an output closer to the human decision. The 

literature revealed that the weights of the causal relations in the FCM play a robust role in 

making the FCM more effective for reasoning and knowledge representation. So far the 

weights of the conventional FCM and its extensions rely either on crisp values or T1FSs 

and this hinder the ability of FCM to capture high level of uncertainties during the 

construction and / or reasoning. As demonstrated in chapter 3, IAA is an effective method 

that generates a fuzzy agreement model based on zT2FSs. It is capable for capturing more 

uncertainties about human subjective opinions on a particular matter. Motivated by this, 

this thesis is focused on incorporating the use of zT2FSs generated by IAA to the FCM.  

As mentioned earlier in Chapter 1, the aim of this thesis was of two folds as follows: 

1. Extending the conventional FCM to zT2FCM that is capable for capturing more 

uncertainties,  

2. Enhance the reasoning of zT2FCM by introducing new reasoning algorithm NILD, 

where the reasoning is carried out with weights values as zT2FSs without defuzzification.  
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This aim was achieved by meeting the following objectives of the thesis: 

• Analyse the effectiveness of using zT2FSs in modelling of uncertainty. 

In Chapters 2, the types of FSs were reviewed and the effectiveness of T2FSs in modelling 

higher uncertainties comparing to T1FSs was highlighted. Also it was emphasised that 

zT2FSs was an effective representation of T2FSs which could be used in different 

applications’ domains when FSs are required for modelling. Later in Chapter 3, the 

effectiveness of IAA comparing to other approaches, namely IA and EIA in capturing 

uncertainties of human opinions using surveys was demonstrated. Additionally, the 

capability of IAA to generate zT2FSs that represented fuzzy agreement model which 

included intra and inter-uncertainties of experts while modelling was emphasised in 

Chapter 3.  

• Analyse Interval Agreement Approach (IAA) and its application to generate the 

weights of the links in the FCM represented as zT2FSs. 

Chapter 4 highlighted that using T1FSs to represent FCM’s weights was a drawback of 

conventional FCM which hindered its capabilities for capturing different types of 

uncertainties from different sources (e.g. experts). This restricts the performance of FCM 

to provide an accurate decision output. In Chapter 5, the author used IAA to generate 

zT2FSs from the responses of an interval valued survey to represent the weights of the 

links between the concepts and the zT2FCM was proposed. The generated zT2FSs captured 

inter and intra -uncertainties of the experts about the weights of the causal relations among 

the concepts. 
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• Develop an iterative reasoning algorithm for FCMs with weights represented using 

zT2FSs (zT2FCM) and analyse its effectiveness by using it in a novel case study. 

To demonstrate the effectiveness of zT2FCM comparing to the conventional FCM, a novel 

case study for Autism diagnosis was created in Chapter 5 and a zT2FCM for Autism 

diagnosis is proposed. F-MCHAT was created and then used to collect intervals which 

reflected doctors’ opinions about the weights of the causal relations among the concepts of 

proposed zT2FCM. Then IAA was used to generate zT2FSs to represent the fuzzy 

agreement models of the weights of causal links. Afterwards these zT2FSs were 

defuzzified to crisp values and used in the iterative reasoning algorithm (4.2) to diagnose 

40 cases. The results of this proposed zT2FCM for Autism diagnosis and the results of an 

FCM created for the same purpose (Kannappan, Tamilarasi, and Papageorgiou 2011) using 

the same 40 cases were compared to the doctors’ decisions on the Autism diagnosis for the 

same cases. The doctor’s decisions were used as a benchmark to test the accuracy of the 

diagnosis achieved by the conventional FCM and the zT2FCM proposed. The results of 

zT2FCM provided accuracy of 85.09% compared with the doctors’ decisions which was 

more than 79.63% of the accuracy that FCM had compared with the doctors’ decisions. 

Hence, the zT2FCM outperformed the FCM in inferring as the human.   

• Develop a new non-iterative reasoning algorithm for the FCMs with weights 

represented using zT2FSs that operates without defuzzification.  

Motivated by the result presented in Chapter 5 that showed that the zT2FCM outperformed 

a conventional FCM in providing decisions closer to the decision makers, a new non-

iterative reasoning algorithm, NILD, was proposed for zT2FCMs in Chapter 6; the values 

of weights represented as zT2FSs were using in the reasoning process without 
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defuzzification. For this purposes new operations were introduced and defined in Chapter 

6, which were needed for using the zT2FSs while reasoning.  

• Demonstrate that the zT2FCM with the proposed new non –iterative reasoning 

algorithm outperforms the conventional FCM in a novel created case study. 

To achieve this objective, a novel case study to evaluate MP of mathematical modules 

offered my MASC at MEC was created as presented in Chapter 6. In this case study, a 

zT2FCM with NILD, named MPFCM, and a conventional FCM with weights represented 

using T1FS – T1FCM were created to evaluate MP of 30 modules offered by MASC. Also, 

the MP of these modules obtained by the system TLS used in MASC, based on the 

statistical approach, were collected. Indeed, a fuzzy agreement model of lecturers on MP 

was created for each of these 30 modules. The results of these agreement models were used 

as a benchmark to compare MP of the modules obtained by applying MPFCM, T1FCM 

and TLS. To demonstrate that zT2FCM outperformed the conventional FCM and other 

statistical approaches used for the same problem the correlations between the results of the 

lecturers’ agreement models and results of MPFCM, T1FCM and TLS were calculated. 

The obtained results showed that MPFCM was more correlated to lecturers (decision 

makers) decisions compared to T1FCM and TLS, as presented in Chapter 6. This 

underpinned the ability of the zT2FCM with the reasoning algorithm NILD to better mimic 

human reasoning in the presence of intra and inter uncertainties in the opinions of domain 

subjects than the FCM with a standard iterative reasoning method. It is worth to emphasis 

again here that the new non –iterative reasoning algorithm for the FCM is proposed for 

FCMs with links’ weights represented using zT2FSs that are generated using IAA. 
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• Investigate the effectiveness and analyse the sensitivity of the new reasoning 

algorithm and its capability in allowing the uncertainty to propagate  

To investigate the capability of the proposed NILD for propagating the uncertainty, the 

sensitivity analysis had been conducted in Chapter 6. For this purpose, the uncertainty of 

the lecturers responses to determine the original weights of the causal relations in MPFCM 

was changed systematically. After each change the intervals were aggregated using IAA 

and the changed weights were produced. The results obtained were analysed and it was 

observed that both changes in uncertainties of zT2FS based weighted links direct from 

intermediate concepts to the decision concept and from input to intermediate concepts 

impacted the value of the decision concept albeit to different degrees. The results 

demonstrated that NILD algorithm enabled a propagation of uncertainty which affected 

outcome decisions. Sensitivity analysis was conducted using a software developed for 

reasoning in MPFCM using NILD. This software was implemented using MATLAB as 

presented in Appendix 15. 

The novelties of this research and the results obtained from two newly generated cases 

studies toward achieving above-mentioned objectives, contribute to extend the FCM that 

relies on zT2FSs. This extension enhances FCM’s capabilities for capturing more 

uncertainties and facilitate more complete information representation. Indeed, the 

capability of the proposed new reasoning algorithm to propagate the uncertainties 

improved the FCM to better support a decision making process.  
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7.2 Future Work 

The future work on the proposed zT2FCM with NILD algorithm could be carried out in 

three directions as follows:  

1. Representation of the concepts’ values using zT2FSs. 

The zT2FCM with NILD algorithm could be further enhanced by representing its concepts’ 

values using zT2FSs. Then the NILD algorithm has to be enhanced to accommodate the 

new representations of uncertain values of FCM’s concepts and to reason when both 

concept values and weights are modelled using zT2FSs. 

2. Development of learning for zT2FCM. 

Despite the results obtained in Chapter 5 that zT2FCM outperformed the FCM in providing 

results more close to decision makers, there is a demand in many applications domains to 

create an FCM based on historical data. As part of this surge, one of the future direction 

for the work presented in this thesis is to train the zT2FCM which is created based on 

historical data by one of the available learning algorithms (Papageorgiou 2012).  

3. Application of zT2FCM with NILD algorithm in new domains. 

In this thesis, the effectiveness of using the proposed zT2FCM has been evaluated in two 

case studies in two different domains, namely Medicine and Education. Motivated by the 

outcomes and results of these two case studies, the zT2FCM with NILD algorithm could 

be applied in other applications domains where its usefulness has not been validated so far. 

The future work on the application of zT2FCM with NILD algorithm has to underpin the 

application where the effectiveness of zT2FCM in capturing more uncertainties from 
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different sources can be utilised and effectiveness of its reasoning can be proved by 

providing better decision. 
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APPENDIX 1. Modified MCHAT  

(To be answer by child’s parents) 

 

1. Does your child enjoy being swung, bounced on your knee, etc.?  

a. Certainly not. 

b. At times. 

c. Always.  

 

2. Does your child take an interest in other children?  

a. Yes, quite a lot  

b. Yes, sometimes 

c. no or very little  

 

3. Does your child like climbing on things, such as upstairs?  

a. Yes, often 

b. No 

c. Very rarely. 

 

4. Does your child ever pretend, for example, to talk on the phone or take care of 

dolls, or pretend other things?  

a. No 

b. Yes  

c. Slightly true  

 

5. Does your child ever use his/her index finger to point, to ask for something?  

a. Never 

b. Certainly 

c. Rarely 
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6. Does your child ever use his/her index finger to point, to indicate interest in 

something?  

a. Never. 

b. Certainly 

c. Rarely  

 

7. Does your child ever bring objects over to you (parent) to show you something?  

a. No doesn’t do it 

b. Have for himself 

c. Does it 

 

8.  Does your child walk?  

a. With other help 

b. No very little 

c. By himself 

 

9.  Does your child ever seem oversensitive to noise? (e.g., plugging ears)  

a. I don’t think so 

b. Rarely 

c. usually does  

 

10.  Does your child smile in response to your face or your smile? 

a. No 

b. Yes 

c. Sometimes 
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11.  Does your child imitate you? (e.g., you make a face-will your child imitate it? 

a. Quite a lot 

b. Does not 

c. Once a while 

 

 

12. Does your child respond to his/her name when you call?  

a. Yes ,always 

b. Yes, sometimes  

c. No, very little  

 

13.  If you point at a toy across the room, does your child look at it?  

a. Rarely does this  

b. Yes , this is typical 

c. Once in a while  

 

14. Does your child look you in the eye for more than a second or two?  

a. No 

b. Yes 

c. Sometimes. 

 

15.  Does your child look at things you are looking at?  

a. Definitely not 

b. Yes, sometimes  

c. Often 
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16. Does your child make unusual finger movements near his/her face?  

a. Yes, often and for rather long periods 

b. Very rarely 

c. No 

 

17. Does your child try to attract your attention to his/her own activity? 

a. Yes 

b. No 

c. Slightly True 

 

 

18. Have you ever wondered if your child is deaf? 

a. Yes 

b. Definitely not. 

c. Not sure 

 

19. Does your child understand what people say? 

a. Yes, understands 

b. Rarely understands 

c. Very little or no understanding  

 

20. Does your child look at your face to check your reaction when faced with 

something unfamiliar? 

a. Yes, definitely. 

b. Yes, slightly true. 

c. Doesn’t look   
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APPENDIX 2.  F-MCHAT  
(To be answer by doctors to determine the weights of zT2FCM for Autism Diagnosis) 

 

1. What is the impact of  a factor concept “enjoy being swung” to decision concept 

“Autism Diagnosis” if the parent’s answer to Question 1 of modified MCHAT is 

a. Certainly not. 

b. At times. 

c. Always.  

2. What is the impact of  a factor concept “Take an interest in other children” to 

decision concept “Autism Diagnosis” if the parent’s answer to Question 2 of 

modified MCHAT is 

 

a. Yes, quite a lot  

b. Yes, sometimes 

c. no or very little  

 

3. What is the impact of a factor concept “Climbing on things” to decision concept 

“Autism Diagnosis” if the parent’s answer to Question 3 of  modified MCHAT is 

 

a. Yes, often 

b. No 

c. Very rarely. 

 

4. What is the impact of a factor concept “Pretend to be other things” to decision 

concept “Autism Diagnosis” if the parent’s answer to Question 4 of modified 

MCHAT is 

 

a. No 

b. Yes  

c. Slightly true  
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5. What is the impact of a factor concept “Pointing with index finger” to decision 

concept “Autism Diagnosis” if the parent’s answer to Question 5 of modified 

MCHAT is 

 

a. Never 

b. Certainly 

c. Rarely 

 

6. What is the impact of a factor concept “Indication of interest” to decision concept 

“Autism Diagnosis” if the parent’s answer to Question 6 of modified MCHAT is 

 

a. Never. 

b. Certainly 

c. Rarely  

 

7. What is the impact of a factor concept “Bringing objects to parents” to decision 

concept “Autism Diagnosis” if the parent’s answer to Question 7 of modified 

MCHAT is 

 

a. No doesn’t do it 

b. Have for himself 

c. Does it 

 

8. What is the impact of a factor concept “Walking” to decision concept “Autism 

Diagnosis” if the parent’s answer to Question 8 of modified MCHAT is 

 

a. With other help 

b. No very little 

c. By himself 
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9.  What is the impact of a factor concept “Oversensitive to noise” to decision 

concept “Autism Diagnosis”   if the parent’s answer to Question 9 of modified 

MCHAT is 

 

a. I don’t think so 

b. Rarely 

c. usually does  

 

10.  What is the impact of a factor concept “Smile in response to parents face” to 

decision concept “Autism Diagnosis” if the parent’s answer to Question 10 of 

MCHAT is 

a. No 

b. Yes 

c. Sometimes  

 

11. What is the impact of a factor concept “Imitate”  to decision concept “Autism 

Diagnosis”  if the parent’s answer to Question 11 of modified MCHAT is 

a. Quite a lot 

b. Does not 

c. Once a while 

 

12. What is the impact of a factor concept “Respond to the name”  to decision concept 

“Autism Diagnosis”  if the parent’s answer to Question 12 of modified MCHAT 

is 

a. Yes ,always 

b. Yes, sometimes  

c. No, very little  
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13.  What is the impact of a factor concept “Looking at a toy when pointing”  to 

decision concept “Autism Diagnosis”  if the parent’s answer to Question 13 of 

modified MCHAT is  

a. Rarely does this  

b. Yes , this is typical 

c. Once in a while  

 

14. What is the impact of a factor concept “Eye contact”  to decision concept “Autism 

Diagnosis”  if the parent’s answer to Question 14 of modified MCHAT is  

a. No 

b. Yes 

c. Sometimes. 

 

15.  What is the impact of a factor concept “Look at things you are looking at”  to 

decision concept “Autism Diagnosis”  if the parent’s answer to Question 15of 

modified MCHAT is 

a. Definitely not 

b. Yes, sometimes  

c. Often 

 

16. What is the impact of a factor concept “Unusual finger movement near his/her 

face”  to decision concept “Autism Diagnosis”  if the parent’s answer to Question 

16 of modified MCHAT is 

a. Yes, often and for rather long periods 

b. Very rarely 

c. No 

 

 

17. What is the impact of a factor concept “Attract your attention”  to decision 

concept “Autism Diagnosis”  if the parent’s answer to Question 17 of modified 

MCHAT is 
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a. Yes 

b. No 

c. Slightly True 

 

18. What is the impact of a factor concept “Deafness”  to decision concept “Autism 

Diagnosis”  if the parent’s answer to Question 18 of modified MCHAT is 

a. Yes 

b. Definitely not. 

c. Not sure 

 

19. What is the impact of a factor concept “Understanding what others say”  to 

decision concept “Autism Diagnosis”  if the parent’s answer to Question 19 of 

modified MCHAT is 

a. Yes, understands 

b. Rarely understands 

c. Very little or no understanding  

 

20. What is the impact of a factor concept “Look to your face to check reaction”  to 

decision concept “Autism Diagnosis”  if the parent’s answer to Question 20 of 

modified MCHAT is 

a. Yes, definitely. 

b. Yes, slightly true. 

c. Doesn’t look   
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APPENDIX 3. Response intervals of SQUH’s doctors 

to F-MCHAT 
 

    

𝑸𝟏 D1 D2 D3 

a [0.20, 0.45] [0.15, 0.35] [0.05, 0.25] 

b [0.05, 0.25] [0.35, 0.60] [0.40, 0.70] 

c [0, 0.15] [0.50, 0.70] [0.65, 0.85] 
    

𝑸𝟐 D1 D2 D3 

a [0, 0.15] [0.05, 0.30] [0.05, 0.25] 

b [0.45, 0.65] [0.20, 0.50] [0.45-0.65] 

c [0.75, 0.95] [0.50, 0.65] [0.65-0.85] 
    

𝑸𝟑 D1 D2 D3 

a [0.35, 0.55] [0.15, 0.40] [0.15, 0.25] 

b [0.10, 0.35] [0.25, 0.50] [0.35, 0.55] 

c [0, 0.15] [0.70, 0.95] [0.75, 0.95] 
    

𝑄4 D1 D2 D3 

a [0.65, 0.85] [0.05, 0.35] [0.15, 0.35] 

b [0.25, 0.45] [0.35, 0.55] [0.50, 0.75] 

c [0, 0.15] [0.60, 0.80] [0.85, 1] 
    

𝑸𝟓 D1 D2 D3 

a [0.65, 0.85] [0.15, 0.35] [0.05, 0.30] 

b [0.40, 0.55] [0.50, 0.70] [0.55, 0.75] 

c [0, 0.25] [0.10, 0.30] [0.05, 0.25] 
    

𝑸𝟔 D1 D2 D3 

a [0.65, 0.85] [0.50, 0.80] [0.55, 0.75] 

b [0.45, 0.65] [0.50, 0.75] [0.75, 0.95] 

c [0.05, 0.25] [0.20, 0.45] [0.20, 0.45] 
    

𝑸𝟕 D1 D2 D3 

a [0.65, 0.85] [0.55, 0.75] [0.35, 0.55] 

b [0.40, 0.65] [0.30, 0.60] [0.45-0.65] 

c [0.05, 0.30] [0.15, 0.35] [0.20-0.45] 
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𝑸𝟖 D1 D2 D3 

a [0.75, 0.95] [0.70, 0.95] [0.35, 0.55] 

b [0.05, 0.25] [0.40, 0.65] [0.35, 0.55] 

c [0.25, 0.50] [0.45, 0.65] [0.35, 0.60] 
    

𝑸𝟗 D1 D2 D3 

a [0.10, 0.35] [0.25, 0.45] [0.15, 0.35] 

b [0, 0.15] [0.10, 0.35] [0.05, 0.25] 

c [0.55, 0.75] [0.40, 0.65] [0.60, 0.85] 
    

𝑸𝟏𝟎 D1 D2 D3 

a [0.65, 0.85] [0.75, 0.90] [0.60, 0.85] 

b [0.05, 0.25] [0.20, 0.45] [0.05, 0.30] 

c [0.25, 0.45] [0.40, 0.65] [0.45, 0.70] 
    

𝑄11 D1 D2 D3 

a [0.75, 0.95] [0.65, 0.85] [0.75, 0.95] 

b [0.35, 0.55] [0.15, 0.30] [0.05, 0.25] 

c [0.20, 0.45] [0.25, 0.50] [0.45, 0.65] 
    

𝑸𝟏𝟐 D1 D2 D3 

a [0-0.25] [0.15, 0.35] [0, 0.15] 

b [0.35, 0.55] [0.25, 0.50] [0.35, 0.55] 

c [0.75, 0.95] [0.60, 0.85] [0.75, 0.95] 
    

𝑸𝟏𝟑 D1 D2 D3 

a [0.65, 0.85] [0.55, 0.75] [0.75, 0.95] 

b [0.10, 0.30] [0.25, 0.45] [0.05, 0.25] 

c [0.35, 0.55] [0.35, 0.55] [0.35, 0.55] 
    

𝑸𝟏𝟒 D1 D2 D3 

a [0.32, 0.55] [0.27, 0.45] [0.35, 0.57] 

b [0.55, 0.75] [0.42, 0.68] [0.32, 0.55] 

c [0.17, 0.37] [0.41, 0.65] [0.37, 0.55] 

   

  

 

    

𝑸𝟏𝟓 D1 D2 D3 



 

172 
 

a [0.60, 0.85] [0.65, 0.85] [0.55, 0.75] 

b [0.35, 0.55] [0.40, 0.70] [0.35, 0.55] 

c [0.35, 0.60] [0.10, 0.35] [0.35, 0.55] 
    

𝑸𝟏𝟔 D1 D2 D3 

a [0.55, 0.75] [0.55, 0.80] [0.75, 0.90] 

b [0, 0.15] [0.15, 0.35] [0.15, 0.35] 

c [0.05, 0.25] [0.20, 0.45] [0, 0.10] 
    

𝑸𝟏𝟕 D1 D2 D3 

a [0.05, 0.30] [0.15, 0.35] [0.05, 0.25] 

b [0.75, 0.95] [0.55, 0.80] [0.75, 0.95] 

c [0.25, 0.45] [0.20, 0.40] [0.25, 0.50] 
    

𝑸𝟏𝟖 D1 D2 D3 

a [0.70, 0.95] [0.65, 0.85] [0.75, 0.95] 

b [0.05, 0.30] [0.15, 0.35] [0.35, 0.60] 

c [0.25, 0.50] [0.05, 0.25] [0.05, 0.25] 
    

𝑸𝟏𝟗 D1 D2 D3 

a [0.15, 0.35] [0.25, 0.35] [0.05, 0.25] 

b [0.55, 0.75] [0.50, 0.75] [0.35, 0.55] 

c [0.75, 0.95] [0.65, 0.85] [0.75, 0.95] 
    

𝑸𝟐𝟎 D1 D2 D3 

a [0.05, 0.25] [0.10, 0.25] [0.15, 0.35] 

b [0.25, 0.45] [0.25, 0.50] [0.25, 0.45] 

c [0.65, 0.90] [0.50, 0.75] [0.65, 0.85] 
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APPENDIX 4. zT2FSs weights of zT2FCM used for 

Autism Diagnosis 
 

       

𝑾𝟐𝟏,𝟏  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0, 0.85] [0.15, 0.70] [0, 0.25] 

𝒛𝟐 [0.05, 0.70] ∅ ∅ 

𝒛𝟑 [0.05, 0.45] ∅ ∅ 

       

𝑾𝟐𝟏,𝟐  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0, 0.95] [0.05, 0.85] [0.05, 0.5] 

𝒛𝟐 [0.20, 0.65] ∅ ∅ 

𝒛𝟑 ∅ ∅ ∅ 

       

𝑾𝟐𝟏,𝟑 𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0, 0.95] [0.15, 0.95] ∅ 

𝒛𝟐 [0.10, 0.55] [0.25, 0.40] ∅ 

𝒛𝟑 [0.15, 0.55] ∅ ∅ 

       

𝑾𝟐𝟏,𝟒  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0,1] [0.15, 0.55] ∅ 

𝒛𝟐 [0.05, 0.85] ∅ ∅ 

𝒛𝟑 [0.25, 0.75] ∅ ∅ 

       

𝑾𝟐𝟏,𝟓  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0, 0.85] [0.05, 0.70] [0.10, 0.25] 

𝒛𝟐 [0.05, 0.75] [0.15, 0.25] ∅ 

𝒛𝟑 ∅ ∅ ∅ 

       

𝑾𝟐𝟏,𝟔  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0.05, 0.95] [0.2, 0.8] [0.2, 0.75] 

𝒛𝟐 [0.5, 0.85] [0.55, 0.65] ∅ 

𝒛𝟑 ∅ ∅ ∅ 

   

 

 

 

 

  

   

𝑾𝟐𝟏,𝟕  𝒚𝟏 𝒚𝟐 𝒚𝟑 
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𝒛𝟏 [0.05, 0.85] [0.15, 0.75] [0.20, 0.6] 

𝒛𝟐 [0.30, 0.65] ∅ ∅ 

𝒛𝟑 [0.35, 0.45] ∅ ∅ 

   
     

𝑾𝟐𝟏,𝟖  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0.05, 0.95] [0.35, 0.95] [0.45, 0.50] 

𝒛𝟐 [0.25, 0.65] [0.40, 0.55] ∅ 

𝒛𝟑 [0.35, 0.65] ∅ ∅ 

       

𝑾𝟐𝟏,𝟗  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0, 0.85] [0.05, 0.75] [0.1, 0.65] 

𝒛𝟐 [0.10, 0.45] [0.15, 0.25] ∅ 

𝒛𝟑 ∅ ∅ ∅ 

       

𝑾𝟐𝟏,𝟏𝟎  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 0.05, 0.90 [0.05, 0.85] [0.20, 0.85] 

𝒛𝟐 0.25, 0.70 ∅ ∅ 

𝒛𝟑 ∅ ∅ ∅ 

       

𝑾𝟐𝟏,𝟏𝟏  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0.05, 0.95] [0.15, 0.95] [0.75, 0.85] 

𝒛𝟐 [0.20, 0.55] ∅ ∅ 

𝒛𝟑 ∅ ∅ ∅ 

       

𝑾𝟐𝟏,𝟏𝟐  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0, 0.95] [0, 0.95] [0.35, 0.85] 

𝒛𝟐 [0.25, 0.35] ∅ ∅ 

𝒛𝟑 ∅ ∅ ∅ 

       

𝑾𝟐𝟏,𝟏𝟑  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0.05, 0.95] [0.10, 0.85] [0.35, 0.55] 

𝒛𝟐 [0.35, 0.45] ∅ ∅ 

𝒛𝟑 ∅ ∅ ∅ 

  

 

 

 

  

    

𝑾𝟐𝟏,𝟏𝟒 𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0.17, 0.75] [0.32, 0.68] 
[0.35, 0.45]∪[0.55, 

0.55] 
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𝒛𝟐 [0.27, 0.65] [0.41, 0.55] ∅ 

𝒛𝟑 [0.32, 0.57] [0.42, 0.55] ∅ 

 

𝑾𝟐𝟏,𝟏𝟓  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0.10, 0.85] [0.35, 0.85] [0.40, 0.75] 

𝒛𝟐 [0.35, 0.70] [0.35, 0.55] ∅ 

𝒛𝟑 [0.55, 0.6] ∅ ∅ 

       

𝑾𝟐𝟏,𝟏𝟔  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0, 0.90] [0.05, 0.80] ∅ 

𝒛𝟐 [0, 0.35] [0.15, 0.25] ∅ 

𝒛𝟑 ∅ ∅ ∅ 

       

𝑾𝟐𝟏,𝟏𝟕  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0.05, 0.95] [0.05, 0.95] [0.15, 0.85] 

𝒛𝟐 [0.20, 0.35] [0.25, 0.30] ∅ 

𝒛𝟑 ∅ ∅ ∅ 

       

𝑾𝟐𝟏,𝟏𝟖  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0.05, 0.95] [0.05, 0.95] [0.75, 0.85] 

𝒛𝟐 [0.05, 0.50] [0.15, 0.25] ∅ 

𝒛𝟑 ∅ ∅ ∅ 

       

𝑾𝟐𝟏,𝟏𝟗  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0.05, 0.95] [0.15, 0.95] [0.75, 0.85] 

𝒛𝟐 [0.65, 0.67] ∅ ∅ 

𝒛𝟑 ∅ ∅ ∅ 

       

𝑾𝟐𝟏,𝟐𝟎  𝒚𝟏 𝒚𝟐 𝒚𝟑 

𝒛𝟏 [0.05, 0.90] [0.10, 0.85] [0.15, 0.75] 

𝒛𝟐 [0.25, 0.35] ∅ ∅ 

𝒛𝟑 ∅ ∅ ∅ 
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APPENDIX 5.  Questions to determine the weight of 

the interrelation among the concepts 
 

1. What is the impact of Attendance on the End Semester result? 

2. What is the impact of Attendance on Course work result? 

3. What is the impact of Course work on the review of Module performance? 

4. What is the impact of End semester on the review of Module performance? 

  



 

177 
 

APPENDIX 6. Intervals Responses of the three 

lecturers to each of the four questions in both 

iterations of the survey for determine the weights of 

causal relation in MPFCM  
 

 

Question 1 First Iteration of the 

Survey 

Second Iteration of 

the Survey 

Lecturer 1 [0.15, 0.35] [0.15, 0.45] 

Lecturer 2 [0.37, 0.72] [0.40, 0.70] 

Lecturer 3 [0.38, 0.75] [0.40, 0.75] 
 

 

Question 2 First Iteration of the 

Survey 

Second Iteration of 

the Survey 

Lecturer 1 [0.12, 0.38] [0.05, 0.40] 

Lecturer 2 [0.28, 0.42] [0.20, 0.40] 

Lecturer 3 [0.50, 0.82] [0.47, 0.80] 
 

Question 3 First Iteration of the 

Survey 

Second Iteration of 

the Survey 

Lecturer 1 [0.38, 0.72] [0.45, 0.65] 

Lecturer 2 [0.60, 0.88] [0.60, 0.80] 

Lecturer 3 [0.30, 0.75] [0.40, 0.65] 
 

Question 4 First Iteration of the 

Survey 

Second Iteration of 

the Survey 

Lecturer 1 [0.38, 0.77] [0.55, 0.75] 

Lecturer 2 [0.68, 0.85] [0.50, 0.72] 

Lecturer 3 [0.65, 0.90] [0.58, 0.80] 
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APPENDIX 7. Weights of MPFCM as z T2FSs 
 

Weight Slice Level 𝒚𝟏 = 𝟎. 𝟓 𝒚𝟐 = 𝟏 

𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 

𝑍1 𝑧1 = 1/3 [0.15,0.75] [0.15,0.35] ∪ [0.40,0.75] 

𝑍2 𝑧2 = 2/3 [0.37,0.72] [0.4,0.7] 

𝑍3 𝑧3 = 1 [0.38,0.45] 𝜙 

𝑊𝐶𝑊,𝐴𝑇𝑇 

𝑍1 𝑧1 = 1/3 
[0.05, 0.42]
∪ [0.47, 0.82] 

[0.12, 0.40] ∪ [0.50, 0.80] 

𝑍2 𝑧2 = 2/3 [0.2, 0.4] [0.28. 0.38] 

𝑍3 𝑧3 = 1 𝜙 𝜙 

𝑊𝑀𝑃,𝐶𝑊 

𝑍1 𝑧1 = 1/3 [0.30, 0.88] [0.40, 0.80] 

𝑍2 𝑧2 = 2/3 [0.38, 0.75] [0.45, 0.65] 

𝑍3 𝑧3 = 1 [0.60, 0.72] [0.60, 0.65] 

𝑊𝑀𝑃,𝐸𝑆𝐸  

𝑍1 𝑧1 = 1/3 [0.38, 0.9] [0.55, 0.8] 

𝑍2 𝑧2 = 2/3 [0.5,0.85] [0.65, 0.75] 

𝑍3 𝑧3 = 1 [0.58, 0.77] [0.68, 0.72] 
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APPENDIX 8. Values of inputs values of the modules 
 

Module 1   Module 7  Module 13  Module 19  Module 25 

ESE 0.6704  ESE 0.6688  ESE 0.339  ESE 0.4112  ESE 0.6256 

CW 0.7388  CW 0.7690  CW 0.7462  CW 0.5212  CW 0.6264 

ATT 0.8817  ATT 0.8579  ATT 0.9920  ATT 0.8700  ATT 0.8024 

              

Module 2  Module 8  Module 14  Module 20  Module 26 

ESE 0.7246  ESE 0.7470  ESE 0.6774  ESE 0.6618  ESE 0.6993 

CW 0.8232  CW 0.8650  CW 0.7196  CW 0.5006  CW 0.6391 

ATT 0.9374  ATT 0.9663  ATT 0.9020  ATT 0.8400  ATT 0.8269 

              

Module 3  Module 9   Module 15  Module 21  Module 27 

ESE 0.7016  ESE 0.5484  ESE 0.7450  ESE 0.5602  ESE 0.6407 

CW 0.7092  CW 0.5952  CW 0.6808  CW 0.7142  CW 0.6791 

ATT 0.8789  ATT 0.8742  ATT 0.8972  ATT 0.8580  ATT 0.8580 

              

Module 4  Module 10  Module 16  Module 22  Module 28 

ESE 0.4994  ESE 0.7650  ESE 0.7700  ESE 0.72  ESE 0.5656 

CW 0.6838  CW 0.6777  CW 0.8262  CW 0.7960  CW 0.7378 

ATT 0.8796  ATT 0.9094  ATT 0.7776  ATT 0.8100  ATT 0.7800 

              

Module 5  Module 11  Module 17  Module 23  Module 29 

ESE 0.6826  ESE 0.5886  ESE 0.8368  ESE 0.5313  ESE 0.7436 

CW 0.6426  CW 0.7878  CW 0.7200  CW 0.6740  CW 0.8280 

ATT 0.8861  ATT 0.8885  ATT 0.8631  ATT 0.8800  ATT 0.8900 

              

Module 6  Module 12  Module18  Module 24  Module 30 

ESE 0.5124  ESE 0.45167  ESE 0.798  ESE 0.5256  ESE 0.5198 

CW 0.7134  CW 0.6112  CW 0.6256  CW 0.6682  CW 0.5690 

ATT 0.8149  ATT 0.8200  ATT 0.8700  ATT 0.8314  ATT 0.8287 
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APPENDIX 9. zT2FSs representations of MP of the 

modules using MPFCM 
 

Module 1 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

 

0.4363889 

𝑍2 𝑧2 = 2/3 [0.38,0.85] [0.65,0.75] 

𝑍3 𝑧3 = 1 [0.58,0.77] ∅ 

 

 

Module 2 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.55,0.80] 

 

0.451388889 

𝑍2 𝑧2 = 2/3 [0.50,0.85] [0.65,0.75] 

𝑍3 𝑧3 = 1 [0.58,0.77] ∅ 
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Module 3 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

 

0.669722222 

𝑍2 𝑧2 = 2/3 [0.38,0.85] [0.65,0.75] 

𝑍3 𝑧3 = 1 [0.58,0.77] [0.68,0.72] 

Module 4 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

0.2727778 

 

𝑍2 𝑧2 = 2/3 [0.38,0.75] ∅ 

𝑍3 𝑧3 = 1 [0.60,0.72] ∅ 
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Module 5 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

 

0.635 

𝑍2 𝑧2 = 2/3 [0.38,0.85] [0.45,0.75] 

𝑍3 𝑧3 = 1 [0.58,0.77] 
[0.6, 0.65]

∪ [0.68, 0.72] 

Module 6 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.38,0.90] ∅ 

 

0.110555556 

𝑍2 𝑧2 = 2/3 [0.50,0.85] ∅ 

𝑍3 𝑧3 = 1 ∅ ∅ 
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Module 7 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

 

0.4430555555555

56 

𝑍2 𝑧2 = 2/3 [0.50,0.85] [0.65,0.75] 

𝑍3 𝑧3 = 1 [0.58,0.77] ∅ 

Module 8 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.55,0.80] 

0.4513888888888

89 
𝑍2 𝑧2 = 2/3 [0.50,0.85] [0.65,0.75] 

𝑍3 𝑧3 = 1 [0.58,0.77] ∅ 
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Module 9 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

0.2905555555555

56 
𝑍2 𝑧2 = 2/3 [0.38,0.85] [0.45,0.65] 

𝑍3 𝑧3 = 1 ∅ ∅ 

Module 10 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

0.2808333333333

33 
𝑍2 𝑧2 = 2/3 [0.38,0.85] ∅ 

𝑍3 𝑧3 = 1 [0.58,0.87] ∅ 
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Module 11 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

0.2875 𝑍2 𝑧2 = 2/3 [0.50,0.85] ∅ 

𝑍3 𝑧3 = 1 [0.58,0.77] ∅ 

Module 12 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.38,0.90] ∅ 

0.239317556 𝑍2 𝑧2 = 2/3 ∅ ∅ 

𝑍3 𝑧3 = 1 ∅ [0.61128, 0.611286]  
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Module 13 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.88] [0.40,0.80] 

0.1622222222222

22 
𝑍2 𝑧2 = 2/3 [0.38,0.75] ∅ 

𝑍3 𝑧3 = 1 ∅ ∅ 

Module 14 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.88] [0.55,0.80] 

0.4363888888888

89 
𝑍2 𝑧2 = 2/3 [0.38,0.85] [0.65,0.75] 

𝑍3 𝑧3 = 1 [0.58,0.77] ∅ 
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Module 15 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.9] [0. .4,0.8] 

0.4363888888888

89 
𝑍2 𝑧2 = 2/3 [0.38,0.85] [0.65,0.75] 

𝑍3 𝑧3 = 1 [0.58,0.77] ∅ 

Module 16 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.38,0.9] [0. .5,0.8] 

0.2952777777777

78 
𝑍2 𝑧2 = 2/3 [0.50,0.85] 

∅ 

𝑍3 𝑧3 = 1 [0.58,0.77] ∅ 
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Module 17 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

 

0.2783333333333

33 

𝑍2 𝑧2 = 2/3 [0.38,0.85] ∅ 

𝑍3 𝑧3 = 1 [0.60,0.72] ∅ 

 

 

Module 18 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

 

0.6088888888888

89 

𝑍2 𝑧2 = 2/3 [0.38,0.85] [0.45,0.65] 

𝑍3 𝑧3 = 1 [0.60,0.72] [0.60,0.65] 
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Module 19 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

 

0.285 

𝑍2 𝑧2 = 2/3 [0.38,0.75] [0.45,0.65] 

𝑍3 𝑧3 = 1 ∅ ∅ 

 

 

Module 20 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

 

0.4141666666666

67 

𝑍2 𝑧2 = 2/3 [0.38,0.85] [0.45,0.75] 

𝑍3 𝑧3 = 1 [0.58,0.77] ∅ 
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Module 21 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

 

0.2783333333333

33 

𝑍2 𝑧2 = 2/3 [0.38,0.85] ∅ 

𝑍3 𝑧3 = 1 [0.60,0.77] ∅ 

 

Module 22 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.38,0.90] [0.55,0.80] 

 

0.6869444444444

45 

𝑍2 𝑧2 = 2/3 [0.50,0.85] [0.65,0.75] 

𝑍3 𝑧3 = 1 [0.58,0.77] [0.68,0.72] 
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Module 23 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

 

0.2783333333333

33 

𝑍2 𝑧2 = 2/3 [0.38,0.85] ∅ 

𝑍3 𝑧3 = 1 [0.60,0.72] ∅ 

 

 

Module 24 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

 

0.2783333333333

33 

𝑍2 𝑧2 = 2/3 [0.38,0.85] ∅ 

𝑍3 𝑧3 = 1 [0.60,0.72] ∅ 
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Module 25 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.50,0.80] 

 

0.5068555555555

56 

𝑍2 𝑧2 = 2/3 [0.50,0.85] ∅ 

𝑍3 𝑧3 = 1 [0.58,0.77] [0.6264, 0.6264] 

 

 

Module 26 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

 

0.635 

𝑍2 𝑧2 = 2/3 [0.38,0.85] [0.45,0.75] 

𝑍3 𝑧3 = 1 [0.58,0.77] 
[0.60, 0.65]

∪ [0.68, 0.72] 
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Module 27 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.30,0.90] [0.40,0.80] 

 

0.2808333333333

33 

𝑍2 𝑧2 = 2/3 [0.38,0.85] ∅ 

𝑍3 𝑧3 = 1 [0.58,0.77] ∅ 

 

 

Module 28 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.38,0.90] [0.50,0.80] 

 

0.1827777777777

78 

𝑍2 𝑧2 = 2/3 [0.50,0.85] ∅ 

𝑍3 𝑧3 = 1 ∅ ∅ 
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Module 29 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.38,0.90] [0.55,0.80] 

 

0.4513888888888

89 

𝑍2 𝑧2 = 2/3 [0.50,0.85] [0.65,0.75] 

𝑍3 𝑧3 = 1 [0.58,0.77] ∅ 

 

 

Module 30 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

 

Centroid 

𝑍1 𝑧1 = 1/3 [0.38,0.90] [0.55,0.80] 

 

0.2905555555555

56 

𝑍2 𝑧2 = 2/3 [0.38,0.85] [0.45,0.65] 

𝑍3 𝑧3 = 1 ∅ ∅ 
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APPENDIX 10. A Question to determine the module 

performance based on the teachers experiences 
 

How do you evaluate the module performance, if the result summary of a module at the 

end of the semester is as follows: 

1. End Semester Examination result is ---% 

2. Course Work result is---% and  

3. Attendance percentage is  ---% 
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APPENDIX 11. Weights of T1FCM for evaluating 

MP 
 

𝑾𝑬𝑺𝑬,𝑨𝑻𝑻 

𝑦1 =
1

3
 𝑦2 =

2

3
 𝑦3 = 1 Centroid 

[0.15, 0.75] [0.40, 0.70] [0.40, 0.45] 0.470833333 

 

 

𝑾𝑪𝑾,𝑨𝑻𝑻 

𝑦1 =
1

3
 𝑦2 =

2

3
 𝑦3 = 1 Centroid 

[0.05,0.40]∪[0.47,0.80] [0.20, 0.40] ∅ 0.171666667 

 

 

𝑾𝑴𝑷,𝑪𝑾   

𝑦1 =
1

3
 𝑦2 =

2

3
 𝑦3 = 1 Centroid 

[0.40, 0.80] [0.45, 0.65] [0.60, 0.65] 0.595833333 

 

 

𝑾𝑴𝑷,𝑬𝑺𝑬   

𝑦1 =
1

3
 𝑦2 =

2

3
 𝑦3 = 1 Centroid 

[0.50, 0.80] [0.55, 0.75] [0.58, 0.72] 0.65 
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APPENDIX 12. The response intervals of the 

lecturers after changing their width by δ 
 

Change in the response intervals of each question from the lecturers by 𝛿 = 0.01 

   

 iteration 1 iteration 2 

Q1 

[0.14, 0.36] [0.14, 0.46] 

[0.36, 0.73] [0.39, 0.71] 

[0.37, 0.76] [0.39, 0.76] 
 

    

   

 iteration 1 iteration 2 

Q2 

[0.11, 0.39] [0.04,0.41] 

[0.27, 0.43] [0.19, 0.41] 

[0.49,0.83] [0.46, 0.81] 
 

    

   

 iteration 1 iteration 2 

Q3 

[0.37, 0.73] [0.44, 0.66] 

[0.59, 0.89] [0.59, 0.81] 

[0.29, 0.76] [0.39, 0.66] 
 

    

   

 iteration 1 iteration 2 

Q4 

[0.37,0.78] [0.54, 0.76] 

[0.67,0.86] [0.49, 0.73] 

[0.64, 0.91] [0.57,0.81] 
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Change in the response intervals of each question from the lecturers by 𝛿 = 0.025 

   

 iteration 1 iteration 2 

Q1 

[0.125, 0.375] [0.125, 0.475] 

[0.345, 0.745] [0.375,0.725] 

[0.355, 0.775] [0.375,0.775] 
 

    

   

 iteration 1 iteration 2 

Q2 

[0.095, 0.405] [0.025 0.425 

[0.255, 0.445] [0.175 0.425 

[0.475, 0.845] [0.445 0.825 
 

    

   

 iteration 1 iteration 2 

Q3 

[0.355, 0.745] [0.425,0.675] 

[0.575, 0.905] [0.575,0.825] 

[0.275, 0.775] [0.375,0.675] 
 

    

   

 iteration 1 iteration 2 

Q4 

[0.355, 0.795] [0.525,0.775] 

[0.655,0.875] [0.475, 0.745] 

[0.625, 0.925] [0.555,0.825] 
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Change in the response intervals of each question from the lecturers by 𝛿 = 0.05 

   

 iteration 1 iteration 2 

Q1 

[0.10, 0.40] [0.10, 0.50] 

[0.32, 0.77] [0.35, 0.75] 

[0.33, 0.80] [0.35, 0.8] 
 

    

   

 iteration 1 iteration 2 

Q2 

[0.07, 0.43] [0, 0.45] 

[0.23, 0.47] [0.15, 0.45] 

[0.45, 0.87] [0.42, 0.85] 
 

    
 

  

 iteration 1 iteration 2 

Q3 

[0.33, 0.77] [0.40, 0.70] 

[0.55, 0.93] [0.55, 0.85] 

[0.25, 0.80] [0.35, 0.70] 
         
 

  

 iteration 1 iteration 2 

Q4 

[0.33, 0.82] [0.5,0.80] 

[0.63, 0.90] [0.45,0.77] 

[0.60, 0.95] [0.53,0.85] 
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Change in the response intervals of each question from the lecturers by 𝛿 = 0.07 

   

 iteration 1 iteration 2 

Q1 

[0.08 0.42] [0.08 0.52] 

[0.3 0.79] [0.33 0.77] 

[0.31 0.82] [0.33 0.82] 
         

   

 iteration 1 iteration 2 

Q2 

[0.05,0.45] [0,0.47] 

[0.21,0.49] [0.13,0.47] 

[0.43,0.89] [0.40, 0.87] 
 

    

   

 iteration 1 iteration 2 

Q3 

[0.31,0.79] [0.38,0.72] 

[0.53,0.95] [0.53,0.87] 

[0.23,0.82] [0.33,0.72] 
         

   

 iteration 1 iteration 2 

Q4 

[0.31,0.84] [0.48, 0.82] 

[0.61,0.92] [0.43, 0.79] 

[0.58,0.97] [0.51, 0.87] 
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Change in the response intervals of each question from the lecturers by 𝛿 = 0.1 

   

 iteration 1 iteration 2 

Q1 

[0.05,0.45] [0.05,0.55] 

[0.27,0.82] [0.30,0.80] 

[0.28,0.85] [0.30,0.85] 
         

   

 iteration 1 iteration 2 

Q2 

[0.02,0.48] [0,0.5] 

[0.18,0.52] [0.10,0.5] 

[0.40,0.92] [0.37,0.9] 
 

    

   

 iteration 1 iteration 2 

Q3 

[0.280.82] [0.35,0.75] 

[0.5,0.98] [0.5,0.9] 

[0.2,0.85] [0.3,0.75] 
 

    

   

 iteration 1 iteration 2 

Q4 

[0.28,0.87] [0.45,0.85] 

[0.58,0.95] [0.40,0.82] 

[0.55,1] [0.48,0.90] 
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APPENDIX 13. The generated weights after each 

change of the responses’ intervals by δ 
 

Weight 𝑾𝑬𝑺𝑬,𝑨𝑻𝑻 

𝑾𝑬𝑺𝑬,𝑨𝑻𝑻 y1=0.5 y2=1 

z1=1/3 [0.14, 0.76] [0.14, 0.36]∪[0.39, 0.76] 

z2=2/3 [0.36, 0.73] [0.39, 0.71] 

z3=1 [0.37, 0.46] ∅ 

     

𝑾𝑬𝑺𝑬,𝑨𝑻𝑻 y1=0.5 y2=1 

z1=1/3 [0.125,0.775] [0.125, 0.775] 

z2=2/3 [0.345, 0.745] [0.375, 0.725] 

z3=1 [0.355, 0.475] ∅ 

     

𝑾𝑬𝑺𝑬,𝑨𝑻𝑻 y1=0.5 y2=1 

z1=1/3 [0.1, 0.8] [0.1,0.8] 

z2=2/3 [0.32, 0.77] [0.35, 0.75] 

z3=1 [0.33, 0.5] [0.35, 0.4] 

     

𝑾𝑬𝑺𝑬,𝑨𝑻𝑻 y1=0.5 y2=1 

z1=1/3 [0.08,0.82] [0.08,0.82] 

z2=2/3 [0.30,0.79] [0.33,0.77] 

z3=1 [0.31,0.52] [0.33,0.42] 

     

𝑾𝑬𝑺𝑬,𝑨𝑻𝑻 y1=0.5 y2=1 

z1=1/3 [0.05,0.85] [0.05,0.85] 

z2=2/3 [0.27,0.82] [0.3,0.8] 

z3=1 [0.28,0.55] [0.3,0.45] 
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Weight 𝑾𝑪𝑾,𝑨𝑻𝑻 

     

𝑾𝑪𝑾,𝑨𝑻𝑻 y1=0.5 y2=1 

z1=1/3 [0.04, 0.43]∪[0.46, 0.83] [0.11, 0.41]∪[0.49, 0.81] 

z2=2/3 [0.19, 0.41] [0.27, 0.39] 

z3=1 ∅ ∅ 

     

𝑾𝑪𝑾,𝑨𝑻𝑻 y1=0.5 y2=1 

z1=1/3 [0.025, 0.845] [0.095, 0.425] ∪ [0.475, 0.825] 

z2=2/3 [0.175, 0.425] [0.255, 0.405] 

z3=1 ∅ ∅ 

     

𝑾𝑪𝑾,𝑨𝑻𝑻 y1=0.5 y2=1 

z1=1/3 [0,0.87] [0.07,0.87] 

z2=2/3 [0.15,0.47] (0.23, 0.43) ∪ (0.45, 0.45) 

z3=1 [0.42,0.45] ∅ 

     

𝑾𝑪𝑾,𝑨𝑻𝑻 y1=0.5 y2=1 

z1=1/3 [0,0.89] [0.05, 0.87] 

z2=2/3 [0.13,0.49] [0.21, 0.47] 

z3=1 [0.40,0.47] [0.43, 0.45] 

     

𝑾𝑪𝑾,𝑨𝑻𝑻 y1=0.5 y2=1 

z1=1/3 [0,0.92] [0.02,0.9] 

z2=2/3 [0.1,0.52] [0.18,0.5] 

z3=1 [0.37,0.5] [0.4,0.48] 
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Weight 𝑾𝑴𝑷,𝑪𝑾 

𝑾𝑴𝑷,𝑪𝑾 y1=0.5 y2=1 

z1=1/3 [0.29,0.89] [0.39, 0.81] 

z2=2/3 [0.37,0.76] [0.44, 0.66] 

z3=1 [0.59,0.73] [0.59, 0.66] 

     

𝑾𝑴𝑷,𝑪𝑾 y1=0.5 y2=1 

z1=1/3 [0.275,0.905] [0.375,0.825] 

z2=2/3 [0.355,0.775] [0.425,0.675] 

z3=1 [0.575,0.745] [0.575,0.675] 

     

𝑾𝑴𝑷,𝑪𝑾 y1=0.5 y2=1 

z1=1/3 [0.25,0.93] [0.35,0.85] 

z2=2/3 [0.33,0.80] [0.4,0.70] 

z3=1 [0.55,0.77] [0.55,0.7] 

     

𝑾𝑴𝑷,𝑪𝑾 y1=0.5 y2=1 

z1=1/3 [0.23,0.95] [0.33,0.87] 

z2=2/3 [0.31,0.82] [0.38,0.72] 

z3=1 [0.53,0.79] [0.53,0.72] 

     

𝑾𝑴𝑷,𝑪𝑾 y1=0.5 y2=1 

z1=1/3 [0.20, 0.98] [0.30, 0.90] 

z2=2/3 [0.28, 0.85] [0.35, 0.75] 

z3=1 [0.5, 0.82] [0.50, 0.75] 
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Weight 𝑾𝑴𝑷,𝑬𝑺𝑬 

𝑾𝑴𝑷,𝑬𝑺𝑬 y1=0.5 y2=1 

z1=1/3 [0.37,0.91] [0.54,0.81] 

z2=2/3 [0.49,0.86] [0.64,0.76] 

z3=1 [0.57,0.78] [0.67,0.73] 

     

𝑾𝑴𝑷,𝑬𝑺𝑬 y1=0.5 y2=1 

z1=1/3 [0.355,0.925] [0.525,0.825] 

z2=2/3 [0.475,0.875] [0.625,0.775] 

z3=1 [0.555,0.795] [0.655,0.745] 

     

𝑾𝑴𝑷,𝑬𝑺𝑬 y1=0.5 y2=1 

z1=1/3 [0.33,0.95] [0.5,0.85] 

z2=2/3 [0.45,0.9] [0.6,0.8] 

z3=1 [0.53,0.82] [0.63,0.77] 

     

𝑾𝑴𝑷,𝑬𝑺𝑬 y1=0.5 y2=1 

z1=1/3 [0.31,0.97] [0.48,0.87] 

z2=2/3 [0.43,0.92] [0.58,0.82] 

z3=1 [0.51,0.84] [0.61,0.79] 

     

𝑾𝑴𝑷,𝑬𝑺𝑬 y1=0.5 y2=1 

z1=1/3 [0.28,1] [0.45,0.9] 

z2=2/3 [0.40,0.95] [0.55,0.85] 

z3=1 [0.48,0.87] [0.58,0.82] 
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APPENDIX 14. Results of Sensitivity Analysis 
 

Values of MP when 𝑾𝑬𝑺𝑬,𝑨𝑻𝑻 is change by  𝛿 and rest weights are remaining same: 

Module 

Output of MP with 

original values of 

weights 

Output of MP when 

the uncertainty of  

𝑾𝑬𝑺𝑬,𝑨𝑻𝑻  changed 

by  𝛅=𝟎. 𝟎𝟏 

Output of MP when 

the uncertainty of  

𝑾𝑬𝑺𝑬,𝑨𝑻𝑻  changed 

by  𝛅 = 𝟎. 𝟎𝟐𝟓 

Output of MP when 

the uncertainty of  

𝑾𝑬𝑺𝑬,𝑨𝑻𝑻 changed 

by  𝛅 = 𝟎. 𝟎𝟓 

Output of MP when 

the uncertainty of  

𝑾𝑬𝑺𝑬,𝑨𝑻𝑻  changed 

by  𝛅 = 𝟎. 𝟕 

Output of MP when 

the uncertainty of  

𝑾𝑬𝑺𝑬,𝑨𝑻𝑻  changed 

by  𝛅 = 𝟎. 𝟏 

1 
0.43638888 

0.436389 0.436389 0.436389 0.436389 0.436389 

2 
0.45138888 

0.451389 0.451389 0.451389 0.451389 0.451389 

3 
0.66972222 

0.451389 0.669722 0.669722 0.669722 0.669722 

4 
0.27277777 

0.272778 0.272778 0.272778 0.272778 0.272778 

5 
0.635 

0.635 0.635 0.635 0.635 0.635 

6 
0.110556 

0.110556 0.110556 0.110556 0.108333 0.1825 

7 
0.44305555 

0.443056 0.443056 0.443056 0.443056 0.443056 

8 
0.45138888 

0.451389 0.451389 0.451389 0.451389 0.451389 

9 
0.29055555 

0.290556 0.290556 0.290556 0.290556 0.290556 

10 
0.28083333 

0.280833 0.280833 0.280833 0.280833 0.280833 

11 
0.2875 

0.2875 0.2875 0.2875 0.2875 0.2875 

12 
0.23931755 

0.239318 0.239318 0.239318 0.466818 0.1825 

13 
0.16222222 

0.162222 0.162222 0.162222 0.162222 0.162222 

14 
0.43638888 

0.436389 0.436389 0.436389 0.436389 0.436389 

15 
0.43638888 

0.436389 0.436389 0.436389 0.436389 0.436389 

16 
0.29527777 

0.295278 0.295278 0.105556 0.177222 0.335278 

17 
0.27833333 

0.278333 0.278333 0.278333 0.278333 0.278333 

18 
0.60888888 

0.608889 0.608889 0.608889 0.608889 0.608889 

19 
0.285 

0.285 0.285 0.285 0.285 0.285 

20 
0.41416666 

0.414167 0.414167 0.414167 0.414167 0.283611 

21 
0.27833333 

0.278333 0.278333 0.278333 0.278333 0.278333 

22 
0.68694444 

0.686944 0.686944 0.686944 0.460833 0.4225 

23 
0.27833333 

0.278333 0.278333 0.278333 0.278333 0.278333 

24 
0.27833333 

0.278333 0.278333 0.278333 0.278333 0.272222 

25 
0.50685555 

0.506856 0.506856 0.506856 0.317133 0.3913 

26 
0.635 

0.635 0.635 0.635 0.635 0.615161 

27 
0.28083333 

0.280833 0.280833 0.280833 0.280833 0.280833 

28 
0.18277777 

0.182778 0.182778 0.105556 0.177222 0.335278 

29 
0.45138888 

0.451389 0.451389 0.451389 0.451389 0.451389 

30 
0.29055555 

0.290556 0.290556 0.290556 0.290556 0.284444 
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Values of MP when 𝑾𝑪𝑾,𝑨𝑻𝑻  is change by  𝛿 and rest weights are remaining same: 

Module 

Output of MP with 

original values of 

weights 

Output of MP when 

the uncertainty of   
𝑊𝐶𝑊,𝐴𝑇𝑇  changed 

by  δ=0.01 

Output of MP when 

the uncertainty of  

𝑊𝐶𝑊,𝐴𝑇𝑇    changed 

by  δ = 0.025 

Output of MP when 

the uncertainty of  

𝑊𝐶𝑊,𝐴𝑇𝑇   changed 

by  δ = 0.05 

Output of MP when 

the uncertainty of  

𝑊𝐶𝑊,𝐴𝑇𝑇    changed 

by  δ = 0.7 

Output of MP when 

the uncertainty of  

𝑊𝐶𝑊,𝐴𝑇𝑇    changed 

by  δ = 0.1 

1 
0.43638888 

0.436389 0.436389 0.436389 0.451389 0.451389 

2 
0.45138888 

0.451389 0.451389 0.451389 0.451389 0.451389 

3 
0.66972222 

0.669722 0.669722 0.669722 0.684722 0.684722 

4 
0.27277777 

0.272778 0.272778 0.272778 0.033333 0.033333 

5 
0.635 

0.635 0.635 0.635 0.675156 0.675156 

6 
0.11055555 

0.110556 0.179167 0.175 0.175 0.175 

7 
0.44305555 

0.443056 0.443056 0.443056 0.443056 0.443056 

8 
0.45138888 

0.451389 0.451389 0.451389 0.451389 0.451389 

9 
0.29055555 

0.290556 0.290556 0.290556 0.108333 0.108333 

10 
0.28083333 

0.280833 0.280833 0.280833 0.280833 0.280833 

11 
0.2875 

0.2875 0.2875 0.2875 0.295833 0.295833 

12 
0.23931755 

0.239318 0.307933 0.303767 0.303767 0.303767 

13 
0.16222222 

0.162222 0.162222 0.162222 0.162222 0.162222 

14 
0.43638888 

0.436389 0.436389 0.436389 0.436389 0.436389 

15 
0.43638888 

0.436389 0.436389 0.436389 0.436389 0.436389 

16 
0.29527777 

0.294722 0.291667 0.2875 0.491267 0.491267 

17 
0.27833333 

0.278333 0.278333 0.175 0.175 0.175 

18 
0.60888888 

0.608889 0.608889 0.383533 0.383533 0.383533 

19 
0.285 

0.285 0.285 0.1 0.1 0.1 

20 
0.41416666 

0.414167 0.451389 0.443056 0.443056 0.443056 

21 
0.27833333 

0.278333 0.278333 0.175 0.175 0.175 

22 
0.68694444 

0.683611 0.680556 0.676389 0.676389 0.676389 

23 
0.27833333 

0.278333 0.278333 0.278333 0.108333 0.108333 

24 
0.27833333 

0.278333 0.108333 0.295 0.175 0.175 

25 
0.50685555 

0.503522 0.500467 0.4963 0.4963 0.4963 

26 
0.635 

0.676794 0.674572 0.666239 0.666239 0.666239 

27 
0.28083333 

0.280833 0.280833 0.2875 0.2875 0.2875 

28 
0.18277777 

0.182222 0.179167 0.175 0.175 0.175 

29 
0.45138888 

0.451389 0.451389 0.451389 0.451389 0.451389 

30 
0.29055555 

0.110556 0.108333 0.175 0.175 0.175 
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Values of MP when 𝑾𝑴𝑷,𝑪𝑾  is change by  𝛿 and rest weights are remaining same: 

Module 

Output of MP with 

original values of 

weights 

Output of MP when 

the uncertainty of   
𝑾𝑴𝑷,𝑪𝑾  changed 

by  𝛅=𝟎. 𝟎𝟏 

Output of MP when 

the uncertainty of  

𝑾𝑴𝑷,𝑪𝑾    changed 

by  𝛅 = 𝟎. 𝟎𝟐𝟓 

Output of MP when 

the uncertainty of  

𝑾𝑴𝑷,𝑪𝑾   changed 

by  𝛅 = 𝟎. 𝟎𝟓 

Output of MP when 

the uncertainty of  

𝑾𝑴𝑷,𝑪𝑾    changed 

by  𝛅 = 𝟎. 𝟕 

Output of MP when 

the uncertainty of  

𝑾𝑴𝑷,𝑪𝑾changed 

by  𝛅 = 𝟎. 𝟏 

1 
0.43638888 

0.435556 0.434028 0.430556 0.429444 0.602778 

2 
0.45138888 

0.451111 0.4425 0.4425 0.4425 0.427778 

3 
0.66972222 

0.668889 0.667361 0.663889 0.607778 0.602778 

4 
0.27277777 

0.2725 0.272222 0.602778 0.602778 0.602778 

5 
0.635 

0.633056 0.642361 0.605556 0.607778 0.602778 

6 
0.11055555 

0.110556 0.110556 0.110556 0.348356 0.348356 

7 
0.44305555 

0.442778 0.454444 0.430556 0.429444 0.427778 

8 
0.45138888 

0.451111 0.450833 0.450833 0.4425 0.4425 

9 
0.29055555 

0.608056 0.606944 0.605556 0.604444 0.602778 

10 
0.28083333 

0.28 0.278472 0.605556 0.604444 0.602778 

11 
0.2875 

0.287222 0.286667 0.2775 0.273889 0.272222 

12 
0.23931755 

0.239322 0.239322 0.239322 0.239322 0.239322 

13 
0.16222222 

0.162222 0.162222 0.272222 0.272222 0.602778 

14 
0.43638888 

0.435556 0.434028 0.430556 0.607778 0.602778 

15 
0.43638888 

0.435556 0.434028 0.611111 0.607778 0.602778 

16 
0.29527777 

0.295278 0.295278 0.295278 0.299722 0.295278 

17 
0.27833333 

0.2725 0.276389 0.275 0.604444 0.602778 

18 
0.60888888 

0.608056 0.606944 0.605556 0.604444 0.602778 

19 
0.285 

0.284722 0.284444 0.284444 0.284444 0.602778 

20 
0.41416666 

0.412222 0.409444 0.405278 0.401944 0.602778 

21 
0.27833333 

0.2775 0.276389 0.275 0.604444 0.602778 

22 
0.68694444 

0.686944 0.686944 0.686944 0.686944 0.686944 

23 
0.27833333 

0.2775 0.606944 0.605556 0.604444 0.602778 

24 
0.27833333 

0.2775 0.606944 0.605556 0.604444 0.602778 

25 
0.50685555 

0.506856 0.506856 0.506856 0.506856 0.506856 

26 
0.635 

0.633056 0.642361 0.614444 0.607778 0.602778 

27 
0.28083333 

0.28 0.278472 0.605556 0.604444 0.602778 

28 
0.18277777 

0.183333 0.182778 0.182778 0.182778 0.428711 

29 
0.45138888 

0.451111 0.450833 0.4425 0.4425 0.430278 

30 
0.29055555 

0.289722 0.288611 0.605556 0.604444 0.602778 
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Values of MP when 𝑾𝑴𝑷,𝑬𝑺𝑬  is change by  𝛿 and rest weights are remaining same: 

Module 

Output of MP with 

original values of 

weights 

Output of MP when 

the uncertainty of   
𝑾𝑴𝑷,𝑬𝑺𝑬  changed 

by  𝛅=𝟎. 𝟎𝟏 

Output of MP when 

the uncertainty of  

𝑾𝑴𝑷,𝑬𝑺𝑬      changed 

by  𝛅 = 𝟎. 𝟎𝟐𝟓 

Output of MP when 

the uncertainty of  

𝑾𝑴𝑷,𝑬𝑺𝑬    changed 

by  𝛅 = 𝟎. 𝟎𝟓 

Output of MP when 

the uncertainty of  

𝑾𝑴𝑷,𝑬𝑺𝑬  changed 

by  𝛅 = 𝟎. 𝟕 

Output of MP when 

the uncertainty of  

𝑾𝑴𝑷,𝑬𝑺𝑬  changed 

by  𝛅 = 𝟎. 𝟏 

1 
0.43638888 

0.671111 0.673194 0.676667 0.679444 0.683056 

2 
0.45138888 

0.685 0.686944 0.686111 0.686667 0.686944 

3 
0.66972222 

0.671111 0.673194 0.676667 0.679444 0.683056 

4 
0.27277777 

0.279167 0.280417 0.2825 0.288056 0.294167 

5 
0.635 

0.6375 0.644583 0.655 0.663333 0.671944 

6 
0.11055555 

0.110556 0.110556 0.185556 0.298056 0.298056 

7 
0.44305555 

0.443889 0.678472 0.680556 0.682222 0.684167 

8 
0.45138888 

0.451667 0.452083 0.686111 0.686667 0.686944 

9 
0.29055555 

0.291944 0.294028 0.41 0.412778 0.416389 

10 
0.28083333 

0.282222 0.439444 0.676667 0.679444 0.683056 

11 
0.2875 

0.288333 0.289583 0.291667 0.448889 0.684167 

12 
0.23931755 

0.239989 0.239989 0.314989 0.110556 0.185556 

13 
0.16222222 

0.162222 0.162222 0.164167 0.164722 0.165 

14 
0.43638888 

0.671111 0.673194 0.676667 0.679444 0.683056 

15 
0.43638888 

0.437778 0.673194 0.676667 0.679444 0.683056 

16 
0.29527777 

0.295833 0.296667 0.6825 0.686944 0.686944 

17 
0.27833333 

0.279167 0.280417 0.285278 0.290556 0.449722 

18 
0.60888888 

0.610278 0.610972 0.635 0.64 0.671944 

19 
0.285 

0.285278 0.292639 0.286389 0.286944 0.298333 

20 
0.41416666 

0.416667 0.65375 0.66 0.665 0.671944 

21 
0.27833333 

0.279722 0.284306 0.287778 0.290556 0.449722 

22 
0.68694444 

0.686944 0.686944 0.686944 0.686944 0.686944 

23 
0.27833333 

0.279167 0.281806 0.287778 0.290556 0.294167 

24 
0.27833333 

0.279167 0.281806 0.285278 0.290556 0.294167 

25 
0.50685555 

0.506856 0.662411 0.506856 0.686944 0.686944 

26 
0.635 

0.6375 0.64125 0.655 0.663333 0.671944 

27 
0.28083333 

0.437778 0.439861 0.676667 0.679444 0.683056 

28 
0.18277777 

0.180833 0.296667 0.298056 0.298056 0.453611 

29 
0.45138888 

0.451667 0.685417 0.686111 0.686667 0.686944 

30 
0.29055555 

0.291389 0.292639 0.2975 0.412778 0.416389 
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Appendix 15. MATLAB Program used for 

Sensetivity Analysis 

 




