

An Efficient Rule-Based Distributed
Reasoning Framework for Resource-
bounded Systems

Rakib, A. & Uddin, I.

Published PDF deposited in Coventry University’s Repository

Original citation:
Rakib, A & Uddin, I 2019, 'An Efficient Rule-Based Distributed Reasoning Framework
for Resource-bounded Systems', Mobile Networks and Applications, vol. 24, pp. 82–
99.
https://dx.doi.org/10.1007/s11036-018-1140-x

DOI 10.1007/s11036-018-1140-x
ISSN 1383-469X
ESSN 1572-8153

Publisher: Springer

Open Access This article is distributed under the terms of the Creative Commons
Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Mobile Networks and Applications (2019) 24:82–99
https://doi.org/10.1007/s11036-018-1140-x

An Efficient Rule-Based Distributed Reasoning Framework
for Resource-bounded Systems

Abdur Rakib1 · Ijaz Uddin2

Published online: 23 October 2018
© The Author(s) 2018

Abstract
Over the last few years, context-aware computing has received a growing amount of attention among the researchers in
the IoT and ubiquitous computing community. In principle, context-aware computing transforms a physical environment
into a smart space by sensing the surrounding environment and interpreting the situation of the user. This process involves
three major steps: context acquisition, context modelling, and context-aware reasoning. Among other approaches, ontology-
based context modelling and rule-based context reasoning are widely used techniques to enable semantic interoperability
and interpreting user situations. However, implementing rich context-aware applications that perform reasoning on resource-
bounded mobile devices is quite challenging. In this paper, we present a context-aware systems development framework for
smart spaces, which includes a lightweight efficient rule engine and a wide range of user preferences to reduce the number
of rules while inferring personalized contexts. This shows rules can be reduced in order to optimize the inference engine
execution speed, and ultimately to reduce total execution time and execution cost.

Keywords Rule-based reasoning · Expert systems · Preferences · Context-aware systems

1 Introduction

In recent years, context-aware computing, an important sub-
field of mobile and ubiquitous computing technology, has
been the focus of much attention from the computer science,
artificial intelligence, and many other research communi-
ties. This emerging technology can be described as the next
generation of information and communication technology
which has large scale impact on our daily lives. Its appli-
cation encompasses many safety critical domains including
health care [1]. In these systems, information can be col-
lected by using tiny resource-bounded devices, including,
PDAs, smartphones, and wireless sensor nodes. With the
emergence of the smartphone industry, cloud computing and

� Abdur Rakib
Rakib.Abdur@uwe.ac.uk

Ijaz Uddin
khyx4iui@nottingham.edu.my

1 Department of Computer Science and Creative Technologies,
The University of the West of England, Bristol, UK

2 School of Computer Science, The University of Nottingham
Malaysia Campus, Semenyih, Malaysia

easy connectivity among devices, a significant change can
be seen from ubiquitous computing towards the Internet of
Things or IoT [2]. The basic idea is that the devices can
perform computing anywhere, at any time and are also con-
nected to each other and the Internet, especially handheld
devices such as mobile phones. Mobile devices, and more
specifically smartphones, are becoming one of the first fea-
sible platforms for ubiquitous computing [3]. It is a fact
that smartphones are slowly replacing desktop systems [4]
and are becoming a must have device for the general user
especially because of their versatility. A smartphone is a
cellphone with advanced features that supports a wide range
of functionality, including, but not limited to, web browsing,
email, voice and instant messaging over the internet, cap-
turing, storing and transmitting audio, videos and photos,
social networking, precise location, and many more other
activities. In general, a modern smartphone is equipped with
a number of sensors that can collect a lot of data from loca-
tion to the device orientation to environment conditions.
These sensors could produce a huge amount of data, both in
structured and unstructured forms. Thus, with an intelligent
smart device in hand, capable of processing different kinds
of data and with a variety of sensors attached to it along with
the capacity to connect to external devices/sensors, it can be
used more effectively as a context-aware device in building
context-aware application systems. A context-aware system

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-018-1140-x&domain=pdf
http://orcid.org/0000-0001-5430-450X
mailto: Rakib.Abdur@uwe.ac.uk
mailto: khyx4iui@nottingham.edu.my

Mobile Netw Appl (2019) 24:82–99 83

is a system which uses context to provide relevant informa-
tion and/or services to its user based on the user’s tasks. In
the literature, various definitions of context exist (see e.g.,
[5, 6]). Dey et al. [6] define context as any information
that can be used to identify the status of an entity. An entity
can be a person, a place, a physical or a computing object.
This context is relevant to a user and an application, and
reflects the relationship between them. According to this
widely accepted definition, we can consider the person as
an entity while the data generated by the smartphone or sen-
sors about the person is its context. Based on the context,
if any device or the system is taking any action then it is
one of the many examples of a context-aware system. Such
a system can be designed as an expert system to make it
context-aware and intelligent enough to realize its environ-
ment and act accordingly or to take decisions based on its
own knowledge. Rule-based reasoning is one of the most
popular approaches which is often used for designing a sys-
tem as an expert system [7]. However, most of the existing
rule engines used to develop expert systems rely on resource
hungry algorithms and high-end technology, while the usage
of such systems on small scale devices is no where to be
seen. In this paper, we propose a lightweight efficient rule
engine and a wide range of user preferences to reduce the
number of rules in order to optimize the inference engine
execution speed. We design a context-aware system as a
rule-based multi-agent system that run on Android devices,
where we use an ontology-based context model and a rule-
based reasoning technique to represent contexts and infer
the context changes.

The rest of the paper is structured as follows. In Section 2,
we review background concepts. In Section 3, we present
related work. The first part focusses on mobile-based context-
aware frameworks, and the second part presents the well
known existing inference engine algorithms of rule-based
systems and their complexity analysis. In Section 4, we
present a motivational analysis of the proposed research
approach. In Section 5, we present our proposed frame-
work, a lightweight efficient rule engine algorithm and its
complexity analysis. In Section 6, we discuss the prefer-
ences that provide a novel approach to reduce the overall
load from the inference engine. In Section 7, we present a
case study implemented from ontologies considering sev-
eral smart space agents, and conclude the paper in Section 8.

2 Background literature

2.1 Structure of rule-based systems

In the field of artificial intelligence (AI), rules are often
used for building knowledge-based expert systems [7].
Usually, any system that works on the basis of rules is

called a rule-based system (RBS) [8]. Rule-based systems
are an important class of AI reasoning systems, and such
systems are rapidly becoming an important component
of mainstream computing technologies, for example in
business process modelling, the semantic web, sensor
networks etc. Rules can be traced back to early production
systems as a well-known and popular way of encoding
expert knowledge, and they play a significant role in the
field of AI for modelling human reasoning and problem-
solving processes in a specific domain. Human reasoning
can be closely defined in terms of IF-THEN statements.
Therefore, RBS becomes an obvious choice when it comes
to encoding a human expert’s knowledge [9]. Each rule
can carry a minute amount of knowledge, and backed with
the facts from the environment, it acts similar to a human
brain. The rules act as long-term memory while the facts
are considered to work as a short-term memory [10, 11].
The RBS technology is used widely in various types of
software of different domains, and within these domains a
RBS can operate as a consultant, problem solver, an expert
or a decision maker [11]. The best usage of RBSs is applied
to systems where the solution of certain problems cannot
be achieved using conventional programming, or where
an algorithmic approach cannot provide an easy solution.
A rule-based system consists of a rule-base; an inference
engine; and a working memory. In some applications, a user
interface may be present through which input and output
signals are received and sent, however, it is not necessarily
a part of the basic reasoning process.

– Rule-base contains a set of rules, specifically the
appropriate knowledge encoded into IF-THEN rules for
a given problem;

– Working memory contains a set of facts which represent
the initial state of the system;

– Inference engine controls the system execution, consist-
ing of three phases: the match phase, the select phase
and the execute phase. The match phase compares the
conditions (IF) of all rules to working memory. A match
for every condition in a rule constitutes an instantiation
of that rule. A rule may have more than one instantia-
tion. The set of all rule instantiations collectively form
a set, called the conflict set, which is passed through the
select phase. In the select phase a reasoning strategy
(or a conflict resolution strategy) determines a single
instantiation, all instantiations or a subset of conflict set,
which is passed to the execute phase. In the absence of
an explicit reasoning strategy, all the instantiations are
selected for execution. The execute phase then performs
the actions of those instantiations passed specified in
its THEN clause. These actions can modify the work-
ing memory, for example newly generated facts can be
added to the working memory, some old facts can be

84 Mobile Netw Appl (2019) 24:82–99

deleted from the working memory or do anything else
specified by the system designer. The cycle begins again
with the match phase and the process continues until no
more rules can be matched or a problem is solved.

One of the advantages of a RBS is that the rules are
stored separately from the code. The rule-base can be altered
without making any changes to the program code. The
rule of a system has to follow a syntax, however, there
are not any specific guidelines for a rule. For example, in
some frameworks, a rule can have multiple right-had-side
(THEN) or actions, while some support only one action
(based on Horn-clause rules). The condition (IF) of the rule
carries the knowledge part. The set of rules into a rule-base
makes a knowledge base. The knowledge base is iterated for
pattern matching with facts and that is the most expensive
part of execution in terms of computation and time [12]. The
effects can be seen on memory too. In order to speed up
the matching process, various algorithms and solutions have
been proposed, including the RETE algorithm [13]. In order
to get a much clearer picture, in a later section of this paper,
we will discuss different match problems that are common
in RBSs.

2.2 Rule-base design

In AI, knowledge engineering is an area that develops
knowledge-based systems. It follows a systematic process
that creates rules to apply to data in order to simulate
the thought process of human experts. In that process
the main tasks include knowledge base design and
the implementation of inference engine [10]. While we
are not going to present here the whole knowledge
engineering process, we would like to briefly discuss the
importance of knowledge representation pertaining to the
rule-base design. Knowledge representation is a method
by which a knowledge engineer can model the facts
and relationships of the domain knowledge, and it is of
major importance in expert systems. This is due to the
fact that expert systems are often designed for a certain
type of knowledge representation based on inference rules.
Furthermore, knowledge representation affects the overall
development process, including, the efficiency, speed and
maintenance of the systems. However, there does not
exist any single general formalism suitable to represent
knowledge for all purposes [14]. In rule-based expert
systems, much of the knowledge is represented as rules.
There are various knowledge representation techniques
exist, the logic-based technique is one of them which is
popularly used both in theory and practice of rule-based
expert systems. Among many feasible logical knowledge
representation languages, propositional logic serves as a
useful language for encoding rule-based systems [15].

The basic logical form of propositional rules is Horn
clause of the form P1, P2, . . . , Pn → P . The premise
of the rule (left-hand side), which is a conjunction of
positive literals, is called the antecedent or body of the
rule, while the right-hand side of the arrow is called
consequent or head of the rule. If a Horn clause has no
body at all, it is called a definite clause or a fact. A
more complex rule may contain consequent part composed
of several propositions. Although propositional logic has
many practical applications, being a simple knowledge
representation language it is often not suitable for modelling
real life complex systems. For example, propositional
logic cannot directly talk about properties of individuals
or relations between individuals. Thus most modern
knowledge representation and reasoning approaches are
based on description logics (decidable fragments of first-
order logic) and rule-based formalisms (including SWRL)
constituting the most prominent language families [16].
In this regard, ontologies are an important knowledge
representation technique, often used widely in many
applications of web-oriented intelligent systems [17]. Since
we are interested in designing expert systems as multi-
agent context-aware reasoning systems, knowledge that
is exchanged and shared between agents is interpreted
according to a model which is achieved using ontology. In
the context of knowledge-based systems, an ontology can
be considered as the definition of the objects and relations
forming the basis for the conceptualization and model of an
expert system. The Protégé ontology editor and knowledge-
base framework [18], an open-source platform, helps to
construct domain models and knowledge-based applications
with ontologies. In [19], a tool has been developed to extract
Horn-clause rules from multiple OWL 2 RL ontologies. The
extracted rules are used to design our rule-based context-
aware agents.

2.3 Ontology-based context representation and
reasoning

We view context is any information that can be used to
identify the status of an entity [6]. A context can be formally
defined as a (subject, predicate, object) triple that states
a fact about the subject where — the subject is an entity
in the environment, the object is a value or another entity,
and the predicate is a relationship between the subject and
object. According to [6]—“if a piece of information can
be used to characterize the situation of a participant in an
interaction, then that information is context”. For example,
we can represent a context “Mary has a caregiver named
Fiona” as (Mary, hasCareGiver, Fiona). Here, the caregiver
Fiona of a patient Mary is dynamically identified based on
the care status of Fiona. This context can be expressed in
predicate calculus as hasCareGiver(Mary, Fiona).

Mobile Netw Appl (2019) 24:82–99 85

For context modelling we use OWL 2 RL, a language
profile of the new standardization OWL 2, and based on
pD∗ [20] and the description logic program (DLP) [21].
We choose OWL 2 RL because it is more expressive than
the RDFS and suitable for the design and development
of rule-based systems. An OWL 2 RL ontology can be
translated into a set of Horn clause rules based on [21].
Furthermore, we can express more complex rule-based
concepts using SWRL [22] which allow us to write rules
using OWL concepts. In our framework, a context-aware
system composed of a set of rule-based agents, and firing
of rules that infer new facts may determine context changes
and representing overall behaviour of the system.

2.4 Context-aware systems as resource-bounded
agents

A key application of multi-agent systems research is
distributed problem solving (DPS). Distributed approaches
to problem solving allow groups of agents to collaborate to
solve problems. Smith and Davis argue that—“distributed
problem solvers offer advantages of speed, reliability,
extensibility, the ability to handle applications with a
natural spatial distribution, and the ability to tolerate
uncertain data and knowledge. Because such systems
are highly modular they also offer conceptual clarity
and simplicity of design” [23]. However, while working
on the DPS setting, the computational (time and space)
and communication resources required by a reasoning
agent(s) to solve a given problem is of considerable
interest. In our framework, we consider systems having
constraint on various resources namely time, memory,
and communication. This is because many context-aware
systems often run on tiny devices including PDAs, mobile
phones, smart phones, GPS system, and wireless sensor
nodes. These devices usually operate under strict resource
constraints, e.g., battery energy level, memory, processor,
and quality of wireless connection. In [16], a formal
framework has been presented for modelling context-aware
systems and a logic LDROCS is developed which extends
the temporal logic CT L∗ with belief and communication
modalities and incorporates defeasible reasoning [24]
technique to reason about agents’ behaviour. Each agent’s
memory usage is modelled as the maximal number of
contexts to be stored in the agent’s memory at any given
time. That is, we assume that each agent in a system
has bounded memory size which allows maximal number
of contexts to be stored at any given time. We divide
agent’s memory into two parts as rule memory (knowledge
base) and working memory. Rule memory holds set of
rules, whereas the facts are stored in the agent’s working
memory. Working memory is divided into static memory
and dynamic memory. The dynamic memory of each agent

is bounded in size, where one unit of memory corresponds
to the ability to store an arbitrary context. The static part
contains initial information to start up the systems, e.g.,
initial working memory facts, thus its size is determined
by the number of initial facts. The dynamic part contains
newly derived facts as the system moves. Only contexts
stored in dynamic memory may get overwritten if it is
full or a conflicting context is derived. Similarly, each
agent has a communication counter, which starts with
value 0 and incremented by 1 each time while interacting
(sending/receiving a message) with other agents, and is not
allowed to exceed a preassigned threshold value.

To clarify these ideas, let us consider a simple example
of a distributed problem solving consisting of two agents.
Agents reason using (Horn clause) rules and communicate
via message passing. The knowledge bases and initial
working memories of agent 1 and agent 2 are shown in
Fig. 1. The goal is to derive context C5(a). Note that in
the rule Rik m : body → head , Rik represents kth rule
of agent i and the number m represents annotated priority
of the rule. Note also that OWL 2 is limited to unary and
binary predicates and it is function-free. Therefore, when
we develop ontologies and translate them into a set of Horn
clause rules, in the Protégé editor all the arguments of Ask

and T ell are represented using constant symbols [16]. An
agent can update its working memory by performing one of
the three possible actions:

Rule firing a matching rule instance in the current state
(possibly overwriting a context from the previous state);

Comm if agent i has an Ask(i, j, P) (or a Tell(i, j, P)) in
its current state, then agent j can copy it to its next state
(possibly overwriting a context from the previous state);

Idle which leaves its configuration unchanged.

That is, each transition (result of an action) corresponds
to a single execution step and takes an agent from one state
to another. States consist of the rules, facts (contexts), and
other resource counters of the agent. A step of the whole
system is composed of the actions of each agent, in parallel.
A problem is considered to be solved if one of the agents has
derived the goal. An example run of the system is shown in
Table 1. In the table, a newly inferred context at a particular
step is shown in blue text. For example, antecedents of
rule R11 of agent 1 match the contents of the memory
configuration and infers new context C3(a) at step 1. A
context which gets overwritten in the next state is shown in
red text, and a context which is inferred in the current state
and gets overwritten in the immediate next state is shown
in cyan text. In the memory configuration, for each agent,
left side of the red vertical bar | represents static part of the
working memory and its right side represents its dynamic
part. It shows that the size of the dynamic part of agent 1

86 Mobile Netw Appl (2019) 24:82–99

Fig. 1 Distributed problem
solving

is 2 units and that is of agent 2 is 1 unit. Note that, there
may not be any matching rule instance or there could be
multiple matching rule instances at a particular step. Note
also that only selected matching rule instances can be fired.
That is one rule instance may be selected from the conflict
set that has the highest priority. If there are multiple rule
instances with the same priority, then rule instance to be
executed is selected non-deterministically. In this case the
integers represent rule priorities, and we use the convention
that smaller integers represent lower priorities. It is evident
that in Fig. 1 neither agent can derive (infer) C5(a) alone.
We can observe in Table 1 that the resource requirements for
the system to derive the goal context C5(a) are 2 messages
that need to be exchanged by each agent and 6 time steps.
Time taken to communicate a fact between agents depends

on how we model the communication mechanism. In this
example, communication between agents is modelled using
Ask and T ell communication primitives, where the cost
of communication is paid by both agents, communication
takes more than one tick of time, and communication is
non-deterministic. We can also observe that, if we reduce
the dynamic memory size for agent 1 (and for agent 2) by
1, then the system will not be able to achieve the desired
goal. This is a very simple case; however, if we model a
more realistic scenario and increase the problem size, the
verification task would be hard to do by hand. Therefore it is
more convenient to use an automatic method to verify them,
for example using model checking techniques [25]. Further
discussion of these aspects is beyond the scope of this paper,
interested readers are referred to [16].

Table 1 One possible run of the system

Mobile Netw Appl (2019) 24:82–99 87

3 Related work

The related work presented in this section is divided into two
parts. The first part discusses mobile-based frameworks,
and research work which has focused on context-awareness
theme based on different techniques including the rule-
based approach. The later part focuses on the well known
existing inference engine algorithms of rule-based systems.

3.1 Android-based RBS and context-aware systems

A considerable research work has been conducted in the
area of social networks. While the discussion of social
networks, themselves, is beyond the scope of this paper,
they can be regarded as the online presence of a user where
a user helps in generating his contextual data along with
preferences and interacts with other users with the same
interests. In a social network, users put a lot of their personal
details, preferences, likes and dislikes etc. These give a
considerable amount of contextual information related to
a user as can be observed in different research projects,
including SociaCircuit platform [26], which monitors
different social factors between the users. Based on these
factors, it measures the shift in user preferences e.g., habits
and opinions. The work presented in [27] focused on finding
social relationships among the users, and this provides
results based on some data mining tools. Sociometric badge
presented in [28] monitors an employee’s different activity
patterns in the office. It records different data related to
the user, and based on that data, within the organization,
the user’s job satisfaction and interactions quality can be
predicted. Similarly, the work presented in [29] monitors
a user’s activity based on his different mobile sensors, his
locations visited, call logs etc. This monitoring then further
tries to infer the significant location based on his social
activities, different relationships and related information.
Recent work based on inferring results or mobile based
expert systems still lacks different aspects. For example,
in [30], a small expert system is developed which acts
as an academic advisor. It has a set of rules which fire
based on user provided inputs, and then the system provides
advise accordingly. The system is monotonic. It will give
the same answer for the same inputs every time, and
there is no capacity to run a different set of rules as the
interface is linked with its own current set of rules. There
also exists work based on client-server architecture such
as [31], where a server works as a knowledge base and an
Android phone works as a client agent with an application
installed to connect to the server and sending some
contextual information e.g., location. Similarly, another
research work [32] based on iPhone platform, uses the
same client-server architecture combined with a rule-based

system on the server to provide a safe evacuation in case of
emergency cases at a university (case scenario). However,
the set of rules used as expert knowledge is not defined
in their work. Most of the systems discussed above lack at
least one of the following major issues: Context re-usability,
Generic modelling, Resource efficiency in terms of space
and communication, and efficient rule-based reasoning.

Regarding the issue of re-usability of contexts, some
existing frameworks provide ontology-based approach such
as the work by [33, 34]. However, they do not address
the issue of context-aware mobile application development.
Some more recent work has effectively used the ontologies
for modelling with better resource handling. They have
modelled their systems using ontologies, with the bound on
resources such as memory and communication [35]. In [36],
the authors present an ontology-based framework for rapid
prototyping of context-aware application development. It
supports a wide user category and their collaboration
and cooperation in the applications development. Since
it is based on collaborative environment, users have to
accept the shared conceptualization of the domain. Three
main categories of users based on their technical abilities
are High level, Middle level, and Low level. Based on
the level of the users, users can use the framework in
different environments. The framework, while supporting
collaboration and sharing of context, also focuses on
the cooperation between users. This cooperation can be
synchronous, asynchronous, individual or group based. The
cooperation pattern based on the technical abilities can
be between developers, developers and end users, and
between end users. It has some important components such
as context providers, the context manager, programming
toolkits and the resource sharing server. However, the use of
resource sharing server suggests a limitation on distributed
approach, and also the Android limitations demand a more
compact and Android compatible framework. The part of
matching the rules and facts needs an algorithm, while
to implement it on resource-bounded devices it needs an
appropriate algorithm that can be tailored according to
the chosen platform. The next section discusses some of
the state-of-the-art inference engine algorithms and their
analysis where required.

3.2 Matching problems, precautions and algorithms

According to Forgy [37], in rule-based reasoning the
matching phase can take up to 90% of the whole execution
time. The matching phase repeats numerous times, and it
starts when new working memory elements are added or
removed. This certainly has a vital impact on the overall
execution time. The matching time is affected by the size
of the rule-base, the number of conditions (IF) in a given

88 Mobile Netw Appl (2019) 24:82–99

rule, and the number of working memory elements. Since
in each rule we have to match the rule conditions with the
working memory facts, the time for execution takes longer
when there are many conditions in a rule. Other factors that
affect it further can be attributed to the number of variables
on the LHS of the rule. If some variables are repeated in
other rules then it should be binding to the same fact every
time. Semi matching rules also create problems as they
are not added to the conflict set, however they are tested
for qualifying the facts. Rules that are never fired are also
checked for eligibility. Long rules with many conditions
also create problems and this is called the long chain effect.
These are some of the frequently occurring problems. There
are some precautions rather than solutions to avoid the
match problems. The precautions include saving the state
of the rule conditions, keeping track of the facts in view
of the rules which are most probably be affected with
the changes in the WM, sharing the conditions of rules
with similar rules etc. However, these precautions/solutions
have their own drawbacks. As we have already mentioned,
most of the expert system research has tended to focus
on high end computers with a lot of available resources,
and the solutions to the match problems take advantage
of using the abundant resources as state saving, condition
saving, and similar other strategies that consume a lot of
memory. Our concern, however, is to avoid such issues and
to deliver comparable or better results on small devices.
These results can be affected with simple strategies such
as, e.g., efficient rule-base management. Matching rules
part can be improved by different methods, the rule being
the main component can drastically improve the overall
performance. Simple ordering in conditions of a rule can
have a huge effect. If a rule has ten conditions and the first
nine conditions match while the last one doesn’t, the rule
is not eligible for firing and this check wastes the resources
for calculating the nine conditions. Instead, if the tenth
condition of the rule is checked at first place it will save a
lot of computational resources. Researchers have proposed
several matching techniques to match the rule conditions
in an attempt to improve the overall performance [10,
38]. They include strategies such as sharing conditions,
rules ordering, facts ordering etc. These can be carried out
while in the design phase of the rule base. One of the
prominent pattern matching algorithms that is often used
in rule-based expert systems is the RETE algorithm. The
RETE algorithm provides a base for many well-known
algorithms, including RETE Gator [39], RETE* [40] and
Treat [41]. These are eager evaluation algorithm. This
kind of algorithm creates the complete conflict set before
deciding which one to fire. These algorithms differ from
each other on technical differences between their respective
networks and making them efficient than their counterparts.

However, the basic working mechanism somehow remains
the same. Treat claims to use low memory consumption
compared to RETE. RETE* is considered as a hybrid
of both the RETE and Treat. In all the eager evaluation
algorithms the major drawback is considered the worst-
case complexity of O(WMRC

e), where WMe refers to the
working memory elements and RC represents the number
of conditions in a rule. This is not always the case but
it is always possible to encounter the worst case when
the number of working memory elements is large and the
rules carry many conditions. In order to overcome this
issue, the idea of lazy evaluation algorithm was proposed.
This kind of algorithm provides a concept that in a
cycle only one rule has to be activated since we have
to fire one rule at the end. This approach has its own
advantages, for instance, if a match is found it does not
search for more rules. Other algorithms search the rules
which are never fired but consume a lot of computational
resources. Based on this concept the only algorithm
made was Leaps [42]. As mentioned earlier, the RETE
algorithm is one of the most widely used algorithms [43],
however, many people find it difficult and has more than
1000 lines of pseudo code [44]. In the next section, we
elaborate working mechanism of the RETE algorithm and
provide its complexity analysis both in terms of time and
space.

3.2.1 The RETE algorithm

The RETE algorithm, introduced by Charles Forgy as part
of his doctoral studies [37], is widely used in systems
where pattern matching is required such as rule-based
systems. Based on it, several other algorithms have been
developed for high-end computers. It may be noted that
the RETE algorithm is used widely in centralized systems.
Although it has been computationally improved, it still
consumes huge amounts of memory [10] and could create
a potential problem especially when it comes to execution
on a single device or on small devices [9]. There have
been some attempts to port the current RBS systems
into the Android platform with little to no success [31,
45]. These have been discussed in our survey work [46],
including JESS which is based on the RETE algorithm.
The RETE algorithm is no doubt one of the most popular
algorithms which is commercially used in large corporates
encompassing a large number of business rules. Before
going into details, some of the basic terminologies of
the RETE algorithm are introduced. It considers the
production memory (PM) and working memory (WM).
The PM contains different productions or rules. Each rule
is represented as a set of conditions on the LHS and its
respective actions on the RHS. The WM contains items

Mobile Netw Appl (2019) 24:82–99 89

which represent facts. The structure of a particular rule is
provided below.

(

name of t h e r u l e

Le f t hand s i d e (one o r more c o n d i t i o n s)

Right hand s i d e (one o r more a c t i o n s)

)

Usually, the matching algorithms ignore the action part
or the consequent and handle the conditions. The conditions
may contain constants and variables. The actions are taken
care of by another part of the system once a conflict set has
been created. The RETE algorithm makes use of a data flow
algorithm for the better presentation of the rule conditions.
The network can be further broken down into two main
parts, namely the Alpha part and the Beta part. The Alpha
part carries out the constant tests on the WM and stores the
results in the Alpha memory. This Alpha memory contains
the elements of the working memory which successfully
pass the constant test for a given condition of a rule. The
Beta part handles the joins and beta memory. It does the
necessary variable binding between conditions, and stores
the results in the join node. Beta memories are then stored
along with the semi-matched production rules, as more and
more steps are taken. The process is repeated for the rest
of the conditions and finally a fully matched production is
acquired. Changes in the working memory are conveyed
to the Alpha network, and related Alpha nodes adopt the
changes. Ultimately, these changes are passed to the Beta
network nodes and joins. Any new matches found in the
Beta network are updated accordingly until it reaches the
end. At the end of the network, we have the production
node. When a production node is produced it indicates that
a newly matched rule has been found. In the middle of
the process, there are two types of activations, namely the
left activation and the right activation. The left activation
corresponds to the activation of a node by any other node
in the Beta network. The right activation refers to the
activation of a node by the Alpha memory. The joins in
the Beta network can have these two types of activations.
Both activations are handled by different procedures and
are discussed in the analysis of the algorithm section. An
important feature of the RETE algorithm is that it is state
saving. It saves the states of the matching process in the
Alpha and the Beta memories. A change in the WM does
not always affect many nodes in the network. However, the
RETE algorithm is not recommended for systems where
major changes occur in the working memory [44]. Another
feature of the RETE algorithm is its node sharing with

productions with similar conditions. Single Alpha memory
is used for a rule which has the same common conditions.
Figure 2 depicts a logical network illustration.

3.2.2 Analysis of the RETE algorithm

An algorithm based on RETE has been proposed in [44], the
author pointed out that RETE slows down with an increased
number of production rules. Furthermore, the author argues
that the RETE algorithm is not designed for systems where
the WM is frequently updated. Moreover, as mentioned
before, in the worst case the RETE algorithm can reach to
O(WMRC

e) [9, 42]. Similarly, in [47] the authors in their
comparative study argue that the asymptotic complexity
of the RETE algorithm is of O(nm). In the context of
multi-agent systems, the memory consumption of the RETE
algorithm is problematic [9]. Since the working memory
is not fixed, and the RETE algorithm is well known for its
large use of memory, it is not a suitable option for small
devices. Memory is mainly consumed when the network
is developed to store the states at different levels. It uses
a lot of memory when creating Alpha-Beta networks and
the space complexity is exponential for both RETE and
TREAT [48]. The working memory itself is not fixed and
practically all available memory could be occupied with the
WM elements. Another issue is that when there are many
WM elements and a complex rule with varying conditions.
This can lead to the cross-product problem and can take
the system into the worst case scenario. Furthermore, an
issue with the RETE algorithm as pointed out in [49] is
the creation of a lot of child nodes when we have an
attribute with multiple values, for example, colour and its
values. In that case, the attribute colour node will spread
into the number of values (blue, green, black and so on)
available. Besides these problems which are pointed out
in the research, if we consider the pseudo code of the
RETE algorithm and analyse the complexity for the sake of
comparison, we find that the Left and Right node activation
has a complexity of O(n2). Let us consider the (Join Node
Left activation) high-level Pseudo code from [44] of the
RETE algorithm shown in Table 2. Similarly, the procedure
of join node right activation from the same source has
complexity as shown in Table 3.

These two fragments particularly have the complexity of
O(n2). While the rest of the pseudo code itself is beyond
the scope of this paper and is too lengthy to be mentioned
here. However, from these code fragments, it is affirmed
that the complexity of RETE algorithm cannot be lower than
O(n2).

The typical problems of RBS combined with context-
aware systems, re-usability, low resource usage etc. as

90 Mobile Netw Appl (2019) 24:82–99

Fig. 2 Rete network illustration

discussed in this section, have provided us with an
opportunity to explore further the problems on small
devices and to devise an algorithm and context-awareness
model that can perform in comparable computation and
better memory usage in resource-bounded devices. The
development of the framework is designed as an agent-
based reasoning system, with each agent having its own set
of rules and inference engine and having the capacity to
communicate with other devices in a distributed fashion.

4 Amotivational analysis of the proposed
research approach

With the advancement of resource sharing large-scale cloud
computing, the expert systems have also seen their growth
on such platforms. Similarly, the use of social networks,
which keeps the user engaged and extracts a variety of
contextual information from the user such as location,
timestamps and related contexts make it an easy task to

Table 2 Left activation
algorithm running cost Algorithm Cost Frequency

START

IF node.parent just became non empty then c1 n
relink.to.alpha.memory(node) c2 n
If node.amem.items =nil then c3 n
remove node from the list node.parent.children c4 n

For each item in node.amem.items do c5 n
If perform-join-tests(node.tests,t,item.wme) then c6 n

For each child in node.children c7 n2

do left-activation(child,t, item.wme) c8 n2

END

Mobile Netw Appl (2019) 24:82–99 91

Table 3 Right activation
algorithm running cost Algorithm Cost Frequency

START

IF node.parent just became non empty then c1 n
relink.to.beta.memory(node) c2 n
If node.parent.items =nil then c3 n
remove node from the list node.amem.successors c4 n

For each t in node.parent.items do c5 n
If perform-join-tests(node.tests,t,w) then c6 n

For each child in node.children c7 n2

do left-activation(child,t, w) c8 n2

END

connect the expert systems with the social networks and
utilise the available contextual data. However, the part
where the resources are limited is widely ignored. Also,
if a system is supposed to care for elderly people/patients
or is a remote monitoring system, the social network does
not have a big role to play in such cases. This is because
the chances are that a patient might not have his social
networking account or may not be using it actively. Expert
systems which are supposed to help humans are now relying
more and more on resource hungry algorithms and high-end
technology, while the usage of such systems on small-
scale devices is nowhere to be seen. There is certainly
a need for such dedicated systems [50]. The scenario
above provides the main motivation for undertaking this
study and proposing a context-aware system development
framework considering resource-bounded devices. That is
a system which instead of learning from the behaviour and
saving it into a massive memory, should be working on the
current inputs it has and the contexts that are available to
the system. The author in [51] has provided a very good
insight into scenarios as to where and when a context-
aware application should respond. The work has human
being opinions on how the reaction of context should be.
In other words, the response should be non-monotonous
and should be intelligent enough to use the context wisely
for a better user experience, rather than annoying a user
whenever a trigger is found for a particular context e.g.,
an alarm or alert. A context-aware system should detect
if a user is working on his smartphone and then the
wakeup alarm should not start. Instead, it should be aware
that the screen is already on and that the user is awake.
The development of rule-based context-aware systems will
cater to the needs of the expert systems deployment in
remote areas. The scope of such a system is not only
limited to human use, but an expert system deployed in
a remote area could be used for flood forecasting, and
provide remote care for patients more easily. Elder-care or
assisted living systems could be managed, to mention but
a few of the possibilities. Furthermore, as we explored, it

is realized that the computation time is directly related to
the input provided. Since the rules provide the main expert
knowledge, a rule-based system has to iterate through all the
rules. Naturally, if the number of rules is kept to a minimum
then it will take less time to generate output. Therefore, we
also proposed a very interesting method of personalization
in the rules, which drastically reduces the number of rules to
be processed without affecting the expected system output.
The output produced considering all the rules and the set of
reduced rules should be the same provided the preferences
are set accordingly [52, 53].

5 Proposed framework

In order to have an efficient RBS on small devices, we need
to take into account particularly the memory consumption,
the communication system and the rule-base size along with
the rest of the components. Contrary to other algorithms,
the proposed algorithm does not store any kind of states
of conditions. Only variables and their values are stored
in key-value pairs whenever a variable and its value are
found, thus occupying space only when a variable needs
binding. Once a variable has been bound to a value, it can
be re-used for the same variable in the future. In order to
run a system on a small device, the rule base has to be
small in size. Reducing rules can affect the accuracy of a
system, and our novel approach towards the reducing of
rules is based on the preferences provided by the system
designer as well as the end user. This only process a subset
of rules that are required for a particular scenario. As
an example, a user who is in office does not need rules
which deal with his home. Processing the home-based rules
would simply increase the complexity of the whole system.
Therefore, we do not consider them unless required. The
enhanced preference mechanism is based on our previous
works from [52, 53]. The structure of rule ordering can be
opt-in as an added optimization feature. Our rule matching
mechanism to create a conflict set checks the predicate first.

92 Mobile Netw Appl (2019) 24:82–99

Fig. 3 Different matching
scenarios of the proposed
algorithm

If a predicate match is found in the working memory then it
further checks the rule condition, otherwise discards the rule
without moving any further. A flag is set to monitor each
match. If a flag value is 1 for a given condition in a rule then
it proceeds to the next condition. Whenever 0 is encountered
it represents that the rule cannot fully match with the facts,
the process is terminated and the next rule is selected for a
check. A typical rule format of our framework can be found
in [52], while some changes are made when preference is
intended. The typical structure of a rule looks like this:

m : P1, P2, . . . Pn → P : F : CS

where n ≥ 0, m represents the priority of the rule followed
by the LHS and RHS, F is a flag which shows the nature of
the rule, and CS is used for preferences.

5.1 Matching algorithm

In this section, we would like to illustrate how the matches
are performed with a simple example. This will give a
basic idea of how the algorithm works. Although there are
other checks performed on different levels which decide
if the next condition is worth checking or not, which are
not discussed in Fig. 3. In Fig. 3, two different scenarios
are provided. In the left-hand side, there is a condition
containing a variable. The algorithm first matches the
predicate part. Once the predicate part matches with any
one of the WM facts then it proceeds to the next step and
performs different checks. In this case, we have a variable
?x. The algorithm then assigns the variable ?x, and terms
it as a key. The key then stores the value as Alan. On the
right-hand side, there is a comparison of a constant. In the
rule condition, instead of a variable this time we have a
constant. Since the predicate matches, it checks that there
is no variable in the rule and the only term available is a
constant which does not match with the constant term 11.
Hence the rule is discarded without any further processing
of the remaining rule conditions. The algorithm can process
both the variable and the constant in the same condition of a

rule. Our proposed algorithm is based on the simplicity. The
size of the working memory can be adjusted automatically
via different strategies (see Section 5.2). The devices can
trigger communication when rules are specifically required
to communicate. Furthermore, the preferences as discussed
in the next section reduce the number of processable rules
to the least possible number without affecting the outcome
of the system.

5.1.1 The time and space complexity of the proposed
algorithm

In this section, we analyse the asymptotic complexity of
the proposed algorithm (depicted in Table 4) both in terms
of the time and space. As discussed earlier, the complexity
of the RETE algorithm as well as other eager evaluation
algorithms is of O(WMRC

e) [9, 42]. Charles Forgy has
also mentioned the same as a worst case for the effect of
working memory size on the number of tokens. However,
the proposed algorithm shows a very promising result
especially in terms of space management which is one of
our primary goals to achieve. In the Algorithm presented
in Table 4, the symbols are defined as R: Rule-Base,
WM: Working Memory [Rs : A single rule, Ri : A rule
instance, Rb: Rule body, Rib: Rule instance body, Rc: Rule
consequent, Ra : Rule atoms in the body, Rap: Rule atom
predicate, Rat : Rule atom terms, Fc: Current fact, Fcp:
Current fact predicate, Fct : Current fact terms, PM: Pattern
matching, Pra : Patterns in rule body, VAR: Arraylist to hold
KEY and VALUE.

The complexity of the proposed algorithm is of O(n2).
Its worst-case complexity is considerably low and it is
efficiently usable on any resource-bounded devices. The
conflict resolution input depends on the size of the conflict
set. It iterates through the conflict set and finds the highest
priority rule instance for execution. The time complexity of
the conflict resolution code is of O(n), depicted in Table 5.
Its space complexity is also O(n) as there is only one array
that holds the conflict set elements. The rule execution is
quite straightforward. When a rule instance is passed by

Mobile Netw Appl (2019) 24:82–99 93

Table 4 Conflict set generation
algorithm complexity Algorithm Cost Frequency

For r=0 to size of R c1 n + 1

Clear VAR c2 n
Rs =R[r] c3 n
Find patterns in Rb of Rs c4 n
Add to Array Pra c5 n
Flag: Array of size equal to Pra c6 n
For ra = 0 to size of |Ra | do c7 n(n + 1)
Select Ra[ra] c8 n2

Seperate Rap from Rat 9 n2

For f=0 to size of WM do c10 mn2

Fc =WM[f] c11 mn2

Seperate Fcp from Fct c12 mn2

if Rap == Fcp then c13 mn2

if Rat == Fct | pattern(Rat==Fct) then c14 + c15 mn2

Add 1 to flag c16 mn2

KEY = Rat c17 mn2

VALUE = Fct c18 mn2

if(VAR does not contain KEY) then c19 mn2

Add KEY to VAR c20 mn2

cRAVotEULAVddA 21 mn2

else Add 0 to Flag and Exit Loop c22 mn2

if Flag does not contain 0 then c23 n
For var=0 to size of VAR do c24 n(n + 1)
Key = VAR[var] c25 n2

c]1+rav[RAV=eulaV 26 n2

Ri Replace Key with Value in Rs c27 n2

Rc = consequent(Ri c) 28 n2

var var+2 c29 n2

if WM !contain Rc AND CS !contain Ri then c30 +c31 n
Add Ri to CS c32 n

the conflict resolution phase, it is ready to be fired. The
fired rule can have different impacts. For example, it can
add something to the working memory, delete something
from the working memory, initiate communication as in
the case of ask/tell rules or simply reach the goal and
terminate the process. The terms used in Table 5 are defined
as CS: Conflict set, Po: Priority Operator, SPR: Same
priority rules, Cics : An element of CS, Rip: Rule instance
priority.

In Table 6, the algorithm for executing a selected rule
instance and its corresponding complexity is analysed. The
complexity of this algorithm is of O(1). In terms of space,
the algorithm only reads from the memory which is already
calculated in the previous algorithms and creates no new
space to be added. The terms used in the algorithm are
defined as to fire: A selected rule instance to be fired,
Rc: A communication rule instance, Rg: A rule instance

contains a goal context, Rd : A deduction rule instance, Rf :
Rule Flag, Rcons : Consequent, MAX SIZE: memory size.

5.2 The workingmemory adaptation

According to the theoretical framework [16], the working
memory of an agent has to be bounded. This also helps
to achieve a better running time. If the working memory
size is not fixed the worst case complexity can be increased
drastically. In order to maintain a balanced working
memory, a few methods are proposed, and a user can opt for
any one of them.

Distinct consequences In the database analogy, the distinct
returns all the results so that the duplicated values are
only shown once instead of repeating them. Similarly, the
working memory’s maximal limit can be put equal to the

94 Mobile Netw Appl (2019) 24:82–99

Table 5 Conflict resolution
algorithm running cost Algorithm ycneuqerFtsoC

Po =0 1c

For cs = 0 to size of CS c1 n
Cics = CS[cs] c2 n
get Rip from Cics c3 n
if Rip > Po c4 n
Po = Rip c5 n
to f ire = Cics c6 n

end

else if Po == Rip then c7 n
Add Cics to SPR c8 n

end
end
if SPR > 0 then c9 1

Add to f ire to SPR c10 1

to f ire = random(SPR) c11 1

end

END

number of distinct consequences of the rules. If there are
n number of rules and n′ number of distinct consequences
then the size of the WM would be n′. Note that there could
be some rules which have the same consequences, therefore
n′ ≤ n.

Maximal size of the preference sets In this technique, the
preference sets are taken into consideration [52]. It is
more complex than the previous method, and with a more
space saving mechanism when preferences are supposed
to be implemented. This mechanism considers the rules

Table 6 Cost for executing
a selected rule instance Algorithm Cost Frequency

START

If Rg then c1 1

If Rcons is a conflicting context Then c2 1

Overwrite the contradictory context with Rcons c3 1

Else If |WM| < MAX SIZE then c4 1

Add Rcons toWM c5 1

Else Overwrite an existing context with Rcons c6 1

Goal Reached c7 1

Execution Halts c8 1

Else

If Rcons is a conflicting context c9 1

Overwrite the contradictory context with Rcons c
c

c

10 1

If Rc then 11 1

initiate communication module c12 1

Else If |WM| < MAX SIZE c13 1

Add Rcons toWM c14 1

If Rc then 15 1

initiate communication module c16 1

Else Overwrire an existing context with Rcons c17 1

If Rc then c18 1

initiate communication module c19 1

END

Mobile Netw Appl (2019) 24:82–99 95

in different preference sets and takes the maximal size of
distinct consequences of the preference sets.

System designer assigned In this case, it’s up to the system
designer to assign the minimal memory size and verify the
system behaviour before its implementation [16].

6 Preferences

The preferences provide a novel approach to reduce the
overall load from the inference engine. The mechanism of
preferences is designed in a way so that it can cater to
personalized services to the user and it also reduces the
number of rules an inference engine has to process. In this
way, it handles two different operations simultaneously. The
preferences are further divided into three sub-approaches.
The sub-approaches depend on the scenario and are purely
based on the user’s choice.

Context-based preference The context-based preference is
the simplest one. It makes a subset of rules, based on the
user’s selected context. The rules are grouped together by
the same context set indicator or CS. A single rule can be
a member of different subsets. Once the user selects the
context, it can proceed to the next step by creating a subset
from the main rule base. Although it has advantages, it may
not work when a user anticipates some context in the future
to appear and it is not selected in the preference set. For that
reason, the derived context based preference is used.

Derived-context based preference When a user is expect-
ing some context to appear in the future and the user wants
to enable the preference on that context, then it can be
enabled by putting certain rules in a category which a user
then keep under watch until the preferred context is derived.
As an example scenario, if a user visits a hospital for some
reason other than for a check-up, then the rules associated
with the person being a patient should not execute. How-
ever, if the user is visiting the hospital and his condition
is detected as being ill, then the patient rules should apply.
Thus, depending on the user context derived, the corres-
ponding subset of rules will be selected to be processed by
the inference engine.

Live preference Live preference comes in handy when a
user wants to monitor some context continuously until it
occurs. For example, if a user wants to keep logging the GPS
unless a certain point comes to execute some rules. Once the
system detects the context, the preference set is enabled and
vice versa. A good example is a user applying some specific

rules on a Sunday of the week, in that case, the context of
a day is monitored until it becomes Sunday. On other days
normal rules will be selected for processing by the inference
engine.

We refer the interested reader to [52] for a more detailed
discussion on preferences.

7 A case study

To illustrate the functionality of the proposed framework,
a prototype system has been implemented which is based
on a case scenario of a user’s daily activities. In fact,
we reimplemented an example scenario introduced in [52]
by incorporating more agents into the system in order to
design and capture a more complex interactive behaviour
of context-aware applications. This also helps us exploring
context-aware cross-device interactions between smart-
phones and a blood pressure and heart rate monitoring
device. We implemented the application system on four
sensor-rich Android smart devices (i.e., smart-phones as
well as a blood pressure and heart rate monitoring device)
and collected data from typical daily activities of a real user.
As explained earlier, carrying these devices implies that
various sensors and reasonable computational power are
always available. Therefore, acquiring low-level contextual
data can be used to infer high-level contexts. That is,
contexts can be recognized by analysing the data from the
sensors. The system consists of 24 agents, some of them
are Android-based agents having their own knowledge-base
and inference engine. However, some of the agents are
only capable of sensing environmental data and send them
to other agents in the system and are not able to make
inferences on their own. In order to capture the complete
scenario, some agents have been simulated. For example,
most of the sensors used to model the Smart home and
Smart office are simulated. Each of these sensors is assumed
to have the capability of generating (simulated) sensor
data values. For example, to sense information about milk
availability, it is assumed that the milk container is labelled
with an RFID tag containing information about the available
amount and expiration date, and the smart refrigerator is
equipped with an RFID reader, which reads the tag when
milk is placed inside the refrigerator. The case study focuses
on a normal routine of a user. A system response is checked
at several different locations e.g., home, office, market, and
health centre. In order to model the agents, the D-Onto-
HCR tool [19] has been used to extract 200 rules from
three smart domain ontologies. In the following, we briefly
describe the agents which are used to model the example
system.

96 Mobile Netw Appl (2019) 24:82–99

7.1 Agents

– Smart home: the smart home provides services that are
specific to the home user. It has eleven different agents,
which work together to serve the user in a better way.

1. Authorization sensor: it checks if the user is
authorized to use the services or not.

2. Motion detector: this agent detects the motion of
the user to determine the user presence.

3. Light sensor: it works with lights, especially
turning the lights on and off.

4. Aircon controller: this sensor controls the working
of the air conditioner based on temperature.

5. Home controller sensors: this sensor checks the
occupancy and authorization of the user at home.

6. Temperature sensor: it senses the temperature of
a room and accordingly interacts with the Aircon
controller.

7. Door control sensor: this sensor is attached to a
door and it can open/close the door OR it can
identify if the door is opened.

8. Gas leak detector: it detects the gas leakage, and if
the leakage is found it can alert the user.

9. Smoke sensor: similar to the gas detector, it detects
the smoke and fires the alarm in case of smoke is
detected.

10. GPS sensor: it detects the user location and when
required sends it to the other agents.

11. Smart fridge: it monitors different items in the
fridge and their quantity.

– Smart office: the smart office facilitates the user in
the office by keeping the environment comfortable
according to its rules.

12. Authorization sensor: it checks if the user is
authorized to use the services or not.

13. Smart chair: it detects if the user is sitting in the
office, it also reminds the user to change posture or
walk in case it detects that the user has been sitting
for a long time.

14. Light lamp: it controls the lights at the office.
15. Windows blinds: it controls the window blinds to

open or close them.
16. Aircon controller: this sensor controls the air

conditioner based on the sensed environmental
temperature.

17. Temperature sensor: it senses the temperature of
a room and accordingly interacts with the Aircon
controller.

18. GPS sensor: it detects the user location and when
required sends it to the other agents.

– Smart health-care: It is responsible for monitoring the
user health.

19. Patient care agent: this agent is responsible for
tracking and monitoring user medical conditions.

20. Blood pressure monitor: it tracks user’s blood
pressure and sends the reading values to the patient
care agent.

21. Diabetes monitor: it tracks user’s blood glucose
levels and sends the reading values to the patient
care agent.

22. Fever monitor: it tracks user’s temperature and
sends the reading values to the patient care agent.

23. GPS sensor: it detects the user location and when
required sends it to the other agents.

24. Care giver: it gets notified in an emergency and/or
non-emergency situation.

7.2 Example of preferences

We briefly explain here the use of preferences. Let us
consider the patient care agent which has a variety of rules
besides those presented in Table 7. In the table, the rule
categories are labelled at the top and the left side of the
table. Any rule that does not have any CS indicator is a
general rule, represented by ” − ” in the context set, and
will be added to every subset that is created for a preference
set. However, there are some context based as well as
derived context based preferences are also shown in the
table. The CS indicator hasHRCategory(Alan, Poor) implies
that if this context appears in the agent’s working memory
(which is basically a context deduced or inferred from
other rules), then the corresponding Emergency rule will
be added to the preference set. This means that Emergency
rules will be added to the preference set only when the
context hasHRCategory(Alan, Poor) is derived from the
previously used active rules, otherwise, these rules will not
be processed. The CS indicator hasLocation(Alan, Home)
indicates a live preference and will be invoked only when
the GPS sensor sense the location of Alan is at Home.
Similarly, the rest of the rules will only be added to the
preference set when the user is physically present at Home
and the device(GPS) detects the user location indeed at
Home. Thus, instead of considering all the rules at once
to form the knowledge-base of the agent, the size of the
preference set (active rules) will increase or decrease based
on the CS indicators and the preference mechanism applied
in a given scenario.

7.3 An execution scenario analysis

In our experiment, we have executed various case scenarios
to understand the system behaviour, with preferences applied

Mobile Netw Appl (2019) 24:82–99 97

Table 7 Blood pressure and heart rate rules

Category m Corresponding rule F CS

Blood pressure category rules

Low BP 1 Person(?p), hasSystolicBloodPressure(?p,?sbp), hasDiastolicBloodPressure(?p, D –

?dbp), lessThan(?sbp, ’90), lessThan(?dbp,60) −→ hasBPCategory(?p,LowBP)

Normal 1 Person(?p),hasSystolicBloodPressure(?p,?sbp), hasDiastolicBloodPressure(?p, D –

?dbp), greaterThan(?sbp,90), greaterthan(?dbp,60), lessThan(?sbp,120), less-

Than(?dbp,80) −→ hasBPCategory(?p,Normal)

Pre high 1 Person(?p), hasSystolicBloodPressure(?p,?sbp), hasDiastolicBloodPressure(?p, D –

?dbp),greaterThan(?sbp,120), greaterThan(?dbp,80),lessThan(?sbp,140), less-

Than(?dbp,90)−→ hasBPCategory(?p,PreHigh)

High 1 Person(?p), hasSystolicBloodPressure(?p,?sbp), hasDiastolicBloodPressure(?p, D –

?dbp), greaterThan(?sbp,140), greaterThan(?dbp,90)−→ hasBPCategory(?p,

HighBP)

Heart rate category rules

Athlete 1 Person(?p), hasHeartRate(?p,?hrt), greaterThan(?hrt,48), lessThan(?hrt,55) D –

−→ hasHRCategory(?p, Athlete)

Excellent 1 Person(?p), hasHeartRate(?p,?hrt), greaterThan(?hrt,54), lessThan(?hrt,62) D –

−→ hasHRCategory(?p,Excellent)

Good 1 Person(?p), hasHeartRate(?p,?hrt), greaterThan(?hrt,61), lessThan(?hrt,66) D –

−→ hasHRCategory(?p,Good)

Above Average 1 Person(?p), hasHeartRate(?p,?hrt), greaterThan(?hrt,65), lessThan(?hrt,71) D –

−→ hasHRCategory(?p,AboveAverage)

Average 1 Person(?p), hasHeartRate(?p,?hrt), greaterThan(?hrt,70), lessThan(?hrt,75) D –

−→ hasHRCategory(?p,Average)

Below Average 1 Person(?p), hasHeartRate(?p,?hrt), greaterThan(?hrt,74),lessThan(?hrt,82) D –

−→ hasHRCategory(?p,BelowAverage)

Poor 1 Person(?p), hasHeartRate(?p,?hrt), greaterThan(?hrt,81) D –

−→ hasHRCategory(?p,Poor)

Some example rules to derive different situations

Emergency 2 Patient(?p), hasBPCategory(?p,HighBP), hasHRCategory(?p,Poor) D hasHRCategory (Alan, Poor)

→ hasSituation (?p,Emergency)

Emergency 2 Patient(?p), hasBPCategory(?p,PreHigh), hasHRCategory(?p,Poor) D hasHRCategory (Alan, Poor)

→ hasSituation (?p,Emergency)

Emergency 2 Patient(?p),hasBPCategory(?p,Normal), hasHRCategory(?p,Poor) D hasLocation (Alan, Home)

→ hasSituation (?p,Emergency)

Emergency 2 Patient(?p),hasBPCategory(?p,LowBp), hasHRCategory(?p,Poor) D hasBPCategory (Alan, LowBP)

→hasSituation (?p,Emergency)

Non 1 Patient(?p),hasBPCategory(?p,Normal), hasHRCategory(?p,Average) D hasLocation (Alan, Home)

Emergency → ∼hasSituation (?p,Emergency)

Non 1 Patient(?p),hasBPCategory(?p,Normal), hasHRCategory(?p,AboveAverage) D hasLocation (Alan, Home)

Emergency → ∼hasSituation (?p,Emergency)

Non 1 Patient(?p),hasBPCategory(?p,Normal), hasHRCategory(?p,Good) D hasLocation (Alan, Home)

Emergency → ∼hasSituation (?p,Emergency)

to the rule-base. The preferences are applied at different levels.
Here, we just discuss the Smart health-care Emergency
scenario. In the Table 8, the first column refers to the Agent.

The second column shows the total number of rules used to
model the corresponding agent. The third column represents
the number of rules after certain preferences are applied,

98 Mobile Netw Appl (2019) 24:82–99

Table 8 Smart health-care: preference impact on rule base size

Agent No. of rules No. of Rules Reduction in %

after preference

19 42 29 30.95

20 9 2 77.77

21 10 2 80

22 8 2 75

23 3 3 0

24 3 3 0

Total 75 41 45.33

and the last column represents the reduction percentage
of the rule base. The last row shows the same results
but it reflects the overall results considering all the six
agents. In the table, it is observed that the number of rules
required for the patient care agent to handle the emergency
situation is 29, reducing almost 31% of its rule-base size.
The system output received is satisfactory and the same
results were obtained without applying any preferences. The
applied preferences played an important role in reducing the
redundant rules in a given scenario. This shows rules can be
reduced in order to optimize the inference engine execution
speed, and ultimately to reduce total execution time and
execution cost.

8 Conclusions and future work

In this paper, we have discussed existing pattern matching
algorithms, their drawbacks and usage on small devices
focussing specifically on the RETE algorithm. We then
proposed an algorithm, tailored according to the needs
of resource bounded-devices, especially Android devices.
The complexity of the proposed algorithm is of O(n2).
Its worst-case complexity is considerably low and it is
efficiently usable on any resource-bounded devices. Using
the Android Studio, our proposed rule engine model has
been implemented in Android phones, which can be used
to run on different Android devices. The application of
preferences further enhances the usability of the proposed
rule engine by reducing the total execution time and
execution cost. In future work, we would like to provide
more independent mobility to devices by implementing the
system on other technologies, for example, on the LEGO
mindstorm robot platform [54]. It will give us more control
over the sensors of the LEGO framework while connected to
the rest of the agents, to provide better services. Also, as the
LEGO agent will be moving, it can make use of the sensors
to be used at any place it is deployed. In that case, we can
reduce the number of sensors. For example, a single LEGO-
based robot can sense the temperature of different rooms

by physically moving there instead of using a temperature
sensor for every room.

Acknowledgements This work was partially supported by the FET-
Computer Science and Creative Technologies at UWE and a Grant
received through the Ministry of Science, Technology and Innovation
(MOSTI), Govt. of Malaysia as project number 01-02-12-SF0269.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Bardram JE, Nørskov N (2008) A context-aware patient safety
system for the operating room. In: Proceedings of of the 10th
international conference on ubiquitous computing, pp 272–281

2. Andrade RMC, Carvalho RM, de Araújo IL, Oliveira KM,
Maia MEF (2017) What changes from ubiquitous computing to
internet of things in interaction evaluation? Springer International
Publishing, Cham, pp 3–21

3. Ballagas MRR, Borchers J, Sheridan JG (2006) The smart phone:
a ubiquitous input device. In: IEEE pervasive computing, vol 5, pp
70–77

4. Karlson AK, Iqbal ST, Meyers B, Ramos G, Lee K, Tang
JC (2010) Mobile taskflow in context: a screenshot study of
smartphone usage. In: Proceedings of the SIGCHI conference on
human factors in computing systems. ACM, pp 2009–2018

5. Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014)
Context aware computing for the internet of things: a survey.
Communications Surveys & Tutorials, IEEE 16(1):414–454

6. Abowd GD, Dey AK, Brown PJ, Davies N, Smith M, Steggles
P (1999) Towards a better understanding of context and context-
awareness. In: Handheld and ubiquitous computing. Springer,
pp 304–307

7. Durkin J (1994) Expert systems: design and development. Prentice
Hall, New York

8. Russell S, Norvig P (2002) Artificial intelligence: a modern
approach, 2nd edn. Prentice-hall, New York

9. Lagun E Evaluation and implementation of match algorithms
for rule-based multi-agent systems using the example of Jadex.
Master’s Thesis, Universität Hamburg

10. Giarratano JC, Riley G (2005) Expert systems: principles and
programming. Thomson Course Technology

11. Luger G (2001) Artificial intelligence: structures and strategies for
complex problem solving. Addison Wesley, Reading

12. Friedman-Hill E (2003) Jess in Action: Java rule-based systems.
Manning Publications

13. Forgy C (1982) Rete: a fast algorithm for the many pattern/many
object pattern match problem. Artif Intell 19(1):17–37

14. Reichgelt H, van Harmelen F (1984) Criteria for choosing
representation languages and control regimes for expert systems.
Knowl Eng Rev 1(4):2–17

15. Alechina N, Logan B, Nga NH, Rakib A (2009) Verifying time,
memory and communication bounds in systems of reasoning
agents. Journal Synthese@Springer-Verlag 169(2):385–403

16. Rakib A, Haque HM (2014) A Logic for context-aware non-
monotonic reasoning agents. In: Gelbukh A et al (eds) MICAI’14,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Mobile Netw Appl (2019) 24:82–99 99

human-inspired computing and its applications, vol 8856. LNCS,
Springer, pp 453–471

17. Skillen K-L et al (2014) Ontological user modelling and semantic
rule-based reasoning for personalisation of Help-On-Demand
services in pervasive environments. Futur Gener Comput Syst
34:97–109

18. The protégé ontology editor and knowledge-base framework
(Version 4.1), 2011, http://protege.stanford.edu/

19. Mahfooz Ul Haque H, Rakib A, Uddin I (2017) Modelling
and reasoning about context-aware agents over heterogeneous
knowledge sources. In: 5th international conference on context-
aware systems and applications (ICCASA’16), vol 193. LNICST,
Springer-Verlag, pp 1–11

20. ter Horst HJ (2005) Completeness, decidability and complexity of
entailment for RDF Schema and a semantic extension involving
the OWL vocabulary. Web Semant Sci Serv Agents World Wide
Web 3(2-3):79–115

21. Grosof B, Horrocks I, Volz R, Decker S (2003) Description logic
programs: combining logic programs with description logic. In:
WWW2003. ACM Press, pp 48–57

22. Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B, Dean
M (2004) SWRL: a semantic web rule language combining OWL
and ruleML. Acknowledged W3C submission, standards proposal
research report: Version 0.6

23. Smith RG, Davis R (1981) Frameworks for cooperation in
distributed problem solving. IEEE Trans Syst Man Cybern
11(1):61–70

24. Pollock JL (1987) Defeasible reasoning. Cogn Sci 11(4):481–518
25. Eker S, Meseguer J, Sridharanarayanan A (2003) The maude

LTL model checker and its implementation. In: Ball T, Rajamani
SK (eds) SPIN2003, vol 2648. LNCS, Springer-Verlag, pp 230–
234

26. Chronis I, Madan A, Pentland AS (2009) Socialcircuits: the art
of using mobile phones for modeling personal interactions. In:
Proceedings of the ICMI-MLMI’09 workshop on multimodal
sensor-based systems and mobile phones for social computing.
ACM, pp 1–4

27. Jung JJ (2009) Contextualized mobile recommendation service
based on interactive social network discovered from mobile users.
Expert Syst Appl 36(9):11950–11956

28. Olguı́n DO et al (2009) Sensible organizations: Technology
and methodology for automatically measuring organizational
behavior. IEEE Trans Syst Man Cybern, Part B (Cybernetics)
39(1):43–55

29. Eagle N, Pentland AS (2006) Reality mining: sensing complex
social systems. In Pers Ubiquit Comput 10(4):255–268

30. Aly WM, Eskaf KA, Selim AS (2017) Fuzzy mobile expert system
for academic advising. In: IEEE 30th Canadian conference on
electrical and computer engineering (CCECE). IEEE, pp 1–5

31. Sartori F, Manenti L, Grazioli L (2013) A conceptual and
computational model for knowledge-based agents in android.
WOA@ AI* IA 2013:41–46

32. Abulkhair MF, Ibrahim LF (2016) Using rule base system in
mobile platform to build alert system for evacuation and guidance.
In Int J Adv Comput Sci Appl 7(4):68–79

33. Gu T, Pung HK, Zhang D (2004) A middleware for building
context-aware mobile services. In: IEEE 59th vehicular technol-
ogy conference, vol 5. IEEE, pp 2656–2660

34. Chen H (2004) An intelligent broker architecture for pervasive
context-aware systems. PhD thesis, University of Maryland,
Baltimore County

35. Ul-Haque HM (2017) A formal approach to modelling and verifica-
tion of context-aware systems. PhD thesis, University of Nottingham

36. Guo B, Zhang D, Imai M (2011) Toward a cooperative
programming framework for context-aware applications. In Pers
Ubiquit Comput 15(3):221–233

37. Forgy CL (1979) On the efficient implementation of production
systems. PhD thesis, Carnegie-Mellon University

38. Kang JA, Cheng AMK (2004) Shortening matching time in ops5
production systems. IEEE Trans Softw Eng 30(7):448–457

39. Hanson EN, Hasan MS (1993) Gator: an optimized discrimination
network for active database rule condition testing. University of
Florida.–Gainesville: CIS Departement

40. Wright I, Marshall JAR (2003) The execution kernel of rc++:
Rete*, a faster rete with treat as a special case. Int. J Intell Games
& Simulation 2(1):36–48

41. Miranker DP (1990) Treat: a new and efficient match algorithm
for ia production systems

42. Miranker DP, Brant DA, Lofaso BJ, Gadbois D (1990) On the
performance of lazy matching in production systems. In: AAAI,
vol 90, pp 685–692

43. Havelund K (2015) Rule-based runtime verification revisited. Int
J Softw Tools Technol Transfer 17(2):143–170

44. Doorenbos RB (1995) Production matching for large learning
systems. Technical report, CARNEGIE-MELLON UNIV PITTS-
BURGH PA DEPT OF COMPUTER SCIENCE

45. Slazynski M, Bobek S, Nalepa GJ (2014) Migration of rule
inference engine to mobile platform. challenges and case study. In:
Knowledge engineering and software engineering (KESE10), p 71

46. Uddin I, Ul Haque HM, Rakib A, Rahmat MRS (2016)
Resource-bounded context-aware applications: A survey and early
experiment. In: International conference on nature of computation
and communication. Springer, pp 153–164

47. Ronszcka AF, Banaszewski RF, Linhares RR, Tacla CA, Stadzisz
PC, Simão JM (2015) Notification-oriented and rete network
inference: a comparative study. In: 2015 IEEE international con-
ference on systems, man, and cybernetics (SMC). IEEE, pp 807–
814

48. Armstrong D (2014) Memory efficient stream reasoning on
resource-limited devices. PhD thesis, Trinity College

49. Liu G, Huang S, Zhang D, Du Y (2014) A rete rule reasoning
algorithm based on the audit method ontology. Int J Hybrid Inf
Technol 7:211–244

50. Nalepa GJ, Szymon B (2014) Rule-based solution for context-
aware reasoning on mobile devices. Comput Sci Inf Syst
11(1):171–193

51. Pinder C, Jo V, Wicaksono A, Beale R, Hendley RJ (2016) If this,
then habit: exploring context-aware implementation intentions on
smartphones. In: Proceedings of the 18th international conference
on human-computer interaction with mobile devices and services
adjunct. ACM, pp 690–697

52. Uddin I, Rakib A (2017) A preference-based application frame-
work for resource-bounded context-aware agents. In: International
conference on mobile and wireless technology, vol 425. LNEE,
Springer, pp 187–196

53. Ijaz U, Rakib A (2017) A resource-aware preference model
for context-aware systems. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications
Engineering, vol 217. LNICST, Springer, pp 3–13

54. Bell M, Kelly JF (2017) LEGO® MINDSTORMS® EV3: the
mayan adventure. Apress

http://protege.stanford.edu/

	Efficient
	s11036-018-1140-x
	An Efficient Rule-Based Distributed Reasoning Framework for Resource-bounded Systems
	Abstract
	Introduction
	Background literature
	Structure of rule-based systems
	Rule-base design
	Ontology-based context representation and reasoning
	Context-aware systems as resource-bounded agents

	Related work
	Android-based RBS and context-aware systems
	Matching problems, precautions and algorithms
	The RETE algorithm
	Analysis of the RETE algorithm

	A motivational analysis of the proposed research approach
	Proposed framework
	Matching algorithm
	The time and space complexity of the proposed algorithm

	The working memory adaptation
	Distinct consequences
	Maximal size of the preference sets
	System designer assigned

	Preferences
	Context-based preference
	Derived-context based preference
	Live preference

	A case study
	Agents
	Example of preferences
	An execution scenario analysis

	Conclusions and future work
	Acknowledgements
	Open Access
	References

