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A B S T R A C T   

Social media sites, such as Twitter, provide the means for users to share their stories, feelings, and health 
conditions during the disease course. Anemia, the most common type of blood disorder, is recognized as a major 
public health problem all over the world. Yet very few studies have explored the potential of recognizing anemia 
from online posts. This study proposed a novel mechanism for recognizing anemia based on the associations 
between disease symptoms and patients’ emotions posted on the Twitter platform. We used k-means and Latent 
Dirichlet Allocation (LDA) algorithms to group similar tweets and to identify hidden disease topics. Both disease 
emotions and symptoms were mapped using the Apriori algorithm. The proposed approach was evaluated using a 
number of classifiers. A higher prediction accuracy of 98.96 % was achieved using Sequential Minimal Opti-
mization (SMO). The results revealed that fear and sadness emotions are dominant among anemic patients. The 
proposed mechanism is the first of its kind to diagnose anemia using textual information posted on social media 
sites. It can advance the development of intelligent health monitoring systems and clinical decision-support 
systems.   

1. Introduction 

Current efforts to diagnose and identify blood disorder diseases have 
been progressively popular. Blood disorder diseases are categorized into 
three categories: red blood cell disease, white blood cell disease, and 
platelet disease. The advantages of red blood cells include: (a) no surface 
antigens; (b) more e3szxconvenient to store than natural blood; and (c) 
function as effectively as hemoglobin [1]. Anemia is an example of red 
blood disease that affects more than two billion people around the world 
[2,3]. It is associated with impairment in oxygen transport which affects 
an individual’s physical and mental wellbeing, and work performance 
[4]. Also, it is the main contributor to sustained fatigue—the most 
popular reported symptom among cancer patients [5,6]. Clinically, 
anemia disease can be categorized based on the morphology of red blood 
cells, underlying etiologic mechanisms, and discernible clinical spectra. 
The three main classes of anemia include excessive blood loss (acutely 

such as a hemorrhage or chronically through low-volume loss), exces-
sive blood cell destruction (hemolysis), and deficient red blood cell 
production (ineffective hematopoiesis) [7]. Patients with anemia are 
likely to report different symptoms, including shortness of breath, 
weakness, fatigue, and arrhythmias [8]. The most common clinical signs 
of individuals with mild to moderate anemia are pale or sometimes 
yellow skin, pale cheeks, and lips, irritability, and mild weakness. Those 
with more severe forms of anemia may manifest more severe complaints 
such as shortness of breath, tachycardia, dizziness, headaches, and 
restless leg syndrome [9]. In general, anemia symptoms are vague and 
may result in a person feeling tired, weak, and poor ability to perform 
tasks [10]. Based on these, the prevention early-stage anemia has the 
potential to reduce the amount of hassle among patients and eliminate 
serious complications of severe anemia conditions. 

The popular anemia recognition approach is accomplished by eval-
uating the level of hemoglobin concentration in the blood using a 
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complete blood count, which is an invasive, time-consuming, and costly 
technique [11]. It is also painful for patients as well as exposes the op-
erators to the risk of infection [12]. Hence, the crucial need for a low- 
cost method for anemia detection has encouraged several scholars to 
propose non-invasive methods that allow diagnosing the disease safely 
within a short time and low budget. For instance, Chen, Miaou, and Bian 
[13] proposed an image-based method that did not relay on any sort of 
blood testing by only examining the color distribution of palpebral 
conjunctiva. The authors used two algorithms to diagnose anemia: The 
first algorithm was fast and simple (a two-stage classification), while the 
second one was sophisticated as it depends at the pixel value in the 
middle and minimum distance classifier (Mahalanobis distance). They 
found that the proposed method was able to predict anemia with 
reasonable accuracy (78 %). Another study by Chen and Miaou [14] 
proposed an anemia detection approach using a Kalman filter and a 
regression method. For this purpose, the Kalman filter was modified to 
fit the inserted time-independent data. The authors also computed the 
mean value of the red component of the palpebral conjunctiva image 
before applying a regression algorithm in which the corresponding 
levels of hemoglobin concentration showed an accuracy of 80 %. 
Another work by Jain et al. [11] used a neural network method to detect 
anemic patients from the images of eye conjunctiva. In this sense, 
backpropagation was implemented to adjust the weights for the utilized 
algorithm. The suggested method achieved 97 % prediction accuracy. 
Tamir et al. [15] used a support vector machine (SVM) approach to 
detect anemia from images of eye conjunctiva in which they achieved 
78.9 % accuracy. Besides previous work, Dimauro et al. [16] applied 
another technique for predicting anemia using the k-nearest neighbor 
(KNN) algorithm, and their method achieved 90.26 % accuracy after 
being tested over images of several anemic patients and non-anemic 
patients. Bevilacqua et al. [17] developed an approach to capture im-
ages of eye conjunctiva then used these images to estimate hemoglobin 
level in blood and then predict (with 84.4 % accuracy) whether the 
patient is suffering from anemia or not using the SVM algorithm. 

However, despite these efforts, it can be observed that images of eye 
conjunctiva of patients were mainly used in the process of anemia 
recognition. Such approach does not work well in many underdeveloped 
areas, due to a lack of medical facilities and capabilities to deal with 
small datasets [11]. In addition, the extensive use of images to detect 
anemia requires a huge number of images which was not fully accounted 
for by prior works [11]. An additional issue in anemia recognition is that 
patients’ emotions were not considered in the detection process of 
previous studies [18]. This led us to assume that data from social media 
websites may somehow help/facilitate the recognition process of ane-
mia. Therefore, this work aims at proposing a non-invasive mechanism 
to diagnose anemia from the Twitter platform. This study intended to 
answer two questions: “What are the main anemia-related topics shared 
by Twitter users?” and “What types of emotions should be used in the 
identification of anemia symptoms?”. To answer these questions, we 
used a topic modeling approach to extract different anemia-related 
topics that are extensively shared between social media users. Also, 
we analyzed users’ (or patients’) sentiments existed in their tweets in 
order to determine the type of emotions (e.g., anger, fear, sadness, and 
joy) that can be associated with certain anemia-related symptoms. 

2. Literature review 

Patients with anemia experience different types of emotions ac-
cording to their physical and mental conditions. Fear-related emotions 
are usually observed among anemia patients in relation to the severity of 
their health condition [19]. Furthermore, fear-related emotions are 
usually found among anemic women due to the reduced energy and 
capacity for work [20]. It is also assumed that fear is the dominant 
emotion of pregnant women with anemia since these women tends to be 
more concerned about facing poor pregnancy and risk of 
death—consequences of anemia among pregnant women [21]. Anemia 

is the most common hematologic problem in patients with rheumatoid 
arthritis (RA) who usually experience fatigue as one of their most 
annoying problems. According to Singh et al. [22], several studies have 
reported that pain, physical disabilities, impaired general health, limited 
physical activities, and comorbid conditions can be used to describe 
such fatigue. 

In addition, sadness was also found to be another type of emotion 
among anemic pregnant women, as well as depression [23]. Anemia has 
been playing a significant role in postpartum depression; it causes 
depression by changing inflammatory cytokinins. This was confirmed by 
Parhizkar [24] who found that there is a relation between anemia and 
postpartum depression in pregnant women that is associated with 
sadness and anxiety. Also, the sadness emotion was found to be associ-
ated with patients who suffer from iron deficiency anemia [25]. Previ-
ous scholars found that depression and anxiety are more frequent in 
children with iron deficiency anemia [26], while joy-related emotions 
are found among patients who experience health improvements [25]. 

The use of real-time methods becomes essential to both healthcare 
professionals and the public in infectious diseases. Social media 
networking sites have become important tools [27] because they allow 
the users to build their public personal profile, produce a list of users, 
and view a list of posts. These social communication mediums are crit-
ical real-time platforms for public and healthcare experts and to 
distribute and analyze medical information and alerts. Thus, using social 
media websites can be a robust approach to obtain users’ opinions, 
emotions, and personal experiences in the health domain. This has 
motivated scholars like Lim, Tucker, and Kumara [28] to identify real- 
world hidden infectious diseases by analyzing social media data. The 
authors applied an unsupervised learning technique to mine social 
media that have temporal information to provide a bottom-up approach 
for latent infectious disease discovery in a specific location. Twitter was 
extensively used by health experts as a reliable source of information, 
mainly to gain insights about public health across the world. Twitter is a 
microblogging version of a social media site where users interact in real- 
time through 140 characters called tweets. It also allows users to easily 
interact with each other through updates, direct messaging, likes, and 
retweeting. This, as a result, led several scholars to rely on Twitter 
messages as a vital source of health information to examine numerous 
health-related topics. For example, Twitter was used in past work for 
monitoring the spread of the swine flu (H1N1) outbreak in 2009 [29]. 
Odlum and Yoon [30] also showed the possibility of analyzing health 
topics on Twitter. The researchers analyzed users’ tweets and observed 
the Ebola outbreak in West Africa before the official outbreak an-
nouncements. Sarsam, Al-Samarraie, Ismail, Zaqout, and Wright [31] 
proposed a novel early-stage disease recognition method to track and 
detect migraine disease from users’ emotions embedded in their 
tweets–based on the interconnection between certain emotional types 
and climatic factors that are associated with migraine. Another work by 
Karami et al. [32] analyzed the public opinion in aspects related to 
diabetes, diet, exercise, and obesity using Twitter messages. A multi- 
component semantic and linguistic framework was designed to find 
relevant topics that were used along with the Latent Dirichlet Allocation 
(LDA) technique. In addition to prior work on disease recognition from 
Twitter, Sarsam, Al-Samarraie, and Al-Sadi [33] developed a heuristic 
mechanism by mapping between diabetes-related terms and emotions 
related to diabetes diseases. Based on these, there seems to be a great 
potential in using Twitter to analyze individuals’ thoughts and opinions 
in relation to anemia. 

3. Method 

The main steps of this study are presented in Fig. 1. This includes 
data collection, data pre-processing, cluster analysis, topic modeling, 
emotion extraction, part-of-speech tagging, and association rules min-
ing. This research procedure allowed for the identification of certain 
users’ emotions (expressed in tweets) that can be linked to anemia. 
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Finally, the evaluation stage was designed to assess the merit of the 
discovered emotions. In this sense, two scenarios were considered—in 
the first scenario users’ emotions were extracted and fed as an input for 
the classification task, while in the second scenario, emotions were not 
fed into the classifier. 

3.1. Data collection 

We collected and processed 1,738,759 English tweets within a time 
span of six months (December 1st 2019, till 31st May 2020). The Twitter 
free streaming Application Programming Interface (API) was applied 
based on the preious recommendations of Sarsam, Al-Samarraie, and 
Omar [34]. To collect the desired tweets, several keywords were used: ‘I 
have anemia’, ‘anemia’, ‘cause of anemia’. After that, we performed 
several data preparation steps to make our data ready for the analysis 
stage. 

3.2. Data pre-processing 

At this stage, several pre-processing techniques were applied to 
extract solid knowledge out of it. The bag-of-words model and the 
“Tokenization” technique were implemented to extract the tweets fea-
tures (words) and build the dictionary which we used to provide a 
numeric weight for each feature. Then, all the features, were converted 
to a lowercase form before applying the Stopwords list method. Stop-
words list technique was used to keep the necessary words in the dic-
tionary. After that, we utilized the L2 method to facilitate the 
normalization of the collected tweets. This method helped us to guar-
antee fair treatment to all the tweets by machine learning algorithms in 
the coming stages. 

3.3. Cluster analysis 

The K-means clustering algorithm was utilized [33,35] in order to 
group the processed tweets that share similar features. This was essential 
because some of the extracted tweets were not focusing on the causes 
and symptoms of anemia. It was assumed that by including the relevant 
anemia-related tweets we can increase the effectiveness of the proposed 

approach. For this reason, we used an unsupervised learning technique 
(k-means), which is well known for its superiority, to cluster (group) the 
relevant tweets based on the standard of similarity between data points 
(tweets) [36]. 

Due to the unsupervised learning nature of k-means, it is very chal-
lenging to determine the number of groups from the raw data. There-
fore, the elbow method was utilized to tackle this issue. The results from 
utilizing the elbow method revealed two main groups (see Fig. 2a). To 
identify the anemia group from the collected tweets, we invited three 
specialists in blood diseases who recommended the labeling of the two 
groups as ‘Anemia’ and ‘Non-anemia’ groups. Based on Fig. 2b, the 
anemia group contains tweets that discussed anemia-related topics (the 
dark color represents the main features in the anemia group that could 
be used in the identification of the disease) as compared to the non- 
anemia group. 

In this study, we argue that there are specific types of emotions 
related to anemia, which could facilitate the recognition of the disease. 
The relationship between users’ emotions (expressed by anemic patients 
through their topics in the posted tweets) and the extracted anemia 
symptoms (expressed by anemic patients in these topics) was used in this 
study to aid the identification/recognition of the disease. This was 
achieved by the implementation of the association rules mining tech-
nique (see Section 3.7). 

3.4. Topic modeling 

From the previous stage, two groups of tweets were found and 
labeled based on the nature of the topics. At this stage, the LDA algo-
rithm was implemented via the LDAvis system [37,38] to extract the 
topics from both the anemia and non-anemia groups. LDA is an unsu-
pervised generative probabilistic method that is commonly used in 
corpus modeling. It is also one of the most used topic modeling methods 
in the literature. LDA works by dealing with random mixtures over 
latent topics, where a single topic is characterized by a distribution over 
certain words. It assumes that each document can be represented as a 
probabilistic distribution over latent topics, and that topic distribution 
in all documents share a common Dirichlet prior. In addition, the LDA 
model represents every single latent topic as a probabilistic distribution 

Fig. 1. General procedure.  
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over certain words. The word distributions of topics are then linked with 
a common Dirichlet prior across the tweets. 

3.5. Emotion extraction 

After determining the key themes of the disease (e.g., anemia causes 
and anemia symptoms), we further identified the types of emotions 
associated with anemia. To extract the emotion from the tweets (texts), 
the lexicon-based method was applied using a predefined list of words 
where each word is associated with a specific type of emotion [39]. An 
example of the lexicon-based approach is NRC Affect Intensity Lexicon 
which we used to help us extract users’ emotions from their textual data 
[40,41]. It includes a list of English words along with their associations 
that were used to reflect four types of emotions (anger, fear, sadness, and 
joy). The scores range from 0 to 1 was used to convey a given word and 
emotion X. A score of 1 represents the highest amount of emotion X. A 
score of 0 represents the lowest amount of emotion X. Then, the 
emotional features for each tweet were processed and identified by 
adding the relevant associations of the words for a given lexicon (see 
Section 4.1 for more details). 

3.6. Part-of-speech tagging 

To obtain anemia-related symptoms (noun words), we extracted 
grammatical constitution from the collected tweets. We used “Part-of- 
speech tagging” due to its popularity in social media analysis and in 
identifying terms that can be utilized in different parts of speech [42]. 
The Penn State Treebank tokenizer was applied to obtain words before 
using the probabilistic context-free grammar parser. This process helped 
us to extract ‘noun’ words from tweets which we later used for associ-
ation rules mining. Some of these nouns were also used to form the 
terminologies of the anemia symptoms. The association rules approach 
was used to determine the relationship between the identified symp-
toms/terminologies and the type of emotions in the processed tweets. 

3.7. Association rules mining 

Since the main goal of this study is to recognize anemia from users’ 
tweets, we attempted to link anemia symptoms with the patients’ 
emotional experience of joy, sadness, or any other primary emotions. It 
was anticipated that after determining anemia-related topics and 
anemia-related emotions, the emotions of anemic patients in these 
topics can be further mapped with the key anima symptoms. For this 

purpose, the Apriori algorithm was used to find a meaningful set of re-
lationships between anemia emotions and symptoms. We configured the 
Apriori algorithm by setting the delta value at 0.05 in order to reduce the 
support until minimum support is reached. The minimum metric score 
was set at 0.9, while the upper bound and lower bound support were set 
at 1.0. Then, we invoked the Apriori method on the data to predict the 
relationship between anemia-related emotions and terminologies. 

3.8. Evaluation stage 

In this stage we assessed the quality of the proposed method based on 
two scenarios. In the first scenario, we extracted and used users’ emo-
tions as an input for the machine learning model. In the second scenario, 
we did not relay on users’ emotions as the main input for the machine 
learning model. In this sense, four classifiers were used and compared to 
select the best classifier with the highest prediction capability. These 
classifiers were: 1-rule classifier (OneR), RandomForest [43], Sequential 
Minimal Optimization (SMO) [44], and Bagging algorithm [45]. The 
classifiers were utilized within the Weka environment (Waikato Envi-
ronment for Knowledge Analysis). The study utilized the stratified 
tenfold cross-validation method in the evaluation of the overall pre-
diction process. A few evaluation metrics were applied to evaluate the 
prediction capability of each selected classifier (see Section 4.4). 

4. Results 

4.1. Emotion extraction result 

After extracting the relevant emotions from the collected tweets, we 
attempted to determine the types of emotions that are associated with 
anemia. The main emotions of anger, fear, sadness, and joy were 
extracted from both anemia and non-anemia groups. The results (see 
Fig. 3) showed that both fear (81 %) and sadness (89 %) were the 
dominant types of emotions in the anemia group as compared with the 
non-anemia group (fear: 19 % and sadness: 11 %). In contrast, the 
percentages of anger (86 %) and joy (95 %) were found to be higher in 
the non-anemia group than their values in the anemia group (anger: 14 
% and joy: 5 %). From these, it can be said that emotions related to fear 
and sadness found in the anemia group can aid the recognition/identi-
fication of the disease. 

Fig. 2. K-means result. (A) Elbow method results. (B) Anemia and Non-anemia groups.  
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4.2. Result of topic modeling 

The LDA method was configured by performing several experiments. 
We firstly determined the number of topics based on the trade-off be-
tween information loss and information overload. After several experi-
ments, we confirmed the number of topics to be examined. Fig. 4 
exhibits the result of the LDAvis tool where each circle represents a 
specific topic from the collected tweets, while the size of the circle 
demonstrates the frequency of the topic. In addition, the distance be-
tween the circles reflects the similarity between these topics. From the 
figure, we can see that some topics are far apart (independent), whereas 
some topics are relatively close or even overlapping (a high level of 
similarity). However, the topic modeling approach is known to be 
limited in terms of labeling the resulted topics. In order to overcome this 
challenge, the labeling process was accomplished manually by humans 
based on the content of these topics. Therefore, we asked three spe-
cialists in blood diseases to individually inspect and label the resulting 

topics using relevant themes. After that, we measured the agreement 
between the three-labeling methods using kappa statistic which showed 
0.96. According to the specialists, the main topics in the non-anemia 
group can be classified into: 1) personal opinions about anemia and 2) 
questions about anemia, whereas the anemia group had two themes: 1) 
anemia causes and 2) anemia symptoms. Consequently, to map the 
relationship between anemia-related emotions and anemia symptoms, 
we only analyzed the content found in both themes of anemia causes and 
anemia symptoms. 

When inspecting the first theme of anemia causes, we observed that 
most of the cases were related to iron deficiency anemia, anemia related 
to pregnancy, and hemolytic anemia. These cases are shown (see Fig. 4) 
in topics 1, 3, and 2, respectively. On the other hand, our observation of 
the second theme (anemia symptoms) resulted in topics related to 
symptoms such as fatigue, weakness, and shortness of breath. Fig. 5 
shows the top frequent words associated with disease-related themes. 

Fig. 3. The extracted emotions in anemia and non-anemia groups.  
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4.3. Results of association rules 

To examine the possibility of using users’ emotion as an investigative 
mechanism to recognize/identify anemia, we extracted these emotions 
using the NRC Affect Intensity Lexicon approach, where anger, fear, 
sadness, and joy emotions were extracted and mapped via the Apriori 
algorithm with anemia-related symptoms (see Fig. 6). From the figure, it 
can be clearly observed that emotions related to fear and sadness were 
associated with anemia symptoms. These symptoms are demonstrated in 
Fig. 6a: fatigue, weakness, shortness of breath, looking pale, and dizzi-
ness. From this, it can be concluded that there is a potential relationship 
between anima disease and specific types of emotions (fear and sadness). 

4.4. Evaluation results 

To evaluate the merit of the extracted emotions and their relations to 
anemia, we used four classifiers to evaluate the proposed approach 
(OneR, RandomForest, SMO, and Bagging) based on two scenarios (with 
emotions and without emotions). To assess the quality of the recognition 
results, several evaluation metrics were implemented based on the 

recommendations of Han, Kamber, and Pei [46], including: 

Accuracy =
TP + TN

P + N
(1)  

Precision =
TP

TP + FP
(2)  

Recall =
TP

TP + FN
(3)  

where True positives (TP), True negatives (TN), False positives (FP), 
False negatives (FN), Positive (P), and Negative (N) instances. 

Besides, the kappa statistic was used to ensure the inter-rater reli-
ability of the applied classification algorithms [47]. The optimal case of 
the kappa statistic is one (perfect agreement). The formula for the kappa 
statistic is represented as follows: 

Kappa statistic =
P0 − Pe

1 − Pe  

where P0 is the actual observed agreement among the raters, while Pe is 

Fig. 4. Topic modeling of tweets related to anemia.  
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the probability of chance agreement. Also, Root mean-squared error 
(RMSE) was computed, as recommended by Witten et al. [48], as 
follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(p1 − a1)
2
+ … + (pn − an)

2

n

√

(4) 

Here, n refers to the sample size. The predicted values on the test 
instances were p1, p2, …, pn, while the actual values were a1, a2, …, an. 
According to Witten et al. [48], we computed the value of ROC curve 
using the formulas of False Positive Rate and True Positive Rate as 
shown below: 

False Positive Rate = 100×
FP

FP + TN
(5)  

True Positive Rate = 100×
TP

TP + FN
(6) 

Our classification results are summarized in Table 1. The results from 
the first scenario (with emotions) showed that the SMO classifier ach-
ieved the highest classification accuracy (98.96 %), followed by Bagging 
(63.44 %), OneR (56.09 %), and RandomForest (41.82 %) algorithms. In 
addition, the SMO algorithm had the highest kappa statistic value (98 %) 
compared to Bagging (57 %), OneR (43 %), and RandomForest (35 %), 
respectively. However, the classification results illustrated that the 
RandomForest classifier produced the highest RMSE value (89 %), 

Fig. 5. Top frequent words in the anemia group.  
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followed by OneR (79 %), Bagging (48 %), and SMO (5 %), respectively. 
Moreover, SMO scored the highest precision (96 %) and recall (89 %) 
values, followed by Bagging (85 % precision, 82 % recall), OneR (57 % 
precision, 63 % recall) and RandomForest (48 % precision, 17 % recall). 

The results from the second scenario (without emotions) indicated 
that SMO produced the highest classification accuracy (64.12 %), fol-
lowed by Bagging (56.08 %), OneR (44.11 %), and RandomForest 
(35.90 %) schemes. We also found that SMO had the highest kappa 
statistic value (65 %) compared to Bagging (57 %), OneR (44 %), and 
RandomForest (36 %), respectively. In contrast, the RandomForest 
classifier scored the highest RMSE value (96 %), followed by OneR (87 
%), Bagging (66 %), and SMO (24 %), respectively. SMO scored the 
highest precision (71 %) and recall (62 %) values, followed by Bagging 
(64 % precision, 56 % recall), OneR (51 % precision, 49 % recall) and 
RandomForest (42 % precision, 40 % recall). 

To further understand the performance of the four classifiers, Fig. 7a 
and b showed the ROC curve results where it can be clearly observed 
that the SMO classifier outperformed other classifiers. Fig. 7c shows the 
accuracy, kappa statistic, RMSE, precision, and recall for each classifi-
cation algorithm. Based on these results, it can be concluded that 
anemia-related emotions can significantly improve the recognition 
performance of anemia. 

The “Confusion matrix” approach was used to provide an in-depth 
understanding of the relationship between the predicted and the 
actual instances along the diagonal of the confusion matrix. The final 
results (see Fig. 8) revealed that SMO classifier has the highest predictive 
capability between actual and predicted classes, i.e., 100 %, for both 

positive and negative categories. 

5. Discussion 

This study proposed a novel non-invasive mechanism to diagnose 
anemia disease from Twitter messages. Our result showed that both fear 
and sadness emotions were associated with anemia disease. This work 
confirms the feasibility of performing anemia recognition using a 
lexicon-based approach by producing sentimental features that are 
mapped with disease-related symptoms. In addition, our topic modeling 
result via the LDA method revealed that four main anemia-related 
themes that were frequently discussed on Twitter: anemia causes, ane-
mia symptoms, personal opinions about anemia, and anemia-related 
questions. Discussing such themes is sensible since anima is one of the 
widespread diseases affecting the wellbeing of people around the globe 
[49]. 

Our LDA results showed that ‘iron deficiency anemia’, ‘anemia 
related to pregnancy’, and ‘hemolytic anemia’ were commonly re-
ported/shared among social media users as the main cause of anemia. 
This finding is in line with the literature that declared the importance of 
these topics as causal factors among anemic patients [50–53]. More 
precisely, the first topic (iron deficiency anemia) is found to be among 
the most important contributing factors to the global burden of anemia 
disease. This is associated with work of Mohamed [54] which stated that 
iron deficiency anemia is considered to be the top-ranking cause of the 
worldwide type of anemia. This is due to deficiency of food if intake of 
iron less or incomplete. In addition, iron deficiency anemia is 

Fig. 6. Association rules results.  

Table 1 
Classification results.  

Emotion Algorithm Accuracy (%) Kappa statistic (%) RMSE (%) Precision (%) Recall (%) 

With emotions SMO  98.96  98  5  96  89 
Bagging  63.44  57  48  85  82 
OneR  56.09  43  79  57  63 
RandomForest  41.82  35  89  48  17 

Without emotions SMO  64.12  65  24  71  62 
Bagging  56.08  57  66  64  56 
OneR  44.11  44  87  51  49 
RandomForest  35.90  36  96  42  42  
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characterized by decreased hemoglobin synthesis leading to hypochro-
mic and microcytic red blood cell production. The absolute iron defi-
ciency arises when total body iron stores are low or exhausted; 
functional iron deficiency is a disorder in which total body iron stores 
are normal or increased, but the iron supply to the bone marrow is 
inadequate. Patients with iron deficiency anemia can experience 
symptoms such as pallor of the skin, while in severe cases patients could 
have dyspnoea at rest, angina pectoris, and haemodynamic instability 
[55]. In addition, iron deficiency affects epithelial cells with a rapid 
turnover, which result in dryness and roughness of the skin, hair 
damaged, and moderate alopecia. Iron deficiency anemia summarizes 

approximately 50 % of nutrient-scarred anemia cases, in which bleeding 
caused by gastrointestinal lesions is considered to be the first cause. All 
of that explains the importance of iron deficiency anemia that was 
observed in our results. 

The second important topic found in our results was in the rela-
tionship between anemia and pregnancy. Anemia during pregnancy is a 
serious public health problem, as confirmed by prior work like Ang-
graeni and Fatoni [50] who stated that more than 50 % of pregnant 
mothers in developing countries are anemic. This is because during 
pregnancy, a number of changes take place in the body of the mother, 
including the blood [7]. For the period of pregnancy, iron needs are 

Fig. 7. Evaluation metrics of the four algorithms.  
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tripled due to the expansion of maternal red cell mass and growth of the 
fetus and placenta. Water weight and fluid gain during pregnancy dilute 
the blood, which might be reflected as anemia since the relative con-
centration of red blood cells is lower. Also, in pregnancy, iron deficiency 
is associated with an increased risk of preterm labor, low neonatal 
weight, and increased newborn and maternal mortality. All these details 
explained the importance of anemia related to pregnancy topic, and thus 
justify the reason behind gaining a high-level of attention among Twitter 
users, as we found in our result. Finally, the third topic that was 
frequently repeated in our result was hemolytic anemia. This topic 
seems to be very important as confirmed by prior work like Capriotti and 
Frizzell [56] because it is a blood disorder that can be a chronic and life- 
threatening cause. Basically, hemolytic anemia is the destruction of red 
blood cells before their normal 120-day life span [57]. Capriotti and 
Frizzell [56] revealed that hemolytic anemia accounts for 5 % of all 
existing anemias. It is a critical anemia type that happens due to the 
abnormal breakdown of red blood cells either in the blood vessels or 
elsewhere in the humans’ body. The hemolytic anemia mostly occurs 
within the spleen and could occur in the reticuloendothelial system or 
mechanically. All of that provide clear evidence about the importance of 
hemolytic anemia-related symptoms in the recognition process. 

This study also found that fear and sadness emotions were associated 
with anemia disease. This seems to be reasonable due to the recurrent 

anemia-related symptoms that were reported among anemic patients, 
including fatigue, dizziness or, pallor, chest pain, irregular heartbeat, 
cold hands and feet, and shortness of breath [49]. This finding extends 
the findings of previous work about how fear-related emotions are 
common among people who suffer from anemia, especially anemic 
women, due to the reduced energy and ability to perform the required 
effort [20]. Besides fear, sadness-related emotions were frequently 
recognized among anemia patients due to the high level of depression. 
This was confirmed in the literature since many anemic pregnant 
women were found to experience sadness [24]. The potential relation-
ship between anemic people and the psychological state that they suffer 
from can, therefore, be used to unlock different recognition opportu-
nities of diseases. 

6. Implications 

To the best of our knowledge, this is the first study to propose a non- 
invasive mechanism for diagnosing anemia disease from Twitter mes-
sages. The proposed mechanism contributes to the development of 
clinical decision support systems that process evidence-based guidelines 
to extract latent associations between the disease and its underlying 
features. In other words, our approach sheds a light on the importance of 
establishing intelligent associations between patients’ emotions 

Fig. 8. Confusion matrix results.  
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embedded in their tweets and the anemia symptoms that they experi-
ence. The proposed mechanism is cost-effective and can be effectively 
used for anemia recognition in underdeveloped areas where medical 
facilities are insufficient. Furthermore, our method can be extremely 
time-effective and can be used not only for anemia recognition but also 
for other blood disorder diseases since it is based on posts available on 
social media platforms. Finally, the use of topic modeling showed an 
impressive result that can be used to explore health topics embedded in a 
massive amount of data. 

7. Limitations and future works 

Despite the efficiency of the proposed machine learning mechanism, 
there are still some limitations need to be tackled. For example, only 
tweets in the English language were analyzed since English is the most 
popular language in the world. Also, we used specific anemia keywords 
to collect disease-related tweets, so using other keywords could result in 
new features that may play an important role in the detection process. 
We used LDA in this study to model the embedded topics due to the 
popularity of this method. Future work could use a different technique 
to extract the hidden themes. An additional limitation is that four types 
of emotions (anger, fear, sadness, and joy) were extracted from the 
collected tweets since they are the common types of emotions in the 
contemporary theories of emotions. Hence, in the future, scholars can 
examine other emotions and examine their relation to the anemia- 
related symptoms. Finally, in the current study, we considered anemia 
disease as a popular disease around the world. Perhaps, future studies 
could adopt our mechanism to diagnose other diseases in an attempt to 
enrich the overall understanding of the role of disease-related emotions 
in the disease recognition process. 

8. Conclusion 

This study proposed a novel mechanism for recognizing anemia 
symptoms based on certain types of emotions that are expressed by 
anemic patients on social media sites. The technical contribution was in 
mining the collected tweets by establishing an association between 
anemia-related symptoms and anemia-related emotions in an attempt to 
accurately identify anemia. We used the k-means algorithm to group the 
tweets that share similar features. Then, we discovered the hidden 
disease-related topics via the LDA technique. After that, both disease 
emotions and symptoms were extracted from these topics and mapped 
together using the Apriori algorithm. In light of that, we were able to 
find the types of emotions that anemic patients expressed in their tweets 
during their illness time. These emotions can be used as a heuristic 
means to recognize certain disease symptoms that are associated with 
them. This study also evaluated the merit of the extracted emotions. The 
prediction results showed that the SMO classifier achieved the best ac-
curacy in recognizing the disease (98.96 %). Besides, the results indi-
cated that fear and sadness emotions are dominant among anemic 
patients. To our knowledge, the proposed non-invasive mechanism is the 
first of its kind to diagnose anemia from Twitter using textual 
information. 
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