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Abstract 

Effective Prognostics and Health Management (PHM) for cutting tools during Computerized Numerical 

Control (CNC) processes can significantly reduce downtime and decrease losses throughout manufacturing 

processes. In recent years, deep learning algorithms have demonstrated great potentials for PHM. However, the 

algorithms are still hindered by the challenge of the limited amount data available in practical manufacturing 

situations for effective algorithm training. To address this issue, in this research, a transfer learning enabled 

Convolutional Neural Networks (CNNs) approach is developed to predict the health state of cutting tools. With 

the integration of a transfer learning strategy, CNNs can effectively perform tool health state prediction based 

on a modest number of the relevant images of cutting tools. Quantitative benchmarks and analyses on the 

performance of the developed approach based on six typical CNNs models using several optimization 

techniques were conducted. The results indicated the suitability of the developed approach, particularly using 

ResNet-18, for estimating the wear width of cutting tools. Therefore, by exploiting the integrated design of 

CNNs and transfer learning, viable PHM strategies for cutting tools can be established to support practical CNC 

machining applications. 

Keywords: Prognostics and Health Management (PHM), Transfer Learning, Convolutional Neural 

Networks (CNNs), Computerized Numerical Control (CNC) 

1. Introduction 

In manufacturing industries, unplanned downtime is known to negatively impact profitability, and will be a 

barrier to implementing lean and zero-defect manufacturing. Also, operational safety could be compromised 

through unexpected failures, particularly when human operators are involved [1]. To tackle the challenge, 

predictive maintenance based on Prognostics and Health Management (PHM) has been developed to predict the 

failure points of working components (such as bearings and cutting tools) [2–4]. Based on that, a component in 

a manufacturing system can be replaced just before it fails. Thus, component lifetime can be maximized, system 

downtime can be minimized, and therefore optimal productivity and production quality can be achieved. In 

Computerized Numerical Control (CNC) machining processes, cutting tool wear leads to various manufacturing 

problems, ranging from stoppage downtime for redressing and tool replacement, to scraps and reworks of 

machined components due to degradation in surface quality [5]. Therefore, accurate prediction of the Remaining 
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Useful Life (RUL) for a cutting tool is essential to mitigate such failures. In CNC machining applications, the 

flank wear width of a cutting tool (in mm) is defined in ISO8668-2:1989 as a criterion to judge the tool health 

(the tool is judged to be in a severer wear if the flank wear width is greater than a pre-defined threshold, e.g., 

0.4mm). The flank wear is typically the most prominent degradation mode experienced by a cutting tool, in 

contrast to chip wear or abrasive wear that are less straightforward to distinguish [5]. The RUL is defined as the 

time remaining until the criterion of the flank wear width is reached. 

For tool wear and RUL prediction, physics-based approaches on empirical models have been developed, 

such as the Taylor, Extended Taylor, Colding, and Coromant Turning model [5]. The Taylor model is used to 

map the relationship between tool life and cutting conditions such as cutting speed, or additional parameters 

such as feed rate and depth of cut (Extended Taylor), depending on a fixed wear criterion. Meanwhile, models 

such as the Sipos tool wear prediction model correlate the wear width to the cutting time in an exponential 

quadratic relationship, along with additional empirical parameters. However, these approaches are sensitive to 

variations in machining parameters (e.g., cutting speed, feed rate, cutting depth, cutting tool properties such as 

the number of teeth), which vary depending on component materials and machining set-up. Moreover, profound 

expert knowledge of machining processes is also expected to conduct effective and accurate RUL prediction. 

In contrast to physics-based approaches, data-driven approaches have been developed to leverage historical and 

real-time data to support decision-making.  

Deep learning algorithms (e.g., Convolutional Neural Networks (CNNs)) have been explored to facilitate 

data-driven approaches (a related review can refer to [6]). For instance, to attain a wide scope of image features 

from a variety of applications, CNNs models can be trained on millions of images of natural and synthetic 

object, such as ImageNet [7] (and the subsequent ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) [8]), CIFAR-10 and CIFAR-100 [9]. CNNs trained in this way excel at extracting discriminative 

features and learning hidden relationships between problem parameters (i.e., feature learning), opposed to 

feature engineering approaches where human experts specify the features to learn. The research community has 

also had a long-established interest in applying data-driven models (including deep learning algorithms) for 

PHM on CNC machining processes. Contributions in the relevant areas include sensor fusion techniques [10], 

integration of different deep learning algorithms for wear prediction [11-12], cyber-physical architecture design 

for CNC machine tool condition inspection [13], and exploring different sensing approaches for tool wear and 

RUL prediction [14]. However, the accuracy and reliability of deep learning enabled data-driven approaches 

may be reduced significantly when data are scarce or insufficiently descriptive of the problem. To address the 

issue, in recent years, transfer learning enabled approaches have been developed to improve pre-trained deep 

learning models to perform prediction on new problems with limited available data [15]. The transfer learning 

strategy is to retain and reuse domain-invariant features learn from a task in one domain (called the source 

domain), to enhance the performance of another task in its corresponding domain (called the target domain). 

On the other hand, though transfer learning has shown its great potentials in different applications, there are still 

limited research works reported on manufacturing applications, especially for estimating the wear prediction of 

cutting tools based on Visual Inspection (VI). 
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In this paper, it is aimed to develop a transfer learning enabled CNNs approach for tool wear prediction of 

cutting tools and further establish PHM based on analyzing the images of healthy and worn tools. The problem 

of limited data available during machining processes is tackled by integrating transfer learning into CNNs. The 

main characteristics of this research are summarized as follows: 

1. Developing a transfer learning enabled CNNs approach with gradient descent optimization algorithms based 

on normalized Maximum Mean Discrepancy (MMD) and Mean Square Error (MSE) for algorithm training 

with learnable weights; 

2. Benchmarking the performance of the approach through evaluating several CNNs architectures and transfer 

learning for tool wear prediction and PHM; 

3. Providing recommendations for training techniques and data augmentation based on benchmarking and 

analysis results. 

The rest of the paper is organized as follows. Section 2 reviews some works in PHM, focusing on some 

approaches that use CNNs to analyze different types of manufacturing data. Meanwhile, transfer learning related 

works are also reviewed. Section 3 describes the machining tool wear prediction dataset, the proposed 

methodology, and transfer learning approach. The performance of the approach and the suitability of the 

implementation are discussed in Section 4, offering some quantitative insights into the applicability of the 

approach as well as commentary on the results. Section 5 concludes the research and offers ideas for future 

works based on the proposed methodology. 

2. Related Works 

A brief review on prior works in deep learning for PHM applications is presented here with a focus on 

implementations in the manufacturing domain. Relevant literature aligning with CNNs and transfer learning are 

also highlighted.  

2.1. Deep learning for PHM 

In recent years, there have been increasing reviews on investigating the development of deep learning 

approaches for PHM applications [4]. Most deep learning approaches for PHM exploit an inflow of continuous 

real-time data, such as vibration signals, acoustic emission sensor data, force measurements, temperature, 

power/current, etc. Alternatively, other approaches were developed and tested with an existing RUL dataset at 

the validation stage (some examples of these datasets are mentioned in [6]). The C-MAPSS (aero-engine health 

degradation simulation) tool [10] was used to create datasets extensively studied in prior works on PHM, with 

varying research perspectives [11]. In addition, the PHM society holds an annual challenge for PHM techniques 

based on data that it provides, in which the 2010 dataset focuses on high-speed CNC machining [12]. While 

numerous architectures of deep learning were implemented for PHM, several primary models can be 

summarized into the following types: 

• CNNs and their variants: these approaches use a series of shallow or deep convolutional filters that extract 

spatial features from images or image-like data. These approaches are particularly efficient at learning 
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meaningful representations of the data from individual and grouped clusters of filters across several depth 

channels [6]. Deeper CNNs layers are typically capable of extracting distinct visual features like parts of 

the general shape of the image, whereas shallower layers typically extract image intensity or color variation 

across a limited image window [6]. While predominantly used for failure classification in PHM [16], 

several researchers successfully used CNNs for regression-related feature extraction for RUL prediction 

[17]. A few approaches were developed to perform both classification and regression [17]. However, few 

approaches utilized images as input for predicting the health state of cutting tools. 

• Recurrent Neural Networks (RNNs) and their variants: these models learn from data sequences with 

explicit time dependencies between input samples (i.e., sequence prediction problems), due to series of 

gates within the architecture which retain the outputs from previous inputs. The output from one neuron is 

fed forward into the adjacent neuron, so that the hidden representation or the output of the neuron is 

influenced by past inputs [6]. Long Short-Term Memory (LSTM) networks are similar to RNNs but can 

retain memory over a longer time horizon due to a more complex gate structure that preserves long-term 

dependencies. A combination of gates with different activation functions determine what portion of the 

cell state to retain or transform for input into the subsequent layer. LSTM and their variants have achieved 

widespread success at time series-based prediction problems, therefore are especially popular for PHM 

applications [18-19]. 

• Auto-Encoders (AEs) and their variants: AEs are feedforward neural networks comprising an encoder and 

a decoder. The encoder is trained to find the hidden representation of the input data via a nonlinear mapping 

of the weights and biases. The decoder attempts to generate an output to the inverse function of the hidden 

representation to the data, i.e., a nonlinear mapping between the encoder function and the hidden 

representation. It involves a reconstruction focus, where the encoder discovers a latent feature space with 

different target objectives, i.e., to reduce data dimensionality (increase sparsity), reduce noise (de-noising), 

or maximize distribution discrepancy (i.e., variational). To avoid human-assisted feature identification for 

Tool Condition Monitoring (TCM), Shi et al. used a novel Feature Multi-Space Sparse Auto-Encoder 

(FMSSAE) to classify four different wear states from TCM data in the time domain, frequency domain and 

Wavelet domain [20]. The presented methodology achieved 96% accuracy in classification. More recently, 

CNNs-AEs based strategies were developed with the aim of improving image feature qualities by encoding 

the image features with the encoder architecture, with the aforementioned objectives. 

• Hybrid approaches: which combine and adapt several architecture designs to conduct feature extraction 

and time-based prediction, e.g., Zhao et al. used a Convolutional Bi-directional Long Short-Term Memory 

(CBLSTM) to extract local and informative sequence features, followed by a bi-directional LSTM to 

identify long-term time dependencies, leading to linear regression for target value prediction [21]. The 

approach was demonstrated to predict tool wear based on raw sensory data. 
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2.2. Transfer learning enabled deep learning 

In the reviewed literature, an ongoing theme is to develop approaches that are trained or validated on publicly 

available datasets or those collected in individual experiments. Consequently, the replicability of these studies 

that leverage closed-source data may be called into question [8]. An additional limitation to the data being 

generated for PHM studies relates to the classic imbalance problem (whereby healthy data samples are much 

more prominent than faulty data samples) [8]. Meanwhile, the accuracy and reliability of the approaches are 

significantly hindered by insufficient manufacturing data: a key limitation for most deep learning approaches is 

their reliance on large quantities of data, typically in the order of ~1000 samples per class (for classification 

type problems). 

Transfer learning has presented its potential to address the above problems [6]. With transfer learning, 

knowledge acquired from one domain might be retained and reused in a new domain. In general, the 

methodologies of transfer learning can be classified into the following four categories according to what and 

how the knowledge is transferred: (1) Instance based transfer learning - the labelled datasets from the source 

domain are reused in the target domain; (2) Feature based transfer learning - the features in the source domain 

are reused in the target domain if the features of the source domain match those in the target domain; (3) 

Parameter based transfer learning - the setting parameters of a machine learning algorithm in the source domain 

are re-used in the target domain; (4) Relational knowledge-based transfer learning - the relationship between 

the data from the source domain and the target domain is established, which is the base for knowledge transfer 

between the two domains. 

In essence, transfer learning models repurpose the weights of deep learning approaches learned in 

classification tasks, corresponding to features in a similar or different domain (e.g., general-purpose image 

classification challenge datasets like ILSVRC [8] and Places [22]), to perform predictions for a new task. Such 

models typically achieved remarkable success, leading to a new research direction in exploring this 

generalizability by evaluating the classification or regression performance in new tasks (i.e., domain 

adaptation). In particular, for transfer learning, many approaches work well under a pre-requisite condition: the 

cross-domain datasets are drawn under the same feature distribution. When the feature distribution changes, 

most deep learning based approaches need to be re-trained from scratch.  

In recent years, various research works have been conducted to integrate transfer learning into deep learning 

algorithms, i.e., deep transfer learning. For instance, Lu et al. developed a deep transfer learning algorithm based 

on deep neural network and feature based transfer learning for domain adaptation [23]. In the research, the 

distribution difference of the features between the datasets from the source domain and target domain was 

evaluated based on the Maximum Mean Discrepancy (MMD) in a Reproducing Kernel Hilbert Space (RKHS). 

Weight regularization was carried out by an optimization algorithm to minimize the difference of the MMD for 

the two domains in implementing knowledge transfer. Xiao et al. designed another deep transfer learning 

algorithm for motor fault diagnostics [24]. In the algorithm, a feature based transfer learning approach was 

developed to facilitate knowledge learnt from labelled data under invariant working conditions to the unlabeled 
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data under constantly changing conditions. MMD was incorporated into the training process to impose 

constraints on the parameters of deep learning to minimize the distribution mismatch of features between two 

domains. 

2.3. Images in PHM applications 

Traditionally, images are used within PHM for offline VI when assessing the condition of the damaged 

component or machine. However, similar image data could be used as a viable tool to predict (or localize) faults 

within a machine component, particularly if the frequency of such image measurements is sufficiently large. 

Most approaches use either 2D representations of time- or frequency-domain data (e.g., engine sensor data in 

[25], vibration signals in bearings in [3]). Comparatively few examples exist where the failure mode of a 

machine was classified by a pre-trained CNNs model based on visual data. In particular, Janssens et al. utilized 

pre-trained versions of the VGG-16 CNNs model [26]. The model was re-trained on thermal video images to 

classify the failure type, firstly by the image intensity, and secondly based on the degree of imbalance of the 

rotating machine. Their approach combines a CNNs trained to extract spatial features from thermal images, and 

another trained to extract temporal information from differenced images to represent the motion due to 

imbalances. In their first case study, their approach attained a 36.67% accuracy improvement over a 

conventional classification model, in classifying 12 different health conditions. Additionally, they implemented 

the same methodology to perform binary classification on lubrication state of another system, reporting an 

accuracy of 86.67% with the feature learning vs 80% with the conventional approach. Subsequent works in 

CNC tool VI have emerged with CNNs being applied for tool wear classification [27] and segmentation [28], 

with high accuracy. Another approach integrates both classification and segmentation with over 95% accuracy 

[29]. Meanwhile, more recent applications have investigated CNNs based tool wear prediction as regression 

[30]. 

The above research predominantly relies on modest sized datasets of images to perform tool wear prediction 

or failure classification for diagnosis. While demonstrating widespread success on intermediate classification 

or segmentation tasks, these methodologies do not apply directly for tool wear regressions. The methodology 

developed in this research addresses these shortcoming and leverages transfer learning enabled CNNs for tool 

wear prediction as a regression task, without intermediate classification outputs, and with minimal pre-

processing. 

3. Methodology 

An overview of the developed methodology is described here first by introducing the overall workflow and 

then by detailing its constituent components. The overview is also illustrated in Figure 1. 

3.1. Problem definition and overall methodology 

The objective of this research is to predict the health of a cutting tool, given the image of the tool as an input 

and the corresponding normalized tool wear measurement as a prediction target. In other words, the objective 

is to determine: 
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 �̂� = 𝑤𝑇X + 𝑏  (1) 

where �̃� is the matrix for the predicted regression output, w and b are the trainable weights and biases of a CNNs 

model respectively, i.e. trainable parameters, and X is the input matrix for the images.  

A pre-trained CNNs model is deployed for predicting the wear state of the cutting tool. The parameters of 

the CNNs are then adjusted through adaptively learning the images of cutting tools based on a transfer learning 

process. To facilitate the CNNs model for the prediction, the end layers, which consist of the loss classifier and 

the classification output layer, are replaced with a designed regression layer stack.  

 

Figure 1. Conceptual overview of the CNNs deep transfer learning process for tool wear prediction. 

More details of the developed approach are in the following steps: (1) forward computation of the CNNs is 

carried out by using the datasets of both the source domain (datasets for pre-training the CNNs) and the target 

domain (the images for tool heath state) as input for tool RUL prediction; (2) back propagation computation in 

the CNNs is performed to minimize the feature distribution discrepancy for the two domains and the prediction 

errors of the tool RUL. Gradient descent optimization algorithms are evaluated and used for the minimization 

process, and the updated CNNs is deployed for tool RUL prediction.  illustrates the above steps, and further 

details on constituent components are given in the following sub-sections. 

3.2. The input data for transfer learning 

The dataset used for transfer learning comprises microscope images of the carbide cutting tool flank, 

collected at set intervals throughout the experiment, along with recorded flank tool wear width v in mm. The 

experiment conditions are recorded in Table 1. The cutting experiments were conducted under varying 
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conditions of cutting speed vc, feed rate fd, and cutting width ae. In total, 25 experiments were used to vary 

these parameters following a Taguchi Design of Experiments (DoE) approach, with 3 factors (vc, fd, and ae), 5 

levels per factor, and 1 response variable (i.e., the measured flank wear width, V). The purpose is to analyze the 

effects of varying these parameters on the longevity of the tools, with a maximum lifespan of 240 m of cutting. 

A sample of the collected data is shown in Table 2. 

In addition to the cutting tool images, the flank wear width (VB) was measured for each tool with a wear 

threshold of VB = 0.4 mm. Several image views of the cutting tool were recorded, but the analysis was focused 

on one particular variant of image views, at a magnification factor of 100 and a full side view of the tool flank.  

Table 1. The experimental conditions used throughout the machining experiments. 

Cutting tool model Machine tool Dimensions (mm) Tool material 

SP210-C4-16015 MAZAK VCN-430A-II D16×36×100 AlCrSiN 

Digital microscope Coolant Tool holder model Workpiece material 

KEYENCE VHX-5000 7% SIcut-Emu1020T HSK-A 63 Cr36NiMo4 

Workshop temperature (°C) Humidity (%) Material hardness (HB) Tool overhang (mm) 

27 50 250-300  40 

Table 2. Sample of recorded tool wear experiment data, demonstrating the tool wear measurement intervals. 

In total, 327 training images of cutting tools with appropriate tool wear width were used, split into 195 

images (59.94%) for training and 132 (40.06%) for validation. To simplify benchmarking, the same pre-shuffled 

training and validation data were used. Out of the records obtained, experiments #5, 7, 14, 18 and 25 (20% of 

the dataset) were used for testing, reflecting a comprehensive sample of the different cutting lengths attained 

under different experimental conditions. The remaining sequences were used in training and observation. The 

function of image batch processing was implemented to perform a boundary cropping operation to remove the 

excess image backgrounds, yielding 800×800 pixel images which have been re-sized to each CNN network 

target input size, within the data augmentation procedure. Examples of the image files are shown in Figure 2.To 

avoid discarding additional data that could be relevant, the training and validation data labels were normalized 

between 0 (indicating a healthy tool) and 1 (for a fully worn tool). Figure 3 illustrates the tool life trend of the 

25 cutting tools within this experiment. The images of the post-processed cutting tools were captured for 

Experiment #1. In addition, some tool wear measurements (in particular those corresponding to early failure 

events, e.g., Experiment #15) had a final values V < 0.4 mm; others had much larger values (e.g., Experiment 

#21) with v ~= 1 mm.  

Exp 

Cutting 

speed vc  

(mm/min) 

Feed 

rate fd 

(mm/min) 

Cutting 

width ae  

(mm) 

Flank 

Wear 

wl=0m 

(mm) 

Flank Wear 

wl=2m 

(mm) 

Flank Wear 

wl=6m 

(mm) 

Flank Wear 

wl=10m 

(mm) 

Flank 

Wear 

wl=20m 

(mm) 

 

... 

Flank Wear 

wl=F 

(mm) 

1 150.72 300 1.60 0.000 0.0052 0.0104 0.016 0.0233 … 0.436 

2 150.72 870 2.00 0.000 0.0061 0.0078 0.021 0.030 … 1.110* 

… … … … … … … … … … … 

25 251.20 2000 3.30 0.000 0.0074 0.012 0.029 0.073 … 0.662* 
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Figure 2. Experiment #1: pre-processed tool wear images recorded at W m cutting intervals. The cutting interval in 

earlier measurements was kept small to accurately capture the early wear trend 

 

Figure 3. Tool life trends of 25 cutting tool experiments truncated crossing the VB=0.4mm threshold (marked in red). 

3.3. CNNs models and regression stack 

For the approach developed in this paper, transfer learning allows the knowledge obtained from original 

tasks to be repurposed for different tasks. This means that the weights and biases of pre-trained CNNs models 

could be adjusted or fine-tuned with new training data. While the earlier feature pool layers of CNNs typically 

extract general image features that are considered safely transferable, specialized features are typically extracted 

in deeper layers. The degree of specialization often leads to some levels of pre-training bias, where the models 

retain features learned from the pre-training phase even despite being trained for extensive durations. It is 

intuitive to select models with a good performance in general classification to be further fine-tuned via transfer 

W=2m W=4m W=6m W=10m W=20m W=30m W=40m 

       

W=60m W=80m W=100m W=120m W=140m W=160m W=180m 
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learning. This is because such a model would have been trained to accurately recognize features belonging to a 

multitude of different classes. Feature transferability is addressed using minimization optimization procedures 

for MMD and tool wear prediction errors, described in Section 3.4. 

When selecting pre-trained CNNs models for transfer learning, another important consideration is the 

computational complexity of the models. While it is often observed that deeper models tend to outperform 

shallower ones at certain tasks, it is not always the case. The SqueezeNet architecture, for instance, was able to 

attain AlexNet-level accuracy on the ImageNet data challenge with nearly 50 times fewer parameters [31]. 

Therefore, comparing a variety of CNNs models quantitatively is useful to help evaluate their merits and 

appropriateness of this research. The CNNs models were chosen based on their classification performances in 

general-purpose classification tasks. Table 3 highlights the model size, input image size, and results from 

classification challenges for the CNNs models. 

Table 3. Pre-trained CNNs models investigated in this study, with performance reported in terms of top-1 and top-5 

percentage accuracy when trained on ILSVRC 2012 [8]. 

Network Top-1 Accuracy (%) Top-5 Accuracy (%) Parameters 

(Millions) 

Input Size 

AlexNet 63.3 84.6 61.0 227×227 

ResNet-18 71.78 90.58 11.7 224×224 

ResNet-50 77.15 93.29 25.6 224×224 

ResNet-101 78.25 93.95 44.6 224×224 

SqueezeNet 60.4 82.50 1.24 227×227 

InceptionV3 78.95 94.49 23.9 299×299 

The regression layer stack progressively adapt the outputs of the pre-trained CNNs to make them more 

suitable for regression-based prediction. It comprises the following layers:  

• A 4096-channel fully-connected layer, which function is to further down-sample the outputs of the 

previous global or max pooling layer (which is a common design choice for CNNs models); 

• A batch normalization layer, responsible for normalizing the inputs of the previous layer; 

• Rectified Linear Unit (ReLU), which applies a non-linear transformation to the prior layer outputs, 

given by the function: 

 𝑓(𝑥) = ReLU(𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

  (2) 

• A 410 fully-connected layer, which down-samples the previous layer inputs; 

• A sigmoid activation layer, which transforms the outputs of the previous layer to the range (0, 1) via 

the sigmoidal activation function; 

𝑓(𝑥) = sigmoid(𝑥) =
1

1+𝑒−𝑥  (3) 

A regression output loss on the prediction �̂�𝑖, and targets �̂�𝑖, which, for a mini-batch of N examples, calculates 

the Mean Squared Error (MSE):  

ℒ(𝒚𝑖 , �̂�𝑖) = MSE(𝒚𝑖, �̂�𝑖) =
1

𝑁
∑ (𝒚𝑖 − �̂�𝑖)2𝑁

𝑖=1    (4) 
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3.4. Transfer learning process 

The CNNs model with the regression stack is re-trained on the training dataset of 195 images through the 

procedure illustrated in Figure 1. In order to transfer the knowledge from the source domain (pre-trained CNNs) 

to the target domain (trained CNNs for tool RUL prediction), the developed approach should be subject to the 

condition that features are in similar distributions between domains. To address feature distribution mismatch 

during transfer learning, an error minimization optimization strategy is applied through back propagation 

computing on the pre-trained CNNs. In the previous literature, MMD (Maximum Mean Discrepancy) was 

popularly used to measure the distance metric for probability distribution between two domains. That is, the 

datasets in the source domain and the target domain are represented as 𝐷𝑆 = {𝑋𝑆, 𝑃(𝑥𝑠)}  and 𝐷𝑇 = {𝑋𝑇 , 𝑃(𝑥𝑇)} 

respectively. Meanwhile, 𝑋𝑆 = ∏ {𝑥𝑠
𝑖 , 𝑦𝑠

𝑖}𝑛𝑠
𝑖=1  with ns samples, and 𝑋𝑇 = ∏ {𝑥𝑇

𝑖 }
𝑛𝑡
𝑖=1  with nt samples respectively. 

Their MMDs are defined below: 

Mean𝐻(𝑋𝑆) =
1

𝑛𝑠
∑ 𝐻(𝑥𝑠

𝑖)
𝑛𝑠
𝑖=1    (5) 

Mean𝐻(𝑋𝑇) =
1

𝑛𝑡
∑ 𝐻(𝑥𝑇

𝑗
)

𝑛𝑡
𝑗=1    (6) 

MMDH(𝑋𝑆, 𝑋𝑇) = sup [𝑀𝑒𝑎𝑛𝐻(𝑋𝑆) − 𝑀𝑒𝑎𝑛𝐻(𝑋𝑇)]    (7) 

where sup (∙) represents the supremum of the aggregate; 𝐻(∙) is a RKHS (Reproducing Kernel Hilbert Space).  

In this research, the MMD is adopted for measuring the feature distribution difference of domain invariant 

features. To achieve similar distributions from two domains, MMD𝐻(𝑋𝑆, 𝑋𝑇) is considered as the optimization 

objective to regularize the weights of the CNNs.  

Due to the computational cost of calculating the MMD on the feature embeddings, a linear-time 

approximation of the MMD is used instead, as proposed by Gretton et al [50], taking the form: 

MMDl
2(𝑋𝑆, 𝑋𝑇) =

2

𝑀
∑ ℎ𝑙(𝒛𝑖)

𝑀

2

i=1
     (8) 

where 𝐳𝑖  =  (𝐱2𝑖−1
𝑠 , 𝐱2𝑖

𝑠 , 𝐱2𝑗−1
𝑡 , 𝐱2𝑗

𝑡 ), and hl(zi) is a kernel operator defined on the quad-tuple as follows: 

ℎ𝑙(𝒛𝑖)  =  𝑘(𝒙2𝑖−1
𝑠 , 𝒙2𝑖

𝑠 ) + 𝑘(𝒙2𝑗−1
𝑡 , 𝒙2𝑗

𝑡 ) − 𝑘(𝒙2𝑖−1
𝑠 , 𝒙2𝑗

𝑡 ) − 𝑘(𝒙2𝑖
𝑠 , 𝒙2𝑗−1

𝑡 )                      (9)  

Meanwhile, during the re-weighting process on the CNNs, the prediction error should be minimized as well. 

Thus, the prediction error is considered as another optimization objective. The overall loss can therefore be 

calculated based on MMDH(𝑋𝑆, 𝑋𝑇) and MSE. Since MMDH(𝑋𝑆, 𝑋𝑇) and MSE are in different value ranges, 

normalization is required. In this research, Nadir and Utopia points are utilized to normalize the above 

objectives. The Utopia point 𝑧𝑖
𝑈  provides the lower bound of No. i objective obtained by minimizing the 

objective as below: 

𝑧𝑖
𝑈 = 𝑚𝑖𝑛 𝑓(𝑖)  (10) 

The Nadir point 𝑧𝑖
𝑁 provides the upper bound of No. i objective by maximizing the objectives: 

𝑧𝑖
𝑁 = 𝑚𝑎𝑥

1≪𝑗<𝐼
𝑓(𝑗)      (11) 

where I is the total number of the objective functions. According to Equations (10) and (11), the normalized 

MMD and MSE can be calculated as: 

NMMDH = (MMDH1(𝑋𝑆, 𝑋𝑇) − 𝑧1
𝑢)/(𝑧1

𝑁 − 𝑧1
𝑢)    (12) 
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NMSE = (MSE − 𝑧2
𝑢)/(𝑧2

𝑁 − 𝑧2
𝑢)   (13) 

where NMMDH and NMSE are the normalized MMDH(𝑋𝑆, 𝑋𝑇) and MSE respectively. Finally, the total loss 

function 𝐿𝑜𝑠𝑠 can be calculated based on the weighted sum of the two normalized objectives: 

ℒ𝑡𝑜𝑡𝑎𝑙(𝑋𝑠, 𝑋𝑡 , �̂�, 𝑌) = 𝑤1 ∙ NMMDH + 𝑤2 ∙ NMSE   (14) 

where 𝑤1, 𝑤2 are the weights of the two objectives, and ∑ 𝑤𝑖 = 12
𝑖=1 . The weighting serves to trade off the 

MMD minimization with the task loss objective. These are therefore set to w1, w2 = [0.9, 0.1]. 

Based on the above process, three variants of training optimization algorithm were investigated and 

compared, including Stochastic Gradient Descent with Momentum (SGDM), Root Mean Square Propagation 

(RMSProp) and Adaptive Moments (ADAM) [32]. SGDM has been a popular choice for training ANNs since 

its inception in 1999, and its subsequent resurgence when used in AlexNet. RMSProp is another popular 

algorithm for gradient descent training to eliminate the need for learning rate adjustment. ADAM combined the 

heuristics of both Momentum and RMSProp to achieve faster convergence. The CNNs models were trained 

according to the procedure illustrated in Algorithm 1. 

Algorithm 1: MMD-MSE Computation for CNNs transfer learning. 

1. Initialize 𝑋𝑖
𝑠 , 𝑋𝑖

𝑡; 𝑌𝑖
𝑠  0, 

2. Compute initial kernel parameter list σ ~[2n], -1 ≤ n ≤ 12 

3. iteration = 0;  

4. set training to true; 

5. while training do 

1. iteration = iteration + 1; 

2. Compute i forward mini-batch predictions using CNNs layers on target data 

�̂�𝑖
𝑡 = 𝐖𝐶𝑁𝑁(𝑋𝑖

𝑡) + 𝐁𝐶𝑁𝑁 

3. Compute i forward feature embeddings for source and target domain batch w.r.t. layers l: 

𝜑𝑠,𝑙(𝑋𝑖
𝑠) ← 𝑓(𝑋𝑖

𝑠, 𝑙) 

𝜑𝑡,𝑙(𝑋𝑖
𝑡) ← 𝑓(𝑋𝑖

𝑡 , 𝑙) 

4. Project feature embeddings φ(Xs) and φ(Xt) into RKHS with chosen Gaussian kernels 𝒩~(0, σ) 

ℎ𝑙(𝐳𝑖)  =  𝑘(𝐱2𝑖−1
𝑠 , 𝐱2𝑖

𝑠 ) + 𝑘(𝐱2𝑗−1
𝑡 , 𝐱2𝑗

𝑡 ) − 𝑘(𝐱2𝑖−1
𝑠 , 𝐱2𝑗

𝑡 ) − 𝑘(𝐱2𝑖
𝑠 , 𝐱2𝑗−1

𝑡 ) 

5. Choose optimal kernel parameter σ ∈ σ  to maximise distribution difference between embeddings 

6. Compute layer-wise MMD as  

MMD𝑙
2(𝑠, 𝑡) =

2

𝑀
∑ ℎ𝑙(𝐳𝑖)

𝑀
2

𝑖=1

 

7. Compute mini-batch loss on i examples: 

ℒ𝑡𝑜𝑡𝑎𝑙(X𝑠, X𝑡, �̂�, 𝑌) = 𝑤1𝑀𝑆𝐸(𝑌, �̂�) +
𝑤2

𝑅
∑ MMD𝑙

2(X𝑠 , X𝑡)𝑟

𝑅

𝑟=1

 

end while 

 

The models were trained for 750 epochs in 12 iterations per epoch (9000 iterations total), with a mini-batch 

size of 16 images. During each pass of training, the model was passed batches of source and target data, 

simultaneously. The training function was set to shuffle the mini-batch every epoch. To speed up training, 

validation was done every 40 iterations. During training, image augmentation operations were implemented on 
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each training mini-batch, to vary the input images by introducing some aspects of visual variation to the images 

(random translations, rotations, and scaling). This has the effect of inflating the dataset, allowing the CNNs 

model to consider more examples of the data than are available. The CNNs training procedure was implemented 

on a HPC computer in MATLAB 2018a, with the Deep Learning Toolbox models for the aforementioned CNNs 

pre-trained on the ImageNet 2012 dataset. The training was processed on an NVIDIA GPU, with 8GB RAM. 

4. Experimental Results and Discussions 

4.1. Test results for CNNs training 

Table 4 details the benchmarking results for fine-tuning the 6 CNNs models by the transfer learning process, 

where the 3-run average of each model variant’s output was recorded. To evaluate the quality of prediction, the 

models were assessed with the following performance criteria: 

(1) Training time (in seconds).  

(2) Mean Absolute Error (MAE), which is defined below: 

MAE =
1

𝑁
∑ |𝒚𝑖−�̂�𝑖|𝑁

𝑖=1   (15) 

(3) Root Mean Square Error (MSE), which is the square root of MSE.  

(4) acc10,20,30, the accuracies of all predictions are below 10%, 20% or 30% error thresholds from the targets. 

The threshold of the T percentage accuracy is given by: 

𝑎𝑐𝑐𝑇 =
1

𝑁
∑ 𝟙𝑇((�̂�𝑖)𝑁

𝑖=1       (16) 

𝟙𝑇(�̅�𝑖) ≔ {
1, (�̂�𝑖 ≥ 𝑇 × |max(𝒚𝑖)|

0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (17) 

where the range of T is determined by 𝑇 ∈ [0.1, 0.2, 0.3]. 

Table 4. CNNs test performance results, with lower values of MAE and MSE indicating better performance. 
 

Pre-trained Model 

Training Details Model Performance 

Optimizer 
Learning 

Rate 
MAE RMSE 

acc10 

(%) 

acc20 

(%) 

acc30 

(%) 

Training 

Time (s) 

AlexNet adam 4e-5 0.0829 0.1684 81.68 90.84 91.60 2124.8 

sgdm 2e-2 0.0868 0.1723 79.39 90.08 91.60 1940.1 

rmsprop 4e-5 0.0903 0.1726 77.86 90.08 90.84 2027.6 

ResNet-18 adam 4e-5 0.0773 0.1654 83.97 90.84 92.37 3358.4 

sgdm 2e-2 0.0820 0.1591 78.63 90.08 92.37 2649.0 

rmsprop 4e-5 0.0791 0.1594 80.15 90.08 92.37 2853.5 

ResNet-50 adam 4e-5 0.0868 0.1764 80.92 86.26 90.84 14790 

sgdm 2e-2 0.1124 0.1967 74.05 84.73 90.08 9184.2 

rmsprop 4e-5 0.1050 0.1954 76.34 83.97 90.08 12689 

ResNet-101 adam 4e-5 0.0833 0.1657 74.81 89.31 92.37 17750 

sgdm 2e-2 0.0992 0.1565 74.05 89.31 93.89 15122 

rmsprop 4e-5 0.0882 0.1740 77.86 86.26 90.84 16654 

SqueezeNet adam 4e-5 0.0891 0.1732 79.39 88.55 91.60 2151.8 

sgdm 2e-2 0.0868 0.1784 79.39 89.31 91.60 1763.5 

rmsprop 4e-5 0.0882 0.1710 77.68 88.55 91.60 1878.0 

InceptionV3 adam 4e-5 0.0886 0.1784 79.39 85.50 91.60 20334 

sgdm 2e-2 0.1040 0.1931 77.10 85.50 90.08 14653 

rmsprop 4e-5 0.0916 0.1728 79.39 87.02 91.60 18780 
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The threshold of 10% accuracy indicates the percentage of prediction that falls within 10% of this error in 

either direction. In most cases, due to the proportion of healthy samples compared to faulty or worn tool images, 

the prediction errors are on the lower end of the range, i.e., ~10% below the target value. The performance 

measures of 20% and 30% accuracy are considered additional qualitative metrics indicating whether predictions 

can be accepted. 

Table 1. Results for benchmarked pre-trained CNNs models (lower=better except for accuracy (10%, 20% and 30%)). 

4.2. Result analysis and observations 

In Table 3, comparing these results, ResNet-18 (trained with ADAM) can offer the best performance in terms 

of average prediction error and acc10, with a reasonable training time considering the number of iterations 

attempted. ResNet-50 and ResNet-101 variants are both longer to train and generally less accurate based on 

MAE and MSE. Meanwhile, despite being much deeper than other models, the InceptionV3 variants were 

amongst the worst performing models considering MAE, RMSE and the accuracy thresholds. Furthermore, the 

increase in model depth from ResNet-18 to ResNet-101 has increased training time fivefold, without an 

improvement in performance. This emphasizes a key observation that increase of the model depth does not 

mean increase in prediction accuracy accordingly. Sample prediction outputs using the three optimizers chosen 

(ADAM, RMSPROP and SGDM) are illustrated in Figure 4.  

 

Figure 4. ResNet-18-based predictions vs targets using three optimizer variants. 

Figure 5 shows a histogram plot of the prediction outputs of the six CNNs. Some further observations can 

be made regarding the performance of these models:  

• Overall best fit: It shows that ResNet-18 produced the closest prediction output distribution to the validation 

target data, across the three optimizer training variants. 

• Overfitting: All models over-fit the results significantly in the “healthy” categories, with the performance 

of ResNet-18 (ADAM) being the best out of the compared model variants in terms of overfitting, where 

the less the model over-fits, the better its performance. 



15  

 

• Generalization performance: Comparatively, ResNet-50 produced the worst general fit results, indicated 

by its comparatively higher MAE and MSE as well as lower accuracy across all thresholds. This might 

indicate that the model has a tendency to over-fit the data more strongly than other models. In fact, the 

generalization performance of SqueezeNet, which is close to 20 times smaller in parameters, is markedly 

better consider the relative difference in model size. 

• Anomalous predictions: With the exception of ResNet-18, all models trained with SGDM have a tendency 

to produce negative outputs, despite the sigmoid layer (whose function is to force its outputs to be between 

0 and 1) being the last layer prior to the regression output layer. This is a property of SGDM which enables 

it to generalize better than the other training algorithms [46]. However, in doing so the SGDM variants 

predict results in the reverse direction of what is desired. This contrasts to tool wear width values, which 

must always be indicated by a positive value. 

• Training duration: It is worth mentioning that increasing the number of epochs to 9000 did not have a 

profound impact on the accuracy. Initial trials with fewer iterations (i.e., 150 instead of 750) yielded similar 

results for most of the models. It is common to select a short training duration for the fine-tuning process. 

 

Figure 5. Prediction histogram comparison between six benchmarked CNNs models. 

Figure 6 (a-d) compare the results (accuracy, log(training time), MAE, and MSE) from all the model variants 

(ADAM, SGDM and RMSPROP). ResNet-18 is clearly shown to have the highest average accuracy and lowest 

MAE, despite being slightly longer to train than AlexNet in training time. ResNet-18 is also amongst the best 

performing models for RMSE, bested only by ResNet-101 trained with SGDM. It therefore concludes that 

ResNet-18 is the best performed CNNs at learning a new task (regression output of normalized tool wear state) 

from images of tools using transfer learning.  

 



16  

 

 

(a) 

 

(b) 

 

     (c) 

 

(d) 

Figure 6. The performance of the test sets of CNNs transfer learning models; (a) accuracy (%), (b) log(training time), 

(c) MAE, (d) RMSE. 

From the above analysis, the prediction workflow of tool health state based on transfer learning enabled 

ResNet-18 variants can be more effective in early stages (i.e., initial wear, with v>0.2mm). However, data 

imbalance and overfitting have considerable negative impacts on prediction accuracy, where classes are not 

uniformly distributed across the dataset. This is evident in the collected data in this research, where many more 

examples of healthy tools (i.e., v < 0.4) are available than those of less healthy tools (v ≥ 0.4). This is made 

further apparent in Figure 7 that shows the distribution of the normalized training and testing dataset targets; 

there are much fewer values close to 1 in the normalized scale, corresponding to v values close to 0.4. Therefore, 

further investigations should be made: 

 

Figure 7. The data distribution of the training and validation target data. 
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• To address the imbalance between healthy and faulty tool states, classification-then-regression methods 

could be further explored, where weights are assigned based on class probability. Alternatively, cumulative 

attributes based methods could help improve accuracy by reformulating the regression problem in a manner 

similar to classification. Another alternative could be explored based on parameter transfer approaches, 

where a source task (and its corresponding source domain data) is used to pre-train the model.  

• Additional works are required to improve the accuracy of prediction across increasing wear levels (i.e. 

where the normalized wear value exceeds 0.5). Some additional pre-manipulation of the data need to be 

implemented, by adding extra safety margins to the hand-measured wear values, for example. Increasing 

the cost parameters for the regression layer, for example by increasing regularization L2-norm penalties, 

could reduce overfitting. 

• Investigating maximum likelihood estimation methods for regression could help with improving 

predictions across the full range of expected outputs, thereby reducing prediction bias. 

The approach presented in this research could be further incorporated with additional inputs from CNC 

machining systems such as machining parameters, cutting material databases and cutting tool databases, to 

develop an intelligent PHM strategy for the machining systems. Additionally, other intelligent strategies such 

as reinforcement learning could be explored to further enhance the viability of the PHM strategy.  

5. Conclusions 

Deep learning algorithms have been increasingly applied for PHM due to their great potentials in the 

applications. Nevertheless, they are still ineffective in practical manufacturing applications as sufficient 

amounts of training dataset are not usually available. Seeking to overcome these limitations, in this paper, a 

transfer learning enabled CNNs approach is developed to effectively predict tool wear in CNC machining 

processes based on a limited number of the images of cutting tools. Quantitative benchmarks and analysis are 

conducted on the performance of the developed approach using several typical CNNs models and training 

optimization techniques. Experimental results indicate that the transfer learning approach, particularly using 

ResNet-18, can predict the health state of the cutting tool (as a normalized value between 0 and 1) with up to 

84% accuracy and with a prediction mean absolute error of 0.0773. Based on these results, it demonstrates that 

the developed approach can achieve effective predictions on the health state of cutting tool in the early stages 

of tool wear.  

A further research work is to integrate additional information to predict the tool RUL for increased accuracy 

(such as temperature, power dissipation, or current signals from the machine). Additionally, the approach to 

train the CNNs in this research can be incorporated directly into the PHM module for a CNC machine tool 

system, with the results of the predictive models being used to provide insights into improving the CNC 

machining process operations. The applicability of the methodology developed in this approach is not restricted 

to PHM of CNC machining alone; the methodology of transfer learning could be used for other applications 

with only limited datasets in a target domain available.  
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