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Abstract 

Model-based control system design is a well-established method for advanced engine control 

systems. These control systems maintain engine operation at levels that meet stringent 

environmental regulations on vehicular emissions. However, the models required for model-based 

design need to be accurate enough for design and pre-calibration and fast enough for optimization 

and implementation purposes. On the other hand, the variable valve timing (VVT) technology 

significantly affects the dynamic performance of internal combustion engines. This study aims at 

developing a control-oriented, extended mean-value model (EMVM) of a gasoline engine, taking 

into account the effects of VVT on the dynamic model. The developed model analyzes the engine’s 

performance characteristics in transient and steady-state regimes. The engine model incorporates 

four peripheral, nonlinear, dynamic subsystems: manifold, fuel injection, wall-film adhesion, and 

evaporation processes. Moreover, lying at the core of the developed model is a nonlinear, static, 

in-cylinder process (ICP) model which simulates gas exchange and combustion processes based 

on the cylinder’s boundary conditions. Based on the experimental data obtained from the engine 

test setup, an artificial neural network has been trained to predict the in-cylinder processes as a 

single model. The ICP model was integrated into the dynamic peripheral models to form the final 

EMVM model. The results of the developed model were compared to the engine experimental 

tests for two test scenarios: half-throttle and full-throttle cases. It was observed that the developed 

model could accurately simulate the engine speed, inlet air pressure, aspirated air mass, and 

exhaust temperature. Moreover, the EMVM model could successfully predict the effects of VVT 

in the performance of ICEs. 

Keywords: Gasoline engine; Control oriented model; Extended mean value model; Variable 

valve actuation; Engine management systems; model based control design; Artificial Neural 

Network 
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1. Introduction 
Internal combustion engines (ICEs) have achieved an impeccable reputation in human and 

industrial societies. The fuel economy issues, on the one hand, and the deleterious consequences 

of emissions, on the other hand, have galvanized researchers into coming up with technologies for 

minimizing fuel consumption. In this regard, from the automotive manufacturers’ viewpoint, it is 

costly and time-consuming to design, calibrate, and optimize novel control schemes for ICEs. This 

is where the model-based control schemes come in to pave the path to this end by reducing the 

time and number of experimental examinations. With the advent of mechatronic systems, 

automotive and control engineers can manipulate a larger number of parameters to further increase 

the controllability of ICEs and to optimize fuel consumption and emissions [1]. This, in turn, adds 

to the complexity of handling all input parameters [2-5]; additionally, it requires a larger number 

of sensors and more advanced measurement systems, which may not be economically justifiable 

[6]. Also, the increasing number of mechatronic systems increases engine controllability and 

observability, yet it makes the controller design and calibration procedures time-consuming, 

tedious, and laborious. By recruiting powerful observers and estimators, however, scientists 

circumvent the mentioned flaw [7-10]. Nikzadfar and Shamekhi developed a novel model-based 

calibration procedure incorporated with a multi-objective Genetic Algorithm (GA) to optimize the 

performance and emissions of a diesel engine [11]. In this regard, they balanced the trade-off 

between maximization of the engine controllability and minimization of the complexities and 

number of experiments required.  

Among static models that simulate the combustion process are black-box, empirical models that 

use an input-output training dataset, and an identification technique [12-18]. Parlak et al. have 

analyzed the application of Artificial Neural Networks (ANNs) to predict exhaust temperature and 

specific fuel consumption of diesel engines [19]. They found that a well-trained ANN could 

provide accuracies above 98% concerning the experimental tests. For the sake of investigating the 

effects of operational and design parameters on a natural gas engine’s efficiency and NOX 

emissions, Kesign took advantage of GA to optimize a wide range of the engine parameters [20]. 

Due to the huge computational necessities of NOX determination, he trained an ANN to imitate the 

results of the experimental tests. Nikzadfar and Shamekhi proposed a novel model-based 

calibration framework for optimizing the emissions and performance of a diesel engine. Sayin et 

al. developed an ANN to predict exhaust emissions, exhaust gas temperature, brake thermal 

efficiency, and brake specific fuel consumption of a gasoline engine. The trained ANN shared 

correlation coefficients of 0.983–0.996 and mean relative errors of 1.41–6.66% concerning the 

experimental results [21]. Gölcü et al. studied the effects of intake valve-timing on the 

performance and fuel consumption of an SI engine. They used ANNs in which the engine speed 

and the intake valve-timing were considered as the input layer and engine torque and fuel 

consumption as the output layer [22]. Airamadan et al. [23] utilized machine learning models on 

gasoline compression ignition engines, covering different intake conditions, injection strategies, 

and spark settings. They recognized the complex pattern between the input calibration parameters 

and seven desired outputs: fuel consumption, four emissions, exhaust temperature, and coefficient 

of variation in indicated mean effective pressure. 



On the other hand, the MVM model was developed to simulate the engine in its entire operating 

points with acceptable accuracy [24]. This model soon became popular owing to its high accuracy, 

fast calculation speed, and simplicity. Therefore, in recent years, the MVM model has appealed to 

many scientists attempting to dynamic modeling of different kinds of engines [25-31]. By 

amalgamating ANNs with conventional MVM models, Shamekhi and Shamekhi presented a grey-

box, real-time, control-oriented model for SI engines, Neuro-MVM. The juxtaposition of the 

results of the Neuro-MVM model with that of a constructed one in GT-Power and line-like 

regression correlations manifest high fidelity and accuracy of the developed model [32, 33]. 

Nikzadfar and Shamekhi introduced the concept of extended MVM (EMVM), which enhanced the 

conventional version to predict the engine emissions and performance in transient regimes [34]. In 

doing so, a low computational burden along with a satisfying level of accuracy was maintained. 

Lying at the core of the developed model is a semi-static in-cylinder process (ICP) model 

responsible for predicting the engine performance and emissions. 

To investigate on the nitric oxide (NO) emission of a diesel engine model, Tang et al. used various 

optimization techniques [35]. Having compared the results with the experimental tests, they found 

a satisfying agreement between the results.  Tang et al. developed a real-time two-stroke marine 

diesel engine model to predict in-cylinder pressure [36]. Before developing a successful control 

system, one must achieve an accurate system model that is to be controlled. In pursuit of the best 

engine modeling approaches, Lee et al. [37] introduced the exclusive MVM approach and a 

combination of MVM with a Design of Experiments (DOE) model. Additionally, to meet diverse 

requirements from the calibration field, they introduced the full MVM and the adapted air path 

MVM, combined with a Gaussian process DOE in-cylinder combustion model. 

Sequino et al. [38] proposed a novel nozzle configuration for a hybrid fuel injection concept. They 

better controlled the fuel delivery and utilization of the available volume compared to the previous 

injector configurations. In addition, mixing quality improved, resulting in more combustion 

efficiency and less pollutant. 

A study by Mahendra et al. [39] found that early intake valve closing Miller valve timing could 

increase the efficiency of ethanol- and methanol-fueled heavy-duty spark ignition engines. By 

increasing the geometric compression ratio, they found a 2-3% increase in brake efficiency with 

Miller timing at stoichiometric conditions. 

To the authors’ best knowledge, MVM models have not been developed for ICEs equipped with 

variable valve timing (VVT) technology. Therefore, the main contribution of this study lies in the 

development of an extended mean value model (EMVM) for ICEs equipped with VVT technology. 

This is done so that the engine’s emissions and performance characteristics are considered in both 

transient and steady-state operation. In doing so, the combustion phenomenon plays a key role. 

Intending to model the ICP phenomena, the authors developed a thermodynamic model in an 

internal combustion engine cycle simulator package based on the experimentally obtained dataset. 

For this model to perform well in transient regimes and be amenable to real-time applications, it 

should be accurate yet simple enough to be run as fast as possible. The previously-mentioned 



dichotomy is where the need for ANNs emanates from. Therefore, the Multi-layer Perceptron 

(MLP) structure was selected for the ANN to mimic the thermodynamic model. 

The discharge coefficients for the inlet and exhaust valves play an important role in the 

development of accurate VVT models [40-43]. More specifically, it is important to simulate the 

temperature decay in the exhaust port to get accurate estimates of NOx levels in the exhaust [44-

46]. 

Therefore, the benefit of the extended MVM models and the main motivation for their 

development is twofold. First, they can cover the complex combustion behavior of the engine that 

is accurately simulated via the commercial package. Second, they are able to do so at a very low 

computational burden thanks to the embedded neural networks. The ANNs in this study include 

two hidden layers with twenty neurons in each. The activation functions in the hidden and the 

output layers are nonlinear sigmoid and linear functions, respectively. These configurations have 

been selected based on the authors’ previous work [47]. 

The developed model is accurate enough for engine calibration, optimization, and model-based 

and real-time control systems design [48, 49].  

The cycle simulator package was first used to design and calibrate a thermodynamic model based 

on the data collected from the experimental setup. The function of the thermodynamic model is to 

decrease the need for the experimental input-output data by mimicking the experimental setup. 

Having the thermodynamic model generate an input-output dataset of huge size, the authors tuned 

an ANN, whose accuracy was high enough in simulating the ICPs. Finally, the designed ANN was 

validated by comparing its outputs with both those of the thermodynamic model and the 

experimental tests, all of which were in close-fitting agreement. 

The article is organized as follows. Section 2 describes the modeling of the dynamic sub-systems 

as well as the core, static ICP model. Section 3 presents the simulation results and experimental 

validations of the models. 

 

2. Model Development  

The architecture of the developed model is mainly composed of four modules with very fast and 

rather slow dynamics: In-cylinder Process (ICP), Fuel Delivery System (FDS), Engine Inertial 

System (EIS), and Intake-exhaust System (IES). The first module is responsible for the memory-

less, combustion processes, while the latter three account for the dynamic behavior of the engine. 

It may be important to note that these sub-systems are modeled under the following assumptions. 

Fresh and exhaust gases are presumed ideal gases. The wave properties of airflow are ignored, and 

the lumped model is taken advantage of by modeling the plenum air dynamics. Besides, the wall 

heat transfer and flow friction in pipes are assumed negligibly small [34]. Compared to the outlying 

processes, combustion dynamics are so fast to be considered a semi-static phenomenon. Figure 1 

illustrates the causal flow diagram between the different engine’s sub-systems.  
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Figure 1 Cause and effect interactions between the engine’s sub-systems. 

The extended concept of the MVM model suggests a core, semi-static, combustion sub-model (i.e 

the ICP) circumscribed by some outlying, dynamic sub-models. Since the dynamics of the ICPs is 

much faster than that of the outlying ones, they can be considered as static phenomena. For 

instance, compare the duration that takes the engine to induct air through the manifold with that 

which takes the engine to ignite or combust the compressed air-fuel mixture.  Despite the evident 

interaction between the sub-systems, the ICPs can be modeled independently of the outlying 

models. This model simulates the nonlinear, complicated phenomena happening inside the 

cylinder. Therefore, a great deal of research has been geared towards optimizing their performance 

to increase their efficiency and decrease fuel consumption [6, 50, 51].  

The engine type studied in this article is a naturally-aspirated, gasoline, four-cylinder, and SI. This 

engine, namely EF7, is manufactured by Iran Khodro Company (IKCO) and is equipped with  VVT 

technology. This technology enables the engine to alter the timing of valve lift events, leading to 

improvement in performance, fuel consumption, and, hence, exhaust emissions. 

An SI engine converts chemical energy from combustion into mechanical energy. This energy 

conversion requires some dynamic processes to be accomplished. Being intermediate between 

large cyclic simulations and simplistic transfer functions, the MVM model can estimate the main 

external variables including manifold pressure and crankshaft speed. MVMs are mostly known as 

lumped parameter models, that is, systems represented by ordinary differential equations (ODEs) 

[52, 53]. This is why they fit real-time applications. Figure 2 illustrates the block diagram of the 

complete engine, EMVM model. The dynamic relationships between the different subsystems are 

clearly shown in this figure. As can be seen, there is a core, static, in-cylinder process model 

surrounded by peripheral, dynamic models. 



Throttle 

Valve Mass 

Flow

(Eqs. 2-5)

Inlet Manifold 

(Eq. 1)

Exhaust Manifold

(Eq. 1)

Engine Inertia

(Eq. 10)

Fuel Dynamics

(Eqs. 6-9)

In-cylinder Process Model

 

Figure 2 Block diagram of the engine full EMVM model. 

The subsystems shown in Figure 2 are discussed in detail in this section. The next two sub-sections 

cover the development of the peripheral dynamic and the core static subsystems, respectively. 

 

 

 

2.1. Peripheral Dynamic Models 

Manifold Processes 

The manifold process is a dynamic resulting from the difference between the inlet and exhaust 

airflow rates. In this research, the manifold is considered as an adiabatic receiver with lumped 

parameters.  The pressure 𝑝 and temperature 𝜗 of the manifold can be obtained as  

𝑝̇(𝑡) =
𝜅𝑅

𝑉
[𝑚̇𝑖𝑛(𝑡) ∙ 𝜗𝑖𝑛(𝑡) − 𝑚̇𝑜𝑢𝑡(𝑡) ∙ 𝜗(𝑡)], 

𝜗̇(𝑡) =
𝑅 ∙ 𝜗(𝑡)

𝑐𝜐𝑉 ∙ 𝑝(𝑡)
[𝑐𝑝𝑚̇𝑖𝑛(𝑡) ∙ 𝜗𝑖𝑛(𝑡) − 𝑐𝑝𝑚̇𝑜𝑢𝑡(𝑡) ∙ 𝜗(𝑡) − 𝑐𝜐(𝑚̇𝑖𝑛(𝑡) − 𝑚̇𝑜𝑢𝑡(𝑡))

∙ 𝜗(𝑡)], 

(1) 

where 𝑐𝜐 and 𝑐𝑝 in J (kg. K)⁄  denote specific heat at constant volume and pressure, respectively.   

𝑅 is the gas constant. 𝜅 = 𝑐𝑝 𝑐𝜐⁄  is the ratio of specific heats. 𝑉 is the intake manifold volume. 

Besides, 𝑚̇𝑖𝑛(𝑡) and 𝑚̇𝑜𝑢𝑡(𝑡) are, respectively, the air mass flow for intake and exhaust manifold. 

Finally, 𝜗𝑖𝑛(𝑡) is the air temperature in the intake manifold. It should be noted that due to the 



lumped parameter approach, the out-flowing gas temperature 𝜗𝑜𝑢𝑡(𝑡) is assumed to be equal to the 

gas temperature in the manifold, i.e., 𝜗(𝑡). Eq. 1 has been used for both inlet and exhaust 

manifolds, so the subscripts in and out refer respectively to both manifolds’ input and output.  

 

Throttle Valve Mass Flows 

For a compressible fluid, flowing through an isothermal orifice, which applies in this study, the 

thermodynamic equations for the isentropic expansion lead to 

𝑚̇𝑖𝑛(𝑡) = 𝑐𝑑 ∙ 𝐴(𝑡)
𝑝𝑖𝑛(𝑡)

√𝑅 ∙ 𝜗𝑖𝑛(𝑡)
∙ 𝛹 (

𝑝𝑖𝑛(𝑡)

𝑝𝑜𝑢𝑡(𝑡)
), (2) 

where 𝑐𝑑  denotes discharge coefficient, and 𝐴(𝑡) is the open area of the valve that can be obtained 

using the following equation 

𝐴(𝑡) = (1 − cos 𝜃(𝑡))𝜋 ∙ 𝑟2, (3) 

with 𝜃(𝑡) as the valve opening angle and 𝑟 as the valve inner radius. 

The operator 𝛹( . ) is called the flow function and is of the form 

𝛹(
𝑝𝑖𝑛(𝑡)

𝑝𝑜𝑢𝑡(𝑡)
) =

{
 
 
 

 
 
 

√𝜅 [
2

𝜅 + 1
]

𝜅+1
𝜅−1

 
 

for 𝑝𝑜𝑢𝑡(𝑡) < 𝑝𝑐𝑟(𝑡)

[
𝑝𝑜𝑢𝑡(𝑡)

𝑝𝑖𝑛(𝑡)
]

1
𝜅

∗ √
2𝜅

𝜅 − 1
∗ (
𝑝𝑜𝑢𝑡(𝑡)

𝑝𝑖𝑛(𝑡)
)

𝜅−1
𝜅

for 𝑝𝑜𝑢𝑡(𝑡) ≥ 𝑝𝑐𝑟(𝑡)

 (4) 

The flow pressure in the slenderest part of the valve, where it attains sonic conditions, is called the 

critical pressure and is designated by 𝑝𝑐𝑟. This pressure is obtained as 

𝑝𝑐𝑟(𝑡) = [
2

𝜅 + 1
]

𝜅
𝜅−1

∙ 𝑝𝑖𝑛(𝑡). 
(5) 

 

Fuel Injection Dynamics 

The engine studied here is that of SI gasoline, a port-injected one, in which a solenoid valve is 

responsible for the injection of the liquid fuel into the intake port. However, not all portion of the 

injected fuel enters the cylinder for the intake stroke. The fuel injected into the intake port (𝑚𝜓(𝑡)) 

is parted into three portions: one is that adheres to the inner wall of the intake manifold (𝑚𝑓(𝑡)); 



another that evaporates, and a third that is aspirated into the cylinder (𝑚𝜑(𝑡)). Thus, a mass balance 

may be written such as follows 

𝑚̇𝜑(𝑡) = (1 − 𝜅(𝜔𝑒 ,𝑝𝑚,𝜗𝑓 , … )) ∙ 𝑚̇𝜓(𝑡) +
𝑚𝑓(𝑡)

𝜏(𝜔𝑒 ,𝑝𝑚,𝜗𝑓 , … )
 , (6) 

𝑚̇𝑓(𝑡) = 𝜅(𝜔𝑒 ,𝑝𝑚,𝜗𝑓 , … ) ∙ 𝑚̇𝜓(𝑡) −
𝑚𝑓(𝑡)

𝜏(𝜔𝑒 ,𝑝𝑚,𝜗𝑓 , … )
 , (7) 

 

where 𝑚̇𝑓(𝑡) is the fuel mass rate adhered to wall-film, 𝑚̇𝜓(𝑡) is the fuel mass rate injected, and 

𝑚̇𝜑(𝑡) is the fuel mass rate aspirated to the cylinder. 𝜅(. ) specifies the extent to which the injected 

fuel adheres to the wall-film, and 𝜏(. ) is a time constant [25], both of which depend on many 

engine variables. These coefficients have been experimentally found over the engine’s entire 

operating points, and for that of ours, they are chosen as constants of 𝜅 = 1.4 and 𝜏 = 0.309.  

The air/fuel ratio (𝜆) can be obtained as given in Eq. 8. 

𝜆(𝑡) =
1

𝜎0
∗ 𝑚̇𝛽,𝑎(𝑡) 𝑚̇𝜑(𝑡)⁄ , (8) 

where 𝑚̇𝛽,𝑎(𝑡) and 𝑚̇𝜑(𝑡) are, respectively, the rate of air and fuel mass aspirated into the cylinder. 

𝜎0 = 14.67 denotes the stoichiometric constant[52]. The rate of air mass induced to the cylinder 

can be obtained by the following approximation 

𝑚̇𝛽,𝑎(𝑡)  =
𝑝𝑚(𝑡) ∙ 𝑉𝑑 ∙ 𝜔𝑒(𝑡)

2𝜋𝑁 ∗ 𝑅𝛽 ∗ 𝜗𝛽(𝑡)
∙ 𝜆𝑙(𝑝𝑚(𝑡),𝜔𝑒(𝑡)), (9) 

 

where 𝑉𝑑, 𝜆𝑙, 𝑅𝛽, and 𝑁 denote, respectively, displaced volume, volumetric efficiency, gas 

constant, and the number of revolutions per cycle. Besides, 𝑝𝑚(𝑡) and 𝜗𝛽(𝑡) represent the 

manifold pressure and the engine inlet gas temperature, respectively. The engine rotational speed 

(𝜔𝑒(𝑡)) can be found based on the Euler equation [54]: 

𝜔̇𝑒(𝑡) =
1

𝐼𝑒
(𝑇𝑒(𝑡) − 𝑇𝑙). (10) 

In Eq. 10, 𝐼𝑒 denotes the engine rotational inertia. Besides, 𝑇𝑒(𝑡) and  𝑇𝑙 are the engine and load 

torque, respectively.    

2.2. The Static, In-cylinder Processes Model   

The in-cylinder processes are among the most fundamental sub-systems in an engine. This model 

includes processes within the cylinder such as aspirated air mass flow into the manifold, airflow 

from the inlet valves, in-cylinder flows, compression, fuel injection, combustion, torque 

generation, exhaust emissions, heat transfer from the exhaust gases to the cylinder wall, 



combustion products discharged through outlet valves, and heat transfer from the outlet. As stated 

previously, the goal behind the research is to achieve a static model from in-cylinder processes, 

based on MVM concepts, to be used in engine dynamic models. Concerning the in-cylinder 

processes, the model inputs include boundary parameters resulting from peripheral systems such 

as air induction, exhaust emission, mechanical inertial, and fuel delivery. The model outputs can 

be considered as inputs of other sub-systems or as the main outputs of the model. 

An experimental dataset is required to calibrate the thermodynamic model in the cycle simulator 

package. This dataset was provided from an experimental test setup whose components are as 

follows. For applying the desired load in both steady-state and transient regimes, an AVL 

Dynoperform160 dynamometer was utilized. AVL PUMA open test was responsible for 

controlling the system, synchronizing the measuring devices, and saving the experimental data. 

An air control unit provided the engine with standard air. The fuel flow was measured utilizing an 

AVL Fuelexact system, which has an error less than 0.1%. Concerning the emissions, the 

resulting NOX was measured, with an error of 1%, using Horiba MEXA7100DEGR. A pressure 

sensor of type GH13G was used to measure the pressure in the cylinder in addition to an AVL 

Indismart module for signal conditioning. The pressure and temperature of the desired points were 

measured using the required sensors. 

 

Figure 3 The experimental setup. 

The ICP model is assumed to be static and nonlinear. In other words, the ICP model turns out to 

be a multi-input-multi-output function. The inputs and the outputs of the stated function are 

tabulated in Table 1. As can be seen, this semi-static model comprises of seven inputs and five 

outputs. 



 

Table 1 Inputs and outputs of the desired ANN. 

Inputs Outputs 

Speed (𝝎𝒆)  

Lambda Aspirated Air Mass (𝑚𝑎𝑠𝑝) 

Inlet Air Pressure (𝒑𝒊𝒏) Torque (𝑇𝑒) 

Inlet Air Temperature 

(𝝑𝒊𝒏) 

Exhaust Temperature 

(𝜗𝑒𝑥ℎ) 

Ignition Time (𝜽𝒊𝒈) BSFC 

Exhaust pressure (𝒑𝒆𝒙𝒉) NOX 

VVT Advance (𝜽𝒗𝒗𝒕)  

 

Typically, modeling of the in-cylinder processes is arduous. In this regard, lots of methodologies 

have been proposed and reviewed previously. However, it is important to note that the previously 

developed models are computationally sophisticated. Thus, iterative solving procedures have been 

used to deal with many resulting equations that are mostly of chemical type. As a consequence, 

such methods turn out to be unserviceable for real-time applications, and simulation of the 

thermodynamic model for the engine dynamics does not seem favorable. Therefore, the 

combustion model is attempted to be modeled as a semi-static system by the aid of ANNs. To train 

an ANN with such a large number of inputs and outputs, one needs a large amount of training data 

which inevitably increases the computational cost and time for designing the ANN. Following 

what was mentioned above, the engine desired information has been extracted from an accurate 

engine model that has been validated experimentally.  

 

Development of the Thermodynamic Model in the Engine cycle simulator package 

In this research, a software package has been used to simulate the in-cylinder thermo-fluid 

processes. Given some phenomenal and geometric properties of the engine, such software 

packages can model the engine performance and emissions at different operating conditions. 

Concerning preferred accuracy, they can take into account the engine complicated phenomena 

including turbulence, combustion, chemical kinetic mechanisms, emissions, and so on. The 

internal combustion engine cycle simulator package comprises schematic blocks corresponding to 

the engine’s phenomena and properties. Thus, some of the engine’s components sizes must be 

measured, and some others should be estimated based on valid examinations. In the end, the 

developed model in the software was validated by experimental results. The specifications of the 

engine of interest are listed in Table 2.     

 



Table 2 Specifications of the engine of interest. 

Specification Value 
Displaced Volume 1645 CC 

Number of cylinders 4 

Stroke 85 mm 

Bore 78.6 mm 

Compression Ratio 11:1 

Max Torque 
152 N-m @ 3500 

RPM 

Max Power 112 HP @ 6000 RPM 

Aspiration System 

16° open to intake 

valves to 48° 
displacement of the 

crank 

Fuel Type Gasoline 

 

In this research, for lowering the computational complexity, with the assumption of equal 

conditions for all the cylinders, only a single cylinder is investigated, concerning which the overall 

operation of the engine is analyzed. The results given at the end, justify the assumption made at 

this point. However, to involve the interactive effects between the aspiration of adjacent cylinders, 

lengths and diameters of the intake and exhaust valves are considered and calibrated as functions 

of engine speed. The cylinder sub-model is at the core of the developed model. This sub-model to 

be perfectly run requires some parameters, including profiles of intake and exhaust valves, the 

intake mixture qualities, heat transfer conditions, fuel and combustion specifications, the engine 

internal frictions, and so on. Some measurements achieved the aforementioned items along with 

some examinations. Given next, are some parameters related to the engine model. 

The fractal model is used for the combustion process. Heat transfer of the cylinder and that of the 

outlet are modeled in the cycle simulator package, an updated version of the Woschni heat transfer 

model that also considers the heat transfer effects of the gas exchange process. This phenomenon 

has significant effects at low engine speeds. Another parameter affecting the engine operation is 

internal frictional losses. These losses are mostly due to hydrodynamic losses of the engine 

components, pumping losses, losses related to auxiliary components, etc. The software used the 

friction estimation model; this model estimates the engine friction by having geometric parameters 

of the cylinder, bearings, and valves actuating mechanisms.  

The valve timing is important among the parameters required for modeling the ICPs. Figure 4 

illustrates curves related to the opening and closing of the intake and exhaust valves for the crank 

angle.  



 

Figure 4 Opening and closing of the intake and exhaust valves with respect to crank angle, considering 

the inlet valve range 

Use of the cycle simulator package in modeling the flow passing through the valves and the valves’ 

opening and closing profile requires the flow coefficient across the valves. The valve flow 

coefficients at different valve lifts have been given to the cycle simulator package. The flow 

coefficient (Cd) for the intake and exhaust valves are shown in Figure 5.  

  

(a) (b) 

Figure 5 The flow coefficient of the intake (a) and exhaust (b) valves [47]. 

Once the thermodynamic model is developed and calibrated, it should be validated based on 

experimental results. Therefore, the model validation was done based on the cycle’s overall results 

including the generated torque, specific fuel consumption, exhaust emissions, exhaust gas 

temperature, etc. Since the developed model in the cycle simulator package will be recruited to 

generate the dataset required to train the ANN, the comparison results (between the ICE cycle 

simulator and the experiments) and the results obtained by the trained ANN will also be given at 

the end of the article.  

Modeling of the ANN 



This study aims to develop a model from in-cylinder processes with real-time applicability in 

control and calibration purposes and predict the engine emissions and performance in different 

regimes. In the previous section, a thermodynamic model was developed in an internal combustion 

engine cycle simulator package. According to the software limitations, each engine cycle takes 

about thirty seconds to be solved; besides, as far as control-oriented models are concerned, the 

cycle equations must be solved once for five to ten engine cycles. Nevertheless, this fact is contrary 

to being real-time applicable. On the other hand, since the ICPs were modeled as static functions, 

the obtained results from the thermodynamic model can be implemented in the form of an ANN 

to reduce the runtime. The thermodynamic model must provide ample data, and an appropriate 

training method is required to design the ANN. This research produces nearly 2000 input-output 

data using the ICE cycle simulator package through the whole engine operational region. Care is 

needed to ensure that all the selected points be in the engine operational region; otherwise, they 

are treated as outliers. According to Table 1, the input layer involves seven factors. Using the 

factorial method for the generation of input data, and assuming four states for each of the seven 

inputs, one needs 47 = 16,384 number of training data. Therefore, statistical techniques should 

aid to lower the required number of inputs. To this end, the Sobol method was used. This method 

is among statistical techniques used to generate a sequence in an n-dimensional cubic space with 

low discrepancy [55]. This method was used as an alternative to uniformly distributed random 

numbers. The plausibility of this method lies in the fact that it covers a wider range of points given 

an insufficient number of them. The quasi-random numbers (vectors) generated are limited 

between an upper and a lower bound which are tabulated in Table 3. 

Table 3 Lower and upper bounds of the input parameters. 

Parameter Description Unit Lower Bound Upper Bound 

𝑝𝑖𝑛 Inlet Air pressure Bar 0.25 1.1 

𝑝𝑒𝑥ℎ Outlet Air pressure Bar 0.95∗ 𝑝𝑖𝑛 1.6∗ 𝑝𝑖𝑛 

𝜗𝑖𝑛 Inlet Air Temperature ℃ 15 45 

𝜃𝑖𝑔 Ignition Time ℃A BTDC 0 43 

𝜃𝑣𝑣𝑡 VVT Advance ℃A BTDC 29 -21 

RPM Engine Speed rpm 1500 6000 

𝜆 Air fuel ratio - 0.65 1.33 

According to the engine experimental tests, the inlet air pressure varied [0.25, 1.1] bar. Besides, it 

could be observed that the outlet air pressure varied as a multiple of the inlet air pressure. The 

input dataset was then inserted into the ICE cycle simulator package. 

The developed data was divided into training data (75% of the input data) and test data (25% of 

the input data). An ANN with such a huge size and number of input-output data necessitates a 

training topology as sufficient and powerful as possible. Thus, the ANN structure selected in this 

study is that of the Multi-layer Perceptron (MLP) type. However, due to the large space of the 

input-output data and the low ratio compared to the factorial method, the training data is prone to 

the over-fitting phenomenon. Therefore, the Bayesian method was used to circumvent over-fitting 

in training the ANN. This method is based on probability theories that take into account factors 



such as network architecture and estimation error in the training procedure. Lampinen and Vehtari 

have investigated in detail the Bayesian training mechanism and its impact on over-fitting 

avoidance [56]. Among all the outputs of the ICP model, BSFC and NOX tend to have dissimilar 

learning behaviors from the other three, which frustrates the training of the ANN. On the other 

hand, there is no need for emission information in many control applications. Therefore, as can be 

seen from Figure 6, two parallel neural networks were designed with the outputs of a) aspirated 

mass, engine torque, exhaust temperature and b) BSFC and NOX.  

 

Figure 6 The structure of the developed parallel MLP ANN. 

As is shown in Figure 6, the two networks comprise two hidden layers, each of which was made 

of twenty neurons. Each MLP network involves two hidden layers with nonlinear sigmoid 

activation functions and an output layer with linear activation functions. The number of neurons 

in the mentioned networks are set using trial and error. 

After modeling the dynamic peripheral models and the in-cylinder process model, we may 

integrate them to form the complete engine EMVM model. The next section is devoted to the 

experimental validation of the developed EMVM model. The first subsection of Section 3, 

addresses the experimental validation of the static ICP model, and the second subsection addresses 

the experimental validation of the complete engine model.  

3. Results and Discussions 

 

This section analyzes the performances of the developed static ICP and the complete EMVM 

models based on experimental examinations. The next sub-section deals with the validation of the 

core, static ICP model. 

 

3.1. Validation of the static ICP model 



 Another examination has been performed to validate the engine cyclic cumulative values. 

The engine has been tested in 40 operational points in both full-load and part-load conditions. The 

comparison results between the cycle simulator package, the trained ANN, and the experiment in 

the full-load condition is shown in Figure 7. Accordingly, the results of the trained ANN are in a 

satisfying agreement with those of the experiments and the cycle simulator package.   

  

(a) (b) 

  

(c) (d) 

Figure 7 Comparison of ANN, cycle simulator package, and experimental results in a full load. 

Figure 7 (b) depicts the simulation results for the aspirated air mass, in which the thermodynamic 

model slightly deviates from the experimental values in high engine speeds. This may be because 

the intake manifold has not been modeled. However, Figure 7 (c) infers that the trained ANN had 

lower accuracy in low engine speeds for the nitrogen oxide emissions.  

For the designed ANN to be beneficial in practice, it must also be capable of predicting the engine 

performance in part-load conditions. The outputs of the ANN model are compared to the test data 

in part-load conditions. Figure 8 depicts the error percentage of various outputs in the BMEP vs. 

engine speed plane. In an overall view, it can be observed that the trained ANN simulates the test 

data with an acceptable accuracy over a wide spectrum of operational regions. To be more specific, 



Figure 8 (a) suggests that the maximum error corresponds to the lowest and highest engine speeds 

in modeling the engine torque. For the engine aspirated air mass, on the other hand, Figure 8 (b) 

tells that the maximum error is related to a full-load condition at high engine speeds, which is most 

likely because the intake manifold has not been modeled accurately. Finally, concerning the NOX 

emissions, Figure 8 (c) shows relatively high values of error in low engine speeds and low loads, 

which is mainly attributed to the thermodynamic model.    

 

 
 

(a) (b) 

 
 

(c) (d) 

Figure 8 Contours of error percentage between ANN and experimental results in part load. 

In this sub-section, the developed static ICP model was validated based on the experimental results 

from the engine. It was observed that the developed ANN model can promisingly predict the 

engine performance and emissions in both full-load and part-load conditions. Therefore, it could 
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be used as a core model in the complete EMVM model to predict the in-cylinder phenomena. The 

validation of the engine complete model is covered in the next sub-section.  

3.2. Validation of the complete EMVM model 

After validating the static ICP model in the last section, we attempt to experimentally validate the 

complete EMVM model. The block diagram of the EMVM model is shown in Figure 2. The 

validation process of the complete EMVM model was performed in such a manner that, at first the 

engine model parameters were set equal to the test setup parameters. Next, the response of the 

model was compared with that of the experimental setup with regard to equivalent inputs inserted 

to both. Table 4 lists the input and output parameters for the experimental validation.  

Table 4 Input and Output Parameters for Experimental Validation. 

Input 

Parameter 
Description Unit 

Output 

Parameter 
Description Unit 

𝜃𝑣𝑣𝑡 VVT Angle ℃A BTDC 𝜗𝑜𝑢𝑡 Output Air Temperature K 

𝜃𝑖𝑔 Ignition Angle ℃A BTDC 𝜔𝑒 Engine Speed RPM 

𝜃 Throttle Opening % 𝑚̇𝑎𝑠𝑝 Aspirated Air Mass kg/hr 

𝑚̇𝜓 Fuel Injection Rate kg/sec 𝑝𝑖𝑛  Inlet Air Pressure Pa 

𝑇𝑙  Load Torque N-m  

 

The tests are done based on the current calibration of the engine in different operating points 

defined by load and rpm (sweep test), thus the spark advance, lambda and valve timing varied 

based on the existing ECU maps. The model and the experimental results were compared under 

two scenarios. In both of the scenarios, at a fixed throttle valve angle, a specific pattern for the 

engine load was applied to the experimental engine setup and the engine output features were read 

and recorded. Thereafter, the same conditions were applied to the engine EMVM model, and the 

output response of the model was compared to that of the experiment.  

Figure 9 depicts the input conditions for comparing the developed EMVM model versus the 

experimental results for the operation of engine in part load. The first test scenario is shown under 

fixed 50% throttle opening (Figure 9-a), while the load is varied in a triangular shape mode (Figure 

9-b). Three inputs of ignition timing (Figure 9-c), VVT angle (Figure 9-d) and fuel injection rate 

(Figure 9-e) are shown respectively as effective inputs to model.  

 



  

(a) (b) 

   

(c) (d) (e) 

Figure 9 The inputs of the system used to validate the model in 50% throttle valve opening 

The results of this test are shown in Error! Reference source not found.-13. The output responses 

of the model almost match well with those of the experiments. Four main outputs of the engine, 

namely engine speed (Error! Reference source not found.), aspirated air mass rate (Figure 11), 

inlet manifold pressure (Figure 12Error! Reference source not found.), and inlet manifold 

temperature (Figure 13) have been investigated to validate the model. The comparison of model 

outputs with experimental results shows an acceptable accuracy. According to the previous sub-

section, the ANN model for the aspirated air mass performed poorly in predicting the experimental 

results at high engine speeds. This issue is taking its toll on the validation of the EMVM model. 

Therefore, a slight difference between the model output and the experiment is observed for the 

aspirated air mass. 



 

Figure 10 Outputs for the engine speed: model vs. experiment in 50% throttle valve opening test 

 

Figure 11 Outputs for the aspirated air mass: model vs. experiment in 50% throttle valve opening test 



 

Figure 12 Outputs for the inlet air pressure: model vs. experiment in 50% throttle valve opening test 

 

Figure 13 Outputs for the exhaust temperature: model vs. experiment in 50% throttle valve opening test 

 

In another test scenario, the performance of the model has been investigated in full load operation 

and  the results are depicted in Figure 14-18. In this test scenario, the throttle is kept wide open 

(Figure 14-a) and the load is slightly varied around 120 N.m. (Figure 14-b), the ignition angle 



(Figure 14-c), VVT angle (Figure 14-d) and injected fuel mass (Figure 14-e) has been measured 

from the real engine operation and applied to model. 

 

  

(a) (b) 

   

(c) (d) (e) 

Figure 14 The inputs of the system used to validate the model in 100% throttle valve opening 

 

The comparison of engine model outputs and experimental data shows good agreement as depicted 

in Error! Reference source not found.. Engine speed (Error! Reference source not found.), 

inlet manifold pressure (Figure 17Error! Reference source not found.) are in acceptable 

agreement. The results show that the aspirated air are better predicted in high load operation 

(Figure 16). 



 

Figure 15 Outputs for the engine speed: model vs. experiment in 100% throttle valve opening test 

 

 

Figure 16 Outputs for the aspirated air mass: model vs. experiment in 100% throttle valve opening test 



 

 

Figure 17 Outputs for the inlet air pressure: model vs. experiment in 100% throttle valve opening test 

 

 

Figure 18 Outputs for the exhaust temperature: model vs. experiment in 100% throttle valve opening test 

 



The comparison of experimental data and model outputs shows that the model’s accuracy is 

acceptable, making it suitable for control development applications. 

 

Conclusions  

Model-based control design as an accepted method of modern engine management system 

development highly relies on the existence of an accurate while fast run the models. EMVM is a 

well-developed engine modeling method which has been used successfully for different types of 

ICEs. In EMVM the ICE is assumed to operate as a quasi-static systems. Although the validity of 

EMVM for different engines is shown in the literature. The validity of EMVM has not been 

investigated for VVT SI engines. In this article, a control-oriented EMVM model is developed to 

study the performance characteristics of a VVT-equipped gasoline engine in both steady and 

transient regimes.  

The whole MVM includes two main sub-models: the in-cylinder model which is a static model 

and the peripheral subsystem modeling. The inputs of in-cylinder model are output of dynamic 

models besides the exogenous parameters such as spark timing and VVT angle. On the other hand 

the inputs of dynamic peripheral sub-systems are the output of in-cylinder model which finally 

describes a dynamic system. 

In the EMVM, the main idea is to model the in-cylinder process using accurate thermo-fluid 

modeling which takes into account the effects of the combustion and air-fuel stream. The VVT 

operation is mainly modeled in the in-cylinder model. The thermo-fluid model employs a 1D 

iterative method for the simulation of the engine in a single operating condition which makes it 

inappropriate for real-time applications. In order to solve the real-time issues, neural network 

modeling is explored to replace the complex thermo-fluid combustion and torque generation 

model. The mentioned thermo-fluid model is exploited as an input/output data generator. In the 

next step the set of data is used to train an MLP ANN with two hidden layers. The comparison of 

the experimental results with those obtained from the ANN in the engine full- and part-load 

conditions illustrates that the developed ICP model promisingly approximates the engine 

performance. A critical point in development of ICP is the selection of the input/output parameters, 

it should coincide with the requirements of EMVM model.  

The dynamic subsystems includes the engine inertia, fuel delivery, air aspiration and the exhaust 

system. Modeling of the dynamic systems is straightforward and can be done using the first 

principle equations. 

In order to validate the whole control-oriented model, transient test data is used. The engine speed, 

inlet manifold pressure, aspirated air mass flow rate and exhaust temperature transient data are 

employed to validate the dynamic model in dynamic conditions. The transient test is planned in 

the full load and part load conditions, in each case, the engine load is varied and the result is 

captured. The comparison of the developed EMVM model and the experimental data shows an 

acceptable agreement. 



More specifically, it was observed that, in the half-throttle scenario, the developed model could 

simulate the engine speed, aspirated air mass flow rate, and inlet manifold pressure with root mean 

squared percent errors of %1.79, %2.69, and %1.00, respectively. In the full-throttle scenario, 

however, the model could predict the engine speed, aspirated air mass flow rate, and inlet manifold 

pressure with root mean squared percent errors of %1.89, %1.70, and %0.72, respectively. 

 

Based on the comparative result, it is concluded that the idea of extended mean value modeling, 

which was earlier employed to model the diesel engines, can be exploited in modeling the gasoline 

engines with the VVT mechanism with the appropriate accuracy and reasonable execution time. 
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