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Towards a systematic security evaluation of the automotive
Bluetooth interface

Madeline Cheah®*, Siraj A. Shaikh?®, Olivier Haas®, Alastair Ruddle®

“Centre for Mobility and Transport Research, Coventry University, Coventry, UK
b Puture Transport Technologies, HORIBA MIRA, Nuneaton, UK

Abstract

The modern vehicle requires connectivity in order to enable and enhance comfort and conve-
nience features so desired by customers. This connectivity however also allows the possibility
that an external attacker may compromise the security (and therefore the safety) of the ve-
hicle. In order to answer this problem, we propose a framework for a systematic method of
security testing for automotive Bluetooth interfaces and implement a proof-of-concept tool
to carry out testing on vehicles using this framework. From our findings, we conclude that
the method enabled us to enumerate multiple weaknesses and that by continuing to extend
the work, we would discover more.

Keywords: automotive security, operational and field testing, threat model, wireless
security, Bluetooth

1. Introduction

The modern vehicular system is opening up, with wireless interfaces and services imple-
mented for customer comfort and convenience. The introduction of these interfaces means
that malicious external influences are now possible, as demonstrated by seminal experimental
analyses on individual vehicles [11, 29, 38]. These influences can be construed as “cyberat-
tacks” or “hacks”, which have come to mean an attempt to manipulate an insecure system
to cause negative consequences such as harm, damage or destruction. In cyber-physical sys-
tems - defined as a system where computational and physical processes are integrated [30] -
the harm may not be limited to logical assets (such as personal data theft or loss) but could
conceivably also cause physical harm, such as is the case with a vehicle. Protection and
defence mechanisms are therefore necessary in order to mitigate or nullify the consequences
of an attack. Several challenges stand in the way of implementation although experimental
analyses on a vehicle’s possible entry points have been performed. The primary concern here
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is that the placement and details of countermeasures requires knowledge as to where, in the
system, security vulnerabilities or weaknesses exist in the first place, and what its nature is.

Bluetooth is a pervasive interface and was therefore chosen for this study because of
the potential negative impact should it be compromised. There have been estimates that
vehicles with a Bluetooth interface number at nearly nine million currently, with a forecast of
21 million vehicles to have Bluetooth by 2018 [19]. Market growth for information systems,
of which Bluetooth is a major enabler, is anticipated to grow to $1.6 billion by 2020, with at
least a 40% rise in automotive wireless technology [2]. Bluetooth is a low power, short range
wireless communication technology, capable of forming ad-hoc networks. Security issues
with this technology are well documented [15].

The main contribution of the paper is a systematic method of evaluating the security
of the automotive Bluetooth interface, something that has not yet been performed. This is
needed to maximise the effectiveness of the security evaluation and is implemented through a
proof-of-concept tool based on attack tree modelling and penetration testing methods. This
tool was then used to evaluate the Bluetooth interface on a range of built-in automotive
infotainment systems.

The rest of this paper is structured as follows: Section 2 discusses related work, whilst
Section 3 looks at Bluetooth security, both generally and specific to the automotive domain.
We describe our methodology in Section 4 and present our proof-of-concept tool develop-
ment and validation in Section 5. We discuss our findings in Section 6 and consider future
directions in Section 7.

2. Related work

There are several challenges with securing wireless interfaces in vehicles. Any security
mechanism will require additional processing overhead, and on the hardware level, has ram-
ifications in provision of energy and in physical assembly and design, such as placement
of additional wiring. Even should such concerns be addressed, well-established defences at
software level such as the use of cryptography, firewalls and intrusion detection systems
(IDS) cannot be implemented without considerable change in architecture due to the use
of sufficiently different protocols and topologies within the automotive domain. Even post-
release, patches, unless performed over-the-air, for discovered vulnerabilities are difficult to
apply once units are sold.

All of the above is dependent on acquiring knowledge and information regarding existing
vulnerabilities and holds true not just of Bluetooth attacks, but also generally. Some exploits
have already been demonstrated in literature on the vehicle as a whole [11, 29] or on various
subsystems [22, 42, 46, 51, 52|, some are reported through “hacker” conferences such as
Black Hat [38] whilst still others can be inferred through technological trends.

Although these papers show an impressive range of experimentation and an in-depth
knowledge of the target system, they have not mapped out a process or taxonomised their
findings. Furthermore, information on the practical aspect of security testing is scarce;
because automotive systems are complex with many different technologies integrated into
the single vehicle, many papers dealing with experimental analysis by necessity limit their

2



scope to a single interface, protocol or technology which are extremely diverse in nature.
Of the papers that involve practical security analysis on vehicles, only one details attacks
on an automotive system (at a high level) via Bluetooth [11], although many agree that
Bluetooth is a viable entry point for an attacker [42, 56, 14, 36, 22, 25]. Despite the paucity
of information, from the number and variety of reported threats, vulnerabilities and exploits,
it is clear that a systematic description of the problem is required.

A systematic security evaluation method has many advantages. There is a disparity
between what an attacker must find in order to exploit the system (potentially just one
vulnerability) and the number of flaws a defender would have to safeguard in order to
protect the system (as many as possible). An ad-hoc approach to finding vulnerabilities
- which by implication means a subjective prioritisation of what and where to test [32] -
potentially results in flaws being overlooked. A methodical approach increases the likelihood
of determining flaws, thereby mitigating this problem [48]. Systematic analyses can also be
supported by a variety of tools and utilities, for example, through the use of graph-based
modelling, and in this case also means that, not only is the final result documented, but all
the details that led to the system compromise [13].

Systematic evaluations have been described in model-based testing studies such as [34]
and security specific model-based testing [48] is an active field of research. These have
inspired our method of systematism, in particular the use of attack trees. However, although
this approach provides rigour and confidence, we have no trustworthy model from which to
generate tests. This is because the Bluetooth specification is embedded in other systems
(such as the embedded system’s operating system and other firmware) for which we would
need to include to provide a complete model representation of the implementation and for
which there is very little information. Furthermore, whilst model-based security testing may
provide coverage of security weaknesses in a system, applications thereof (e.g. [23]) have
required that models be available or pre-built in order to formally examine. The barrier to
using such methods is as above, that the information required to do so is not available, both
due to commercial confidentiality and the obscurity of subcomponents within the system
(many of which are third party). This also procludes other methods of enabling systematic
evaluation such as attack graphs, for which formal model checking could be performed.

Automotive specific systematic methods of evaluation are described in the “E-safety ve-
hicle intrusion protected applications” (EVITA) project [17]. The EVITA project ultimately
aims to provide a secure architecture for automotive on-board networks and evaluates the
realisation of this using two “views” the first of which is a magnified view. Attack tree
modelling (discussed further in Section 4.2) is used to support these processes, although the
end goal of verifying whether assets are really protected somewhat differs from the aim of
this paper which is to identify unprotected assets through a methodical evaluation. The sec-
ond view, called a compositional view, deals with looking at attack categories (and related
security guarantees) to ensure that omitted attacks are minimised. The latter is a valuable
exercise, however, where a system already exists with unknown properties (and therefore
unknown guarantees) as is the case with this paper, the ability to analyse coverage in such
a way is limited. Methodical evaluation methods are also presented in the J3061 Cyberse-
curity Guidebook for Cyber-Physical Vehicle Systems [47], drawing from EVITA, although
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information provided has been examples thereof rather than application to a system.

3. Bluetooth

Bluetooth is more complex than most wireless standards, due in part to the Frequency
Hopping Spread Spectrum (FHSS) mechanism designed to reduce narrowband interference.
Channel hopping occurs once every 625 ps and in some cases also uses Adaptive Frequency
Hopping (AFH), whereby channels that can cause interference are avoided [8]. Data whiten-
ing is also performed by XOR-ing each packet with a pseudorandom sequence, in order to
facilitate signal transmission.

Adding to the complexity is also the fact that not all Bluetooth implementations are
identical; Bluetooth standards specify various service profiles that could be used in order
to customise the technology, whether that be to enable “hands-free” communication, allow
file transfers or grant access to phonebooks and messages [4]. Profiles consist of information
regarding dependencies, user interface details and specific protocols required by the service.
This information is vital in detailing what the device is capable of doing, and, from an ad-
versary’s point of view, also gives information on potential weaknesses. The vast majority of
services embodied by these profiles communicate via the Radio Frequency Communications
(RFCOMM) and Logical Link Control and Adaptation Protocol (L2CAP) layers and, where
there is an open channel, could be used to send or extract data. The number and nature of
accessible ports on a remote device depend on the services being offered along with whether
a user is paired and connected.

The pairing process, essentially the method by which two or more devices synchronise
their “hops”, is well documented and in the interest of brevity is only outlined here. A
complete introduction may be found in [8]. The pairing process uses one of two mechanisms:

e Legacy pairing: This has been superseded by Simple Secure Pairing (SSP) in the
Bluetooth 2.1 specification, although many older platforms still use this mechanism.
The pairing exchange involves the derivation of a link key from the Bluetooth ad-
dress, the PIN and a random number. This link key is then stored locally and used
in subsequent authentication and encryption processes. The primary danger to this
mechanism is the fact that the PIN is the only aspect providing entropy, exacerbated
by the fact that PINs often contain only four decimal digits.

e SSP: There are four association models under the SSP umbrella, these being i) “Out-
of-band” (using non-traditional channels to complete the pairing process), ii) Numeric
comparison (where two devices with screen capabilities both output a number which
the user then confirms as identical), iii) Passkey entry (where one device displays
a PIN, which is then keyed into another device) and iv) Just Works (where both
devices have no input or output capabilities and pairing takes place without any further
authentication.



3.1. Bluetooth vulnerabilities

Table 1: Bluetooth attack classification (adapted from [15])

Attack Threats

classification

Surveillance Includes general scans (or war-nibbling), inquiry scans and brute
scans to determine non-discoverable addresses. Manufacturers
can be profiled using organisationally unique address bits. Also
includes service enumeration.

Range Most consumer devices are Class 2, with a range of up to 10

extension metres. Range can be extended through the use of external di-
rectional antenna or passive radio locators.

Obfuscation Includes spoofing or cloning a device name, class, address or
service profile fingerprint. Can serve to further other actions
such as man-in-the-middle attacks.

Fuzzing Injection of arbitrary or malformed data.

Sniffing Using Bluetooth narrowband or wideband receivers or tools in

order to dump raw data from a connected Bluetooth interface.

Denial of service (DoS)

Flooding with data, or jamming signals to cause applications or
devices to freeze or crash or battery exhaustion.

Malware

Infection from malicious programs via Bluetooth interface.

Unauthorised
direct data access

Includes targeting hard-coded default PINs, brute forcing PINs,
targetting vulnerable implementations of APIs, sending com-
mands via covert channels to extract data, or using loopholes
in the object exchange (OBEX) protocols.

Man in the middle

(MITM)

Masquerading as a trustworthy entity, or injecting oneself in the
middle of a communication in order to eavesdrop on or modify
data, as described by [20].

There are many categories of attacks that could be performed. These are summarised
in Table 1. The trends abstracted from the specific techniques play an important part in
identifying the ultimate goals of a potential attacker. These trends can be distilled further
into the categories of data extraction, data manipulation and denial of service. The data
extraction goal, as a proof-of-concept, forms the basis for the attack tree presented in this
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3.2. Automotive Bluetooth

The wireless nature of Bluetooth has been attractive to automotive manufacturers as a
way of reducing weight and wiring in the vehicle, along with the hands-free services that
Bluetooth can offer. The latter is driven in large part by the advent of regulations barring
the use of mobile phones in vehicles. Its flexibility means that manufacturers can offer
customised features to end users.

Bluetooth implementation on vehicles differs from conventional PC and mobile platforms.
The software on vehicles may not have been updated in years and older chips are in use even
in newer vehicles, with many still using legacy pairing. Presented information is customised
by device and not by users (so no distinction is made between users of the same remote
device) with user information potentially centrally held [45]. Although it has been posited
that requiring user interaction within the authentication process increases security [57] (for
example with numeric comparison), many vehicles use other pairing mechanisms such as
passkey entry (often with a default universal static PIN [15]). The front-end of the system
may not ask for user confirmation or display alerts (such as when an unauthorised device is
trying to pair) as might be expected in other embedded systems.

Additionally, a vehicle is mobile and is rarely stationary with the ignition turned on. This,
combined with a relatively short range of ten meters could pose a challenge to an attacker.
Range extension (see Table 1) however has been used successfully to extend the range
to about a mile, inject audio and eavesdrop on in-cabin conversations [41]. Furthermore,
compromise could also occur pre-travel (for example in a carpark or a garage) for possible
disruption later on.

The majority of built-in infotainment systems either search for a device to pair with or
require a user to actively enable Bluetooth [42], though the seeming security of the latter is
diminished given that not every vehicle limits the time in which the interface is discoverable.
Additionally, many implementations look for previously paired devices and may initiate a
connection without switching on the discoverable mode; potential attackers could also test
for the existence of a device via a name inquiry. An adversary could then wait for the
opportune moment once the existence of a device is known to pair and form a connection
with the target.

4. Methodology

Automotive security is a diverse field, with full functional specifications unlikely to be
readily available due to commercial sensitivity. Combined with the fact that there is little
work to build on (see Section 2), the lack of information necessitates a black box approach.

The methods used in this paper are empirical, and derived from standard practice in
the security industry, namely threat analysis using attack trees, with penetration testing
methods employed to populate these trees. The premise of these methods is founded on
testing a system from an attacker’s point of view to identify system weaknesses and to
reflect what an adversary might face in reality.



4.1. Threat modelling

Threat modelling is the process by which security threats can be determined, analysed
and documented [33]. A threat can be defined as any potential harmful event that could
compromise an asset (an object of value). Combinations of attack vectors and methods are
usually employed in order to realise these threats.

This process typically follows the process of identifying a threat (synonymous in this
case with an attacker goal), which can be broken down into sub-goals iteratively until in-
dividual actions are identified [33]. Many threat models can broadly be taken to represent
the decision making process of a potential adversary. Popular methods include Microsoft’s
STRIDE (a mnemonic for the threat categories of spoofing, tampering, repudiation, infor-
mation disclosure, denial of service and elevation of privilege), DREAD (damage potential,
reproducibility, exploitability, affected users and discoverability) and visualisation tools such
as Data Flow Diagrams (DFDs) [33, 31] all of which help to classify, assess the risk of and
visualise the threat landscape. These methods can be used in combination with construc-
tions such as attack trees in order to further enumerate the threat [26], although in these
cases, vulnerabilities have already been identified in an emulated environment where the
full system is known, which is not the case in this paper. The attack tree (which might be
instead subsumed under a different category of vulnerability tree [28]) was used in order to
explore exact paths to the pre-discovered vulnerability [26].

4.2. Attack trees

Many structures exist in order to model security-related testing processes. Examples
include attack nets, which are customised Petri nets with places representing states or modes
of interest, and transitions that represent events such as input or commands [37]. Although
eminently suited to singular activities, such as bringing together seemingly unconnected
flaws to form an individual attack path, representing relationships between different attacks
(especially on poorly documented systems) is more challenging [37].

Attack trees were first developed to describe the security of systems [49] in a structured
manner and are conceptual diagrams meant to illustrate threats from an attacker’s point of
view. These trees can be represented diagrammatically (Figure 1) or textually (Figure 2).
Attack trees focus on abuse cases (in this case an attack), and even in an informal capacity,
can support threat assessment. This information would usually need to be further formalised,
empiricised or investigated (if resources and available data permits), but is nevertheless a
useful starting point for threat identification [43].

Attack trees can be considered analogous to the more common concept of fault trees.
The primary difference between the two structures can largely be attributed to paradigm.
Where a fault tree looks at random faults that could cause an undesired event, the attack
tree concentrates on intentional malicious actions that could cause the system to enter an
undesired state [6].

Like fault trees, intermediate events (or a branch that can be further developed with leaf
nodes) are connected by logic gates such as AND and OR [49], and where temporal order
is necessary SEQUENTIAL AND (SAND). Where the AND logic gate is used, an attack (a
parent node) is considered complete only when all the steps (child nodes) are completed and
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Open Safe

e
Pick Lock Learn Combo
Find Wri Get Combx
“-gomggen Fr:'n 1?amrgzt Open Safe
Learn combo (OR)
Find written combo (OR)
Eavesdrop Get combo from target
L— Eavesdrop
T~ Get target to state combo (AND)
Listen to Get Target to Listen to conversation
Conversation State Combo Pick lock
Figure 1: An example attack tree detailing how to Figure 2: Textual representation of an attack tree
open a safe [49] detailing how to open a safe [49]

where necessary in sequence (when SAND is used). With an OR logic gate, achievement of
any one of the steps is adequate to complete the attack. Leaf nodes can be assigned boolean
(such as possible or impossible) or continuous (such as cost) values.

The structure is acyclic, requiring a root (attack goal), and is directional, which is signifi-
cant. From a design perspective, a top-down approach, where an attack goal is first identified
followed by all subsequent methods of achieving the goal, early in the development life-cycle,
is recommended [50]. From a testing perspective, however, this is challenging because of the
black box nature of security testing. Since the system already exists for us, the tree here is
built bottom-up tracing from leaf to root, based on observable entry points and subsequent
behaviours when probed, leading to potential attack goals: the very process that penetra-
tion testing is based on. Note that although the structure is acyclic, the process of security
testing as presented here (requiring multiple iterative test runs) can be considered cyclic.

The sample tree shown in Figure 3 has been developed iteratively. As there are no
real-world measures for detection of security incidents on a vehicle, the primary method
of validation remains domain expert input (such as is the case for building the tree from
bottom up [55]) and data from practical applications; this best practice has been used by
others [7].

4.8. Penetration testing

This form of testing is heavily dependent on the flaw hypothesis approach [37], defined
as a method of identifying deviations from functional specifications [53]. Testing is then
performed to discover capabilities that can be “exploited to violate some aspect of security
[policies]” [53]. Methods used are usually not prescribed, although some, such as identifying
machine addresses, are more common than others. The ultimate aim is to force the system
into either entering a disallowed state, or executing a disallowed action, thereby exposing
the weakness that allowed such an action.

The result of every action taken in penetration testing can be considered deterministic
based on system implementation, configuration and state [21]. This implies a very large
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(possibly infinite) number of results based on any number of implementation-configuration-
state combinations. The number of combinations also means that test coverage is not easily
quantified. However, evidence compiled through the testing process can be used to provide
a security assurance case. This is not without its limitations:

e Firstly, proving the complete absence of insecurities in an implementation is not pos-
sible, as tests only ever expose a limited subset of vulnerabilities [18, 16]. It can only
be stated that under certain abuse cases, these flaws were not present and that this is
acceptable security;

e Secondly, a method that does manage to end in exploitation may not be the only
method that does, however, the underlying flaw is exposed and can be addressed for
that particular method. Abstracted patterns of this method can also be extracted (for
example, a buffer overflow exploit is mechanically the same whatever the system) to
test for similar weaknesses through other vectors.

e Finally, there are concerns with generalisation of a system since testing tends to rely
on implementation. However, as automotive production lines are standardised, we
reasonably assume that if the Bluetooth stack in a vehicle is flawed in some way, this
same vulnerability may appear in some other vehicle of same age, make, model and
software version (of which there may be millions). Furthermore, reuse is a common
approach to reducing cost in the industry [44], and as such flaws could be replicated
even in newer models. Even vulnerabilities that have been patched in more modern
embedded systems may be present in newer vehicles, as software in an automotive
system is updated less frequently [40].

The preliminary round of data gathering (results of which are in Section 5) from all test
systems was conducted using the Penetration Testing Execution Standard (PTES), which
is not a formal standard but rather a set of guidelines to provide an outline of the process.
Formal technical standards do exist [1], however, the primary barrier to adopting them is
the high information needs about the testing environment [27].

Recall that results are deterministic based on implementation, configuration and state.
Despite this, results can neither be predicted nor calculated when a black box perspective
is employed. Therefore all experimentation is empirical. Nonetheless, there is value in car-
rying out such research. The list of vulnerabilities may be unenumerable, but corrective
action to address an observed vulnerability would reduce that list by one, whilst also pro-
viding the owner of the system with information for improvements and verification of current
configurations.

5. Proof-of-concept tool

The proof-of-concept tool created to carry out the steps as detailed in the sample attack
tree is an extension of the concepts embodied by various other proof-of-concept, pre-alpha
and beta Bluetooth security testing tools created since 2003. Some examples include redfang
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[54] (a proof-of-concept tool created in 2003 for brute-scanning), CarWhisperer [41] (a small
tool created in 2005 to scan for manufacturers that implement hardcoded PINs and use that
to connect to and inject audio into or record audio from a vehicle), or Bluesnarfer [35] (a tool
created to exploit a vulnerability discovered in 2003, using AT commands in order to extract
phonebooks from susceptible mobile phones). The most recent release of nOBEX [39] can
be construed as one of the most relevant as it is directed at automotive headunits. However,
functionality is currently limited to fuzzing and they make no claims as to automation.

The tool itself depends on the official Linux Bluetooth stack (called Bluez [5]) to provide
the Bluetooth functionality needed to test these interfaces. It was developed using Python
2.7 on a Kali Linux system using the the Bluetooth Python extension module Pybluez [24].
The tree structure and the tree search facility is enabled by the treelib library [12].

Table 2: Bluetooth tool verification (identifying information has been redacted)

Device Characteristics
Bluetooth address: XX:XX:XX:93:94:07
1 Bluetooth version 4.0 on Android 5.1, service profiles obtained

Filesystem is mountable and browsable, file transfer possible assuming pairing and
connection, responds to AT commands assuming user gives permission on the appro-
priate channels.

Bluetooth address: XX:XX:XX:40:41:47
2 Bluetooth version 2.1 on BlackberryOS 7.1, service profiles obtained

No OBEX File Transfer Profile (FTP) for mounting or file transfer. Responds to
OBEX object push commands and AT commands assuming user gives permission on
the appropriate channels

Bluetooth address: XX:XX:XX:4A:19:80
3 Bluetooth version 4.0 on Windows Phone 8.0, service profiles obtained

No OBEX FTP. Responds to OBEX object push commands and AT commands as-
suming user gives permission on the appropriate channels

Many of the pre-built tools found were singular in nature, essentially providing only
a single aspect of testing (such as spoofing, perhaps leading to MITM). Furthermore, the
majority are now archived or unsupported and dependent on deprecated libraries. This
necessitated the creation of a new tool incorporating many different functions in order to
facilitate systematism.

The proof-of-concept tool presented in this paper follows a predefined attack tree in order
to complete a penetration test. Note that some aspects of the attack tree are difficult to
carry out practically (as is the case with actions involving social engineering), and there
are some assumptions in order to facilitate development; that the Bluetooth systems are
discoverable (as brute scanning is impractical) and that a connection is possible. The tool
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during development stages was then tested on a variety of multiple older mobile platforms
to verify functionality (Table 2).

The predefined sample tree (Figure 3) concentrates on data extraction as an attack goal
and is used as an input into the tool constructed (Algorithm 1). This process travels down
each node of the tree, until it reaches the leaves, and depending on the logic gate, carries
out the necessary testing steps, recording and outputting data to the appropriate test run.

Algorithm 1: Data extraction via the Bluetooth interface. Vehicle data refers to any data
that is available from the vehicle, including personal data, vehicle-generated data, or data
about the vehicle itself.
input : Predefined attack tree
output: Vehicle data
initialization;
for AttackGoal do
foreach AttackTreeBranch in order do
foreach AttackTreeLeaf do
if AttackTreeLeaf is OR then
while attack fails do
| AttackSteps on vehicle;
end
Record vehicle data;
if no wvehicle data then
| Display AttackSteps and AttackTreeLeaf;
else
‘ Populate AttackTreeLeaf with vehicle data;
end
else
perform all AttackSteps;
Record vehicle data;
if no wvehicle data then
| Display parent nodes with children for AttackSteps;
else
| Populate AttackTreeLeaf with vehicle data;
end
end
end
nd
or AttackTreeLeaf do
if has vehicle data then
for AttackTreeLeaf do
| Display AttackTreeBranch;
end
else
for Empty AttackTreeLeaf do
| Display AttackSteps;
end
end
end
end

ol

—
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GOAL: Data extraction
— Reconnaissance (SAND)
——Determine interface characteristics (AND)
— Determine service profiles (AND)
Use Service Discovery Protocol tools (OR)
Read manual
— Determine apen ports [AND)
— Determine filtered ports(AND)
— Determine pairing mechanism{AND)
I: Legacy pairing if Bluetooth version is <2.8 (OR)
Observe pairing manually
— Determine BD ADDR (AND)
Page scan (OR)
Inquiry scan (OR)
Bruteforce scan
— Determine chip (AND)
Use Organisationally Unique Identifier (OR)
Manual search on manufacturer make and model (OR)
FCC ID
— Determine cperating system
IE Use information from serwvice profiles (OR)

Read manual (OR)
Manual search on manufacturer make and model
— Connect to Bluetooth interface (SAND)
— Use non-authenticated channels (OR)
L— Create non-authenticated channel to use {OR)
|: MITM attack to notify of NoInputNoOutput capabilities (SAND)
Set to -Just Works- conmnection
— Use legitimate device (OR)
Use legitimate dewvice to compromise system (OR)
Remotely elevate privilege via device vulnerability (OR)
Remotely abuse privilege via compromised apps
Steal phone or device [OR)
Social engineering to use device
— Spoof legitimate device (OR)
change BD_ADDR, class, name (AND}
Amplify signal strength of spoof device
— Compromise pairing mechanism (OR)
Switch master/slave roles between vehicle and remote device (OR)
Replay authentication messages (OR)
Leverage Encryption-Pause-Resume [OR)
Bruteforce PIN (OR)
Acquire link key
Force a re-pair (OR)
Jam signal (SAND)
Use social engineering to get user to re-pair
Claim link key has been forgotten and ask for ancther (OR)
Eavesdrop on connection (OR)
Access copy of link key fom location in memory
— Extract data
— Locate files of interest (SAND)
Directory traversal (OR)
Use well known filenames
— Request files or data [SAND)
E Request files using OBEX GET commands (OR)

Request files or data using AT commands (OR)
Mount filesystem and extract files wvia OBEX channels
— Deliver crafted payload wia Trojan on connected device (OR)

Figure 3: Textual representation of a sample attack tree based on data extraction as an attacker goal
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5.1. Automation
The features of the tool (Table 3) can be categorised broadly into:

¢ Reconnaissance, which can be defined as a survey of the system’s existence, config-
uration and capabilities,

e Connection attributes, which includes information on pairing mechanisms, trans-
mission sizes and connection state, and

e Attack goal (data extraction), which encompasses methods that would allow the
realisation of the attack goal

The tool is semi-automated (Table 3), in that many aspects of the test suite does not re-
quire manual intervention. This is true of the majority of the reconnaissance and connection
attribute determination features where the tool will run down the tree on its own should all
data be available. If data is not available for a particular branch, the steps (i.e. the subtree)
that would need to be completed would be displayed for possible manual intervention.

Some manual decision making is required when performing the data extraction tests.
Whilst the individual attack methods (such as sending in AT commands) can be auto-
mated, full automation of multiple types of attacks in sequence is difficult in this case as the
target system is a black box, and the search for weaknesses in such an environment comes
with a large number of sequential decision making issues [21]. This is in addition to un-
certainties around what could be construed as an attacker’s “point-of-view” (the paradigm
of penetration testing) and interconnection between different attack components [21] when
testing a system.

A key consideration during conception and development of the tool was the choice of
nodes to automate. There were some aspects where non-trivial development was required,
when it would have been simpler to observe the target device (such as which of four SSP
mechanisms is in use during pairing), and others where manual intervention was required
as the information is generally held physically. An example of the latter is the device’s
Federal Communications Commission (FCC) ID, which provides valuable information on
the attributes of wireless communications, and is usually printed on a physical label.

In summary, the tool, whilst being only semi-automated, provides a head start with
regards to establishing the security state baseline for the target system. Furthermore, the
attack tree methodology underlying the tool also provides for a traceable and systematic set
of results.

5.2. Tool validation

The tool was tested against five different vehicles (of different makes, models and ages),
all of which were registered within the last five years. There was no additional source of
information regarding the Bluetooth implementation on these systems, other than what was
publicly available through the owner’s manuals. Due to commercial sensitivity, identifying
information has been redacted. Results of tests on vehicles are summarised in Table 4.
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Table 3: Tool Features (corresponds to AttackSteps in Algorithm 1)

priate subtrees are found using width-first search.

‘ Feature Automation stage
Discovery of ‘discoverable’ device addresses using inquiry | Automated
© scans
§ Discovery of ‘hidden’ devices using brute-force scanning Automated
4 Determination of Bluetooth chip manufacturer using the | Automated
§ organisationally unique ID (OUI) to scan through a
S database of stored OUIs
= Determination of service profiles offered by device using | Automated
the Service Discovery Protocol (SDP)
Preliminary indication of device operating system (OS) | Semi-automated (may require manual
using indicators in discovered service profiles search from other sources)
Determination of whether device uses legacy pairing by | Semi-automated (a Bluetooth version
checking the Bluetooth version of 2.0 or below indicates legacy pairing)
Determination of open ports by sending information to | Automated
all possible RFCOMM and L2CAP ports and awaiting
responses
Determination of filtered ports by sending information to | Automated
all RFCOMM and L2CAP pors and filtering for specific
€ITor Messages
Determination of pairing status with reference to local | Automated
paired devices
Pair or unpair the device as appropriate with reference to | Semi-automated (the user decides to
local paired devices pair or unpair)
_§ w | Checks for presence of OBEX File Transfer Profile (FTP) | Automated
3 § and OBEX Object Push Profile (OPP) service with refer-
s E ence to discovered service profiles
S = | Checks maximum transmission unit (MTU) for open | Automated
L2CAP ports by sending increasing size of packets until
Bluetooth error 90 (‘message too long’) appears
Attempted extraction of information using modem atten- | Semi-automated (open ports are au-
tion (AT) commands through open RFCOMM ports tomatically determined and AT com-
< mands can be sent in, but user chooses
% the commands).
g Attempted extraction of information by mounting and | Semi-automated (checks for
Eg browsing the filesystem on a FUSE based filesystem type | OBEXFTP  profile  automatically,
8 tries to mount automatically, but user
S does the manual browsing if successful)
Attempted extraction of information using OBEX GET | Semi-automated (checks for open RF-
and PUT commands COMM ports automatically, user is
given choice of commands)
Scan logs written to .csv or .txt files and collated at the | Automated
end of test run
§ Populated attack tree displayed and logged Automated
§ Subtrees displayed and logged where test results have not | Automated
< been found or entered. This is denoted by NULL. Appro-
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Table 4: Practical testing on built-in infotainment systems in test vehicles

Interface characteristics

Outcome

BT address, version and class
XX:XX:XX:34:8A:2D
Bluetooth v. 2.0 , 0x340408 (AV, Hands-free)

Pairing mechanism
Legacy: vehicle produces dynamic 6 digit PIN

Services
HFP, SyncML Server, A2DP, AVRCP, PBAP
(Client), OBEX OPP, MAP MNS

Open ports (when paired)
RFCOMM 1, 4 and L2CAP 1, 3

User feedback

Audio and visual notice of successful pairing,
device added to paired list. User is not alerted
to any of the attempted actions beyond pairing

Actions and results

Responds to AT commands on RFCOMM
channel 4 with “AT+BRSF=39", vehicle
ignores commands on all other channels (no
response from vehicle), ignores OBEX PUT,
OBEX GET and SyncML client. Filesystem
cannot be mounted

BT address, version and class
XX:XX:XX:6E:DC:D5
Bluetooth v. 2.0 , 0x340408 (AV, Hands-free)

Pairing mechanism
Legacy: user chooses number of digits as PIN

Services
SPP, OBEX OPP, OBEX FTP, IrMC Sync,
HFP, HSG, PANU

User feedback

Visual change informing user that PIN should
be chosen, no alert that pairing was successful
or that there were attempted connections.
Remote device not added to paired devices
list

Actions and results

Could pair but not connect; port scan could
not be performed. All actions beyond recon-
naissance ended in error

BT address, version and class
XX:XX:XX:CF:69:B8
Bluetooth v 2.1 , 0x340408 (AV, Hands-free)

Pairing mechanism

SSP - Numeric comparison, however vehicle
reported pairing with default PIN of ’0000’
with SSP disabled on test adaptor.

Services
HFP, AVRCP, A2DP, PBAP (Client), MAP
MNS, OBEX OPP

Open ports (when paired)
RFCOMM 1,2,3,4,5 and L2CAP 1

User feedback

Numeric comparison proceeded as normal.
Pairing using 0000 created a very brief visual
alert, device added to paired devices list.

No other alert was issued for subsequent
actions performed on vehicle

Actions and results

Bluetooth error 104 (connection reset by peer)
on all open channels for AT commands is-
sued. Ignores OBEX PUT and GET. Filesys-
tem cannot be mounted
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Interface characteristics (continued)

Outcome (continued)

BT address, version and class
XX:XX:XX:8A:81:20
Bluetooth v. 2.0 , 0x300408 (AV, Hands-free)

Pairing mechanism
Legacy: user chooses number of digits as PIN

Services
PBAP (Client), AVRCP, OBEX OPP,
SyncML Server, HFP

Open ports (when paired)
RFCOMM 1, 4 and L2CAP 1, 23

User feedback

Visual change informing user that PIN should
be chosen, visual alert informing of successful
pairing.  Remote device added to paired
devices list.

Actions and results

Only an unstable connection to vehicle
Bluetooth system given. Vehicle responded
to SyncML client on test device requesting
for contact synchronisation and established
a session. However, the session ended before
any information came through as connection
terminated. AT commands were ignored (no
response from vehicle) on open channels.

BT address, version and class
XX:XX:XX:C3:4A:64
Bluetooth v2.0 , 0x340408 (AV, Hands-free)

Pairing mechanism
Legacy: 4 digit PIN, default 0000

Services

HSG, Sync, HFP, OBEX OPP, Update,
Vendor specific SPP1, Vendor specific SPP2,
PBAP (Client), A2DP, AVRCP, OBEX FTP,
PANU

Open ports (when paired)
RFCOMM 3,4,5,8,9,10,11,12 and L2CAP 1,
15, 25, 27

User feedback

Small visual alert in secondary screen above
steering wheel, no alert from main screen.
No flags or alerts for all subsequent actions.
Device added to paired devices list.

Actions and results

AT commands are ignored (no response from
vehicle), except on channel 5 where no infor-
mation is returned. Filesystem is mountable
on a FUSE based filesystem and browsable.
Two folders were found: “recorder” and “up-
date_ftp”. It is unclear what the purpose and
permissions of these folders are. No response
to OBEX GET or PUT.

6. Discussion and conclusions

To effectively enumerate the security state of the automotive Bluetooth interface, we
used the structured form of the attack tree to carry out a penetration test, based on data
extraction as a goal.

6.1. Pairing and connection

Four out of the five vehicles used the legacy pairing mechanism exclusively. The third
vehicle tested used SSP (Numeric Comparison), however, disabling SSP on the local test
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laptop meant that pairing could occur using ’0000’. This confirms that, even with relatively
modern vehicles, older technologies are still in use and could therefore be vulnerable to
eavesdropping and MITM attacks. Even where the newer SSP pairing mechanism is in use,
bypassing such measures were straightforward because of the weakness of the default PIN.
The number of open ports is usually dependent on whether a user is paired or connected
to the vehicle, however, the OBEX OPP profile remained open regardless. Although data
extraction through this port was unsuccessful, techniques such as repeated pushing of files
through this port could help fulfill alternative attack goals (such as denial of service).

Vehicles universally reconnected with the test laptop as soon as it came into range, the
ramification of which is that an attacker would only need to compromise the pairing process
once. The pairing process differed (at least mechanically) on the vehicles tested, with some
generating PINs, others with hardcoded PINs, and still others asking the users to select the
PIN. The window in which a vehicle remains discoverable also varied. Out of the five, three
vehicles had a two minute window, which limits attacker opportunity. The other two held
the discoverable window open indefinitely, which leaves the vehicle open to opportunistic
adversaries.

6.2. User feedback

All of these vehicles do not alert the user as to any actions taken during an active
connection. Thus, AT requests, filesystem mounting, synchronisation commands, OBEX
PUSH and GET commands all took place without any visual or aural warning; the limitation
of finding a Bluetooth address aside, should the user be unaware that a pairing or connection
had taken place, an adversary could carry out many of these attacks unnoticed. Additionally,
although at this point in time data extraction was the focus, there were open ports even
where a pairing had not taken place. The danger in this is the ability to flood these ports
with data thereby, potentially, causing a denial of service. Although this was not performed
as the focus was on data extraction, the details of this would certainly be included in any
future attack tree involving denial of service as an attack goal.

6.3. System weaknesses

An interesting finding was the ability to mount a filesystem with full read and partial
write access (in that directories could be written, but not files); through this entry point,
any number of crafted applications could be placed on to the vehicle to disrupt operations.
Fuzzing here (such as directory names containing non-standard characters) could also reveal
more about this feature.

There were also vendor specific profiles found on the last of the vehicles in Table 4. They
appear to be serial port profiles, although its functionality would need to be probed further.
AT commands elicited Bluetooth error 104 (connection reset by peer), but future work may
include traffic sniffing and analysis during normal course of operations which might yield
more information.

Since hands-free phone calls are one of the more prominent features of Bluetooth in
vehicles, it was unsurprising to see the Phone Book Access Profile (PBAP) on some of the
vehicles. This allows phonebooks to be synchronised from a mobile phone (or other device

17



holding a phonebook in the correct format) to the vehicle. The ‘client’ status denotes that
this only goes one way, from the remote device to the vehicle, however, tools such as nOBEX
could be used to fuzz this particular feature by uploading contacts or phone numbers that
have non-standard characters, or are past a certain length.

Another feature of interest was that a synchronisation profile (SyncML Server, Sync,
IrMC Sync) was present in all but one of these vehicles. These synchronisation profiles are
generally used to synchronise phonebooks and other personal information between phone
and vehicle. Although there was no personal data extracted, in at least one instance, a
connection (albeit unstable) with a SyncML client was established; the setup could be
revised to try and correct for this and verify whether any data could be extracted.

The last point of interest was the presence of the Personal Ad-Hoc Network User (PANU)
profile on two of the vehicles. This service is able to transfer Ethernet packets across a
connection. There are three security modes used by this profile. The first is “non-secure”,
where a device does not initiate any security procedures. The second is service-level enforced
security, where security procedures are not initiated before a channel is established at L2CAP
level. Lastly, the link-level enforced security mode initiates security procedures before the
link set-up at the Link Management Protocol (LMP) layer [3]. LMP controls the radio link
between two devices. The mode used by the PANU profile in this case is so far unenumerated,
but represents a potential alternative method to send in (Ethernet) packets that could
compromise a vehicle.

6.4. Limitations

Despite the fact that the class of device was set to that of a smartphone with telephony
features (0x5a020c or 0x7a020c), the vehicles universally recognised the test laptop as a
media player rather than a phone. This meant that certain features (such as phonebook)
were unavailable when interacting with the vehicular user interface. However, the version
of Bluez (5.37) used in this paper does not support the Bluetooth hands-free profile (HFP),
which may explain the discrepancy, and future work would require repeating the tests on a
downgraded version in order to verify this. This may also be the reason behind being unable
to connect to one of the vehicles.

Five vehicles is also a small number to test, but the case could be built further by testing
a wider range and larger number in order to help further verify and validate what has already
been acquired.

It should be noted also that quantitative metrics at this point in time is outside of
scope, as detection measures of intrusion within a vehicle are at a nascent stage at best,
and “known” vulnerabilities are generally based on inference from other applications of
Bluetooth. Additionally, practical testing is concentrated on built-in systems as aftermarket
“car kits” differ in that they would not usually have connection to the in-vehicle network
and, in this piece of work, could be considered a lower priority at this point in time.

6.5. Conclusions

From our findings, we conclude that there are multiple weaknesses in a vehicle that
could be exploited, and that consideration should be given by vehicle manufacturers as to
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how legacy pairing could be replaced, as well as how visible interactions with the vehicle
should be. We also conclude that these possible vulnerabilities were found by following the
structured procedure presented in this paper, and we were able to test them to build a
security case. Whilst no personal data was found in the exploration of these vehicles, there
was data from the vehicle itself. Additionally, the method is extensible with the addition
of other attack goals, and could be used to test other potential weaknesses such as open
ports when unpaired. Along with the above, we have also gained some insight into and
established a security state baseline of the implementation and configuration of Bluetooth
within the vehicle. This allows us to edge towards a stage where we could build a model for
more rigorous tests, such as model-based testing.

Mitigating the vulnerability found in one branch may also cancel out other branches
where attack paths are not so easily tested. For example, mounting an operating system
could be performed using a legitimate device, or by acquiring a phone through social engi-
neering - negating the ability to mount an operating system would close off both pathways.
We envision that this tool would help manufacturers both in evaluating current implemen-
tations and using the results to help secure future iterations of designs.

7. Future work

The sample tree presented only represents one of the three categories of attack goals
planned, with the other two being denial of service and data manipulation. At the heart of
the framework is the initial reconnaissance of any test interface, and which forms the basis
for all future vulnerability hypotheses and threat models. Although there is a myriad of
tools available, the information they provide collectively is scattered at best, and a method
of bringing these together in a coherent format would be desirable. To further this, we would
extend and create new attack trees to include other goals, along with tests on a wider range
of vehicles, with multiple versions of the Linux Bluetooth stack in order to correct for any
setup issues.

Looking further into the future, an in-depth analysis of the operating system would also
help define how this module interacts with the backbone Controller Area Network (CAN)
bus that controls vehicle operations. The work so far (which only looks at the entry point and
the Bluetooth feature) will thus form a stepping stone into research on possible disruptions
on vehicle operations from an external source.

We aspire to use the work here to harden future systems by generating and incorporating
security specific requirements from the results of the systematic security evaluation into
future designs [10]. We also envision that further testing would provide more insight into
how components behave, which would enable us to start the process of building a trustworthy
model that could be used in more rigorous processes such as model based security testing.

Wireless connectivity is only increasing, both in the number and variety of interfaces and
protocols used as well as bandwidth capacities. Going forward to where vehicles become
“smarter” and highly automated [9], the need to evaluate the security of wireless connections
will never be less than essential.
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