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Incentivizing Proportional Fairness for Multi-Task
Allocation in Crowdsensing

Jianfeng Lu, Member, IEEE, Haibo Liu, Riheng Jia, Member, IEEE, Zhao Zhang, Member, IEEE, Xiong Wang,
Member, IEEE, Jiangtao Wang, Member, IEEE

Abstract—Effective incentive mechanisms are invaluable in
crowdsensing to stimulate the enthusiasm of strategic users.
However, existing work focusing on multi-task allocation with the
objective of purely maximizing the social utility may result in the
problem of unbalanced allocation, which may damage the social
fairness. This motivates us to introduce proportional fairness
into the design of a novel fairness-aware incentive mechanism
for the first time. Specifically, we first model the interaction of
multi-task allocation in crowdsensing as a multi-requester multi-
worker Stackelberg game, and then transform the fairness-aware
multi-task allocation problem into a fairness-aware incentive
mechanism design problem. Next, we prove that there is a
unique Stackelberg equilibrium, and also show that it can
be efficiently derived through cautiously proposed algorithms.
Since the existing equilibrium may not be optimal, we further
design a secondary allocation rule to maximize both social utility
and system performance, while achieving proportional fairness
at a minimum cost. Finally, extensive experiments using both
synthetic and real-world datasets demonstrate the superiority of
our proposed mechanism compared to the state of the arts.

Index Terms—crowdsensing, incentive mechanism, propor-
tional fairness, Stackelberg game, multi-task allocation

I. INTRODUCTION

CRowdsensing has become a new paradigm for the collec-
tion and analysis of pervasive sensory data, far beyond

the scale of what was previously possible [1, 2]. However,
one of the long-standing concerns is to motivate a large
population of various workers to engage in tasks and collect
high-quality sensory data, as participating in crowdsensing
tasks will incur costs in the process of collecting, processing,
and uploading sensory data [3]. Worse yet, sensing partic-
ipation also exposes workers to potential privacy leakage
without satisfactorily sensing compensation [4]. Moreover,
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the priority goal of workers and requesters is to maximize
their own utilities, so the prosperity of crowdsensing will be
hindered by antisocial behaviors, such as “free-riding” and
“false-reporting”[5]. Also, over-payment leads to over-sensing,
while under-payment leads to under-sensing, both of which
will decrease the long-term utilities of the requesters [6]. As
a result, how to effectively incentivize the participation of
various users 1 is the key issue for the success of crowdsensing.

Existing efforts mainly rely on monetary [7] or non-
monetary [8] rewards to stimulate the enthusiasm of strategic
users to undertake sensing tasks in online [9] or offline [10]
scenarios. A common drawback shared by existing work is
that purely maximizing the social utility may present a rather
unbalanced task allocation, which would be considered ex-
tremely unfair and unacceptable for the worst-off users. Since
there are many crowdsensing platforms with similar functions,
a user has many choices. However, limited by time, space,
sensing ability, etc., users cannot participate in all platforms.
And hence, they need to strategically select the most suitable
choice. Once a user suffers unfair, she may choose to leave
the current platform and join another platform that can bring
her higher benefit, thereby affecting the stability and long-
term utility of the system. Consequently, when designing an
incentive mechanism for crowdsensing, both social fairness
and system efficiency need to be taken into consideration. Let
us illustrate this point with a simple example.

Example 1. Suppose in a micro jobs website that rewards for
completing simple tasks, such as Amazon Mechanical Turk,
Freelancer, Upwork, etc., there are two micro jobs τ1 and τ2
with service fees of $20 and $10, and four workers w1, w2,
w3, and w4 with unit costs of 1, 2, 4, and 5, respectively 2

. The platform has six possible solutions that can assign two
tasks to four workers (To prevent free-riding and idle tasks, the
platform will preclude assigning a single worker or all four
workers to a single task.). As depicted in Table I, let ui and ui

denote the utility gain for worker wi and the maximum utility
he can get across all solutions, respectively 3. On the one
hand, in pursuit of maximizing the social utility (i.e.,

∑4
i=1 ui),

1For convenience, we refer to both workers and requesters as users, which
is a general term for them. When it comes to distinguishing individuals, we
will refer to them as workers or requesters, respectively.

2worker wi’s sensing cost is equal to the product of her unit cost ci and
sensing time ti, where ti can be calculated according to Eq. (16), and the
reward that wi should be payed can be calculated according to Eq. (7), and
j represents the task number. For the convenience of readers’ understanding,
j is omitted here.

3ui is equal to the reward she received minus the sensing cost she offered,
which can be directly calculated according to Eq. (20).
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Table I
COMPARISON BETWEEN THE ABSOLUTE UTILITY AND RELATIVE LOSS IN TASK ALLOCATION SOLUTIONS.

No Solution u1 u2 u3 u4

4∑
i=1

ui
u1−u1

u1

u2−u2
u2

u3−u3
u3

u4−u4
u4

4∑
i=1

ui−ui
ui

1 {τ1 → {w1, w2},τ2 → {w3, w4}} 8.89 2.22 3.09 1.97 16.17 0.56 3.59 1.00 1.00 6.15
2 {τ1 → {w3, w4},τ2 → {w1, w2}} 4.44 1.11 6.17 3.95 15.67 2.13 8.19 0.00 0.00 10.32
3 {τ1 → {w1, w3},τ2 → {w2, w4}} 12.80 5.10 0.80 0.82 19.52 0.09 1.00 6.71 3.82 11.62
4 {τ1 → {w1, w4},τ2 → {w2, w3}} 13.89 4.44 1.11 0.56 20.00 0.00 1.30 4.56 6.05 11.91
5 {τ1 → {w2, w4},τ2 → {w1, w3}} 6.40 10.20 0.40 1.63 18.63 1.17 0.00 14.43 1.42 17.02
6 {τ1 → {w2, w3},τ2 → {w1, w4}} 6.94 8.89 2.22 0.28 18.33 1.00 0.15 1.78 13.11 16.04

the fourth solution is the optimal choice. On the other hand,
seeking to minimize total relative loss (i.e.,

∑4
i=1

ui−ui

ui
), the

first solution is much fairer than the fourth solution. Because
the benefits of workers w1 and w2 are based on the damage
of workers w2 and w3. This example reveals that the mere
pursuit of social utility maximization may disproportionately
hurt the utilities of some workers.

Social fairness has been a perennial and venerable topic of
social welfare, and it involves comparing one’s utility gained
with that of the others [11, 12]. Recently, a variety of social
fairness criteria have been proposed in the literature [13], and
different approaches have been developed for guaranteeing the
social fairness in resource allocation [14], machine learning
[15], computer vision [16], etc. Note that, social fairness is not
uniquely defined in the literature, as it depends heavily on the
specific problem setting and also on individuals’ perceptions
of fair solutions [12, 17]. In this paper we consider fairness
concepts in a general multiple crowdsensing task allocation
problem. Although maximizing social utility is essential, a
fairer criterion should be the relative utility gain rather the
absolute utility gain, since simply pursuing social utility
maximization may disproportionately hurt the utilities of some
users, as shown in Example 1. Despite the importance of social
fairness, research effort on multi-task allocation in crowdsens-
ing rarely combines social fairness with system efficiency to
date. The main shortcoming in most of existing studies is that
the solution is chosen by a central decision maker, without
considering users’ active roles. Actually, rational and selfish
workers will strategically select tasks and determine the level
of contributions to maximize their own utilities. Also, strategic
requesters will engage in vicious price competition in order
to compete for limited worker resources. The aforementioned
misbehaviors will inevitably damage the benefits of some
users, and the worse-off users may be disappointed with the
crowdsensing platform, directly reducing its competitiveness
against other platforms. Therefore, how to incentivize the
participation of various users, without giving an impression
that only a few users are benefiting, remains a significant
challenge in practice.

With the above challenges and gaps in mind, this paper aims
to maximize the social utility of crowdsensing while maintain-
ing fairness at a minimum cost. To accomplish this mission, we
introduce proportional fairness (PF) into the development of a
novel fairness-aware incentive mechanism for crowdsensing.
One reason to choose PF is that simply enforcing equality
across various users potentially disproportionately hurts those

users with better performance, so a more appropriate criterion
should be the relative utility gain rather than the absolute one
[11]. Another reason for such a choice is that PF is a common
fairness metric, which can effectively deal with the conflict
between system efficiency and social fairness [12, 18]. To the
best of our knowledge, studies on fair allocation of limited
and strategic user pool in the presence of a knapsack-like
“capacity” constraint has still been under-explored so far. We
believe that studying this topic is timely since fairness plays
a vital role in the success of crowdsensing, without which
the participation from the worse-off users will inevitably be
discouraged, thereby affecting sustainable healthy collabora-
tion in such an ecosystem. Although few work investigates
fairness-aware incentive mechanisms for crowdsensing [19–
21], these are usually based on empirical models without
accurate mathematical models to formulate and quantify the
fairness. In contrast, we initiate the study of strategy-proof
and PF-aware incentive mechanism for multi-task allocation in
crowdsensing for the first time, and show that our mechanism
maintains PF at a minimum cost.

Our main contributions are summarized as follows:

• In terms of idea, to maximize the social utility of crowd-
sensing while maintaining fairness at a minimum cost,
we introduce PF into the design of a novel fairness-aware
incentive mechanism for the first time. This idea can not
only reduce excessive intervention on the crowdsensing
platform, but also is consistent with the risk neutral
pricing theory [22], which is particularly suitable for
studying the strategic choices of rational and selfish users
in crowdsensing.

• In terms of approach, we model the interaction of multi-
task allocation in crowdsensing as a multi-leader multi-
follower Stackelberg game. More importantly, we prove
that there only exists a unique Stackelberg equilibrium
that can be efficiently characterized through our proposed
Nash equilibrium calculation algorithms. Furthermore,
we design a secondary allocation rule to maximize the
social utility while maintaining PF at a minimum cost.
Based on the rigorous integration of the above work, we
can design the optimal fairness-aware incentive mecha-
nism for crowdsensing.

• In terms of experimental verification, we conduct ex-
tensive performance evaluations on a synthetic and four
real-world datasets to further demonstrate the superiority
of our proposed fairness-aware incentive mechanism.
Compared with three baselines, our proposed mechanism
can maximize not only social utility but also system
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performance under the premise of achieving PF at a
minimum cost.

In the rest of this article, we first review related work in
Section II, and then introduce the preliminaries and formulates
the fairness-aware multi-task allocation problem in Section III.
Followed by the development of a fairness-aware incentive
mechanism in Section IV, we describe the design details of our
mechanism in Section V. We conduct experimental evaluations
in Section VI, and finally draw the conclusion in Section VII.

II. RELATED WORK

Although much effort has been devoted to investigating
incentive mechanisms for crowdsensing task allocation in the
literature [23–25], they usually focus on how to improve
the social utility of crowdsensing task allocation. A com-
mon drawback shared by existing work is that an optimal
solution with the objective of optimizing the social utility
may result in the problem of unbalanced allocation, which
may damage the social fairness. Accordingly, it is critical to
address the issue of fairness-aware incentive mechanisms in
crowdsensing in a principled manner, as users who suffer
unfairness would negatively affect their active participation
and sensory data quality, and even leave the system, thereby
affecting the stability and long-term utility of the system. In
the literature, a few papers investigate incentive mechanism for
crowdsensing with fairness considerations, the social fairness
research in crowdsensing can be divided into custom fairness
and axiomatic fairness according to the differences in scene
modes and the relevance of application purposes.

Custom fairness means that researchers design a fairness
principle and measure the sufficiency of it on this basis. For
instance, Korn et al. [32] declared that their work is the
first to consider multi-dimensional fairness for data provider
selection in the crowdsensing system. However, their proposed
fairness factor is only quantified from three aspects, including
data quality, lost frequency, and submission time of each
provider. Furthermore, they considered a scenario consisting
of single requester and multiple workers, but only considered
the fairness of workers. In contrast, our game model consists
multiple requesters and multiple workers, and our mechanism
maintains PF for both requesters and workers at a minimum
cost. Similarly, Liu et al. [33] considered the fairness of tasks
and users, where each task should be allocated according
to the allocation frequency, and each user’s limited ability
should be fully utilized to handle tasks. However, they did
not provide a formal definition of fairness, which is actually
two independent constraints aimed at minimizing allocation
costs and fully utilizing users’ abilities. Earlier, Zhu et al. [21]
considered the case where malicious competition would affect
the fairness of the bidding process, combined a reverse auction
and a Vickrey auctions to design an incentive mechanism
for crowdsensing, and proved that the designed mechanism
can satisfy five economic properties such as computational
efficiency, individual rationality, budget-balance, truthfulness,
and honesty. They therefore believed that the abovementioned
properties can improve the fairness of the bidding process and
the quality of sensory data. On reward-fair, Goel et al. [34]

defined a notion of fairness of rewards, that is, the expected
reward of each worker is only directly proportional to the
accuracy of her reported answers. Wang et al [35] demanded
that the higher rewards for participating users with higher
local model quality in model training, and no rewards for non-
participating users. On cost-fair, Sun et al. [36] concentrated
on the cost-fair task allocation which aims to balance the
sensing costs undertaken by all users as much as possible
when assigning tasks to users, and satisfy the data reliability
required by the requester. Wang et al. [37] suggested that
service providers acquire accurate sensing data at a minimum
cost and workers receive the high return by contributing the
least efforts. On scheduling fairness, Li et al. [38] ensured that
all users have opportunities to participate in performing tasks
and earn rewards. And Song et al. [39] took the fairness of
users and tasks into consideration, while the fairness of the
user refers to the full use of each user’s ability to process
the task, and the fairness of the task means that each task
will have a certain frequency of assignment according to
its characteristics. The commonality of the abovementioned
studies is that the concept of fairness is based on empirical
models, and there is a lack of accurate mathematical models
to formulate and quantify it.

Compared with custom fairness, axiomatic fairness is more
rigorous and objective because it formalizes the concept of
social fairness based on mathematical theory. For instance,
Li et al. [19] applied the decoy effect and fairness preference
theory from behavioral economics to the design of an incentive
mechanism for crowdsensing. However, the determination of
the key parameters of their model leads to high computational
complexity, and the boundary of the decoy task is difficult
to be determined. Wang et al. [18] used Lyapunov function to
handle discontinuous coverage to optimize PF in worker distri-
bution, thereby ensuring that low-value tasks also remain fully
competitive be in a long period. Nevertheless, the solution of
PF is simply converted into the maximal logarithm function in
[40], and the fairness requirement of requesters is also ignored.
Different from the above work, we are the first to study
strategy-proof fairness-aware incentive mechanism for crowd-
sensing. In particular, we indirectly and precisely achieve
PF-aware multi-task allocation in crowdsensing through the
optimal design of the incentive mechanism.

III. PROBLEM FORMULATION

A. System Model

As illustrated in Fig. 1, a Multi-Task Allocation (MTA)
system consists of a platform, a set R = {r1, · · · , rm} of
requesters, and a set W = {w1, · · · , wn} of workers in the
system. Each requester rj ∈ R can post a sensing task τj ∈ T
to the crowdsensing platform, where T = {τ1, · · · , τm}
denotes the set of all publicized sensing tasks. Requester rj
needs to pay sufficient reward to compensate the incurred
costs of workers when participating in the sensing activity.
When tasks are described and publicized by the crowdsensing
platform, each worker wi ∈ W can determine her sensing
plan strategy πi = (si, ti), where si is the selected task and
ti means the sensing time. In general, a task is completed by
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Fig. 1. The process of MTA in crowdsensing.

multiple workers together. Taking into account the practical
factors (e.g., time, location, effort, etc.), a worker is usually
assumed to be able to perform one sensing task at one time,
but this paper is not limited to this assumption. When a
worker chooses to participate in multiple tasks, we simply
treat her as multiple workers. Similarly, when a requester
publicizes multiple sensing tasks, we simply treat her as
multiple requesters. Conveniently, Table II lists frequently used
notations in this paper.

According to Fig. 1 and Example 1, the typical process of a
MTA system can be summarized as follows: First, requesters
publish multiple tasks (e.g., τ1 and τ2) and send them to the
crowdsensing platform (step 1⃝). Next, the platform requires
that the requester needs to pay the service fee (e.g., $20
and $10) according to the charging rules (step 2⃝). After
getting the description of sensing tasks from the platform
(step 3⃝), each worker determines her sensing plan (step
4⃝, e.g., τ1 → {w1, w2}, τ2 → {w3, w4}, as well as the

sensing time determined by these four workers), uploads the
sensory data after completing the task (step 5⃝), and receives
the corresponding payment from the platform (step 6⃝, the
rewards received by workers minus their sensing costs are
their utilities, such as u1, u2, u3 and u4 calculated in Table 1).
Then, the platform collects the sensory data from the chosen
workers, provides crowdsensing services to the requester based
on aggregated sensory data (step 7⃝). Finally, according to the
required incentive, the platform distributes the bonus to both
requesters and workers according to the secondary allocation
rule, which will be addressed through our proposed fairness-
aware incentive mechanism (step 8⃝).

In the process of MTA, the decision-making behaviors
of user are sequential: the decision of charging amount by
requesters is made first, followed by the decision of sensing
plan by workers. Therefore, we model this interaction as
a multi-leader multi-follower Stackelberg game. In the first
stage, each requester rj ∈ R as a leader publicizes a task
τi and its corresponding reward γj > 0 to the platform.
While in the second stage, each worker wi, as a follower,
strategically selects task si and determines her sensing time

Table II
SUMMARY OF NOTATIONS IN THIS PAPER

Variable Description

τj , T jth task, T = {τ1, · · · , τm}.
rj , R jth requester, R = {r1, · · · , rm}.

wi, W , Wj ith worker, W = {w1, · · · , wn}, a set of workers
participated in τj .

κj , K unit value of τj , K = {κ1, · · · , κm}
ci, C unit cost of wi, C = {c1, · · · , cn}.

ti, t−i, tij sensing time of wi, sensing time profile excluding ti,
sensing time of wi when she undertakes τj .

si, s−i task selection of wi, task selection profile excluding si.
πi, π−i, Π πi = (si, ti), strategy profile excluding πi,

Π = {π1, · · · , πn}.
γj , γw

j , Γ service fee for τj , reward for workers in Wj ,
Γ = {γ1, · · · , γm}.

δ, discount factor.
εi, εrj bonuses allocated to worker wi, and requester rj .
ui, uij utility function of wi, wi’s utility when she undertakes τj .
vj , U utility function of rj , the sum of utilities of all users.

ti, which constitutes her sensing plan πi = (si, ti). Similarly,
let π−i = (s−i, t−i) be the strategy profile excluding πi. On
the one hand, wi will not participate in τj unless she can get
enough reward pwi (γ

w
j , tij , t−ij) to compensate for her cost

citij , where ci is wi’s unit cost, γw
j is the sum of rewards paid

to workers participating in τj , tij is wi’s sensing time when
she undertakes τj , and t−ij is the strategy profile excluding
tij . Consequently, worker wi’s utility ui can be formulated as:

ui =

{
pwi (γ

w
j , tij , t−ij)− citij , if si = τj ,

0, else if si /∈ T . (1)

On the other hand, rj’s strategy is the reward γj she is
willing to pay. As long as the set Wj of workers participating
in task τj is not empty, rj will obtain a service benefit
brj(κj ,Πj). Otherwise, she will refuse to pay, and her utility
will be zero. Thus, requester rj’s utility vj can be formulated
as:

vj =

{
brj(κj ,Πj)− γj , if Wj ̸= ∅,
0, otherwise,

(2)

where κj is the unit value of task τj , γr
j is the reward the

requester pays to the platform, and Πj is the strategy profile
for a set Wj of workers.

At the crowdsensing platform’s side, it charges a service
fee γj from requester rj , and pays reward γw

j to workers in
Wj . Here, we assume that the crowdsensing platform is non-
profitable, i.e., it will distribute γj−γw

j to the right requesters
and workers as a bonus according to a secondary allocation
rule as depicted in Definition 3. And hence, the social utility
is defined as the sum of the utilities of all users, i.e., U =∑

i:wi∈W ui +
∑

j:rj∈R vj .

B. Fairness-Aware Multi-Task Allocation Problem

In addition to the maximization of social utility, we also
consider a classic fair solution called PF, which optimizes the
total utility of users. That is, given a PF solution σPF, there
does not exist any other solution σ that give a total relative
improvement for a subset of users which is larger than the total
relative loss inflicted on the other users. Referring to [12, 17],
we give a formal definition of PF for crowdsensing.
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Definition 1. (PF) A solution σPF ∈ Σ is PF if, for any other
Pareto optimal solution σ, it holds that∑

i:wi∈W

uw
i (σ)− uw

i (σPF)

uw
i (σPF)

+
∑

j:rj∈R

ur
j(σ)− ur

j(σPF)

ur
j(σPF)

≤ 0

(3)
where uw

i (σPF) > 0,∀wi ∈ W and ur
j(σPF) > 0,∀rj ∈ R.

Continuing with Example 1, none of the six solutions is a PF
solution. Moreover, we cannot find any solution that satisfies
Eq. (3) in Example 1. Obviously, the constraints of PF are
too strict to strike a balance between fairness and efficiency.
In general, as proved by Nicosiat et al. [17], the PF solution
may not exist, if it exists it must be unique, and a Pareto-
dominated solution can never be PF. Consequently, we need a
relatively weak definition of PF as follows.

Definition 2. (ξ-PF) Given ξ ≥ 0, a solution σξ is ξ-PF if,
for any other Pareto optimal solution σ, it holds that∑

i:wi∈W

ui(σ)− ui(σξ)

ui(σξ)
+

∑
j:rj∈R

vj(σ)− vj(σξ)

vj(σξ)
≤ ξ, (4)

where ui(σξ) > 0,∀wi ∈ W and vj(σξ) > 0,∀rj ∈ R.

It is easy to find that the strictness of ξ-PF monotonically
decreases with fairness threshold ξ. As long as ξ is sufficient
large, ξ-PF solutions always exist. When ξ = 0, PF and ξ-PF
are equivalent.

Definition 3. (FAMTA) The Fairness-Aware Multi-Task
Allocation problem with ξ-PF requirement in crowdsensing
is formulated as:

max
σξ

U(σξ) ≜
∑

i:wi∈W
ui(σξ) +

∑
j:rj∈R

vj(σξ),

s.t. Eq.(4).
(5)

It is obvious that ξ-PF is a necessary but not sufficient
condition to address the FAMTA problem. This is because due
to the rational and selfish nature of users, neither requesters
nor workers will follow a ξ-PF solution based social norm
unless it is in their self-interest. Therefore, finding a ξ-PF
solution is a necessary condition for addressing Eq. (5), while
maximizing the social welfare is a sufficient condition, and
thus a fundamental problem arises, i.e., “How to apply the
optimal ξ-PF solution for allocating multi-task to multi-worker
in crowdsensing?”.

IV. FAIRNESS-AWARE INCENTIVE MECHANISM

In this section, we introduce PF into the development of
a novel fairness-aware incentive mechanism to address the
FAMTA problem as shown in Eq. (5). Specifically, we adopt
the proportional sharing method to design the charging rule
and payment rule [27], and design a secondary allocation rule
inspired by the idea of transferable utility [41].

Definition 4. (FAIM) A Fairness-Aware Incentive Mechanism
is represented as a 3-tuple (C,P,A), i.e., a charging rule C,
a payment rule P, and a secondary allocation rule A.

• C : R+ ∪{0} → R+ ∪{0} determines how much reward
γj requester rj should pay to the platform, i.e.,

γj ← argmax
γj≥0

vj . (6)

• P : Nn → R+ ∪ {0} represents the amount of reward
worker wi should receive, which is proportional to tij ,
i.e.,

pwi (γ
w
j , tij , t−ij) =

tij∑
x:wx∈Wj

txj
γw
j , (7)

where γw
j = δγj , and the discount factor δ ∈ (0, 1].

• A : R+ ∪ {0} → {R+ ∪ {0}}m+n decides how much
bonuses εwi and εrj should be allocated to worker wi and
requester rj , respectively, i.e.,∑

i:wi∈W
εwi +

∑
j:rj∈R

εrj =
∑

j:rj∈R
(1− δ)γj . (8)

FAIM can be regarded as a set of rules that a crowdsensing
platform uses to regulate the behaviors of its users. Combining
Eq. (1) and Eq. (7), the utility maximization for each worker
wi ∈ W can be rewritten as:

uw
i ≜ max

j≤[1,m]
uij ,

s.t.

{
uij =

tij∑
x:wx∈Wj

txj
γw
j − citij ,

tij ≥ 0,∀i : wi ∈ W,∀j : rj ∈ R.

(9)

According to the ubiquitous phenomenon of diminishing
marginal utility in economics [42], we define the valuation
function of requester rj to the set Wj of workers’ sens-
ing time as a submodular function, and materialize it as
κj logα(

∑
x:wx∈Wj

txj +1), where the range of α > 1 makes
vj a strictly concave function in

∑
x:wx∈Wj

txj . Accordingly,
combining Eq. (2) and Eq. (6), the utility maximization for
each requester rj ∈ R can be rewritten as:

vj ≜ max
γj

κj logα(
∑

x:wx∈Wj

txj + 1)− γj ,

s.t. γj ≥ 0,∀j : rj ∈ R.
(10)

According to FAIM, the reward received by a worker is a
function of her sensing plan πi = (si, ti), and hence, it is in
the self-interest of each worker to actively undertake sensing
tasks and take the incentive to contribute a high level effort.
Meanwhile, the rewards paid by requesters are directly related
to the number of workers they can attract and the total sensing
time. Therefore, FAIM can play a positive motivating role not
only for workers but also for requesters. According to Eq.
(9) and Eq. (10), it can be seen that FAIM always achieves
a higher social utility than a non-incentive one. Therefore,
the FAMTA problem can be equivalently transformed into the
FAIM design problem.

Definition 5. The FAIM design problem is formulated as

max
(C,P,A)

U ≜
∑

i:wi∈W
ui +

∑
j:rj∈R

vj ,

s.t.


∑

i:wi∈W

ûi−ui

ui
+

∑
j:rj∈R

v̂j−vj
vj
≤ ξ,

ui = max
j:rj∈R,ti≥0

uij , ∀i : wi ∈ W,

vj = max
γj≥0

vj , ∀j : rj ∈ R,

(11)
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where ûi and v̂j are obtained in Pareto optimal solution σ.

V. OPTIMAL DESIGN OF FAIM

In this section, we first analyze whether there is a feasible
solution to the FAIM design problem and how to find it, and
then we design a secondary allocation rule to further increase
the social utility.

A. A Feasible Solution to the FAIM Design Problem

Our goal in designing FAIM is to establish an ideal
Stackelberg Equilibrium (SE) under which the social utility
can be maximized. Note that the MTA Stackelberg game
consists of two subgames, i.e., the Sensing Plan (SP) game
and the Reward Declaration (RD) game. Specifically, in the
RD game, the decision of charging amount by requesters is
made first, followed by the decision of sensing plan by workers
in the SP game. The Nash Equilibrium (NE) of the SP game
and the RD game may together form an SE, which is provided
as follows.

Definition 6. (SE) Let Γ∗ = (γ∗
1 , · · · , γ∗

m) and Π∗ =
{π∗

1 , · · · , π∗
n} be Nash Equilibria of the RD and SP game,

respectively, (Γ∗,Π∗) is an SE for the MTA Stackelberg game
if ∀(Γ,Π)|Γ ̸= Γ∗ ∨Π ̸= Π∗,{

ui(Γ
∗, π∗

i , π
∗
−i) ≥ ui(Γ

∗, πi, π
∗
−i),∀i : wi ∈ W,

vj(γ
∗
j , γ

∗
−j ,Π

∗) ≥ vj(γj , γ
∗
−j ,Π

∗),∀j : rj ∈ R.
(12)

Finding an SE is the prerequisite for addressing Eq. (11).
An SE, if it exists, can be obtained by employing backward
induction, that is, the SP game is solved first and then the RD
game is solved. In the SP game, we are trying to determine
whether there is a unique NE in the SP game with given
Γ = {γw

1 , · · · , γw
m}. We first suppose that worker wi has

already selected task si, and her competitors who selected
the same task as her are also determined. Worker wi will
naturally choose her optimal sensing time strategy, denoted
t̄ij , that maximizes her own benefit.

Definition 7. Given γw
j , Wj , and t−ij , uij(t̄ij , t−ij) ≥

uij(tij , t−ij) over all ∀tij ̸= t̄ij .

Second, each strategic worker will also choose her optimal
task selection strategy, denoted s̄i, i.e., the more the task
reward and the weaker the competitor, the better.

Definition 8. Given Γ, W , and π−i, ui(s̄i, t̄i, π−i) ≥
ui(si, t̄i, π−i) over all si ̸= s̄i.

Obviously, each strategic worker will prefer t̄i and s̄i in an
NE. The following theorem indicates that both of t̄i and s̄i
are exist and unique.

Theorem 1. Given Γ, there is a unique NE in the SP game.

Proof. See Appendix A.

In the following, we design Algorithm 1 to compute
the unique NE of the SP game. Its time complexity is
O(mn log n), where m and n are the number of tasks and

Algorithm 1: Computation of the NE for the SP game
Input: Γ = {γw

1 , · · · , γw
m}, C = {c1, · · · , cn}

Output: Π∗ = {π∗
1 , · · · , π∗

n}
1 reorder elements in Γ and W so that γw

1 ≥ · · · ≥ γw
m

and c1 ≤ · · · ≤ cn;
2 initialize s̄1 = τ1 and W1 = {w1};
3 for i = 2 : n do
4 k = argmax

j∈[1,m]

{Wk ̸= ∅};

5 for j = 1 : k + 1 do
6 Wj =Wj ∪ {wi};
7 compute uij according to Eq. (20);
8 Wj =Wj\{wi};
9 l = argmax

l∈[1,j]

uil;

10 if ūil > 0 then
11 Wv =Wv ∪ {wi};
12 else
13 s̄i = 0;
14 break;

15 foreach j ∈ [1,m] do
16 foreach wx ∈ Wj do
17 compute t∗x = ¯txj according to Eq. (16) ;
18 s∗x = j;

workers, respectively. Detailed analysis and justification are
shown in Corollary 1.

Corollary 1. The output Π∗ of Algorithm 1 is a unique NE
of the SP game.

Proof. See Appendix B.

In the RD game, each requester declares her reward value
corresponding to her requested task. In order to maximize
her own utility by manipulating the system, each strategic
requester will carefully choose the most favorable strategy
γj ,∀j : rj ∈ R, which is define as the optimal reward
declaration strategy γ̄j .

Definition 9. Given γ−j , vj(γ̄j , γ−j) ≥ vj(γj , γ−j) over all
γj ̸= γ̄j .

In the NE of the RD game, rj ,∀j ∈ [0,m] will obviously
choose γj in an NE. Given γ−j and C, we have

γj = argmax
γj≥0

κj logα(
∑

x:wx∈Wj

txj + 1)− γj . (13)

In the following, we first prove that there exists a fixed point
equivalent to an NE of the RD game, and then prove that such
an NE is unique in the RD game.

Theorem 2. There is a unique NE in the RD game.

Proof. See Appendix C.

Next, we design Algorithm 2 and prove that it can obtain
the unique NE of the RD game, as shown Corollary 2. In
particular, Algorithm 2 employs a two-step procedure in an
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Algorithm 2: Computation of the NE for the RD game
Input: K = {κ1, · · · , κm}, C = {c1, · · · , cn}
Output: Γ∗ = {γ∗

1 , · · · , γ∗
m}

1 reorder elements in K so that κ1 ≥ · · · ≥ κm;
2 initialize γ0

j = 0,∀j ∈ [1,m] and θ = 1;
3 do
4 for j = m : 1 do
5 obtain γθ

j by solving Eq. (13) with given

γθ
k,∀k ∈ (j,m] and γθ−1

v ,∀l ∈ [1, j);
6 if vj(γθ

j )− vj(γ
θ−1
j ) ≤ ϵ then

7 γθ
j = γθ−1

j ;

8 θ = θ + 1;

9 while {γθ
1 , · · · , γθ

m} ≠ {γθ−1
1 , · · · , γθ−1

m };

alternate manner. It has low-complexity computation, which
is dominated by the loop (i.e., ϵ).

Corollary 2. The output Γ∗ of Algorithm 2 is a unique NE of
the RD game.

Proof. See Appendix D.

According to Definition 5, Theorem 1, and Theorem 2, we
know that (Γ∗, Π∗) is a unique SE for the MTA Stackelberg
game.

B. Optimal Design of Secondary Allocation Rule
Although given any fixed δ ∈ (0, 1], we can obtain a

unique SE (Γ∗, Π∗). However, it is may not be an optimal
solution to Eq. (11). To further improve the social utility, we
design a secondary allocation rule A based on the idea of
transferable utility, our goal is to maximize the social utility
while maintaining ξ-PF. Given δ, Eq. (11) can be rewritten as:

max
δ∈(0,1]

U ≜
∑

i:wi∈W
ui(δ) +

∑
j:rj∈R

vj(δ),

s.t.


∑

i:wi∈W

ûi−ui(δ)
′

ui(δ)′
+

∑
j:rj∈R

v̂j−vj(δ)
′

vj(δ)′
≤ ξ,

vi(δ)
′ = vi(δ) + εwi ,∀i : wi ∈ W,

vj(δ)
′ = vj(δ) + εrj ,∀j : rj ∈ R.

(14)

The key to solving the problem depicted in Eq. (14) is
to find the optimal value of δ. We now design Algorithm 3,
and prove that its output is an optimal solution to Eq. (14),
since it maximizes the social utility and allocates the minimal
bonuses to both workers and requesters to maintain the ξ-PF
at a minimum cost.

Theorem 3. The output of δ∗ and {ε∗k|∀k ∈ [1,m + n]} by
Algorithm 3 is an optimal solution to Eq. (14).

Proof. See Appendix E.

VI. PERFORMANCE EVALUATION

In this section, we provide numerical results to evaluate the
performance of our proposed FAIM designed for the MTA
problem in crowdsensing with both synthetic and real-world
datasets.

Algorithm 3: Optimal design of A
Input: K = {κ1, · · · , κm}, C = {c1, · · · , cn}
Output: δ∗, {εw1 , · · · , εwn , εr1, · · · , εrm}

1 compute Γ∗ = {γ∗
1 , · · · , γ∗

m} according to Algorithm
2;

2 initialize xi = ui,∀i : wi ∈ W ,
xn+j = vj ,∀j : rj ∈ R, and U =

∑
k∈[1,m+n] xk;

3 for δ = 1; ℓ > 0; δ = δ − ℓ do
4 let yi = ui,∀i : wi ∈ W , yn+j = vj ,∀j : rj ∈ R;

5 if U ′ =
m+n∑
k=1

yk +
m∑
j=1

(1− δ)γj > U then

6 reorder elements in {xk

yk
|∀k ∈ [1,m+ n]} so

that x1

(y1)2
≥ · · · ≥ xm+n

(ym+n)2
;

7 for ω = 2 : m+ n do
8 if there exists a solution for

xk

(yk+εk)2
= xω

(yω+εω)2 ,∀k ∈ [1, ω)∑
k≤ω

xk

yk+εk
+

∑
k∈(ω,m+n]

xk

yk

= m+ n+ ξ
(15)

and
∑

k∈[1,ω] εk ≤
∑

j∈[1,m](1− δ)γj
then

9 U = U ′;
10 δ∗ = δ;
11 εk = 0,∀k ∈ (ω,m+ n];
12 ε∗k = εk + [(1− δ)

∑
j∈[1,m] γj −∑

k∈[1,ω] εk]
xk
yk∑

l∈[1,m+n]
xv
yv

,∀k ∈
[1,m+ n];

13 go to line 3;

A. Experiment Setup

1) Datasets: Two types of datasets are used in the experi-
ment.

• A Synthetic Dataset. Without loss of generality, assume
that the value of κj ,∀j ∈ [1,m] is subject to a Gaussian
distribution κj ∼ N(µ1, σ

2
1). Here, we fix µ1 = 5,

and define its value boundary as (0,40). Similarly, we
assume that the value of ci,∀i ∈ [1, n] is also subject
to a Gaussian distribution ci ∼ N(µ2, σ

2
2). Here, we fix

µ2 = 3, and define its value boundary as (0,10). Without
further notification, we fix σ2

1 = 10, σ2
2 = 1, and ξ = 1

by default.
• Four Real-world Datasets. Four standard real-world

datasets are utilized to make performance evaluation
which have also been widespread used into much related
research work in federated learning. Actually, federated
learning is a novel paradigm of crowdsensing that enables
collaborative training global models across multiple data
silos without uploading raw data [44].

– MNIST, which contains gray-scale images of 70000
handwritten digits, where 60000 for training and
10000 for testing [45].

– FMNIST, which is replacement for MNIST database
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Fig. 2. The social utilities of the compared mechanisms against (a) m, (b) n, and (c) ξ.
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Fig. 3. The fairness threshold ξ is affected by intrinsic parameters (a) m, (b) n, and (c) how ξ affects the PoF.

containing 80000 images of fashion apparels with 10
distinct classes [46].

– EMNIST, which includes six different splits and the
biggest one is EMNIST ByClass containing 814255
characters and 62 unbalanced classes [47].

– CIFAR10, which is a subset of the tiny images
dataset and consists of 60000 32×32 color images
with 50000 training images and 10000 test images
[48].

2) Baselines: We mainly compare our proposed mechanism
with the following three typical mechanisms:

• MLMF, which expands the single-leader multi-follower
Stackelberg game [26–29, 49] to a multi-leader multi-
follower Stackelberg game [30, 31]. It guarantees PF, but
does not employ the secondary allocation rule to further
optimize the social utility.

• MM, which looks for a solution in which even the least
happy agent users as much as possible, i.e., the user
who obtains the lowest utility, still receives the highest
possible utility [50].

• OPT, which adopts the secondary allocation rule to
exhaustively maximizes the social utility without guar-
anteeing ξ-PF.

3) Metrics: We use two metrics to evaluate the compared
mechanisms with the synthetic dataset: (i) Social utility, which
is the main metric to evaluate the performance of our FAIM.
(ii) Fairness, which measures how the fairness threshold ξ is
affected by intrinsic parameters and how it affects the PoF,
where PoF is denoted as PoF = sup

I∈I
min

σξ∈
∑

F

U(σ∗(I))−U(σξ(I))
U(σ∗(I)) ,

where instance I ∈ I, σ∗(I) is a system optimum, and
∑

F
is the set of fair solution for I [12, 51].

We use two other metrics to evaluate the compared mech-
anisms with the four real-world datasets: (i) Prediction ac-

curacy, which is expressed as the correlation between the
model prediction and the actual score. Accuracy of 1 indicates
a perfect learner, whereas the accuracy of 0 indicates a largest
error. (ii) Training loss, which is a metric used to assess the
error of the model on the training set.

B. Results on Synthetic Dataset

1) Social Utility: Fig. 2 plots the social utilities of the four
compared mechanisms against (a) the number of available
requesters m, (b) the number of available workers n, and
(c) the fairness threshold ξ, respectively. Fig. 2(a) and 2(b)
show that the social utilities of the four compared mechanisms
monotonically increase with m and n. This is because the
social utility depends on the number of tasks and workers, and
more tasks and workers means more social utility is created.
From the two figures, we sort the social utility values from
large to small, OPT is the largest, FAIM is the second, MLMF
is the third, and MM is the last. The fundamental reason for
this phenomenon is that, on the one hand, OPT abandons PF
and unilaterally pursues the maximization of social utility.
On the other hand, although MLMF guarantees PF, it does
not further optimize the social utility. OPT and MLMF can
be regarded as the upper and lower bound of social utility
obtained by FAIM, respectively. In contrast, MM achieves
the maximin fairness by sacrificing the profit, so the profit
is the lowest. Since ξ only affects FAIM, a larger ξ means
a weaker constraint on ξ-PF. Consequently, the performance
gap between FAIM and OPT monotonically decreases with ξ
as shown in Fig. 2(c).

2) Fairness: Fig. 3 and Fig. 2 are from the same set of
experiments, the major difference is that Fig. 2 focuses on
social utility, while Fig. 3 focuses on social fairness. Fig. 3(a)
and 3(b) plot the fairness threshold ξ is affected by the number
of available requesters m and the number of available workers

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3325636

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: COVENTRY UNIVERSITY. Downloaded on December 11,2023 at 21:04:07 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SERVICES COMPUTING 9

0 20 40 60 80 100
Communication Rounds

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e 
Ac

cu
ra
cy

MNIST

MM
OPT
FAIM
MLMF

80 85 90 95 100

0.96

0.98

(a)

0 20 40 60 80 100
Communication Rounds

0.4

0.5

0.6

0.7

0.8

Av
er
ag

e 
Ac

cu
ra
cy

FMNIST

MM
OPT
FAIM
MLMF

(b)

0 20 40 60 80 100
Communication Rounds

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Ac
cu

ra
cy

EMNIST

MM
OPT
FAIM
MLMF

80 85 90 95 100

0.96

0.98

(c)

0 20 40 60 80 100
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e 

Ac
cu

ra
cy

CIFAR10

MM
OPT
FAIM
MLMF

(d)
Fig. 4. The prediction accuracy: (a) MNIST, (b) FMNIST, (c) EMNIST, and (d) CIFAR10.
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Fig. 5. The training loss: (a) MNIST, (b) FMNIST, (c) EMNIST, and (d) CIFAR10.

n, respectively. From the results in the two figures, MLMF has
the lowest fairness threshold, which reflects that it maintains
the highest fairness. FAIM achieves the second highest social
utility with the second lowest fairness threshold. With the
growth of m, both MM and OPT need to increase the fairness
threshold ξ, that is, reduce the fairness requirement, in order to
seek feasible solutions. Fig. 3(b) is similar to the results in Fig.
3(a), the difference is that ξ corresponding to MM and OPT do
not show an obvious increasing trend, because the increase of
m can aggravate the competition between users in the system
more than the increase of n. The overall ξ value of OPT is
lower than that of MM, because OPT employs the secondary
allocation rule. In Fig. 3(c), an interesting phenomenon can
be found in Fig. 3(d), that is, the values of PoF for all four
cases monotonically decrease with ξ. Because as ξ increases,
Algorithm 3 will have a better chance of being executed,
resulting in higher social utility. When ξ is large enough, the
judgment condition in line 8 of Algorithm 3 is always true,
so that the fair solution is also the optimal solution, that is,
PoF=0. Furthermore, the smaller n and m, the smaller the PoF.
This is because the smaller the quantity of tasks and workers,
the easier it is for the performance of FAIM to approach OPT.

C. Results on Real-World Dataset

1) Prediction Accuracy: Fig. 4 plots the prediction accu-
racy of the four compared mechanisms using four real-world
datasets, i.e., MNIST, FMNIST, EMNIST, and CIFAR10. Al-
though the experimental results vary across different datasets,
we can observe that with the increasing of training rounds,
the prediction accuracy grows very fast in the beginning,
and then slows down until it converges. It is obvious that
OPT attains higher accuracy than both FAIM and MLMF,

while FAIM is very close to OPT, and MM has the worst
performance across Fig. 4(a) to Fig. 4(b). The main reason
behind this phenomenon is essentially the same as that in Fig.
2, i.e., both FAIM and OPT employ the secondary allocation
rule to compensate workers with strong ability (i.e., low unit
cost corresponding to the synthetic datasets, and high data
quality corresponding to the four real-world datasets), so
that they can obtain higher social utility and better system
performance. Although the experimental results in the four
datasets are different, the trends and performance rankings of
the four curves representing the four compared mechanisms
are basically consistent.

2) Training Loss: Fig. 5 plots the training loss of the four
compared mechanisms using the same four real-world datasets
as Fig. 4. It is obvious that all four mechanisms converge
rapidly with fewer communication rounds. Consistent with
Fig. 4, the training loss of FAIM is lower than that of MM
and MLMF, and slightly higher than OPT, for the same reason.
Looking closely at the training loss curve, it is clear that the
difference between the curves of FAIM and OPT is very small,
and the curve fluctuations are also smaller due to the secondary
allocation rule. Conversely, MM’s curve fluctuates the most.
Besides, the main difference between the four figures is that
different datasets are associated with distinct stable points due
to their data disparity. In Fig. 5(d), the overall performance
of the four compared mechanisms is worse than that of Fig.
5(a)-(c) because of the larger storage capacity of the dataset
and the higher computational overhead.

VII. CONCLUSION

In this paper, we have developed a fairness-aware incentive
mechanism to stimulate participation of users while main-
taining PF for multi-task allocation in crowdsensing. First
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of all, the FAMTA problem has been transformed into a
FAIM design problem via introducing the concept of PF to
re-define a novel incentive mechanism. Secondly, the multi-
task allocation has been modelled as a Stackelberg game
consisting of multi-requester and multi-worker, and two novel
algorithms have been presented to compute the unique Nash
equilibria for the sensing plan game and reward declaration
game respectively. And then, a secondary allocation rule has
been designed to maximize the social utility while maintaining
PF at a minimum cost by calculating the minimum bonus and
optimal discount factor. Finally, experiment results using both
synthetic and real-world datasets have further demonstrated
that our proposed FAIM effectively balances system efficiency
and fairness with a low PoF overall.

In the future research, we intend to extend this work in
two directions. First, although seeking a PF solution is an
critical issue in crowdsensing, seeking other solutions such
as Max-min or Kalai-Smorodinsky is also a very interesting
topic. Second, there are many practical factors in crowdsensing
task allocation beyond our work such as the consideration of
uncertain nature of worker participation, we will incorporate
as many practical factors as possible into our problem formu-
lation and solve them in the future.

APPENDIX

A. Proof of Theorem 1

The proof consists of two parts: we first assume that
Wj = {w1, · · · , wv},∀j ∈ [1,m] is given, and prove that
each worker’s optimal sensing time strategy is fixed. We then
revoke this assumption and show that each worker’s optimal
task selection strategy is also fixed, relying solely on their unit
costs and reward of all tasks.

First, givenWj = {w1, · · · , wv},∀j ∈ [1,m], we will prove
that wi’s t̄i is

t̄ij =


ϵ, if v = 1
0, else if i > z
γw
j (z−1)

[∑
x≤z cx−ci(z−1)

]
(
∑

x≤z cx)2
, otherwise

(16)

where we assume that the workers in Wj are sorted as c1 ≤
· · · ≤ cv , and let z = max{x : 2 ≤ x ≤ k, cx <

∑x
y=1 cy

x−1 }.
When v = 1, the single worker wi, can earn the total reward
γw
j by free riding, while only having to contribute a sufficiently

small amount of sensing time that its cost is approximately
zero.

When v ̸= 1, and according to Eq. (9), we can
obtain that tij ∈ [0,

γw
j

ci
] as uij ≥ 0 , and

have ∂uij

∂tij
=

γw
j (

∑
x:wx∈Wj

txj−tij)

(
∑

x:wx∈Wj
txj)2

− ci and ∂2uij

∂t2ij
=

−
2γw

j

∑
x:wx∈Wj\{wi}

txj

(
∑

x:wx∈Wj
txj)3

, respectively. Given any γw
j > 0, we

know that ∂2uij

∂t2ij
< 0. To find the unique t̄ij , we let ∂uij

∂tij
=0,

and obtain the following conclusion:

γw
j (

∑
x:wx∈Wj

txj − tij) = ci(
∑

x:wx∈Wj

txj)
2. (17)

LetW+
j = {wi ∈ Wj : tij > 0}, by taking all workers inW+

j

into Eq. (17) and adding them up, we can get∑
x:wx∈W+

j

txj =
γw
j (|W

+
j | − 1)∑

x:wx∈W+
j
cx

. (18)

Since tij = 0 for each wi ∈ Wj\W+
j , we have∑

x:wx∈W+
j
txj =

∑
y:wy∈Wj

tyj . We substitute Eq. (18) into
Eq. (17) to get

tij =
γw
j (|W

+
j | − 1)

[∑
x:wx∈W+

j
cx − ci(|W+

j | − 1)
]

(
∑

x:wx∈W+
j
cx)2

.

(19)
Next, we determine the set W+

j . According to Eq. (19), if

ci <

∑
x:wx∈W+

j
cx

|W+
j |−1

, we know that tij > 0|wi ∈ Wj , and wi ∈
W+

j . Moreover, it is obvious that tij monotonically decreases
with ci. This means that workers with low unit costs are more
motivated to contribute more perceived time.

Furthermore, it can be seen that tij monotonically decreases
with ci. Hence, a worker with smaller c-value has more
incentive to devote more time. And hence W+

j consists of
a consecutive set of workers, namely W+

j = {w1, · · · , ws}
for some s ∈ [2, k] (recall that workers are ordered such
that c1 ≤ · · · ≤ cv). Notice that if cx ≥

∑
y∈[1,x] cy

x−1 , then

cx+1 ≥
∑

y∈[1,x+1] cy

x . Thus s must be the last index x

satisfying cx <
∑

y∈[1,x] cy

x−1 , that is, s = z as defined in the
statement of Eq. (16).

Second, we revoke the assumption that Wj =
{w1, · · · , wv},∀j ∈ [1,m] is given in the above proof,
and show that each worker wi ∈ Wj will choose s̄i in
the NE, depending on the unit costs ci|wi ∈ Wj . Given
Γ = {γw

1 , · · · , γw
m} and {W1, · · · ,Wm}, let wα be a worker

who has just joined the task with s̄α = τk (k ∈ [1,m]), where
wα ̸∈ ∪j∈[1,m]Wj and cα ≥ max

j∈[1,m]
max

i:wi∈Wj

cij , then for any

worker wβ ∈ ∪j∈[1,m]Wj , her optimal choice is to keep s̄β
unchanged. By substituting Eq. (16) into Eq. (9), uij can be
obtained when she chooses t̄ij .

uij =


γw
j , if v = 1

0, else if i > z

γw
j [1−

ci(z−1)∑
x:wx∈Wj

cx
]2, otherwise

(20)

According to Eq. (16) and Eq. (20), we know that both t̄ij
and uij monotonically decrease with ci.

According to Eq. (20), as wα joins Wk, the utility of
other workers in that set does not increase. Thus, other
workers not in Wk clearly have no incentive to deviate from
her current choice and join Wk instead. Without loss of
generality, we assume that wβ ∈ Wk changes her previous
choice to participate in τv with v ̸= k. Now, uβv =
γw
v (1 −

cβzv∑
q:wq∈Wv

cq+cβ
)2, where zj = |Wj |,∀j ∈ [1,m].

If wβ does not deviate after worker wα joins Wk, then
uβk = γw

k (1 −
cβzk∑

p:wp∈Wk
cp+cα

)2. Since cα ≥ cβ , we

know that cβzk∑
p:wp∈Wk

cp+cα
≤ cβzk∑

p:wp∈Wk
cp+cβ

, as well as

uβk ≥ uβk
′ = γw

k (1 −
cβzk∑

p:wp∈Wk
cp+cβ

)2. If and only if
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¯uβk ≥ ūβl, wβ has incentive to choose τv instead of τk. We
can show that uβk

′ ≥ uβl to confirm this. Let

f(x) =
√
γw
k (1−

xzk∑
p:wp∈Wk

cp+x )

−√γw
v (1− xzv∑

p:wp∈Wv
cp+x ),

(21)

and set ρ1 =
√
γw
v (zv − 1) −

√
γw
k (zk − 1),

ρ2 =
√
γw
v zv +

√
γw
k − √

γw
v )

∑
p:wp∈Wk

cp −
(
√
γw
k zk +

√
γw
v −

√
γw
k )

∑
q:wq∈Wv

cq , and
ρ3 = (

√
γw
k −

√
γw
v )

∑
p:wp∈Wk

∑
q:wq∈Wv

cpcq , we get
f(x) = ρ1x

2+ρ2x+ρ3. For wα, it is obvious that utk ≥ utl,
i.e., f(ct) ≥ 0. To show that f(x) ≥ 0,∀x ∈ (0, ct], we
divide the value interval of ρ1, ρ2, and ρ3 into five subcases
for verification.

Case (i): ρ1 = 0. Without loss of generality, we first
assume that ρ3 < 0 holds.From ρ1 = 0 ∧ ρ3 < 0, we can
obtain that

√
γw
v (zv − 1) =

√
γw
k (zk − 1) ∧ γw

1 < γw
2 , and

ρ2 =
√
γw
k zk

∑
wp∈Wk

cp −
√
γw
v zv

∑
wq∈Wv

cq < 0. This
contradicts f(ct) ≥ 0 and ρ3 < 0. Consequently, ρ3 ≥ 0 must
holds in case i, and get f(x) ≥ 0,∀x ∈ (0, ct].

Case (ii): ρ1 < 0 ∧ ct ≤ − ρ2

2ρ1
. Suppose, for the sake of

contradiction, that ρ3 < 0 is true. According to ρ1 < 0 ∧
ct ≤ − ρ2

2ρ1
∧ ρ3 < 0, we can obtain that

√
γv(zv − 1) <√

γk(zk−1)∧ct ≤ − ρ2

2ρ1
∧γk < γv∧zv < zk. As f(− ρ2

2ρ1
) ≥

f(ct) ≥ 0, we can get ρ22 ≤ 4ρ1ρ3. However, it is easy to find a
counterexample, e.g., γk = γv , zv = zk−1 and

∑
wp∈Wk

cp >∑
wq∈Wv

cq , which conflicts with c < 0. As a consequence,
f(x) ≥ 0,∀x ∈ (0, ct] if ρ3 ≥ 0.

Case (iii): ρ1 < 0 ∧ ct > − ρ2

2ρ1
. Similarly to Case (ii), it is

easy to obtain that f(x) ≥ 0,∀x ∈ (0, ct] when ρ3 ≥ 0.
Case (iv): ρ1 > 0 ∧ ρ2 > 0. By contradiction, let’s assume

that ρ3 < 0. According to ρ1 > 0 ∧ ρ2 > 0 ∧ ρ3 < 0,
we have

√
γv(zv − 1) >

√
γk(zk − 1) ∧ (

√
γvzv +

√
γk −√

γv)
∑

wp∈Wk
∧ − (

√
γkzk +

√
γv −

√
γk)

∑
wq∈Wv

>
0 ∧ γ1 < γ2. There is at least one counterexample, such as
γk > γv , zv = zk and

∑
wp∈Wk

cp =
∑

wq∈Wv
cq . The above

counterexample clearly contradicts with ρ3 < 0. And hence,
we can get f(x) ≥ 0,∀x ∈ (0, ct].

Case (v): ρ1 > 0 ∧ 0 < − ρ2

2ρ2
≤ ct. Suppose, for the

sake of contradiction, that f(− ρ2

2ρ1
) < 0 ∧ ρ3 < 0 is true.

According to ρ1 > 0 ∧ f(− ρ2

2ρ3
) < 0 ∧ ρ3 < 0, we get√

γv(zv − 1) >
√
γk(zk − 1) ∧ γ1 > γ2 ∧ 4ρ1ρ3 > ρ22.

Similarly, we can construct a counterexample, e.g., γk > γv ,
zv = zk and

∑
wp∈Wk

cp =
∑

wq∈Wv
cq . It is obviously

contradicts with f(− ρ2

2ρ1
) < 0∧ρ3 < 0. For the other subcases,

f(x) ≥ 0,∀x ∈ (0, ct] clearly holds as well.
For the other cases not included In the abovementioned five

cases, it is easy to show that f(x) ≥ 0,∀x ∈ (0, ct] holds.
Therefore, this theorem is proved.

B. Proof of Corollary 1

According to Eq. (16) and Eq. (20), the competitiveness
of workers monotonically decreases with their unit cost. For
w1, c1 is the smallest element in set C, so s̄1 = τ1 (line
2). Moreover, according to Theorem 1, no matter any other
worker chooses to participate in τ1, w1 has no incentive to
deviate from current choice s̄1, because w1 has the strongest

competitiveness. By analogy, workers will choose tasks in
order according to their competitiveness (line 3-14). Based
on Eq. (16), we can obtain ¯tij for each worker wi when she
has selected τj (line 15-18). According to the first part of the
proof for Theorem 1, when a worker’s unit cost is greater than
the reward she gets from participating in any task, the optimal
task selection strategy of the worker is not to participate in any
task in order to avoid negative utility. Therefore, this corollary
is proved.

C. Proof of Theorem 2
According to Eq. (10) in the main text, we show that Γ ⊂

R (N-dimensional real number set) is a non-empty, compact
convex set, and vj : Γ → Γ is a continuous function from Γ
to Γ. First, for each j ∈ [1,m], we have vj(γj = 0) = 0, i.e.,
0 ∈ Γ. Second, by substituting Eq. (18) into Eq. (10), we can
obtain that

vj = κj logα

(δγj(|W+
j | − 1)∑

x:wx∈W+
j
cx

+ 1
)
− γj . (22)

Let β =
δ(|W+

j |−1)∑
x:wx∈W+

j
cx

+ 1, Eq. (22) is rewritten as uj =

κj logα(βγj + 1) − γj , and we can obtain that ∂uj

∂γj
=

κjβ
lnα(βγj)

− 1 and ∂2uj

∂γ2
j

= − κjβ
2

lnα(βγj+1)2 , respectively. It is

easy to determine that − κjβ
2

lnα(βγj+1)2 < 0. We then know that
γj exists and is unique, and the maximum value of uj can be
calculated by setting ∂uj

∂γj
= 0. Without loss of generality, let

the maximum value of uj be ūj , we can get that the function
of uj is bounded, i.e., uj ∈ [0, ūj ]. Third, it is not difficult
to judge that ∂uj

∂γj
is differentiable on ∀γj ∈ [0, γj ], which

means that uj must be continuous at this point. As a result,
according to Brouwer fixed-point theorem, we know that uj(·)
has a fixed point, that is, ∃γj ∈ Γ, γj = uj(γj). This indicates
that the RD game has at least one NE. Since the utilities of
all requesters follow the increasing function until reaching a
convergence, there is no further improvement from the NE
solution, and hence such a NE is unique.

D. Proof of Corollary 2
This proof can be directly obtained from Theorem 2, and

is omitted here.

E. Proof of Theorem 3
Given a very small positive step number ℓ, we can find a δ

to increase the social utility by looping (line 4-13). In order
to satisfy the ξ-PF, we need to construct an optimal secondary
allocation plan {εw1 , · · · , εwn , εr1, · · · , εrm} = {ε1, · · · , εm+n}
with the minimization of utility which can not exceed the
bonus that the platform can allocate to both requesters and
workers, i.e.,

∑
k∈[1,m+n] εk ≤

∑
j∈[1,m](1 − δ)γj . We can

obtain the optimal value of {εw1 , · · · , εwn , εr1, · · · , εrm} by solv-
ing the following problem, which has the same solution of ε∗

as Eq. (15) in the main text.
min

∑
k∈[1,m+n]

εk,

s.t.
{ ∑

k∈[1,m+n]
xk

yk+εk
= m+ n+ ξ,

−εk ≤ 0,∀k ∈ [1,m+ n].

(23)

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3325636

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: COVENTRY UNIVERSITY. Downloaded on December 11,2023 at 21:04:07 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SERVICES COMPUTING 12

The above constraint optimization problem can be transformed
into unconstraint optimization problem using Lagrange fac-
tors:

L({εk}m+n
k=1 , {λk}m+n

k=1 , µ) =
m+n∑
k=1

εk +−
m+n∑
k=1

λkεk

+µ
[m+n∑

k=1

xk

yk+εk
− (m+ n+ ξ)

]
.

(24)
Using Karush-Kuhn-Tucker (KKT) conditions [43], {ε∗k|∀k ∈
[1,m+ n]} is an optimal solution iff

λk + µ xk

(yk+ε∗k)
2 = 1, k = 1, · · · ,m+ n,

m+n∑
k=1

xk

yk+ε∗k
= m+ n+ ξ,

εk(x) ≥ 0, k = 1, · · · ,m+ n,
λk ≥ 0, k = 1, · · · ,m+ n,
λkε

∗
k = 0, k = 1, · · · ,m+ n.

(25)

According to the first subformula of Eq. (25), we know that
λk = 1−µ xk

(yk+ε∗k)
2 . And according to the second subformula

of Eq. (25), we can obtain that ε∗k = 0 if λk > 0. Therefore,
if xk

y2
k

< 1
µ , then ε∗k = 0. Hence, if we order indexes as

1, 2, · · · ,m + n such that x1

(y1)2
≥ · · · ≥ xm+n

(ym+n)2
, then there

exists index ω such that xω

(yω)2 ≥
1
µ and xω+1

(yω+1)2
< 1

µ , and
thus ε∗1, · · · , ε∗ω ≥ 0, ε∗ω+1, · · · , ε∗m+n = 0. We can construct
{ε∗k|∀k ∈ [1,m+ n]} by solving Eq. (14) in the main text.

1
µ = xk

(yk+ε∗k)
2 , k = 1, · · · , ω,

λk = 0, k = 1, · · · , ω,
ω∑

k=1

xk

yk+ε∗k
+

m+n∑
k=ω+1

xk

yk
= m+ n+ ξ,

ε∗k = 0, k = ω + 1, · · · ,m+ n.

(26)

By removing the Lagrange factors {λk}m+n
k=1 and µ, Eq. (26)

can be further simplified as follows, which is equivalent to Eq.
(14) in the main text together with line 11 in Algorithm 3.

xk

(yk+ε∗k)
2 = xω

(yω+ε∗ω)2 , k = 1, · · · , ω,
ω∑

k=1

xk

yk+ε∗k
+

m+n∑
k=ω+1

xk

yk
= m+ n+ ξ,

ε∗k = 0, k = ω + 1, · · · ,m+ n.

(27)

As long as this system is feasible, then KKT conditions are
satisfied. Index ω is the first index which makes this system
feasible. Then the problem in Eq. (23) is solved and the
theorem is also proved.
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