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ABSTRACT

Self-supervised learning (SSL) for WiFi-based human activity recognition (HAR) holds great promise
due to its ability to address the challenge of insufficient labeled data. However, directly transplanting
SSL algorithms, especially contrastive learning, originally designed for other domains to CSI data,
often fails to achieve the expected performance. We attribute this issue to the inappropriate alignment
criteria, which disrupt the semantic distance consistency between the feature space and the input
space. To address this challenge, we introduce Antenna Response Consistency (ARC) as a solution
to define proper alignment criteria. ARC is designed to retain semantic information from the input
space while introducing robustness to real-world noise. Moreover, we substantiate the effectiveness
of ARC through a comprehensive set of experiments, demonstrating its capability to enhance the
performance of self-supervised learning for WiFi-based HAR by achieving an increase of over 5% in
accuracy in most cases and achieving a best accuracy of 94.97%.

Keywords Self-supervised Learning · Channel State Information · Wireless Sensing

1 Introduction

Human activity recognition (HAR) is of significant importance across a range of human-centric applications. These
applications encompass health monitoring for elderly individuals living alone, facilitating human-device interactions
within smart home environments, and enhancing the immersive experience of virtual reality gaming. Compared to
traditional HAR methods employing cameras, wearable devices, and radar, CSI-based approaches have garnered
significant attention from researchers due to their cost-effectiveness and privacy-friendly characteristics. CSI-based
techniques ubiquitous commercial off-the-shelf (COTS) devices within home environments, devoid of visual data,
thereby safeguarding the privacy concerns of individuals wary of video surveillance.

There are some research works in CSI-based HAR which can be categorized into learning-based methods and model-
based methods. Learning-based methods in CSI-based HAR involve the extraction of statistical features from CSI
signals, and this can be done through the hand-crafted way or deep learning approach. However, a significant limitation
of these methods is their substantial demand for labeled CSI data. Labeling CSI data is a challenging task because
raw CSI data is not interpretable by humans, making the labeling both cumbersome and expensive. On the other hand,
model-based methods aim to construct a physical model that maps wireless signals to human movement. A recent work,
Widar3.0 [1], introduces a zero-effort model, signifying that no additional data collection efforts are required when
deploying the model in a new environment. However, Widar3.0 requires the target environment to be equipped with
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Figure 1: The identical human action exhibits distinct propagation paths across multiple antennas.

more than three receivers, and its high computational complexity for feature extraction poses a barrier to its application
in real-time scenarios.

Self-supervised learning (SSL) is a promising approach that trains models using cost-effective unlabeled CSI data
to overcome the limitation of insufficient labeled CSI data. SSL has achieved significant success in computer vision
and natural language processing tasks, a recent systematic study [2] has revealed that directly applying SSL methods
developed for other research domains to CSI signal data does not yield the expected performance. For example, it has
been demonstrated that contrastive learning, a prevalent SSL paradigm, can outperform its supervised counterpart in
computer vision [3], but it performs poorly on CSI datasets [2].

This discrepancy can be attributed to the fact that the existing augmentation functions, originally tailored for other
domains, do not yield an appropriate definition of Alignment for the feature space of CSI data. Existing work [4]
highlights that the objective of contrastive learning is to learn a feature space with optimal uniformity and alignment.
Uniformity requires the distribution of the feature space to be as close to a uniform distribution as possible. The rationale
behind uniformity stems from an information theory perspective. It posits that the closer the feature distribution is to a
uniform distribution, the more information the features retain from the input. Alignment implies that similar examples
should be close in the feature space. The process of "bringing positive pairs closer together while pushing negative
pairs farther apart" in contrastive learning effectively optimizes both alignment and uniformity in the feature space.

Indeed, while alignment intuitively relates to improving the classification of similar examples, the real challenge lies
in establishing an appropriate definition of similarity that aligns with the real distribution of CSI data. Specifically,
augmented views generated using transformation functions designed for images or other types of data may never occur
in a real device. For instance, consider the simple example of rotating an image, which aligns with the actual distribution
of images since it’s plausible for a photographer to capture images after rotating the camera. However, it is practically
impossible for real-world WiFi devices to produce rotated CSI data. Therefore, the alignment criteria learned from such
transformations cannot offer accurate guidance on "which CSI data should be considered similar," and, in fact, may
prove counterproductive for downstream CSI-based tasks.

For this problem, we propose Antenna Response Consistency (ARC) for CSI-based SSL, which utilize the inherent
consistency among different antennas to define the alignment criteria. Existing research efforts [5, 6] underscores that
variations in propagation path, antenna directivity, and other factors lead to distinct recordings of the same action when
captured by different antennas (As Figure 1 shows). These variations can be characterized within the CSI data model as
amplitude attenuation and phase shifts. The diverse records from different antennas can be naturally utilized as similar
views of the original recordings, as they are consistent in both spatial and temporal semantic, aiding in the learning
of suitable alignment criteria for CSI data. Although our method is based on the theory constructed for contrastive
learning, we find out it is also suitable for other SSL paradigms like autoencoder. The process of "reconstructing from
the (corrupted) input" in autoencoder [7, 8] is akin to maximizing uniformity, aiming to preserve as much information
as possible. Incorporating ARC into autoencoder algorithms such as MAE enables the model to learn a feature space
with improved alignment and subsequently achieve higher performance.

In summary, our contributions encompass:

1) We integrate domain knowledge of CSI data into self-supervised learning (SSL) algorithms through the introduction
of ARC. This approach enhances SSL for CSI-based tasks by enabling accurate learning of alignment within the feature
space.

2) The effectiveness of ARC was analyzed from two perspectives: CSI data structure and feature learning.

3) Through extensive experimentation, we have provided compelling evidence that demonstrates the effectiveness of
ARC in improving the performance of SSL algorithms for CSI data.
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2 Related Work

2.1 CSI-based Sensing

Researchers have proposed a variety of methods for addressing CSI-based HAR task. Existing work on CSI-based
sensing can be categorized into two types: model-based algorithms and learning-based algorithms. Model-based
algorithms entail the establishment of a mapping from signals to motion through the utilization of a physical model.
Fresnel Zone divide the space between and around the transmitter and the receiver into concentric prolate ellipsoidal
regions, or Fresnel Zone. Fresnel Zone shed a light of how signal propagate and deflect off between transmitter and
receiver. [9] for the first time based on Fresnel Zone proposed a phase-based method to inference the walking direction
of users. [10] conducted further examinations of the properties of the Fresnel reflection model for human sensing.
[11] introduce "MultiSense" that utilizes Fresnel zone with common Wi-Fi devices to enable multi-person breathing
monitoring. More recently, [12] proposed a dynamic Fresnel model to address the gaps in theoretical models based on
mobile receivers.

Another branch of research within model-based algorithms centers on harnessing the Doppler effect, which results in
a shift in the observed signal frequency known as Doppler frequency shift (DFS). The primary cause of DFS is the
alteration in the length of the signal propagation path, a phenomenon directly influenced by human activities. DFS
serves as an effective model for tasks like motion detection and speed estimation. In the work by Pu et al. [13], WiSee
is introduced as a system that extracts DFS and calculates its power to enable whole-home sensing and the recognition
of human gestures. Widar [14] focuses on constructing a path length change rate model based on DFS, geometrically
quantifying the relationships between CSI dynamics and the user’s location and velocity. In the study by Li et al. [15],
IndoTrack is presented, combining both DFS and Angle of Arrival (AoA) for indoor human tracking. It introduces a
novel MUSIC-based algorithm called Doppler-MUSIC for estimating Doppler velocity. Widar’s subsequent project,
Widar2.0 [16], develops a system that leverages the EM algorithm to estimate multi-dimensional signal parameters,
including DFS, using only a single wireless link. In [1], a novel feature called the body-coordinate velocity profile,
based on DFS, is proposed for zero-effort cross-domain gesture recognition.

2.2 Self-supervised Learning for CSI-data

Self-supervised learning (SSL) has emerged as a promising alternative to supervised learning, garnering significant
attention for its data efficiency and generalization capabilities. Many state-of-the-art models have adopted this paradigm.
A typical application framework for SSL involves two main steps. First, the model is trained on an unlabeled dataset
using SSL algorithms. Second, the model, or specifically the classifier, is fine-tuned on a much smaller labeled
dataset. This two-step process is commonly referred to as a "pretrain-then-finetune" procedure. In the machine learning
community, there are four popular types of SSL algorithms: instance-instance contrast, context-instance contrast, and
autoencoder-based methods. Instance-instance contrastive algorithms, such as SimCLR [17], MoCo [3], and SwAV
[18], directly investigate the relationships between instance-level local representations of different samples. A common
form to learning the relationship between different samples is to simultaneously generate two noisy versions of a single
anchor instance. The goal is to maximize the similarity between the representations of these two augmented versions
while minimizing the similarity between the augmented versions of different instances. Context-instance contrast, as
demonstrated in works like [19] and [20], centers around modeling the relationship between the local features of a
sample and its global context representation. The primary objective of autoencoding models is to reconstruct input from
(corrupted) input data, such as MAE[7].

In recent years, SSL for CSI-based HAR has also been developing vigorously. For instance, in [21], a contrastive learning
paradigm is employed to extract semantic features from two views of raw signal data and Scalgram representations.
Researchers have been exploring frequency-domain data augmentation techniques in addition to existing time-domain
augmentation during self-supervised training, as highlighted in [22]. Furthermore, [23] enables the learning of high-level
features through various original auxiliary tasks, eliminating the need for labor-intensive labeling processes. As a form
of multivariate time series data, CSI shares similarities with general multivariate time series data. Recent research
has shown that state-of-the-art methods originally designed for SSL on general multivariate time series data, such as
TS2Vec [24], have been proven to outperform their standard counterparts like SimCLR when applied to CSI data.

3 Method

First and foremost, we would like to provide a brief introduction to the format of CSI data. In a WiFi system utilizing
MIMO-OFDM, the Channel State Information (CSI) is typically represented as a four-dimensional (4D) tensor, denoted
as H ∈ CN×M×K×T . In this notation, N , M , K, and T correspond to the number of receiver antennas, transmit
antennas, subcarriers, and packets, respectively. Concurrently, the categories of human actions are represented as y ∈ R.
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Figure 2: Human movement at speed v results in variations in the path length ∆l for the reflected signal.

Considering the influence of multi-path effects, the measured CSI for the ath transmitter-receiver (Tx-Rx) antenna pair,
f th subcarriers, and tth packet can be mathematically described as shown in Equation 1.

H(a, f, t) = (Hs(a, f, t) +Hd(a, f, t))e
−j2πϵ(f,t) = (Hs(a, f, t) +

L∑
l

αl(a, f, t)e
−j2πτl(f,t))e−j2πϵ(f,t) (1)

In Equation 1, the received CSI tensor is decomposed into two components. Hs represents the constant component
arising from all static paths (as the Hs1 and Hs2 in Figure 2), while Hd represents the sum of dynamic paths (as the Hd

in Figure 2). In this equation, αl(a, f, t) and τl(f, t) denote the amplitude attenuation and propagation delay of the lth
path, respectively. ϵ(f, t) accounts for the phase offset resulting from cyclic shift diversity and sampling offset. This
parameter remains consistent across all antennas within the same device, as discussed in [5].

3.1 Alignment Criteria For CSI Data

Alignment in this context pertains to the requirement that two samples forming a positive pair should be mapped to
nearby features, ensuring that they are mostly invariant to irrelevant noise factors [4]. The central challenge lies in
defining positive pair examples.

To elaborate, let’s consider an augmentation function denoted as G(·), which generates an augmented view of the input
H, represented as G(H). Given that models trained via SSL aim to map positive pairs to nearby features, we desire
that the positive pair H, G(H) belongs to the same class. This way, a straightforward measure, such as the Euclidean
distance, in the feature space can approximate the "semantic" distance in the input space. We refer to this concept as
Semantic Information Retention.

Emphasizing the significance of Semantic Information Retention, let’s contemplate a scenario in which the transforma-
tion function alters the category of the input data, indicating that we have P (y|H) ̸= P (y|G(H)). Consider a model
denoted as F (·) that adheres to the alignment requirement and maps input H to a feature vector F (H).

In the context of a linear regression classifier expressed as min
∑

∥y − (wF (H) + b)∥2, it performs classification
using the feature vector F (H) by minimizing the sum of squared residuals between the ground truth class y and the
linear mapping wF (H) + b.

If we denote a model with ideal alignment properties as F ∗, we can express this as limF→F∗ ∥w(F (H) −
F (G(H)))∥2 = 0. This suggests that, as the model approaches ideal alignment, the classifier will classify H
and G(H) as the same class. However, this contradicts the ground truth and can be detrimental to model performance.

Furthermore, real-world noise that the model should encounter aligns with what is commonly experienced in real-world
data, a concept we term as Real-world Noise Invariance. For instance, noise introduced by rotating CSI data is never
encountered in actual devices, and accounting for it is not conducive to model robustness.
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3.2 Antenna Response Consistency

In this section, let us closely examine the dynamic path term in Equation 1.

Hd(a, f, t) =

L∑
l

αl(a, f, t)e
−j2πτl(f,t) (2)

it is noteworthy that αl(a, f, t) is closely linked to the antenna configuration within the same device. As shown in
Figure 2, τl(f, t) reflects the propagation delay induced by changes in path length, which can be viewed as a function
of human activities. The distinct antennas within the same device experience the dynamic path caused by the same
human activity. The Antenna Response Consistency (ARC) can be mathematically articulated:

F ∗(H(aq, f, t)) = F ∗(H(ak, f, t)) = τl(f, t) (3)

F ∗ denotes the ideal mapping from the distinct antenna aq and ak response of the CSI signal, H, to the propagation
delay induced by human activity, τl(f, t). Accordingly, we introduce an objective function rooted in ARC:

J = Sim(F (H(aq, f, t)), F (H(ak, f, t))) (4)

The model F should be trained to maximize the objective function J , aiming to maximize the similarity between the
features F (H(aq, f, t)) and F (H(ak, f, t)).

We have elucidated the core idea of ARC. Importantly, we wish to underscore that ARC can be seamlessly incorporated
into existing SSL algorithms with just a few lines of code, offering the model appropriate alignment criteria for CSI
data. In the context of contrastive learning, the algorithm framework and loss function are instrumental in acquiring a
feature space characterized by alignment and uniformity, with alignment criteria defined by the transformation function.
Capitalizing on this characteristic, we seamlessly incorporate ARC into contrastive learning by treating different
antennas as distinct augmented views. Algorithm 1 presents the pseudocode for integrating ARC into the widely-used
contrastive learning algorithm MoCo. Figure 3a illustrates the framework of MoCo-ARC.

Autoencoder, another SSL paradigm, maximizes the uniformity by reconstructing the input. We integrate the ARC
to autoencoder by maximizing the cosine similarity of different antenna. Algorithm 2 presents the pseudocode for
integrating ARC into MAE. Figure 3b illustrates the framework of MAE-ARC.

Algorithm 1 Pseudocode of MoCo-ARC in a Python-like style.

1: function MOCO-ARC(H, Fa, Fp) ▷ Where H = Ha1,Ha2,Ha3; Fa, Fp-amplitude and phase encoder
2: for H in Dataloader do
3: Random generate three int q, k, ref
4: Hq,Hk,Href = AntennaSelection(H, (q, k, ref))
5: Aq, Ak = np.abs(Hq),np.abs(Hk) ▷ Amplitude part
6: zaq, zak = Fa(Aq),Fa(Ak)
7: lossa = InfoNCE(zaq, zak)
8: Cq,Ck = Hq ∗ H̃ref ,Hk ∗ H̃ref ▷ Phase part
9: Pq, Pk = np.angle(Cq),np.angle(Ck)

10: zpq, zpk = Fp(Pq),Fp(Pk)
11: lossp = InfoNCE(zpq, zpk)
12: loss = lossa + lossp
13: end for
14: end function

3.3 Justification

Responses from different antennas of the same device can be considered interrelated. They naturally fulfill the
requirements of "Semantic Information Retention" and "Real-world Noise Invariance."

Firstly, it is evident that the different antenna responses of the same device belong to the same action class, meaning
that P (y|H(ai)) = P (y|H(aj)).

Secondly, ARC enhances the model’s robustness to noise caused by static paths and amplitude attenuation. Popular
models like CNN or Transformer cannot process complex inputs, so we split the input into amplitude and phase

5
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(a) MoCo-ARC (b) MAE-ARC

Figure 3: Frameworks of MoCo-ARC and MAE-ARC. (a)MoCo-ARC: Two antennas are randomly chosen from the
input CSI signal, denoted as xq and xk, to serve as the two augmented views of contrastive learning. (b)MAE-ARC: A
random mask is applied to the input, and then two antennas, q and k, are selected randomly to serve as inputs for the
encoder. Subsequently, the feature xq is reconstructed through the decoder, and the reconstruction loss is calculated.
Additionally, the ARC loss between xq and xk, quantified as their cosine similarity, is also computed.

Algorithm 2 Pseudocode of MAE-ARC in a Python-like style.

1: function MAE-ARC(H, Fa, Fp, Da, Dp) ▷ Where H = Ha1,Ha2,Ha3; Da, Dp-amplitude and phase decoder
2: for H in Dataloader do
3: Random generate three int q, k, ref
4: Hq,Hk,Href = AntennaSelection(H, (q, k, ref))
5: Aq, Ak = np.abs(Hq),np.abs(Hk) ▷ Amplitude part
6: zaq, zak = Fa(Aq),Fa(Ak)
7: Âq = Da(zaq) ▷ Reconstruction
8: lossa = MSE(Âq, Aq)+alpha*cos_similarity(zaq, zak)
9: Cq,Ck = Hq ∗ H̃ref ,Hk ∗ H̃ref ▷ Phase part

10: Pq, Pk = np.angle(Cq),np.angle(Ck)
11: zpq, zpk = Fp(Pq),Fp(Pk)
12: P̂q = Dp(zpq) ▷ Reconstruction
13: lossp = MSE(P̂q, Pq)+alpha*cos_similarity(zpq, zpk)
14: loss = lossa + lossp
15: end for
16: end function
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components. By omitting f , t, and the constant component in Equation 1, we obtain Equation 5.

H(a) = (Hs(a) +

L∑
l

αl(a)e
−jτl)e−jϵ

= (ReHs(a) + jImHs(a) +

L∑
l

αl(a)(cos(τl)− j sin(τl)))e
−jϵ

= (ReHs(a) +

L∑
l

αl(a) cos(τl) + j(ImHs(a)−
L∑
l

αl(a) sin(τl)))e
−jϵ

(5)

Amplitude Following the principles of complex number arithmetic, when a complex number is multiplied by another
complex number with an amplitude of 1, it does not affect its amplitude. Therefore, the amplitude of the input H is
provided in Equation 6.

AmpH(a) = Amp(ReHs(a) +

L∑
l

αl(a) cos(τl) + j(ImHs(a)−
L∑
l

αl(a) sin(τl)))

= ((ReHs(a) +

L∑
l

αl(a) cos(τl))
2 + (ImHs(a)−

L∑
l

αl(a) sin(τl))
2)

1
2

(6)

The amplitude of input data can be regard as a function A(a, τ ) = AmpH(a), which is only related to the Tx-Rx
antenna pairs a and the propagation delay τ of dynamic paths. Given two random Tx-Rx antenna pairs aq and ak,
utilizing the square of l2-norm of the feature difference between the two antenna pairs to quantify the similarity, the
ARC objective function for amplitude can be formed as:

argmin
F

∥F (A(aq, τ )− F (A(ak, τ ))∥2 ≥ ∥f(τ )− f(τ )∥2 = 0 (7)

Certainly, the objective function has a lower bound of 0. This minimum value is reached when the model F maps the
input amplitude to an injective function f of the path change τ caused by human activities.

Phase Similarly, in accordance with the principles of complex number arithmetic, multiplying a complex number
by another complex number with an amplitude of 1 is equivalent to rotating it by a specific angle, as demonstrated in
Equation 8.

PhaseH(a) = Phase(Hs(a) +

L∑
l

αl(a)e
−jτl)− ϵ

= arctan(
ImHs(a)−

∑L
l αl(a) sin(τl)

ReHs(a) +
∑L

l αl(a) cos(τl)
)− ϵ

(8)

Minimizing ∥F (PhaseH(aq))− F (PhaseH(ak))∥2 can lead the model to learn the phase offset pattern rather than
the CSI signal itself. For any a, the lower bound ∥F (PhaseH(aq))− F (PhaseH(ak))∥2 ≥ 0 can be achieved when
F (PhaseH(a)) = f(ϵ). This assertion is grounded in the explanation provided in Section 3, where it is established
that ϵ remains consistent across all antennas within the same device.

Therefore, we employ the conjugate multiplication step, a technique widely used in previous works [25, 14, 15], to
eliminate the phase offset ϵ. Specifically, we select an Tx-Rx antenna pair, denoted as aref , as the reference antenna
pair and calculate the conjugate multiplications between the CSIs of aref and the remaining antenna pairs, as shown in
Equation 9.

H(a) ∗ H̃(aref ) = (Hs(a) +

L∑
l

αl(a)e
−jτl)e−jϵ ∗ (H̃s(aref ) +

L∑
l

αl(aref )e
jτl)ejϵ

= (Hs(a) +

L∑
l

αl(a)e
−jτl) ∗ (H̃s(aref ) +

L∑
l

αl(aref )e
jτl)

(9)
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The phase of H(a)∗H̃(aref) can be expressed as a function of a and τ , denoted as P (a, τ ) = Phase(H(a)∗H̃(aref)).
The specific antenna pair aref is omitted, as it remains the same for all a. The ARC objective function for phase can be
formed as:

argmin
F

∥F (P (aq, τ ))− F (P (ak, τ ))∥2 ≥ ∥f(τ )− f(τ )∥2 = 0 (10)

The lower bound is achieved when the model F maps the input phase to f(τ ).

Based on the analysis provided earlier, applying ARC to both amplitude and phase allows the model to extract feature
of dynamic path length variations τ from the raw input. This variation in dynamic paths is solely associated with human
actions when there are no other moving objects. Consequently, the application of ARC retains the most important
semantic information.

Furthermore, by examining Equations 6, 7, 9, and 10, it’s evident that ARC enables the model to map CSI data (both
amplitude and phase) with varying static path signals Hs and amplitude fading α(a) to nearby locations in the feature
space. This demonstrates the model’s robustness to noise originating from static paths and amplitude fading.

In summary, ARC fulfills both the criteria of retaining semantic information and being invariant to real-world noise.

4 Experiments

All experiments were performed on Nvidia RTX 3080 GPUs, and we adopted the hyperparameter settings outlined in
[2]. We use accuracy to evaluate the model performance. Other detail of experiments are given as follows:

4.1 Baseline

Widar3.0 [1] is designed to derive and extract domain-independent features of human gestures at a lower signal level.
These features represent the unique kinetic characteristics of gestures and are not specific to any particular domain.
Building on this foundation, Widar3.0 has developed a deep neural network for gesture classification. Therefore, widar
is a hybrid algorithm that combines model-based and learning-based methods.

We have also chosen the following self-supervised learning algorithm as a baseline to compare the performance before
and after incorporating ARC. This comparison will showcase the overall effectiveness of our method across different
SSL algorithms.

MoCo as introduced by [3], utilizes contrasting differently augmented views of a given input example to enhance
representation learning. This algorithm incorporates a momentum encoder and a queue to construct a dynamic dictionary.
Thanks to this dictionary, MoCo enables the utilization of more negative pairs without requiring additional GPU memory.

MAE [7] utilizes a masked reconstruction loss function to encourage the model to learn a sparse and informative
representation of the input data. In this approach, a significant portion of random patches is masked, substantially
reducing redundancy. This strategy creates a challenging self-supervised learning task that necessitates a holistic
understanding of the data beyond low-level image statistics. The resulting representation is both sparse and informative,
making it well-suited for a wide range of downstream tasks.

TS2Vec [24] leverages multi-scale contextual information with varying granularities to differentiate between samples.
This approach generates both timestamp-level and instance-level representations for entire time series data. By applying
masks to latent vectors rather than raw values, TS2Vec gains the ability to differentiate between masking tokens and
original values.

4.2 Dataset

We conducted extensive experiments on the Widar3.0 dataset, which is one of the largest publicly available gesture
datasets derived from real-world scenarios.

Widar3.0 comprises recordings from 17 users engaging in 22 gesture activities across 3 distinct environments. This
dataset employs one transmitter and six receivers, positioned at various locations. For in-domain training and testing,
we utilize all data from one receiver in all rooms. For cross-domain tasks, the model undergoes training and testing
with data collected from different environmental and user settings. All wireless devices were equipped with Intel
5300 wireless NICs, and the Linux 802.11n CSI Tool [26] was used to collect compressed CSI data consisting of 30
subcarriers per link at a rate of 1000 packets per second. It’s worth noting that the time length (T) of the CSI data in this
dataset is not consistent. Therefore, for consistency, we set it to 500 through downsampling.
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ConjAngle+Amplitude Amplitude ConjAngle
Method Acc F1 Acc F1 Acc F1

MoCo 43.15 44.80 37.18 33.93 36.24 36.15
MoCo-ARC 50.21↑ 54.12↑ 41.96↑ 40.44↑ 35.75↓ 37.10↑

MAE 65.73 68.24 51.35 54.06 50.71 52.65
MAE-ARC 84.74↑ 87.25↑ 81.02↑ 84.26↑ 72.22↑ 74.98↑

TS2Vec - - 36.38 40.05 31.53 34.19
TS2Vec-ARC - - 46.19↑ 50.83↑ 35.67↑ 39.62↑

Table 1: The in-domain accuracy and F1-Score with varying methods, where bold text indicates the best results, and the
up arrow signifies enhanced performance after implementing ARC. The classifier employs a single-layer perceptron.

ConjAngle+Amplitude Amplitude ConjAngle
Method Acc F1 Acc F1 Acc F1

MoCo 60.93 63.26 57.27 59.40 50.25 51.71
MoCo-ARC 74.09↑ 75.48↑ 70.46↑ 70.59↑ 59.15↑ 59.19↑

MAE 85.09 84.94 79.21 79.18 70.04 70.52
MAE-ARC 94.97↑ 95.60↑ 93.87↑ 92.68↑ 90.83↑ 88.66↑

TS2Vec - - 65.77 66.92 59.03 60.21
TS2Vec-ARC - - 71.02↑ 72.05↑ 60.33↑ 61.41↑

Table 2: The in-domain accuracy and F1-Score with varying methods, where bold text indicates the best results, and the
up arrow signifies enhanced performance after implementing ARC. The classifier employs a two-layer perceptron.

4.3 In-domain Results

To demonstrate the effectiveness of our proposed ARC strategy, we begin by comparing the models’ performance
in situations where the training and test sets are sampled from the same distribution, referred to as the in-domain
scenario. We conducted experiments employing three different setups: using only amplitude, using phase after conjugate
multiplication, and using both amplitude and phase after conjugate multiplication. Each experiment was independently
repeated five times with randomized parameters. The experimental results of single-layer perceptron classifier and
two-layer perceptron classifier are documented in Table 1 and 2, respectively. In our TS2Vec experiments, we utilized
the original author’s code. However, it’s important to note that the original author did not provide a network architecture
capable of handling both amplitude and phase simultaneously. As a result, this column in the table below is left blank,
as it corresponds to an experiment that could not be conducted due to the limitations of the original code.

Analyzing the data in the table, it’s evident that our ARC strategy consistently leads to performance improvements
across various experimental settings. With the exception of the MoCo-ARC experiment in the ConjAng condition,
ARC demonstrates performance enhancements in all scenarios. Notably, in most cases, these improvements exceed 5%.
Additionally, it’s worth noting that the optimal performance 94.97% accuracy and 95.60% F1-score is achieved when
applying MAE-ARC to Amplitude+ConjAng data.

Taking all of these observations into account, we can confidently conclude that our ARC strategy is indeed effective
in enhancing self-supervised learning algorithms for CSI data, including both contrast-based and autoencoder-based
algorithms.

4.4 Compare to Widar

To showcase the performance superiority of our ARC strategy, we compare our optimal model, MAE-ARC, with
Widar. Unlike our model, which leverages self-supervised pre-training, Widar undergoes supervised training from
scratch. Furthermore, it’s important to note that the dataset partition we employed in our experiments differs from
the original Widar3.0 paper. In Widar3.0, the In-domain test comprises no more than 10 categories and 12,750 data
samples, whereas in our data partitioning, we include all 22 categories and 45,172 data samples. The rationale behind
employing this data splitting arises from our understanding that, in the case of CSI HAR datasets collected in controlled
environments, having a larger dataset closely approximates real-world data.
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(a) Accuracy Comparison (b) F1-Score Comparison

Figure 4: Performance comparison between Widar and MAE-ARC.
Method Processing Time (second per sample) Parameters (Mb)

MAE-ARC 0.00797 42.89
Widar 164.906 0.5627

Table 3: Processing Speed and Number of Parameters of MAE-ARC and WiDAR

The experimental results are presented in box plots 4a and 4b. These results clearly indicate that MAE-ARC outperforms
Widar by a significant margin, and it also exhibits lower variance in model performance. The performance gap between
the maximum and minimum values for MAE does not exceed 0.5%, whereas for Widar, this gap surpasses 4%.

Furthermore, we present a comprehensive comparison of the processing speed and the number of parameters between
WiDAR and MAE-ARC in Table 3. Notably, MAE-ARC exhibits remarkable efficiency in processing CSI data,
achieving millisecond-level processing times while maintaining a modest number of parameters.

These findings underscore the immense potential of the ARC strategy in advancing the application of SSL methods in
the CSI domain.

4.5 Impact of Hyperparamenter Alpha

In Algorithm 2, specifically for MAE-ARC, we introduced a hyperparameter called alpha to manage the influence of
both the MSE loss and ARC loss (cosine similarity) on the model’s performance throughout the learning process. In
order to study the impact of alpha, in Figure 5a and 5b we show the impact of alpha to MAE-ARC’s accuracy and
F1-score on Widar3.0.

From the analysis of the two figures, it’s evident that the performance of the MAE-ARC model generally declines as
alpha increases, and this effect is more pronounced in the case of the single-layer perceptron. Among the alpha values
we experimented with, the best model performance was achieved when alpha was set to 0.1. This trend can be attributed
to the fact that, for MAE-ARC, the MSE loss corresponds to the uniformity objective, while the ARC loss corresponds
to the alignment objective. When alpha becomes excessively large, the alignment objective dominates. This results in
the model’s tendency to map all samples to a single point in the feature space, essentially leading to a collapsed solution.

4.6 Impact of Conjugate Multiplication

To validate our analysis regarding the influence of phase noise on ARC in Section 3.2, we conducted experiments
to assess the model’s performance using phase (Angle) and phase after conjugated multiplication (ConjAngle). All
results are shown in Figures 6a to 6d. Figures 6a and 6b depict the influence of the conjugate multiplication step on
the performance of the ARC strategy for MOCO and MAE when utilizing a single-layer perceptron as the classifier.
Figures 6c and 6d showcase the effect of the conjugate multiplication step on the performance of the ARC strategy for
MOCO and MAE when employing a two-layer perceptron as the classifier.
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(a) Impact to accuracy (b) Impact to F1-score

Figure 5: Impact of alpha to MAE-ARC’s accuracy and F1-score on Widar3.0.

(a) The accuracy of MOCO and MOCO-ARC when using a
single-layer perceptron.

(b) The accuracy of MAE and MAE-ARC when using a
single-layer perceptron.

(c) The accuracy of MOCO and MOCO-ARC when using a
two-layer perceptron.

(d) The accuracy of MAE and MAE-ARC when using a
two-layer perceptron.

Figure 6: Impact of Conjugate Multiplication.

Evidently, the ARC strategy results in a degradation in model performance when employing the "Angle" feature in all
scenarios. Conversely, except for Figure 6a, the ARC strategy enhances model performance in all "ConjAng" cases. As
previously analyzed, we attribute this phenomenon to the presence of a phase offset, which causes the ARC strategy to
guide the model in learning the phase offset pattern rather than the action pattern. With the application of conjugate
multiplication, the phase offset term is eliminated, allowing the model to correctly learn the action pattern.

5 Conclusion

In this paper, we highlight a critical observation: the direct application of SSL (Self-Supervised Learning) algorithms,
particularly contrastive learning, originally designed for different domains like computer vision, does not yield the
expected performance when applied to Channel State Information (CSI) data, as discussed in [2]. We attribute this
phenomenon to the mismatch between the alignment criteria designed for the original data modalities and the nature of
CSI data.

To tackle these challenges, we introduce ARC, a novel strategy aimed at defining alignment criteria for feature spaces
tailored specifically to CSI data. We provide a theoretical analysis from the perspective of CSI data structure, explaining
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how ARC promotes feature space alignment while preserving semantic consistency. Our approach is validated through
an extensive series of experiments, offering empirical proof of its effectiveness. ARC is easy to integrate into existing
algorithms with minimal code modifications. Our goal is for ARC to facilitate the adoption of SSL techniques within
the CSI domain, potentially surpassing the performance benchmarks established by supervised learning, much like the
success of SSL in the computer vision domain.

In our future work, we will delve into the possibility of integrating ARC into other categories of SSL algorithms,
including relationship-prediction-based SSL methods. Furthermore, we aim to investigate whether ARC can offer
benefits to related algorithms addressing the domain adaptation problem, an area of increasing interest within the CSI
domain.
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