

WSN deployments: designing with
patterns
Brusey, J. , Gaura, E. and Hazelden, R.

Author post-print (accepted) deposited in CURVE March 2012

Original citation & hyperlink:
Brusey, J. , Gaura, E. and Hazelden, R. (2012). 'WSN deployments: designing with
patterns' In Sensors, 2011 IEEE. (pp.71-76). IEEE.
http://dx.doi.org/10.1109/ICSENS.2011.6127129

Publisher statement: © 2012 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version of the journal article,
incorporating any revisions agreed during the peer-review process. Some differences
between the published version and this version may remain and you are advised to
consult the published version if you wish to cite from it.

CURVE is the Institutional Repository for Coventry University
http://curve.coventry.ac.uk/open

http://dx.doi.org/10.1109/ICSENS.2011.6127129
http://curve.coventry.ac.uk/open

WSN Deployments: Designing with Patterns
James Brusey, Elena Gaura

Cogent Computing, Coventry University,
Priory Lane, Coventry, UK CV1 5FB
j.brusey@coventry.ac.uk

Roger Hazelden
TRW Conekt, Solihull, UK

roger.hazelden@trw.com

Abstract—Development of application-specific wireless mon-
itoring systems can benefit from concept reuse and design
patterns can form the enabling medium for such reuse. This
paper proposes a set of five fundamental node-level patterns
that resolve common problems when programming low-power
embedded wireless sensing devices. The pattern set forms a
framework that is aimed at ensuring simple and robust deployed
systems. A qualitative evaluation is performed by identifying
key design traits from several successfully deployed systems
and linking these to elements of the framework.

Index Terms—Design patterns, Wireless Sensor Networks,
Programming methodology

I. INTRODUCTION

The idea of automatically and wirelessly acquiring data
from a distributed set of sensors is relatively recent—feasible
wireless sensors have only been readily available for the last
decade or so.

The increasing number of successfully fielded deployments
together with the emergence of strong business cases in a
variety of industries are currently beginning to move dis-
tributed sensing into the mainstream. Application developers
are however still faced with a technology that: i) is hard
to understand, ii) is difficult to make reliable, iii) necessit-
ates long development cycles including iterative prototyping
processes and iv) does not inherently offer an opportunity to
grow applications post deployment, over time, as the potential
usage for sensory data in a given scenario evolves.

For these reasons, a well-structured, systematic develop-
ment process and framework are required to ensure that:
i) new applications and additional sensors can be easily
integrated as the system grows and, ii) the development
cycles are reasonably cost effective.

Some support exists for simplifying the development of
wireless sensor systems (e.g. TinyOS, Embedded Linux).
However, there is little work on guidelines or frameworks
that establish best practice in this area. In particular, there
appears to be a series of identifiable lessons that are being re-
peatedly rediscovered by programmers and research groups.
Part of the difficulty is that Wireless Sensor Network (WSN)
deployments are diverse. There appears to be little carry-over
in terms of lessons learnt from one deployment to the next
simply because many of the issues do not apply. Component
reuse exists (e.g. Collection Tree Protocol (CTP) in TinyOS),
however this is mainly occurring where an approach is so
well established that it is integrated into the operating system.
For application-level reuse to occur widely, a paradigm shift
is required.

sense

transmit

non-preemptive
scheduler

filter

event
detector

priority
buffer

interval
listening

Figure 1. Pattern-based Framework for nodes. A dashed box is drawn for
elements that have no explicit pattern described here. Individual patterns are
shown in Figures 2 to 5.

Towards the above, the main contribution of this paper
is a set of five fundamental node-level patterns that resolve
common problems when programming low-power embedded
wireless sensing devices. The pattern set forms a framework
that is aimed at ensuring simple and robust deployed systems.
A qualitative evaluation is performed by identifying key
design traits from several successfully deployed systems and
linking these to elements of the framework.

The reminder of this paper is structured as follows: Sec-
tion II describes the proposed framework and the node-level
patterns featured in the framework, together with relevant
examples of patterns usage in successful deployments. Sec-
tion III concludes the paper.

II. WSN DESIGN PATTERNS

A. A Pattern-based Framework

Definitions: a) Framework refers to a form of proto-
architecture where elements may be added, removed, or
altered to suit an application; it encapsulates the collection
of related design patterns. b) A design pattern is a template
or guide for solving specific design problems with software
development for WSN systems.

Assumptions: a) There are benefits to processing at the
node in a wide variety of applications [10], [5]; b) Deployed
WSNs eschew complexity. Benefits from sharing information
between (leaf) nodes within a network are rare in practice and
even less frequently worth the associated design complexity
and deployment risks [17], [18]. Thus, single-hop and multi-
hop node-to-sink configurations are considered here. This
approach is aligned with Raman and Chebrolu [17].

The proposed framework, with its five node-level patterns,
is depicted in Figure 1. The approach is general as the sensed

Filter
sensor readings

last state vector
last time

new state vector

Figure 2. Overview of the Filter Pattern.

data and the subsequent inferred state are described by simple
vectors; thus, the framework lends itself to a wide variety of
possible sensors, phenomena, and applications.

The central task for the node begins with the “sense”
operation. Noise is filtered and the original data is trans-
formed into meaningful information. Event detection occurs
next potentially leading to a message that must be transmit-
ted. The message is buffered according to priority before
being transmitted. These tasks must be interleaved along
with sleeping and listening at intervals and this is the job
of the scheduler. In the following subsections each design
pattern is described in more detail. A general description
of each pattern is given, together with its Aims (what is
the intended function achieved by the pattern), Triggers (the
reasons why the pattern might be used), Collaborators (which
other patterns are often used with it), Possible Extensions
(additional functionality) where appropriate, and Examples
(some examples from the literature of successful use of the
pattern). A summary of Aims, Triggers and Examples for each
pattern is also given in Table I.

B. Filter Pattern

The Filter pattern (see Figure 2) could also be termed the
Model-based Smoothing pattern. Its aims are to smooth the
raw, sensed data and/or infer the state of the phenomena at
the node.

Whilst Filtering is well understood and generally applied
as a post-processing step on sensed data, at the sink, in some
applications there are specific reasons (Triggers, in Table I)
for performing filtering at the node. Primarily, filtering at
node ensures that other processing, such as Event Detection
(an issue distinct from Filtering), is affected minimally by
noise and that the scarce (by and large) resources within a
WSN are optimally used to fulfil the application. High data
rate sensing applications would particularly benefit from this
node-level pattern. Information or knowledge driven WSN
system designs [6] would also have Filtering as a key pattern.

Filters are often explicitly model-based and their outputs
are state vectors. Commonly a filter attempts to derive an
estimate of the state of the system based on past sensor
readings. Often it is possible to assume that the system has
the Markov property, which means that the most recent sensor
reading and the last state estimate are all that are required to
estimate the current state and that no better can be done by
knowing the complete history of states.

Exponentially Exponentially Weighted Moving Average
(EWMA) and Kalman Filters are common choices for im-
plementing this pattern.

1) Collaborators: The Filter pattern is often used in
collaboration with the Event Detection pattern, given that:

• The process of filtering removes noise thus reducing
spurious event detection.

• Transforming the raw sensor data into a state vector
simplifies the task of identifying whether the state has
changed in a way that can be considered a meaningful
event.

• It supports avoiding a “slippery slope” problem where
the event detection mechanism cannot detect a change
if the change occurs slowly enough.

Further, combining the Filter pattern with the Interval Listen-
ing pattern can avoid the possibility that the energy saved
from reducing transmissions is then subsequently lost due to
excessive listening time.

2) Possible Extensions:
• The framework begins with the assumption that in-

dividual nodes do not share information and are not
required to communicate directly with one another. For
some applications, however, it may be useful to allow
such communication. In this case, the state estimate
produced by the Filter can take into account measure-
ments from neighbouring nodes. For example, an animal
call detection system might consider a possible animal
sighting more likely if a number of neighbouring nodes
are sensing a call (e.g. VoxNet [2]).

• The Lance architecture [18] suggests a useful extension
that involves locally storing the original (unfiltered) data
and providing it on-demand while normally sending only
summaries. The summaries, plus perhaps information
from neighbouring nodes, can be used at the sink to
work out if the original data is likely to be interesting.
This approach is particularly useful when local informa-
tion is not sufficient to fully make a decision about how
useful the data is.

• The state vector need not be just about the phenomena.
It is often useful to expand the state vector to include
management information or, in other words, information
about the state of the sensors or the wireless node. For
example, this could include local timestamps, battery
voltages, estimates of uncertainty in measurement read-
ings, link reliability statistics, and so forth.

3) Examples:
• Lance [18] is an architecture built originally for volcano

monitoring that made use of seismoacoustic sensors.
Transmitting all of the audio over a multi-hop network
led to much contention and low yield. By sending sum-
maries of the data instead, the bandwidth requirement
was significantly reduced and the yield of useful data
improved.

• The Cane Toad monitoring project [10] is another ex-
cellent example of successfully filtering complex audio
data on the node. Frog calls were collected in the
wild and analysed in real-time using spectrograms and
C4.5 decision trees to classify the frog species. Whilst
the initial deployments required sophisticated processors
on nodes, efficient filtering allowed successful designs
based on Mica2 motes. Filtering was used to convert
raw audio data to identified frog species on-node, thus
reducing the bandwidth requirement for this application

Table I
NODE-LEVEL PATTERN DESCRIPTIONS.

Pattern Aims Triggers Example
Filter Reduce noise, summarise a sensory “chunk”, and infer state

(possibly from sensors of differing modality).
It is important to keep distinct the two issues of: 1) filtering,
which transforms data into an estimate or summary of the
state, and 2) event detection, which detects whether the
change in the state is significant.

Available bandwidth is low relative to the amount of
data sensed.
The relative cost of transmitting data is higher than
processing it on the node
Actual sensor readings are not necessarily required
(or only contingently required).

Lance [18]

Event
Detector

Reduce the transmission of unnecessary data.
Allow for increased rate of transmission of needed data.

The system being measured has a steady or easily
predicted state for extended periods.
Transmission cost (say, in terms of energy or band-
width use) is high.

Posture mon-
itoring [3],
VoxNet [1]

Priority
Buffer

Increase likelihood that important packets are transmitted.
Reduce transmission medium contention.
gracefully handle extended periods without the ability to
transmit.

Messages priority varies.
Successful transmission likelihood varies over time.

Glacier mon-
itoring [13]

Non-
preemptive
schedul-

ing

Provide efficient interleaving of sleeping, sensing, listening,
and transmitting cycles.
Allows for timed communication for listening and transmit-
ting.
Support long running or slow external sensors with minimal
CPU.

Multi-tasking operating system avoided or not feas-
ible.
Need for more complex task interleaving than pos-
sible with a simple sense-process-send-sleep cycle.
Not possible to use an off-the-shelf non-preemptive
OS (TinyOS or Contiki), due to limits of micropro-
cessor, or in an attempt to reduce the power budget.

TinyOS

Interval
listening

Support mesh-networking.
Allow nodes to spend most of their time asleep but still not
miss (most) messages.
Reduce the amount of time spent “idle listening”.

Multi-hop networks.
Relatively low-frequency sensing.

LPL (B-
MAC) [14],
TSMP [15]

Event
Detector

current state

last transmitted state
last transmit time

event detected?

Figure 3. Overview of the Event Detector Pattern.

and allowing it to be implemented with inexpensive
motes.

C. Event Detection Pattern

The concepts of “events” and “state” are more formally
defined by Cassandras and Lafortune [4]. Within the frame-
work presented here, event detectors compare the current
state with the last transmitted state. If the difference exceeds
some threshold, then an event is detected (see Figure 3 and
corresponding entries in Table I). Comparing with the last
transmitted state avoids the possibility of sending duplicate
event messages. Furthermore, using the last transmitted state
for comparison (as opposed to the last sensed state) avoids a
“slippery slope” effect where a slowly changing phenomena
may appear to be uneventful (the gradient at any point is
low) but the long term change is still significant.

The event detection pattern is most suited to mature
designs, where the phenomena is well understood and the
informational outputs required to be delivered by the applic-
ation are clear.

In the authors view, the pattern needs to be defined in terms
of “state”, rather than “sensor reading” since it is typically
the case that the raw, unsmoothed, uncalibrated reading will
first be processed into an application-specific state vector by
a Filter prior to event detection. For example, it is simpler to
design event detection based on a state vector that includes,
say, an estimate of the residual life rather than one that gives
wear sensor measurement readings.

For systems that are predictable over time, a predictive
model is needed to correctly detect events. For example, if the
last transmitted state was taken 5 minutes ago and indicated
that the state was at 1 unit and rising linearly by half a unit
every minute, then the predicted state is 3.5 units. If the new
state estimate is within some threshold of the predicted state
estimate, then it is considered uneventful (i.e. it would not be
interesting to the sink, which can already do the prediction).
In principle, arbitrarily complex models could be used here.
In practice, however, simple linear regression is sufficient for
most cases.

A further advantage of event detection is that it may
save sufficient transmission energy and bandwidth to allow
an increase in sensing frequency. This potentially allows
detection of short-lived phenomena that might be missed
otherwise.

Steady state systems are reasonably common and, for these
systems, the use and benefit of the Event Detector pattern
is more obvious. Less obvious is the application of event
detection to systems that follow diurnal, periodic, or short
term linear trends. Some examples include: temperatures
within a building, water pressure within the water supply
pipe network, wear on machine bearings, and so forth.

1) Collaborators: The Event Detector pattern is often
used in conjunction with the Filter pattern. In fact, they are
so often used jointly that it is easy to confuse them or not to
know when to use one without the other.

Filters are used without event detection when the decision
about whether or not an event has occurred must be deferred
until more information is known. Perhaps the decision can
only be made at the sink, when summaries from other nodes
have been collected.

Event detection is used without filtering when the sensor
already provides a sufficiently clean signal. For example, an
RFID tag reader provides tag-read messages that are free

from noise. Event detection is needed to identify when tagged
items appear or disappear. Even in this case, it may still be
useful to have a “filter” to organise the incoming tag-read
messages into an estimate of which items are present (i.e. a
representation of state).

2) Possible Extensions: There are several ways in which
to extend the basic Event Detector pattern:

• Incorporating a “heartbeat” message can ensure that the
sink will eventually detect node failure. Without this,
the node might not send any data for an indefinite
period, if the phenomena is in a steady state. A simple
method to incorporate a heartbeat is to signal an event
if the last transmission time was long ago, even if the
state is unchanged. (The exact definition of how long
to wait before sending a heartbeat will depend on the
application.)

• Model-based event detection (based on predicting from
linear or other trends) can be further enhanced by
assuming that the sink can also apply the same model-
based prediction. The Spanish Inquisition Protocol [8]
describes an event detector that makes use of dual
prediction (on both node and sink).

• A useful assumption is that the state vector (used as
input) has the Markov property. This is a helpful con-
sideration when deciding what features to include in the
state vector. For example, rate of change is needed if
one wants to predict based on a linear extrapolation of
the trend.

3) Examples: The use of the Event Detector pattern is
commonplace in the literature. Two interesting examples are
given below, both dealing with high data rate sensors.

• VoxNet is a deployed WSN that localises animal calls
using a set of four microphones at each node [2], [1].
Full trilateration of incoming audio signals could only be
performed at the sink, however sending all of the audio
signals tended to overload the 802.11 network used. To
reduce the network load, an event detector was used
to detect and transmit only start times and end times
of animal calls. The sink would then decide, based on
these, which nodes and which time periods to query for
full audio data.

• Event detection for human activity monitoring systems
can substantially reduce transmissions. In work else-
where [3], a postural activity monitoring system was
developed that classified posture based on two or more
body worn accelerometers. A combination of on-node
posture classification, an exponentially weighted voting
filter and event detection reduced the transmission rate
from the original 10 Hz to about 0.3 Hz with event
detection but without filtering, and to 0.06 Hz with
filtering included.

D. Priority Buffer Pattern

A synopsis of the Priority Buffer pattern is given in
Figure 4 and Table I. The first part of the pattern consists on
ordering the buffer according to priority. (The priority of any
message is determined by the contents of the message.) The
second part consists of controlling the timing of transmission
and, in particular, controlling when transmissions should be

calculate
priority p (xt)

current state
xt

p (xt) xt

...
...

transmission

Figure 4. Overview of the Priority Buffer Pattern.

retried. This simple pattern can be critical in ensuring that
high priority messages are communicated successfully and
that the deployed system gracefully handles extended periods
without the ability to transmit.

Traditional wired networks assume that the probability of
any given transmission failing is always the same. Wire-
less networks, however, suffer from variations in failure
probability. For example, mobile wireless devices may be
in range and able to communicate for some long period
and then subsequently out of range or RF occluded from
communicating for a period. Fixed devices can have similar
variations in failure probability due to environmental factors
such as rain or snow, the movement of occluding objects,
and so forth. For this reason, when a transmission fails,
particularly if it has already failed several times, it may
not be best to retry immediately. Where communication is
failing because of contention for the transmission medium,
reducing the number of attempts to transmit will help to
reduce contention and this is an important consideration for
the designer of a Priority Buffer.

Communication may also be failing due to a transient
environmental effect (such as rain or snow) that will con-
tinue to prevent successful transmission for some time.
An application-level strategy can balance the importance of
timely transmission against the cost of many retries.

The Priority Buffer pattern responds to this problem by:
1) raising the communication buffer to an application level

(rather than an operating system one),
2) allowing re-ordering of transmissions by priority even

when a transmission has failed, and,
3) allowing control of when retries should occur.

Dealing with the communication buffer at an application level
means that it is possible to support much larger buffers than
usual, perhaps making use of flash memory. Furthermore,
since message headers have not been added yet, the indi-
vidual messages will be smaller. When communication is
cut for an extended period, this application buffer may be
sufficient to ensure that no information is lost. The pattern is
essential in safety critical applications [11] in particular.

1) Collaborators: A critical question when devising a
Priority Buffer is how to determine which messages are
more important. In particular, the state vector should contain
enough information to enable a decision about its priority to
be made. This implies an interaction with the associated Fil-
ter. The Filter helps the Priority Buffer by placing sufficient
context into the state vector.

2) Examples: During the development of a glacier mon-
itoring application, Martinez et al. [13] had the problem

of wirelessly transmitting from the glacier to an Internet
café several miles away. To save power, communication
was reduced to a few transmissions per day. However,
snow storms would severely disrupt communication. If the
transmission was continuously retried throughout the storm,
it would just drain the batteries. Therefore, a series of
three failures caused the node to give up transmitting for
several hours before retrying. During the intervening period
while communication is down, a series of events might be
detected. When communication is re-established, the Priority
Buffer plays a key role in ensuring that most recent or most
important events are sent first.

The above example illustrates how it is important to
consider the application and its environment. It also shows
how useful it is to elevate the question of when to retry to
an application-level, rather than leaving this to the operating
system, to avoid wasting battery power and to allow consid-
eration of the priority of the message being communicated.

E. Non-preemptive Scheduler Pattern

Non-preemptive scheduling is a central component of
simple, embedded operating systems such as TinyOS. There
are two reasons for declaring this as a pattern. The first reason
is that an understanding of the implications of this pattern will
enable developers to best use TinyOS and similar systems.
The second reason is that there are still many specialised
applications that call for simpler hardware or more stripped
down software than TinyOS or a similar operating system
would allow but where task interleaving and timed operations
are still required.

While preemptive scheduling is the norm in modern com-
puters, low-power microprocessors or generic PIC micro-
controllers, which are widely used for WSN applications,
tend to be limited in their support for fundamental multi-
tasking building blocks such as task switching and memory
protection. Nonetheless, hardware interrupts, due to timers
and I/O, will interrupt the main processing loop and care is
needed to ensure that there are no race conditions for memory
areas shared between the main process and the different
interrupt routines.

Correctly dealing with hardware interrupts is a key issue
for this pattern. As pointed out by Pont [16], high priority
interrupt service routines may mask lower priority interrupts
from being serviced. Therefore, interrupt service routines
must be minimalist—perhaps even just waking and setting a
flag to note their occurrence. The Non-preemptive Scheduler
pattern provides a structure in which to keep interrupt service
routines minimal and move application logic to sequentially
executed “steps”.

In most programming idioms, each subroutine or mod-
ule, once started, will run to completion. A program that
calculates π to one million decimal places, e.g., will hold
the CPU captive for as long as the task requires. Multi-
tasking operating systems avoid this problem by preemption.
That is, they interrupt the task, save its state, and switch to
a new task transparently. This allows other tasks to carry
on working while the calculation is ongoing. Preemptive
multitasking, however, is expensive (in terms of memory and

s1 t1

s2 t2

...
...

Step schedule

sleep until t1

run step s1

update schedule
and reorder

be
fo

re
t 1 at

t 1

Figure 5. Overview of the Non-preemptive Scheduler Pattern, adapted from
Cassandras and Lafortune [4]

CPU overhead) and may be difficult to support on low-power
processors.

A synopsis of the Non-preemptive Scheduling pattern is
given in Figure 5 and Table I. The scheduler maintains a
“step schedule” or list of active “steps” and their associated
start times along with a register of all possible steps and
their feasibility conditions. A step is a short-lived task. For
example, beginning to send a message is a step, whereas
the whole process of sending a message is a series of steps
inter-linked by time delays or response to I/O requests. The
scheduling process begins by taking the first item from the
list of steps and sleeping until its start time. If the start time
has arrived, the step is executed. If the start time has not
yet arrived, it may be due to waking for another reason such
as an interrupt (and thus the schedule may need updating).
The last part of the scheduling loop is to update the schedule
and sort it according to each step’s start time. The schedule is
updated based on asking every registered step if it is currently
feasible based on the current state of the node. Scheduled but
unfeasible steps are deleted, while unscheduled but feasible
steps are added. The overall approach substantially reduces
the need for application-level code within interrupt service
routines. Race conditions are still possible but more easily
avoided.

1) Extensions: A natural extension to the Non-preemptive
Scheduler pattern is to (automatically or manually) recode
procedural logic as a finite state machine allowing each
procedural statement to be executed as a “step”.

2) Examples: The best known example of this type of
scheduling pattern in the WSN domain is TinyOS. There are
a number of other systems that use a similar approach (such
as the JACK agent programming environment [9] and the
COLBERT robot programming language [12]). A common
approach is to automatically rewrite the programmed code
as a state machine (this is true for both the JACK and
COLBERT languages).

The Nonpreemptive Scheduler pattern derives much of
its design from Pont’s patterns for time-triggered architec-
tures [16] and Cassandras and Lafortune’s description of
timed automata [4].

F. Interval Listening Pattern

To function as a mesh network, individual nodes must
be capable of acting as routers. In principle, this means

that they must be ready to receive messages at any time.
In practice, such high alertness is generally only required
when nodes are initially deployed or subsequently moved.
For most installations, communication quickly stabilises into
a predictable pattern based on regular sensing cycles and
well established routing paths. Therefore, despite the need
for nodes to act as routers, they can predict when the next
message will arrive and revert to an ultra-low power mode
until then.

The aims and triggers of the Interval Listening pattern are
summarised in Table I.

To TinyOS developers, this may seem less like a pattern
and more like a product that is taken off the shelf (i.e. Low
Power Listening (LPL)). For other operating systems (or
where no operating system is used), this mechanism is more
likely to be handcrafted to suit the application. Furthermore,
even when using TinyOS, it is worth considering other
ways of performing interval listening that may give better
performance than LPL.

1) Collaborators: While the Filter and Event Detection
patterns can dramatically reduce the number of transmissions
required, the real benefit in terms of energy savings is not
made until the node can revert to low-power mode between
transmissions. Therefore, if the Event Detection pattern is
required, in all likelihood, the Interval Listening pattern will
also be required.

2) Examples: One form of the Interval Listening pattern
is implemented as LPL [14]. This protocol is a simple
extension of standard TinyOS message transmission. It works
by repeating the message continuously for X seconds or until
acknowledgement is received. The receiver then only needs to
wake up once every X seconds to listen for any transmissions.
This simple modification substantially extends the life of each
node.

The Time Synchronised Mesh Protocol (TSMP) [15] de-
veloped by Dust Networks is another approach to Interval
Listening that is based on a combination of Time Division
Multiplexing (TDM), where each node has a specific slot
when it can transmit, and integrated time synchronisation that
works by replying back to any sender how late or early their
packet was. Note that the integrated time synchronisation is
needed for two reasons: (a) to ensure that nodes wake at the
right time to listen to neighbours, and (b) to avoid the need
for top-down time synchronisation.

TSMP is potentially much more efficient than LPL since
transmissions can be short and the node does not necessarily
need to wake up as frequently as every second. TSMP is
implemented in WirelessHART and is part of the ISA100
standard.

III. CONCLUSIONS

With wider adoption, the WSN domain is presently
transitioning in much the same way as Computer Science
transitioned towards Software Engineering in the past: from
being a research-only domain that focused on optimising
algorithms to being one that included a greater focus on
the problem of developing reliable, functionally correct,
useful and applicable systems. This naturally leads to greater
consideration of the task facing WSN developers. Design

patterns have revolutionised the way software is engineered.
A similar revolution is needed in WSN engineering.

Examples throughout have shown that the patterns de-
scribed in this paper appear repeatedly in reports on function-
ing deployed systems and are representative of key design
ideas. If design patterns are taken up and further evolved
by the WSN community, they will: i) lead to better concept
reuse across platforms and operating systems; ii) guide sys-
tematic development across a broad range of applications; iii)
shorten development cycles, and iv) ensure design flexibility,
constraint mitigation, and application tailoring.

REFERENCES

[1] M. Allen, L. Girod, R. Newton, S. Madden, D. T. Blumstein, and
D. Estrin. Voxnet: An interactive, rapidly-deployable acoustic monit-
oring platform. In Information Processing in Sensor Networks, 2008.
IPSN ’08. International Conference on, pages 371–382, 2008.

[2] Mike Allen. VoxNet: Reducing latency in high data-rate applications.
In Gaura et al. [7].

[3] James Brusey, Elena Gaura, and Ramona Rednic. Classifying transition
behaviour in postural activity monitoring. Sensors & Transducers
journal, 7:213–223, October 2009. Online: http://www.sensorsportal.
com/HTML/DIGEST/P_SI_98.htm.

[4] Christos G. Cassandras and Stéphane Lafortune. Introduction to
Discrete Event Systems. Kluwer Academic Publishers, 1999.

[5] Geoffrey Challen and Matt Welsh. Volcano monitoring: Addressing
data quality through iterative development. In Gaura et al. [7].

[6] Elena I. Gaura, James Brusey, and Ross Wilkins. Bare necessities—
knowledge-driven wsn design. In Proc. IEEE Sensors 2011. IEEE,
October 2011.

[7] Elena I. Gaura, Lewis Girod, James Brusey, Mike Allen, and Geoff
Werner Challen, editors. Wireless Sensor Networks: Deployments And
Design Frameworks (Designing and Deploying Embedded Sensing
Systems). Springer, 2010.

[8] Daniel Goldsmith and James Brusey. The Spanish Inquisition Protocol:
Model-based transmission reduction for wireless sensor networks. In
Proc. IEEE Sensors. IEEE, 2010.

[9] Nick Howden, Ralph Rönnquist, Andrew Hodgson, and Andrew Lu-
cas. JACK intelligent agents - summary of an agent infrastructure.
In Proceedings of the 5th International Conference on Autonomous
Agents (Agents ’01), 2001.

[10] Wen Hu, Nirupama Bulusu, Thanh Dang, Andrew Taylor, Chun Tung
Chou, Sanjay Jha, and Van Nghia Tran. Cane toad monitoring: Data
reduction in a high rate application. In Gaura et al. [7].

[11] John Kemp, Elena I. Gaura, James Brusey, and C. Douglas Thake.
Using body sensor networks for increased safety in bomb disposal mis-
sions. In Proceedings of the IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (SUTC2008), pages
81–89, Taichung, Taiwan, June 11-13 2008. IEEE Computer Society.

[12] Kurt Konolige. Colbert: A language for reactive control in sapphira.
In Proc. 21st Annual German Conference on Artificial Intelligence:
Advances in Artificial Intelligence, pages 31–52, London, UK, 1997.
Springer-Verlag.

[13] Kirk Martinez and Jane K. Hart. Glacier monitoring: Deploying custom
hardware in harsh environments. In Gaura et al. [7].

[14] David Moss, Jonathan Hui, and Kevin Klues. Low power listening.
Technical Report TEP 105, TinyOS Core Working Group, 2007.

[15] Kristofer S. J. Pister and Lance Doherty. TSMP: Time synchronized
mesh protocol. In Proc. IASTED Intl. Symp. Distributed Sensor
Networks (DSN 2008), pages 391–398, 2008.

[16] Michael J. Pont. Patterns for time-triggered embedded systems:
building reliable applications with the 8051 family of microcontrollers.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
2001.

[17] Bhaskaran Raman and Kameswari Chebrolu. Censor networks: A
critique of “sensor networks” from a systems perspective. ACM
SIGCOMM Computer Communication Review, 38(3):75–78, 2008.

[18] Geoff Werner Allen, Stephen Dawson-Haggerty, and Matt Welsh.
Lance: Optimizing high-resolution signal collection in wireless sensor
networks. In Proc. 6th ACM conference on Embedded Network Sensor
Systems (SenSys ’08), pages 169–182, New York, NY, USA, 2008.
ACM.

	brusey10
	WSN deployments

