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Chapter 1: Introduction

This section provides a general overview of the project and background of the

SARS-CoV-2 and HIV. In this section, I describe the methodologies used and the objectives

pursued during my investigations .

Chapter 2: Molecular Binding’s Driving Forces

This section describes general biophysical concepts at the base of molecular

interaction. This chapter includes an overview of the fundamental atomic interactions,

including the role of water in biological systems.

Chapter 3: Computer-Aided Drug Design: Modern Tools in Drug Discovery

This chapter introduces different approaches and concepts in modern drug discovery

investigations with focus on field-based methods and their conceptual development.

Chapter 4: Fundamentals of Molecular Docking and Dynamics

The general principles behind molecular docking and dynamics are described. This

section presents the fundamentals behind the design of the studies adopted throughout this

project.

Chapter 5: References

Chapter 6: SARS-CoV-2 Project Publications

The results of the project were published in peer-reviewed journals. This section is an

enriched paper collection of published manuscripts on SARS-CoV-2, which includes most of

the methods deployed.

Chapter 7: HIV Project Publications

This section includes the published works targeting HIV’s viral proteins. These

publications address HIV’s functional proteins through a structure-based drug design

approach. These manuscripts describe additional techniques adopted for molecular

modelling and drug design.



Chapter 8: Extra-project Publication and Preprints

This section is a collection of all the publications and manuscripts not related to

SARS-CoV-2 or HIV including original publications and collaborations with other universities

and collaborators.

Chapter 9: Concluding Remarks and Future Research Directions

Conclusions and reflections upon the achievements of this project and the future

research perspectives.



Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that

caused the COVID-19 pandemic in 2020 and the human immunodeficiency virus (HIV) which

leads to the acquired immunodeficiency syndrome (AIDS) have deeply affected the lives of

more than 650 and 38 million people respectively in the last years. SARS-CoV-2 killed 6.5

million people in the last three years while HIV is accounted for more than 800 thousand

deaths worldwide with a worrying yearly increase. While the COVID-19 outbreak has been

tapered down by the advent of vaccines, the AIDS epidemic remains a global threat with 300

thousands new infections in 2023, as reported by the Joint United Nations Programme on

HIV and AIDS reports. Despite the deployment of antiretroviral therapies, no effective

vaccine is available on the market yet for HIV. The need to promptly identify effective drugs

for HIV and COVID-19 treatment requires multiple scientific efforts and technologies to

quickly reduce the high cost in terms of human lives and quality of life. The

biopharmaceutical research sector has extensively used the computational technologies of

the last twenty years in protein sequencing, drug design, cheminformatics, and artificial

intelligence to meet unmet medical needs and anticipate emergencies. In the last decade,

the increase in computational power improved pharmaceutical research by drastically

reducing the time required for molecular modelling and computational chemistry calculations.

With graphic processing units (GPU) becoming more accessible, computational chemistry

and molecular modelling approaches are becoming more popular in drug discovery,

providing atomic-level details and insights into the target-ligand molecular recognition

mechanism.

This PhD project began when there were no drugs or vaccines available to efficiently

treat SARS-CoV-2 infection and studies on the SARS-CoV-2 spike protein (S protein) were at

their early stages. Later on, SARS-CoV-2’s Alpha, Delta and Omicron variants were

spreading and little was known about their infectivity or binding patterns or their

antibody-escaping. Furthermore, In light of the coagulopathy effects triggered by

SARS-CoV-2 infection, the role of heparinoids was being investigated, but their mechanism

was unclear and experimental observations were conflicting.

During this PhD project, I identified and evaluated potential molecular candidates for

the S protein, mapped conserved cryptic binding pockets on the S protein’s stalk,

characterised the S protein’s binding patterns with the angiotensin-converting enzyme

(ACE2) and defined the role of heparinoids as potential allosteric regulators. For the second

part of this PhD project, I proposed a promising molecular candidate against the HIV’s

Negative factor protein (Nef). This manuscript will include a series of published works in
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which we investigated the aforementioned molecular machinery structures and proposed

working hypotheses based on our results.
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Aim of The Project

This project was designed to expand our knowledge of the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) and propose molecular candidates that could

prevent human immunodeficiency virus (HIV) progression to acquired immunodeficiency

syndrome (AIDS). The proposed hypotheses were based on the experimental evidence

available in the literature to investigate SARS-CoV-2 and HIV’s crucial proteins through

structural modelling and computational drug discovery methods. The rationale behind the

structural approach is that a more profound knowledge of the proteins’ anatomy and their

mechanism could support the development of valid therapeutics through already existing and

new methods. The new computational methods developed during this project expand and

streamline the existing technologies to respond faster to unmet medical needs. SARS-CoV-2

studies were focused on the receptor binding domain (RBD) and the S2 domain (the stalk),

while HIV’s works were centred on the multifunctional negative factor (Nef).

The wide array of techniques implemented included molecular docking, classic

molecular dynamics (cMD) - with the newly developed multiple-walker supervised molecular

dynamics (mwSuMD) -, and mixed MD (mixMD). These techniques provided atomic-level

details of the target-ligand interactions useful to characterise the molecular recognition

mechanisms. Furthermore, we developed and deployed a set of computational tools which

include a big-data scraping pipeline for large chemical databases, a high-throughput pipeline

for molecular dynamics simulations bridged to virtual screening, an enhanced parallelised

supervised molecular dynamic method and an explorative pipeline for antibody-cryptic

epitope finding which explores possible antibody (Ab) and antigen (Ag) complex formation

and evaluates their energy for a comparative screening.

3



1 Introduction

Human coronaviruses (HCoVs) have been associated with a wide range of

respiratory illnesses with different severity degrees up to severe pneumonia (1). The viral

infection aggravates the condition of adults with pre-existing diseases such as

cardiovascular, hepatic, respiratory, gastrointestinal, and neurological diseases (2). The

worsening symptoms are associated with the hyperbolic expression of proinflammatory

signals and cytokines such as interleukins, interferon-gamma (IFN-γ), interferon-gamma

induced protein 10 (IP-10), macrophage inflammatory protein 1A and 1B (MIP-1A, MIP1-B),

platelet-derived growth factor (PDGF), tumour necrosis factor (TNF-α), and vascular

endothelial growth factor (VEGF) (3).

There is an urgent need to understand the aetiological causes of the bleeding and

thrombotic manifestations associated with COVID-19 coagulopathy, as well as a clinical

testing protocol to predict bleeding, thrombosis, and severity of illness. The elevated level of

D-dimer (4) with a prolonged prothrombin time has been associated with poor prognosis and

the increased need for critical care (5). Disseminated intravascular coagulation (DIC) has

been reported to develop in the majority of infection-related deaths (more than 70%) (5,6).

Furthermore, infected patients had lower antithrombin values but higher D-dimer,

fibrin/fibrinogen degradation products (FDP), and fibrinogen (FIB) in all severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) cases (6). D-dimer and FDP values were

higher amongst those patients with aggressive SARS-CoV-2 infection than those with milder

forms (6), however, the aetiology of the DIC is still unclear.

1.1 SARS-CoV-2 Overview.

The Coronaviridae family is characterised by an enveloped positive-stranded,

non-segmented ribonucleic acid (RNA) with a genome of about 30 Kb (7). The severe acute

respiratory syndrome (SARS-CoV) polymerase (Pol) and Nucleocapsid (N) genes were first

used to reconstruct the phylogenetic tree for CoVs (8). Subsequentially, a whole

genome-based phylogenetic analysis indicated SARS-CoV and Middle East respiratory

syndrome coronavirus (MERS-CoV) as members of BetaCoV lineage B, characterized by

high pathogenicity (9), suggesting bats as the initial viral reservoir. The RNA-dependent RNA

polymerase (RdRP) and spike (S) protein gene sequence phylogenetic analysis confirmed

SARS-CoV as a member of the BetaCoV subgroupEickmann et al., 2003.

Human coronaviruses (HCoVs) are composed of five major structural components: S

protein, membrane protein (M), envelope protein (E), nucleocapsid proteins (N), and

hemagglutinin (HA) as summarized in Table 1. Intriguingly, SARS-CoV-2 lacks HA (10)

relying on the S protein for the attachment process (11). The S, M, and E proteins are
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embedded in the viral envelope while the N protein protects the viral RNA genome located

inside the virus (8) (Figure 1).

Figure 1 | Schematic representation of SARS-CoV-2 proteins. Minimal representation of

a SARS-CoV-2 virion. SARS-CoV-2 lacks the HA protein with the “crown-like” S protein

disposition. (adapted from (12)).

Table 1 - HCoVs Structural Proteins and Their Function

Protein Role

Spike Protein (S protein) ACE2 recognition and primary infection mechanism (13)

Membrane Protein (M) Involved in SP glycosylation, recruits N and RNA (14)

Envelope Protein (E) Favours membrane curvature, and mediates host immune

responses through pore-forming and PDZ interaction (14)

Nucleocapsid Protein (N) RNA-binding protein that favours viral compartment

organization (15)

Hemagglutinin (HA) Mediates attachment to O-acetylated sialic acids (10)

Furthermore, SARS-CoV-2 contains sixteen non-structural proteins (NSP1−16) which

exert a range of necessary functions for viral replication as reported in Table 2. NSPSs play a

crucial role in the activation of the post-infection viral replicative process by coordinating and

favouring both the virion compartmentation and the assembly of the RNA (12).
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Table 2 - Non-Structural-SARS-CoV-2 Proteins and their function (16)

Name Role

NSP1 RNA Replication

NSP2 Impairs Interferon production

NSP3 Separate post-translated proteins

NSP4
Contains transmembrane domain 2 (TM2) and modifies ER

membranes

NSP5 Involved in protein polyprotein cleavage

NSP6 Transmembrane domain

NSP7 Favours Nsp12-Template-primer RNA interactions

NSP8 Favours Nsp12-Template-primer RNA interactions

NSP9 ssRNA-binding protein

NSP10 Responsible for cap methylation of viral mRNA

NSP11 Disordered protein with a supposed role in infection

NSP12 Contains RND-dependant RNA polymerase (RdRp)

NSP13 Adenosine triphosphate (ATP) and Zinc-binding domain

NSP14 Exoribonuclease domain

NSP15 Mn2+-dependant endoribonuclease

NSP16 2’-O-ribose methyltransferase

1.1.1 SARS-CoV-2 Spike Protein

The SARS-CoV-2 infection mechanism depends on the transmembrane S protein

(17,18), a highly conserved structure amongst the coronaviridae family responsible for

extracellular binding and cell membrane fusion (19). The S protein characterises the shape

of the coronaviridae family with the crown-like aspect they are named after (20) and shows a

selective affinity for the angiotensin-converting enzyme-2 receptor (ACE2). ACE2 is a type 1
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transmembrane protein with an external peptidase domain normally responsible for the

conversion of angiotensin hormone into angiotensin II (21).

The S protein is a homotrimer class I fusion protein, with each protomer composed of

domains S1 and S2 (13) (Figure 2). The S1 structure is responsible for binding with the

ACE2 receptor (Figure 2A-C), before the conformational change in the stalk-like structure

(Figure 2C) of the S2 subunit (22) and the subsequent membrane fusion after the cleavage

of S1 from S2 by the host transmembrane protease serine 2 (TMPRSS2) (20).
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Figure 2 | Sequence and structure of the S protein domains in the pre-fusion state. A)
SARS-CoV-2 S protein domains: signal peptide (SP), N-terminal domain (NTD), Receptor

Binding Domain (RBD), receptor binding motif (RBM), fusion peptide (FP), heptad repeat 1

(HR1), heptad repeat 2 (HR2), transmembrane domain (TM), and cytosolic domain (CP)

(adapted from (23)). B) N-Glycosylation sites or missing loops longer than 10 residues in

PDB: 6VSB. (adapted from (23)). C) Fully glycosylated S protein

(https://charmm-gui.org/?doc=archive&lib=covid19) with the S1 and S2 units highlighted and

a colour-coded domain representation. Glycans are represented as sticks (24).

Cryogenic electron microscopy (Cryo-EM) studies revealed the metastable dynamic

of the S protein where the arrangement of the N-terminal domain (NTD), receptor binding

domain (RBD), and C-terminal domain (CTD) is folded over the trimer axis (Figure 2),

covering the S2 domain residues at the S1/S2 furin cleavage site (13). In the S1 ectodomain

(Figure 2), the apical portion of the S protein, composed of the RBD, NTD, and two CTD,

folds in a hairpin motif that protects the prefusion conformation of S2 from the external

environment (25). In its prefusion metastable state, it is speculated that a disulfide bond

between C15-C136 could structure the apical portion of S1 (26). Downstream the fusion

peptide (FP) another possible disulfide bond is between C840-C851, reinforced by a salt

bridge between K835 and D848 and an extensive hydrogen bond network (27).

A distinguishing feature of the SARS-CoV-2 strain is an insertion of a polybasic

PRRAR sequence in the protease S1/S2 cleavage site region, rich in arginine residues,

which configures a furin recognition site, commonly found in highly virulent influenza viruses

(28). The cleavage of the inter-region S1/S2 (Figure 2) allows for S2 structural conformation

changes necessary for membrane fusion and post-fusion structure adaptation (19).

Upon RBD binding with ACE2, the S protein undergoes a conformational

rearrangement with the HR1 forming an elongated three-stranded coiled axis while the

S1/S2 form a three-stranded beta-sheet. The C-terminal segment of HR2 closes toward the

viral membrane, shortening the three helical regions forming the main axis, which are

reinforced by two disulfide bonds between C1064-C1108. The three helical regions are

bundled against the groove of the axis formed by the central helices to form a short, rigid

six-helix bundle structure (19) (Figure 3). The N- and C-termini regions of HR2 form another

six-helix bundle structure, coated by the glycans on N1098, N1134, N1158, N1173, and

N1194 (27).
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Figure 3 | The pre- and post-fusion conformations of the S protein. A) Schematic

representation of SARS-CoV S2 subunits in the pre-fusion state with the C-terminal loop (L),

the upstream helix (UH), β-hairpin (BH) motif, and subdomain 3 (SD3) adjacent to the HR1.

B) Cartoon representation of SARS-CoV S2 subunits in both the pre and post-fusion state

and coloured according to the schema (adapted from (19)).

For effective vaccine development, the SARS-CoV-2 evolution was studied to

evaluate the possible effects of mutations on transmissibility, severity, and viral evasion of

the immune mechanism (29–32). Strains that carried important mutations or deletions,

especially on the RBD, were categorized as variants of concern (VOC) (29). Concerns

among the scientific community have risen due to their potential to elude the immune system

and overcome vaccine protection (33–35) despite showing an overall structural similarity

between variants, which diverged only in terms of flexibility (36). A list of the mutations is

reported in Table 3.

Table 3 – Important mutations found in VOCs (37).
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At the time of this writing (November 2023), the new BA.5 Omicron VOC carrying N440K,

G446S, L452R, S477N, 118 T478K, E484A, F486V, R493Q, G496S, Q498R, N501Y, and

Y505H mutations became predominant over the Omicron BA.2 variant (38,39). Omicron

VOC exhibits a faster and different entry mechanism (40–42), an enhanced ability to evade

the immune system (32,43,44), and an increased affinity for ACE2 (45–47). However, BA.5’s

higher infectivity is mitigated by its milder pathogenic impact (48), similar to the new BA.2.75,

XBB.1.5-like with the last update reported the 20 October 2023 by the European Centre for

Disease Prevention and Control (49).

To prevent viral adhesion, a therapeutic approach might aim to intercept or prevent

the S protein:ACE2 interaction required to initiate the infection mechanism (50). A

pre-adhesion intervention might contain and reduce the symptoms, decreasing

hospitalization rates while improving patients’ prognosis. With its primary role in infection

(51), the S protein has aroused the interest of medical and pharmaceutical research for

antibodies’ or disruptors’ development as informed by the neutralizing antibodies response

induced by the S protein (52).

10



Intriguingly, heparinoids such as heparin (HP) and heparan sulfate (HS), two relevant

regulators of the coagulation cascade, seem to play a substantial role in the SARS-CoV-2

infection mechanism (53–55). The role of heparinoids is still unclear and, as a part of this

project, I investigated the molecular interactions between EcHP, EcHS and the S protein.

Glycosaminoglycans (GAGs), such as extracellular heparin (ecHP) and extracellular

heparan sulfate (ecHS), play a crucial role in regulating the immune response through cell

adhesion, tuning cytokine, and chemokine function, and mediating inflammatory reactions

(56,57), through HS-binding motifs (HSBM). EcHP, a natural glycosaminoglycan produced

by basophils and mast cells (58), is constituted by highly sulfated repeating units of 1-4

pyranosyl uronic acid and 2-amino-2-deoxy glucopyranose (glucosamine) and it is known for

its major role as an anticoagulant when formulated in low molecular weight (LMWH). EcHP

has been proposed to play a role in promoting SARS-Cov-2 infection (51,59), probably by

inducing conformational changes upon binding (55) through interactions on the S1/S2

cleavage site (60). The intermediary role of EcHS between the furin cleavage site and GAG

has been also suggested by Schuurs and co-workers (61), suggesting the involvement of

GAGs in favouring the membrane fusion mechanism. Clausen and collaborators (53)

supported the allosteric role of EcHP to facilitate the interactions between S protein and

ACE2 and provided a preliminary model of the RBD regions possibly implied in the

recognition of both EcHS and EcHP. Other studies suggested the intriguing hypothesis that

EcHP and low molecular weight heparins (LMWH) may function as antagonists (62,63) of the

ACE2 binding, by competing for the EcHS binding site on the S protein (64). However, the

role of heparinoids is still unclear and, as a part of this project, I investigated the molecular

interactions between EcHP, EcHS and the S protein.

1.1.2 SARS-CoV-2 Main Protease

To overcome the mutability of the S protein, diverse strategies need to be explored,

evaluating different targets of SARS-CoV-2 (65). From this perspective, targeting the NSPs

(66,67) or interfering with the host’s proteins that participate in the viral replication (68) can

be a considerable choice. The interest in therapeutic research against coronaviruses in

general arose during the SARS-CoV outbreak in July 2003. The main protease (Mpro,

NSP5) and the papain-like protease (PLpro, NSP3) provided alternative targets for antiviral

treatments (69,70). However, the deubiquitinase activity of PLpro, initiated by the molecular

recognition between PLpro and the C-terminal sequence of ubiquitin, made the discovery of

selective viral PLpro challenging due to the possibility of interfering with the host cell’s

deubiquitinase (71). On the other hand, the Mpro mechanism selectivity cleaves

polypeptides after an LQ|SAG sequence (72). By exploiting the Mpro unique viral cleavage
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system, it is, therefore, possible to extrapolate the catalytic site fingerprint to design

molecular inhibitors, with, to the best of our knowledge, no side effects, due to the lack of

specificity for human proteases. The SARS-CoV-2 Mpro is a 306 residue autolytic enzyme

cleaving over 11 sites on the overlapping polyproteins pp1a and pp1ab to functional proteins.

Its functional unit consists of two homodimers arranged almost perpendicular to each other

(72) and each monomer comprises the catalytic dyad H41-C145. SARS-CoV-2 Mpro shares

a 96% identity with SARS-CoV Mpro (72) and is divided into three domains (D1-3) (Figure 4).

Figure 4 | The Mpro sequence and domains. A) Sequence comparison between

SARS-CoV and SARS-CoV-2 Mpro. The catalytic dyad is marked with an asterisk. B)
SARS-CoV and SARS-CoV-2 Mpro superposition with the mutations highlighted. C) Mpro

domains: Domain 1 (D1), Domain 2 (D2), Connecting Loop (CL), and Domain 3 (D3). The

catalytic dyad is situated between D1 and D2.
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Domain 1 (D1, residues 1-99) and domain 2 (D2, residues 100-183) are arranged in

an antiparallel beta-barrel conformation, while domain 3 (D3, residues 201-306) is placed in

an antiparallel globular cluster, connected by a long connecting loop (CL, Figure 4C) (73). D3

contains five alpha-helices directly connected with the CL. The catalytic dyad, formed by H41

and C145, is positioned toward the solvent-exposed opening of Mpro and is characterized by

an endopeptidase activity (73,74). Funk et al (75), reported that although cysteine-based

catalytic residues are prone to oxidative damage (76), the abundance of regulatory K-C

redox switches in Mpro suggests a redox regulation of its activity exploiting the allosteric

switch composed of sulfur-oxygen-nitrogen-oxygen-sulfur (SONOS) bridges formed between

cysteines C22, C44 and K61 within D1 (75). Funk et al (75), exploited the catalytic   C145

oxidation as a drug design approach, additionally leading to the formation of oxidation

products such as the mono-oxidized sulfenic acid and sulfinic acid (77) through

maleimidoacetic acid N-hydroxysuccinimide ester (MAH) containing a nitrile warhead. The

irreversible modification of C145 led to the disruption of the enzyme functionality, hampering

viral replication. Following this direction, Pfizer began the production of PF-07304814, an

Mpro inhibitor during the first SARS outbreak in 2003. However, this Mpro inhibitor could only

be administered intravenously. The new SARS-CoV-2-Mpro inhibitor PF-07321332, instead,

was developed from scratch during the SARS-CoV-2 pandemic and is now under the

commercial name Paxlovid

https://cen.acs.org/acs-news/acs-meeting-news/Pfizer-unveils-oral-SARS-CoV/99/i13.

Paxlovid is a reversible covalent inhibitor that targets Mpro catalytic cysteine C145. Recently,

the binding pathway of Paxlovid has been proposed, using the supervised molecular

dynamics (SuMD) protocol, indicating G143, H163, H164, E166, and Q192 electrostatic

contribution for Paxlovid nitrile moiety to covalently bind to C145 (78).

1.1.3 Solved SARS-CoV-2 Mpro and Spike Protein Structures

Since the first cryo-EM structures of the S protein became available to the scientific

community, it has been possible to investigate the conformational changes and the dynamic

processes involving the S protein through MD simulations. One of the limits of the S protein

structure experimentally determined is the scarcity of structural information about the

post-translational glycosylation, due to the high dependency on the organism used for

protein expression. To address this aspect, Woo and his group proposed a set of complete

and fully glycosylated S protein models (23), corroborating Wrapp et al.’s structure of the

spike protein glycosylated in 44 out of 66 possible sites in the ectodomain region (13)

including also Watanabe et al. glycans’ specifications (79). Several S protein structures have
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been determined through cryo-EM and X-ray crystallography (Figure 5) (80). These include

the inner S1 and the external S2 domains and indicate two different states in the RBD

domain, named “up” and “down” (13,81–83), the former determining an active state (84)

favourable to ACE2 binding.
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Figure 5 | S protein deposited structures in the protein data bank. A) SARS‐CoV‐2

protein structures released and ordered according to month and year of publication from the

Protein Data Bank. B) S protein structures only, ordered according to resolution (85).

The structural description of the S protein, achieved through both crystallographic

techniques (13) and ab initio modelling (86), has facilitated a more comprehensive

investigation into the potential infection mechanisms and the structural modifications

occurring in the S protein upon binding with ACE2 or in its transition from to the active state

(87,88). Crystallographic data on the S protein and the NSPs also accelerated our

understanding of the membrane fusion mechanism, increasing the set of therapeutic targets

available (89,90), and broadening our options for the disruption of the infectious mechanism.

Furthermore, the structural description of the S protein has proven to be pivotal in the

development of antibodies (91), peptides (92), and vaccines (93–95), designed to target

critical areas for molecular recognition with ACE2, such as the receptor-binding domain

(RBD) or a set of epitopes (96–98) located in non-glycosylated regions of the S protein.

1.2 HIV Virus Overview

Human Immunodeficiency Viruses (HIV) are grouped into two morphologically similar

types, HIV-type 1 (HIV-1) and HIV-type 2 (HIV-2) with a distinguished antigenic profile. HIV-1

is a genetically related member of the Lentivirus genus of the Retroviridae family while HIV-2

was closely related to a simian virus (SIV) that caused immunodeficiency in captive

macaques (99). HIV-1 and HIV-2 are a result of the cross-species zoonotic transfer of two

simian viruses infecting chimpanzees to humans (100). Lentivirus infection slowly and

silently evolves into a chronic development of acquired immunodeficiency syndrome (AIDS),

preceded by a long asymptomatic quiescent phase characterized by persistent viral

replication and involvement of the central nervous system (101). HIV-1 is generally spread

worldwide, while HIV-2 type is restricted to some Sud-Saharian, Western and Central Africa

(99,102). Both HIV-1 and HIV-2 potentially cause AIDS with a lesser incidence of HIV-2 on

the central nervous system (CNS) and generally taking longer to progress to the

immunodeficiency pathological course. Both HIV strains share the same pathophysiological

mechanism as well as the same replication cycle (Figure 6)
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Figure 6 | HIV replication cycle. a) HIV attaches to CD4+ T-lymphocytes or macrophage

through the heterotrimer gp120-gp41 surface protein b) HIV penetrates inside the host cell c)
where it begins the reverse transcription of its viral-RNA into a double-stranded DNA through

the RNA-associated reverse transcriptase. The viral genome d) is then translocated to the

nucleus e) and converted to the supercoiled DNA sequence. Following the integration f) the

DNA is truncated at the 5’ and 3’ and integrated by the integrase enzyme into the host cell

DNA g) where the host’s DNA polymerase II transcribes the newly integrated viral DNA h)
which are then translocated and spliced back into the cytoplasm i) where gag and pol genes

are fully translated as well as the other accessory proteins (gp41 and gp120 are shown only

for clarity). j) The morphogenesis occurs with the formation of a ribonucleoprotein core dimer

k) which will assemble with the rest of the gag and pol proteins ready to be shed by

membrane budding which incorporates also some of the host cell’s surface proteins in the

process (adapted from (103)).
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Peterlin reports that HIV’s genome consists of a proviral hybrid DNA/RNA which is

later translated into a double-strand DNA (103). HIV genome sequencing established that

the proviral DNA genome is a 9.7 kilobase pairs sequence with retroviral features such as

the presence of structural genes capped by long terminal repeats (LTR) (Figure 7). HIV

genome encompasses structural proteins such as group-specific antigen (GAG), polymerase

(POL), and envelope (ENV) and, in addition, four unique nonstructural genes, several of

which appear to be essential in regulating virus replication, namely viral infectivity factor (Vif),

viral protein R (Vpr), viral protein U (Vpu), and negative factor (Nef) with HIV-2 lacking for the

most part Vpu (104). Table 4 briefly summarises the different proteins encoded and their role.

Figure 7 | HIV-1 and HIV-2 genome. A) HIV-1 genome organization with structural and

accessory proteins. B) The HIV-2 genome differs from the presence of the viral protein X

(Vpx) instead of Vpr (adapted from (101)).

HIV-1 and HIV-2 viruses display the presence of the same structural and

non-structural proteins a common constant for all retroviruses. Additionally, two more genes,

tat and rev, encode for the trans-activator of transcription (TAT) and Regulator of expression

of virion proteins (REV) (105). TAT is expressed very early after infection and promotes the

expression of HIV genes while REV ensures the export from the nucleus to the cytoplasm of

the correctly processed messenger and genomic RNA.
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Table 4 - HIV Proteins and their function

Name Role

Matrix (p17) Plasma membrane targeting of Gag for virion assembly, Env

incorporation; and post-entry events;

Capsid (p24) Virion core structure and assembly

Nucleocapsid

(p7)

Virion packaging of genome RNA; RNA chaperone; virion assembly

p6 Promotes virion budding

Protease

(PR)

Proteolytic processing of Gag and Gag-Pol polyproteins

Reverse Transcriptase (RT) cDNA synthesis; RNaseH, domain degrades RNA

Integrase (IN) Covalent insertion of virus cDNA into cellular DNA

Surface Glycoprotein (p120) Binds cell-surface receptors and mediates virus attachment and entry

Transmembrane Glycoprotein

(p41)

Contains fusion peptide, mediates membrane fusion and virus entry

Viral Infectivity Factor (Vif) Suppresses APOBEC3G/APOBEC3F host factors that inhibit infection

Viral protein R/X (Vpr/Vpx) Moderate enhancer of post-entry infectivity; G2/M cell cycle arrest

Trans-Activator of transcription

(TAT)

Potent activator of viral transcription elongation

Regulator of expression of

Virion protein (REV)

Induces nuclear export of intron-containing viral RNAs

Viral protein U (Vpu) CD4/MHC downregulation and induces virion release from the host cell

surface

Negative Factor (Nef) CD4/MHC downregulation; T-cell activation;

moderate enhancer of viral infectivity;

blocks apoptosis; pathogenicity determinant.
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HIV-1 and HIV-2 structure shows a strong morphological similarity characterised by

the gag-encoded structural proteins (p24, p7, p6), matrix protein (p17), and the viral

envelope glycoproteins gp120 and gp41, which recognize cell surface receptors (105,106).

Additionally, the pol gene encodes also for the reverse transcriptase enzymes, necessary for

converting the viral RNA into DNA. Integrase enzyme is coded from the pol gene, and it

plays a crucial role in incorporating the viral DNA into the host chromosomal DNA by

producing “sticky ends” on the vDNA to liberate 3′-hydroxyl groups attached to the invariant

deoxycytidine–deoxyadenosine (dCdA) dinucleotides (107). Additionally, a viral protease

cleaves large gag and pol protein precursors into their components until the active protease

dimer is formed (108).

HIV viral particles have a diameter of ~100 nm and are surrounded by a

lipoprotein-rich membrane (Figure 8). Each viral particle consists of two noncovalently linked

heterotrimeric subunits - gp120 and gp41 - that form a 6-subunits structure bound to the

membrane. Due to the noncovalent gp120 and gp41 binding (109), gp120 may be shed

spontaneously within the local environment and be detected in the serum, as well as within

the lymphatic tissue of HIV-infected patients.

When gp120 binds to the CD4 protein gp120 exposes a region capable of binding to

chemokine receptors on the target’s cell membrane. The natural ligands of these receptors

are a set of chemokines that attract other immune system cells during inflammation.

Chemokine receptors (CKR) are part of the superfamily of G protein-coupled receptors

(GPCRs) that activate intracellular G protein- and β-arrestin-mediated pathways upon

chemokine binding (110). Chemokines are described by the cysteine patent in the

N-terminus and are classified by the number of residues between two cysteines and the

splicing variant at the N-terminus.

CKR splicing variants CXCR4 and CCR5 are the most common chemokine receptors

among HIV-1 with CXCR4 being expressed on many cells, including T lymphocytes, while

CCR5 is more prevalent on monocytes, macrophages, dendritic cells and activated T

lymphocytes (101). The presence of these specific receptors on target cells determines the

HIV-specific tropism for either CXCR4 expressing cells, resulting in a T-lymphocyte-tropic

(T-tropic) or a CCR5 receptor preference, resulting in a macrophage-tropic (M-tropic)

tropism. Additionally, some strains can bind to both CCR5 and CXCR4 and are called dual

tropic or X4R5 strains (101,111).

During the budding process where virion particles exit the infected cell, the virus can

incorporate the host’s proteins into its membrane, especially human leukocyte antigen (HLA)

class I and II protein (103) or adhesion proteins such as Intercellular Adhesion Molecule 1

ICAM-1 and that may facilitate adhesion to other target cells (112).

19



Figure 8 | HIV morphology. HIV-1 and HIV-2 morphology. HIV virion size is 100 nm in

diameter, coated by a lipoproteic membrane. The membrane includes glycoprotein

heterodimer complexes composed on the external surface of gp120 and gp41 which are not

covalently bound. The gp120 unit may be shed and used as a diagnostic marker in the

serum, as well as within the lymphatic tissue of HIV-infected patients (adapted from (101)).

The matrix protein (p17) is located inside the viral lipoprotein membrane. The virus

membrane and the matrix protein include the capsid composed of polymers of the core

antigen (p24). The capsid contains two copies of HIV RNA combined with a nucleoprotein

and the enzymes reverse transcriptase, integrase and protease (106). Due to the high

mutagenicity of HIV, different therapeutic targets might be approached for drug discovery.

Nef is a nonenzymatic protein with a crucial role in viral replication and immune escape of

HIV-infected which makes it an excellent target for drug design. Among its multiple functions,

it has a role in kinase signalling pathways and endosomal trafficking, while being responsible

for the downregulation of the CD4 receptor on the cell surface (114).

During this project, our investigation focussed on a de-novo discovery of a potential

Nef dimerization mechanism disruptor (see Chapter 7). Its importance and mechanistic

behaviour will be treated during this project to highlight its promising therapeutic potential in

hampering viral replication and AIDS course progression (Section 1.2.1).
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1.2.1 HIV Nef Regulatory Protein

Initially, Nef was identified as an open reading frame sequence (B, E’, F orf) encoding

for a 25-27 kDa protein whose amino-terminal was bound to myristyl alcohol (103). Nef

amino-terminal region resembles the proto-oncogene tyrosine-protein kinase (src) protein

family and, similarly to src protein, can bind and hydrolyse guanosine triphosphate (GTP),

while acting as a "negative factor" for HIV-1 replication, which led to its initial naming (115).

Nef is an important player in viral pathogenesis by promoting viral replication and enabling

immune escape in infected hostsStaudt et al., 2020. Early pieces of evidence showed that

expression of Nef in CD4+ T-cells and macrophages causes AIDS-like disease in transgenic

mice and that patients infected with nef defective HIV-1 fail to progress to AIDS suggesting a

direct role for Nef in HIV-1 pathogenesis (116,117).

Activated Nef consists of a globular domain dimer and disordered N and C-terminal

structures with an SH3 kinase binding domain (Figure 9). Myristilation of the

ammino-terminal group anchors Nef’s flexible structure in the lipid membrane. Both HIV and

SIV Nef globular domains are relatively well conserved between the two viruses with more

variable terminals (118). Nef differences between HIV and SIV viruses translate into

differential T-cell receptor (TCR-CD3) down-regulation by Nef. Transgenic mouse models

highlight progressive AIDS due to the progressive loss of CD4+ T-cells, T-cell activation,

lymphadenopathy, and immunodeficiency where Nef also showed significant importance for

viral replication (119).
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Figure 9 | X-ray crystal structures of HIV-1 Nef in complex with the Fyn SH3 domain.
Nef monomers are coloured in blue (NefA) and green (NefB), respectively, with the SH3

domains in red (SH3A) and pink (SH3B) (adapted from (114)).

Nef contributes to HIV pathology by modulating protein trafficking, interfering with

signalling pathways and apoptosis and stimulating viral replication/virulence. More than 70

Nef-interacting proteins in the human proteome have been identified and they include

clathrin-coated vesicle machinery, coatomer, an endosomal sorting complex required for

transport (ESCRT) machinery, an endosomal sorting complex required for transport (ESCRT)

machinery and multiple clusters of differentiation (CD) receptors (120).

Nef possesses multiple protein-binding domains on its surface such as the Src

homology (SH3) binding domain, involved in interactions between Nef and hematopoietic cell

kinase (Hck), lymphocyte-specific protein tyrosine kinase (Lck) and p21-activated kinase

(PAK2) and multiple tyrosine-based and dileucine motifs that mediate the interactions with

the adaptor proteins (AP) from vesicular coats and induce the down-regulation of CD4,

MHC-I, CD8, CD28 (118). Among its functions, Nef induces two T-lymphocyte-killing

mechanisms: promoting the programmed cell death of HIV-specific cytotoxic T-lymphocytes

(CTL) by upregulating Fas ligand (FAS) expression on the cell surface and down-regulating

the expression of the major histocompatibility complex class I (MHC-I), specifically HLA-A

and –B antigens used for CTL recognition (120).

22



2. Molecular Binding’s Driving Forces

Biochemical phenomena are a consequence of the collisions and energy exchanges

between the particles in a combination of attractive and repulsive forces between the atoms.

Biological systems often consist of a thermodynamic solute–solvent ensemble where

the solute (e.g. protein with or without a membrane or a multi-component assembly) and the

solvent (i.e. water and ions) are in contact with each other (129). The interactions and heat

exchange among these substances are influenced by the intrinsic properties of each atom,

their structural arrangement, and their distance. Conformational changes depend on the way

heat and energy are transferred according to the laws of thermodynamics (130).

The attraction or repulsion forces between molecules or atoms depend on their

positions and the results of the summative effect of both their non-bonded long and

short-range forces (131). Intramolecular stability, on the other hand, relies on internal

short-range forces (covalent bonds, ionic bridges, London dispersion forces, dipole-dipole

forces). Forces and the energy distribution between atoms and molecules determine the

overall capacity of a system to produce work in the form of bond formation or breaking, heat

exchange and conformational changes (132,133). The energy exchange that follows such

dynamics can be quantified as free energy variation.

The Gibbs free energy is a thermodynamic potential that measures the capacity of a

thermodynamic system to do maximum or reversible work at a constant temperature and

pressure (isothermal, isobaric conditions). The chemical potential energy was elegantly

formulated by J.W Gibbs (134) and it was originally formulated as the capacity of a system to

produce work in the form of energy or heat exchange (non-pressure work) when two

elements come into contact is measured by the variation of its total energy once the two

elements get into contact.

A chemical system is defined by the number of moles (N), volume (V), and

temperature (T). Chemical potential also provides a measure of the tendency of a substance

to participate in chemical reactions as described by Gibbs:

(1)𝑈 =  𝑈𝑟 +  𝑈𝑚 +  𝑈𝑐 =  𝑇𝑆 −  𝑝𝑉 +  µ𝑁

Equation 1 is the complete form which connects the seven basic thermodynamic

variables, (thermal potential energy), (mechanical potential energy), (chemical𝑈𝑟 𝑈𝑚 𝑈𝑐

potential energy), T (temperature), (entropy), (pressure), (Volume), μ (chemical𝑆 𝑝 𝑉

potential), and N (number of moles) (135) and can be rewritten as

𝑈 −  𝑇𝑆 + 𝑝𝑉 =  µ𝑁
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(2)=  Δ (𝐻 − 𝑇𝑆) =  Δ𝐻 − Δ (𝑇𝑆) =  Δ𝐻 −  (𝑇Δ𝑆 + 𝑆Δ𝑇)

The free energy variation (∆G) at any moment in time during molecular association is

therefore given by the formula:

(3)∆𝐺  = ∆𝐻  −  𝑇∆𝑆

where ∆H and ∆S refer to enthalpy and entropy changes of the system upon ligand binding

and T represents the absolute temperature in Kelvin (Figure 11).

Enthalpy is a state function that represents the total heat energies of a

thermodynamic system (136). ∆H is negative during exothermic processes, for example,

during combustion, and positive during endothermic reactions such as photosynthesis.

Entropy is also a state function of a system which is associated with the state of randomness

or chaos of a system, and it measures how evenly the heat energy is distributed over the

overall thermodynamic system (137). The second law of thermodynamics dictates that

thermal energy moves from high-temperature regions to those characterised by lower

temperatures diminishing the state of organisation inherent to the initial system.

Consequently, entropy could be used to quantify the level of “disorder” or “chaos”

stochasticity represented by atoms and molecules at a given thermal state.

Receptor-ligand binding results in a reduction of the rotational, translational and

torsional degrees of freedom (Figure 11) defined as a loss in entropy which can be

compensated by the enthalpy increase provided by the ligand-protein interaction (138).
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Figure 11 | Entropy and enthalpy changes upon binding. Schematic representation of the

enthalpy and entropy changes as a result of both solvent displacement and ligand

stabilization against the binding surface of a receptor/protein. The transition state is

associated with a temporary increase in entropy and a proportional decrease in enthalpy due

to the formation and disruption of non-covalent bonds between the protein-ligand interface

and the protein-water interactions. Upon binding, the entropy loss is paired with an increase

in enthalpy increase due to the disruption of protein-water interactions (adapted from (139)).

Spontaneous processes are characterized by a negative change in Gibbs free energy

(∆G) when the energy of the system is negative at the equilibrium state with constant

pressure and temperature. However, an equilibrium system is not static even at 0 K as the

vibrational frequency of atoms never reaches zero. More realistically, the forces acting on a

system at equilibrium are determined by continuous local thermal fluctuations (140) that

could determine changes in the local entropy (141) affecting, for example, the binding

interface of a protein, therefore altering the protein-ligand complexation.

2.1 Conformational Changes and Molecular Recognition

Proteins are complex biochemical machines that regulate cell functions, structure,

and cell’s life cycle. The conceptualization of the quaternary structure (QS) was first

discovered by Svedberg in the 1920’ while investigating the molecular weight of haemoglobin

by sedimentation in the ultracentrifuge (147). The formation of multimer assembly is what

determines the QS of a protein (148), with a specific folding of its sequence forming its super

secondary structures (SSS), correlated with biological functions (149). Since the elucidation

of myoglobin structure in 1958 (142) protein structures’ description was enriched by an

additional layer of complexity to represent the natural molecular folding (143). The folding

mechanism depends on the protein’s amino acid sequence (144), the complex inter and
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intra-residue interactions (145), and the contribution from the solvation energy (146). The

interplay of those elements determines the possible shapes of a protein and its relative

biological function.

In the last century, the importance of the QS gave birth to the intriguing “protein

folding problem” (150,151) which is necessary to describe and predict the conformation (and

possibly the associated biological activity) of a targeted structure. The characterisable

structural features include exposed epitopes, catalytic residues’ disposition, conformational

changes available, or molecular recognition binding motifs, to name just a few.

The ability of proteins to fold reversibly in a precise and efficient manner and to

access thermodynamically stable states requires microseconds to seconds (151,152). This

suggests that proteins naturally explore multiple energetical states before folding in

favourable conformation. The combination of conformations and associated energy

describes a set of finite states described by a free energy surface (FES) or potential energy

surface (PES), in which every protein conformation, possibly associated with a specific

biological activity, has a specific energy and probability to exist (153). The PES provides a

better understanding of the kinetics and thermodynamic properties of proteins by quantifying

energy barriers between stable conformations.

The statistical mechanical description of proteins defines a number of possible states

with specific configurational entropy (S) (154) and free energy (E), in relation to their degrees

of freedom (155). More structured proteins have lower E and S and are characterised by an

efficient folding pattern that undergoes transitional metastable states (156). Generally, a

protein’s efficient folding occurs by minimising the number of explorative pathways required

in a step-wise folding mechanism (157). The FES represents the ensemble of states in which

a protein folds and the respective potential energy (Figure 12A).

The FES of a polypeptide or protein is characterised by multiple local minima (i.e.

favourable metastable conformations), hence the energy minimisation of the protein reaches

only a local minimum instead of the global minimum (Figure 12B). Several methods are

being deployed to investigate the “surroundings” of the saddle points of FESs which

represent the many-object modelisation of the structure (158).
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Figure 12 | Free energy surface and multiple minima. A) 3D representation of the

microstate transition in the folding process of a protein to its native state at the lowest energy

available. The pathway to the native state N encounters a series of saddles and peaks,

indicating that the folding pathway is not a conjugated gradient descent but more likely a

complex sequence of events and shifts B) Multiple minima in the FES are associated with

folding intermediates or metastable states (partially folded or intermediates). Protein states

fall into a plethora of low-energy intermediates and the investigation of their transition might

unveil new saddle points, disclosing unexplored structural features. (adapted from

(159,160)).

Thirty years later, Perutz’s crystallographic studies of haemoglobin subunits’

structures confirmed Svedberg’s description of its QS and indicated QS changes upon

oxygen-haemoglobin binding (161). Further experimental evidence demonstrated the

correlation between structural changes and biological function (162,163), with each

conformation associated with an energy state dependent on the intramolecular forces acting

inside the system (160).

Conformational changes are necessary to exert a biological activity, usually exerted

by exposing chemically reactive sites for modifications such as (de) phosphorylation, (de)

sulfonation, or glycosylation only to name a few. Stimuli such as photochemical reactions

(166), drug binding, changes in the surrounding medium (167), and receptor engagement

(168) are just a few examples of cascade triggers meant to modulate the protein activity and

shape. Specifically, protein-target binding may be responsible for exposing cryptic binding

pockets (169) or altering the surface (or even the electrostatic landscape (170) ) of proteins.

The importance of QS becomes more evident considering the biochemistry of pathology. For
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example, protein misfolding in cystic fibrosis (164) leads to pathogenesis and the

dysregulation of physiological homeostasis in lung cells. Mutations in the Cystic fibrosis

Transmembrane conductance Regulator (CFTR) gene dysregulate the activation of the Cl-

ion transport mechanism, leading to ionic imbalance and pathology (165).

Three binding mechanism models were proposed to describe the protein-ligand

binding: the "lock-and-key", the "induced fit", and the "conformational selection" (171–173).

In the lock-and-key model, the binding process occurs when the protein and the ligand match

a precise molecular fingerprint in what was called the “one enzyme, one substrate” type of

interaction. In this scenario, their binding interfaces must match to trigger the intended

structural modifications, both chemically and geometrically speaking. However, the

lock-and-key model cannot explain “imperfect” match bindings and does not explain

conformations changes (174). The induced fit model fills those gaps assuming that the

binding site is a flexible space that interacts with a ligand in an adaptive manner, triggering

dynamic conformational changes in the binding site of the protein. A binding event happens

via a mix of conformational selection and induced fit, giving the protein dynamic that exhibits

different degrees of flexibility throughout their QS. Finally, the conformational selection model

takes flexibility into account from the potential energy surface (PES) (175–177) theory of

protein structure and dynamics. In PES the native state of a protein (intended as the relation

between the low-state energy associated with specific conformations of a protein) is

represented as a large (but finite) set of conformational states/sub-states. Ligands selectively

bind to one of the most populated protein conformations. Therefore, the unbound protein

(UP) has a finite probability of adopting the necessary conformation to favour the

ligand-bound state (137).

2.2 The Binding and Unbinding Mechanisms

In physiological conditions of temperature and pressure, fundamental biochemical

processes occur upon the binding or unbinding of an exogenous or endogenous ligand. The

laws of thermodynamics regulate the driving forces and the kinetics that lead to the formation

of intermolecular complexes.

In 2006, the kinetic concept of residence time, which describes the period for which

the receptor is occupied by a ligand (178) was first introduced as the reciprocal of the

dissociation rate constant koff. The pharmacodynamic relevance of the residence time (i.e.

expressed in seconds) provides a measure of the drug’s potency associated with its stability

inside the receptor (179).

When a protein [P] and a ligand [L] reach equilibrium, the dissociation constant kd is

expressed by:
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(4)𝑘
𝑑
 =  [𝑃][𝐿]

[𝑃𝐿] =  𝑘𝑜𝑓𝑓
𝑘𝑜𝑛 =  𝑘

𝑎
−1

where [PL] indicates the protein-ligand complex concentration, and kon on and koff represent

the kinetic rate constants for binding and reverse unbinding (or dissociation) reactions. The

units of kon and koff are and , respectively.𝑀−1𝑠−1 𝑠−1

At equilibrium, the binding and unbinding rates are balanced, so Equation 4 can be written

as:

(5)𝑘
𝑜𝑛

 =  [𝑃][𝐿] =  𝑘
𝑜𝑓𝑓

 [𝑃𝐿]

The koff depends on the difference of free energy between the bound state and the transition

state (TS) along the dissociation pathway and usually is related to the stability of interactions

occurring in the binding pocket and entropic factors (140). A ligand with a fast-binding rate

(i.e. low energy binding TS) accompanied by a slow dissociation rate (i.e. high energy

unbinding TS) will have a high affinity for the target. The association process includes a

diffusion phase, where the ligand's chance of a productive collision with the receptor relies

on its own concentration, and an interaction phase, where recognition is based on binding

mechanism and energy progress. Once molecular recognition occurs, the binding and

unbinding mechanism will rely on the interatomic forces and energy changes that will

determine its overall kinetics. The recognition event is a second-order reaction (expressed in

) and is dependent on the concentration of both the ligand and the receptor (180),𝑀−1𝑠−1

while the dissociation is a function of the intermolecular complex concentration and is

expressed in (181).𝑠−1

The relationship between Gibbs free energy and the equilibrium constant ke includes

both the entropic and the enthalpic contribution described by the formula:

(6)𝑘
𝑒𝑞

= 𝑒
 (− Δ𝐺

𝑅𝑇 ) 
=  ∆𝐺° =− 𝑅𝑇 𝑙𝑛 𝑘

𝑒𝑞

as the exponential of the energy variation over RT, with R as the gas constant and T asΔ𝐺
the temperature of the system.

In Eyring’s equation derivation (182), the kinetics constants are proportional to the

exponential of the energies of activation of the respective transition states (ΔG‡ on/off),
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through a pre-exponential factor that combines Boltzmann’s constant Kb, Planck’s constant h

and the absolute temperature T:

(7)𝐾
𝑜𝑛/𝑜𝑓𝑓

 =  
𝐾

𝑏
𝑇

ℎ 𝑒
− −Δ𝐺±𝑜𝑛/𝑜𝑓𝑓

𝑅𝑇

Adapting equation 4, the relationship between the enthalpy and entropy changes and Kd can

be rewritten as

(8)𝑘
𝑑

= 𝑒
− 

∆𝐺
𝑏𝑖𝑛𝑑𝑖𝑛𝑔

𝑅𝑇 =  𝑘
𝑎

−1

with a form much similar to the temperature-dependent Arrhenius equation:

(9)𝑘 =  𝐴𝑒
−𝐸
𝑅𝑇

where k is the rate constant at which fruitful collisions occur, A is the Arrhenius

pre-exponential factor (expressed as s-1) and E is the activation energy.

A broader statistical mechanic approach to Eyring’s transition for more complex

systems implies that the reaction’s direction and kinetics are defined by different transition

states and pathways each contributing to the kinetic. These concepts are more easily

evaluated through Marcelin's (183) contribution to the representation of the chemical reaction

direction by a 2D motion of a point in phase and in Rice’s treatise. In Rice’s extended

implications (182), the state of a molecular system can be expressed as a set of Lagrange

generalized coordinates and their derivatives with respect to time to describe the potential

energy of a system. By restricting the potential energy dependence on one coordinate, the

course of the reaction can therefore be regarded as the motion of a point in 2n-dimensional

phase space (Figure 13).
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Figure 13 | 2D reaction coordinate profile. Following the simplified 2D coordinates, Rice’s

interpretation of Marcelin’s transition pathway depends on the “critical increment” Vc - Vm

which corresponds to the activation energy between the unbound [P] [L] to the bound state

[PL] (Adopted from (182)).

The stochastic nature of intermolecular recognition events implies a first molecular

contact that is dependent on the probability of the ligand diffusing in the medium to form

productive collisions (184). Statistical mechanics can be used as an effective

conceptualization to describe and simulate protein-ligand interactions. In statistical

mechanics, the evolution of a system of particles can be described by the probability of a

system occupying a position with momentum in time. The dynamic trajectory of the set of

points in phase space that the system visits over time carries information about the state of

the system. Together, positions and momenta define a point in the phase space of the

system (a portion of the PES) which correlates the system’s coordinates with the calculated

potential energy. Such information also expresses all experimentally measurable quantities

(such as temperature, pressure, diffusion coefficients, spectra, etc. (185)) as functions of the

points in phase space visited. States with low energy are thermodynamically favoured and

more populated in experimental conditions, representing the starting point for

structure-based drug design investigations of molecular methods (see Chapter 3). Free

energy and thermodynamic estimation are a common aspect tackled by the statistical

mechanical interpretation of the PES, which can support drug design decision-making

2.3 Intermolecular Interactions

Intermolecular interactions are of great importance in biology. Different pH conditions

can alter the ionization (Figure 14) of amino acids whose chemical structure includes basic

or acidic functional groups (186). Amino acids with ionizable side chains such as aspartate,

glutamate, histidine, lysine and arginine are responsible for numerous crucial pH-regulated

protein functions (denaturation, structural stabilisation, catalytic site role) and intramolecular

connections (187). Charged residues in the proximity of solvent-exposed areas of the protein

might be subject to dielectric constant changes from those residues buried in the protein

core, with values that can diverge from ≈20-80 (at the bulk solvent interface) to ≈ 1-4 (inside

buried protein cavities) (188).

Atomic charges may result in stabilizing or repulsive interactions depending on the

charge density of the atoms involved, their distance and the dielectric constant (189).

Electrostatic changes on the binding surface of proteins appear evident in the case of

RBD-ACE2 molecular recognition between SARS-CoV-2 variants (190) where mutations on
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key polar residues responsible for molecular recognition are proposed to change the

electrostatic interactions involved in the binding pathway (191). It is important to notice that

charge density, electric moment dipole and interatomic distances should be treated as

dynamic values that change with respect to time rather than static properties attached to a

point.

Figure 14 | Protonation and ionization mechanisms. Three main mechanisms are behind

changes in the protonation state of an ionizable group in receptor protein upon ligand

binding. a): desolvation of the group upon binding of the ligand, b): direct electrostatic

interaction with the ligand, c): structural re-arrangements in the receptor protein caused by

the binding (adapted from (186)).

Hydrogen bonds play a major role in many biological processes determining the

infrastructural cohesion of proteins (192,193) or active site catalysis (194). As such, they are

a key element in drug design (195). Hydrogen bonds usually involve atoms with

electronegativity higher than hydrogen, similar to water (196). Hydrogen bonds, however,

can occur in heterogeneous protein-protein interface systems, protein-ligand biophase or in

correspondence with water-exposed sites of the protein (197). The contribution of the

hydrogen bonds to energy stabilisation varies depending on the nature of the hydrogen bond

donor or acceptor the distance and angle at which the atoms are positioned, and the atomic

species involved (198).
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It appears to be a universal relationship between hydrogen bond length and the

difference in proton affinity of the hydrogen bond donor and acceptor and the energy

contribution seems to depend on differential interactions of the solvent or surroundings

between the free and hydrogen-bound states (199).

These considerations highlight the crucial role of hydrogen bonding in complex

molecular systems, especially regarding the abundance, and distribution of this type of

interaction and the importance of water molecules in biological systems.

2.4 The role of water in protein-ligand interaction

Water has a crucial role in the binding mechanism, as it acts as a ligand-protein

bridge. We distinguish between "bulk water" and "biological water" according to its proximity

to either other waters or biological molecules (197). Water molecules in biomolecular

complexes are enthalpically more favourable than bulk solvent interactions with buried water

molecules having longer residence times in protein structures (200) due to the contribution of

nearby hydrophilic residues. It has been suggested that the presence of water molecules

close to an active site interface positively contributes to the free energy of interaction with an

estimated free energy change of -7.0 kJ/ mol (201,202). It follows that the presence of

“biological water” could be used for a water-driven drug design, by using water as a

positional marker for hydrogen bond donor or acceptor ligand extension (203). A variety of

MD-based techniques and tools are available to identify the position of coordinating water in

proteins, as well as tools able to quantify the energetic contribution produced by water

(204–206).
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3 Computer-Aided Drug Design: Modern Tools in Drug Discovery

The drug discovery process is hampered by a variety of obstacles: from the cost of

synthesis to in vivo poor efficacy, stability, and safety of the compounds. As such, scrupulous

attention must be given to the pharmacokinetics properties: absorption, distribution,

metabolism, excretion, and toxicity (ADMET) to minimise complications at a later stage. Due

to all these challenges, the number of drugs approved per financial investment has

drastically diminished with a cost/benefit ratio that has increased in the last two decades.

Generally, less than 10% of drugs that pass Phase I clinical trials obtain the Food and Drug

Administration (FDA) approval for the intended therapeutic indication, including antibodies

and natural products (207,207–209).

To overcome the serendipity of drug discovery (e.g. Sildenafil (210)) and save

consistent amounts of time and resources cheminformatics methods can be deployed (209).

Despite being far from perfect, many computational approaches were pivotal in the

development of new drugs (211). The wide set of computational pharmacology techniques

and software implemented falls under the general classification of computer-aided drug

design (CADD) (212). An overview of CADD approaches can be seen in Table 4.

Strategies focused on ligands fall under the ligand-based drug design (LBDD), while

the use of receptor’s structural insights is categorized as structure-based drug design

(SBDD). Specifically, SBDD is suited for target-based ligand optimisation strategies, which

include the evaluation of binding pockets (213). Additionally, recent advancements in

genomics, including the human genome project, (218) proteomics and structural information

elevated the importance of SBDD in drug discovery (219). Since the early advancements in

X-ray crystallography (161,220,221), nuclear magnetic resonance (NMR) (222),

cryo-electron microscopy (cryo-EM) (223), and artificial intelligence (224) an increasing

number of biological structures have been detailed to the atomic level. Knowledge of ternary

and quaternary structures aided the pharmacological investigation of the protein-target

interactions, contributing to solving specific selectivity or potency issues (225).

An important aspect of CADD is the definition of scoring functions and metrics. Such

descriptors are based on mathematical models, such as molecular force fields, or quantum

chemical parameters (214) used to extrapolate qualitative and quantitative data. Dar et al

(215) defined scoring functions as “the most approximate mathematical methods used in

computational drug designing for the prediction of the strength of the non-covalent

interaction/binding affinity between two molecules. [...] most frequently, one molecule is a

ligand and the other being the biological target such as a protein receptor “ (215). CADD

tools are not mutually exclusive, and it is generally a good practice to consider each strategy

as a part of a broader validating process.
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Table 4. A brief overview of molecular approaches and techniques in CADD

CADD Method Description Criticalities

Structure-Based

Drug Design

(SBDD)

Relies on knowledge of the

cryo-EM, X-ray crystallography

or NMR-derived 3D structure of

a target

● Crystallographic artefacts

● Poor structure resolution

Ligand-Based

Drug Design

(LBDD)

Focuses on the geometric

space or the atomic properties

of a series of ligands, applying

combinatorial techniques or 3D

structure approaches

● May not consider multiple target

interactions

● Low interest in target structure

● High risk of taking into

consideration unsafe structures

Pharmacophore

Based Drug

Design (PBDD)

A specific aspect of LBDD

where the attention is focussed

on the biologically active moiety

of a given ligand, exploring

through combinatorial

techniques or bioisosteres

● Limited chemical space explored

● Risk of inert or toxic compound

● Molecules might be difficult to

synthesise

Fragment-Based

Drug Design

(FBDD)

An SBDD approach that starts

from low-weight (< 300 kDa)

molecules and builds the ligand

structure with an additive

approach to identify possible

leads

● A delicate balance between

efficacy/complexity and synthesis

issues

● Built models might behave

differently when combined

Generally, a holistic approach that joins SBDD and LBDD might be better suited for a

comprehensive perspective on target structural interaction, binding energy evaluation, and

the prediction of structures’ toxicity and potency when investigating libraries of compounds

(216,217). With the increased computational power, the integration of informatics,

combinatorial chemistry and SBDD became a consolidated method to screen libraries of

compounds and accelerate the drug discovery process (226).
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3.1 Atomic Forces and Properties: From the Quantum Realm to Force Fields

“How do molecules form?” is still one of the most intriguing and complex questions in

chemistry and physics. The quantum mechanical (QM) postulations (227) of molecular

geometries and the properties associated with their energy level were established in the

early twentieth century (181,228–230). The formulations that constitute the core of this

project’s methods derive from the approximation of the QM representation of atoms and

molecules (231,232). Although the treatise of the QM complexity is beyond the scope of this

project, I will present a brief highlight of the QM principles from which the force fields

originate.

From a QM perspective, a molecule can be described as a multi-particle system

whose properties are the result of electronic and nuclear interactions. The resulting

electron-electron and electron-nuclei interaction energies define the geometry and energy of

a particle system and can be represented as the linear combination of atomic orbitals

(LCAO). Atomic orbitals are conceptualised as wavefunctions, which are a mathematical

description of the quantum state of a system that corresponds to the probability amplitude of

a particle to be found in a region of space (233).

In 1924, Louis de Broglie proposed the particle-wave duality, and this idea was later

experimentally confirmed through the double-slit experiment. While Max Born and Werner

Heisenberg developed matrix mechanics, Erwin Schrödinger postulated the equivalent

mathematical model which used wave functions to describe the behaviour of particles (234).

The intuition of Schrödinger’s equation established the fundamental postulate of quantum

mechanics where the solutions of the equation represent the state of a particle in an isolated

system in a time-dependent manner. As indicated by the variational principle postulation, the

Hamiltonian operator acting on a wavefunction describes the upper limit of the ground state

energy (the eigenvalue) (235) of the kinetic and potential energy (equations 10 and 11) which

represents an overestimation of the energy of the system.

(10)𝐻 |ϕ≻ =  ε|ϕ
In the above equation, H is the Hamiltonian acting on a trial function , returning theϕ

eigenvalue that represents the state of that function. Specifically, the Hamiltonian of aε

system

(11)𝐻 =  − ħ
2𝑚

2
∇2 + 𝑉 (𝑟)

considers the kinetic energy (first term) as the second derivative with respect to the

coordinates (the ∇ Laplacian operator) plus the potential energy V as a function of the

position r. The definition of the energy of a system includes the nucleus-nucleus,

nucleus-electron, and electron-electron interactions (Figure 15). Although the contribution of
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the nuclei is not null, it is common practice in quantum mechanics to take into account only

the electronic contribution, due to the minimal impact of nuclei on the state of a system

(according to the Born-Oppenheimer approximation) (230).

Figure 15 | Molecular coordinate system. The particle coordinates’ system takes into

account the internuclear distance |RA – RB| as well as the nuclear-electron distance |ri-RA|,

the electron-electron distance |ri-rj| and the electron-nucleus distance |rj-RA| here

represented on cartesian coordinates. Distances determine both the interaction level and the

degree of interference between each component. The scheme is representative of an

essential model of interaction of a multi-component system. Due to the negligible contribution

of the nuclei due to their mass, their contribution is neglected (adapted from (230)).

The time-dependent Schrödinger differential equation explicit the Hamiltonian and represents

the stationary state of a particle in a potential field V. The energy is explicitly representedε

on the right side of the equation:

(12)− ħ2

2𝑚  𝑑2Ψ

𝑑∇2 + 𝑉 (𝑟, 𝑡)Ψ = 𝑖ℏ 𝑑Ψ
𝑑𝑡

where is ≈ Planck’s constant h over 2 π, m is the mass of the particle (i.e. generally theħ

electron), V (r,t) is the potential energy as a function of position and time, and is the𝑖ℏ 𝑑Ψ
𝑑𝑡

energy associated with that state.
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As previously mentioned, the wave function is a mathematical function thatΨ

describes the probability density of finding a particle at a specific position in time (236). Its

exponential complexity is related to the difficulty of treating the interelectronic repulsion as a

many-body system, which makes it impossible to find mathematically exact solutions,

requiring approximate methods such as the variational principle or the perturbation (230). Ψ

can be expressed as a linear combination of basis functions that can be determined by the

self-consistent field method (SCF) to represent atomic orbitals (237). The combination of

Gaussian-type orbital functions, namely a basis set, is used to conveniently describe the

wave function. Ideally, the use of larger basis sets increases the accuracy of the energy

estimation in exchange for additional computational costs. The plethora of basis sets and

theoretical approaches available (230) require a rational decision between accuracy, speed

and suitability for the considered chemical system (238–240).

3.2 Molecular Mechanics’ Force Field

Molecular force fields (FFs) are a simplified representation that approximates the

QM-derived geometries and energies of a molecule to a lower level of theory. The additive

linear terms (239) of the FF formulation represent an approximation of the QM potential

energy surfaces (241) to the molecular mechanics (MM) potential energy equation. In MM,

the contribution of the electronic energy is simplified by the attribution of a formal charge

defined by Coulomb’s law, while the nuclei are represented as points in space with no

correlating effect on the surrounding electron cloud. The electronic cloud represented by the

wave function is replaced by a uniform distribution and a distance-dependent potential (242).

The rovibrational contribution that characterises the vibrational spectra is substituted by the

angle bending and the torsional excursion ranges (243). Although this method is convenient,

it leaves out important information on the electronic structure (electron shell contributions,

polarisation phenomena, induced dipole moment, as well as the ability to represent bond

breaking and formation etc) representing a compromise between accuracy and calculation

speed.

In this regard, force field implementation strikes a balance between the rigour of QM

calculation and the increased, deemed necessary when tackling large systems with a

conspicuous number of atoms. In such scenarios, unfortunately, the full QM calculation

would be computationally demanding. Furthermore, MM force fields can be easily adjusted to

experimental observations, becoming an asset for modern computational drug discovery.

Different force fields such as the Assisted Model Building with Energy Refinement

(AMBER), Optimized Potentials for Liquid Simulations (OPLS), and the Chemistry at Harvard

Macromolecular Mechanics (CHARMM) adopt different strategies for QM-experimental
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parameter fitting overall showing a similar response for protein, nucleic adics, membrane or

ligand (245). The translation of QM data to MM force field terms generates transferable

parameters across different molecules (Figure 16).

Figure 16 | Overview of the force field parameters. Visual representation of the additive

members that constitute the forces driving the motion of atoms in MD. The non-bonded

short-range attractive and repulsive forces are described conveniently by LJ formalism

(adapted from (244)).

For the CHARMM force field (245), largely used in this project, numerous studies

(246–248) experimentally corrected the FF parameters for nucleic acids, proteins, and

membranes with the addition of additional correction terms. The following equations

describe CHARMM’s general force field which includes the aforementioned correction terms

(249). The total potential energy of a molecule Vr can be divided into internal Vi and external

Ve additive contributions such that

𝑉
𝑟

= 𝑉
𝑖

+ 𝑉
𝑒

where
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𝑉
𝑖

=
𝑏𝑜𝑛𝑑𝑠

∑ 𝐾
𝑏
 (𝑏 − 𝑏

0
)2 +

𝑎𝑛𝑔𝑙𝑒𝑠
∑ 𝐾

Θ
 (Θ − Θ

0
)2 +

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠
∑ 𝐾

χ
[ (1 + 𝑐𝑜𝑠 (𝑛χ − σ)]

(13)+
𝑖𝑚𝑝𝑟 𝑑𝑖ℎ𝑒

∑ 𝐾
φ

 (φ −  φ
0
)2 +

𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦
∑ 𝐾

𝑈𝐵
 (𝑟

1,3 
− 𝑟

1,3,0
)2 +  𝐶𝑀𝐴𝑃

defines the pairwise internal energy described by bonds, angles and dihedrals between

connected atoms and

(14)𝑉
𝑒

=
𝑛𝑏 𝑎𝑡𝑜𝑚 𝑝𝑎𝑖𝑟𝑠

∑  (ε
𝑖𝑗

[ (
𝑅

𝑚𝑖𝑛, 𝑖𝑗

𝑟
𝑖𝑗

)12 −  (
𝑅

𝑚𝑖𝑛, 𝑖𝑗

𝑟
𝑖𝑗

)6] +  
𝑞

𝑖
𝑞

𝑗

ε
𝐷

𝑟
𝑖𝑗

)

describes the nonbonded potential energy between atom pairs.

Equation 13 describes the types of bonded interactions that determine the geometry of a

molecule in which each term is paired with an equilibrium value that minimises its potential

energy. In the first term that models the vibration between two covalently bound atoms, the

stretching of the bonds is approximated by a harmonic spring function. This harmonic spring

describes the oscillation around an equilibrium bond length b0 with bond constant Kb. The

second term approximates the angle bending contributions to the potential energy and is

defined for each triplet of atoms. It is also approximated by a harmonic function describing

oscillation about an equilibrium angle θ0 with force constant Kθ. The third term models the

torsional energy between four consecutive atoms. The torsion angle is the angle of rotationχ

with respect to two middle covalently bound atoms. It is calculated as the sum of cosine

functions with n multiplicities where n is the number of multiple minima generated in a 360°

rotation. The fourth term represents the out-of-plane contribution to the potential energy,

usually in the form of an improper dihedral, where the potential energy is harmonic as a

function of the out-of-plane angle .φ

The empirical validation of force field potential is a non-trivial effort that struggles with

compatibility issues between experimental and QM data. In CHARMM, such adjustments

required additional correction parameters such as a 2D dihedral energy correction map (255)

(CMAP) to match high-level QM data fitting and the Urey-Bradley-Shimanouchi term(256), to

match the spectroscopic anharmonic vibrational effect in proteins.

The first term of the sum in Equation 14 describes the van der Waals (vdW)

interactions (250) using a 6-12 Lennard-Jones potential (LJ) term (251) (Figure 17) while the

second term expresses the pairwise Coulomb interaction (252). Specifically, the first term

inside the LJ member represents the exchange repulsion between atoms associated with the

overlap of the electron clouds of the individual atoms (i.e., the Pauli exclusion principle)

considering into account the difference between attractive forces (dipole-dipole,

dipole-induced dipole, and London interactions) and repulsive forces. Although the LJ
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potential was designed to describe the behaviour of noble gases (253) it is still widely used in

biological systems.

Figure 17 | Coulomb repulsion and vdW interactions. A) Coulomb interaction expressed

with respect to the distance. B) Implementation of the LJ potential to calculate the energy of

interaction expressed in electron volt (eV). The summative effect of Coulomb and LJ forces

is shown in green and identifies the minimum potential well at ≃ 2.3 Å

The strong distance dependence of the repulsion is indicated by the 12th power of the

first term of Equation 14, representing London dispersion interactions. The dipole–induced

dipole interactions, instead, are the second 6th power term, which is negative, indicating its

attractive nature as per convention. The epsilon εij indicates the degree of magnitude of

London’s dispersion between atoms i, j and influences the depth of the curve; Rmin,ij is the

minimum threshold distance at which the atoms i and j “feel” the minimum LJ interaction

between them. Rmin is related to the vdW radius of an atom intended as half the minimum

distance between two nuclei. εi and Rmin,ij parameters are specific for individual atom types.

For multiple atomic species (where, for instance, sp2 or sp3 carbons coexist in the same

molecule) the combining rules are either the arithmetic or the geometric mean [i.e., εij

(εiεj)1/2] for a simpler means of estimating the parameters (241). The simplification in atomic

charges (qi qj) in the second term of Equation 14 is a computationally convenient Coulombic

formalism (254) where ri rj is the distance between the atom i and j and εD is the dielectric

constant.
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4 Fundamentals of Molecular Docking and Dynamics

Molecular docking and all-atoms molecular dynamics (MD) simulations are widely

adopted SBDD techniques (257,258). In molecular docking which predicts the binding modes

and the affinity between a receptor and a ligand, the conformations of the ligand are explored

by a search algorithm (259). The complementarity between the receptor and the generated

docking poses is determined by a scoring function and ranked. Water molecules (260) or

ions (261) can be considered in the calculations should they play a role in the receptor-ligand

interaction. Interactions between the putative ligand and the target are calculated statically:

receptor-ligand interactions do not induce any dynamic change in the system and the

receptor is a rigid surface against which the ligand is tested. This limit inspired the

exploration of flexible molecular docking protocols which treated a portion of the receptor as

a flexible structure (262), allowing for ligand-target-induced adjustments. However, the

solvation effect on the protein and the dynamic ligand-receptor interplay are neglected.

MD overcome the limitations of the docking approach by simulating the trajectory of

the particles of a system over time (Section 4.2). While molecular docking portrays a

snapshot of the ligand-receptor conformation, MD samples both receptor and ligand

conformational changes as the result of the reciprocal interaction in continuum with the

explicit solvent (192,263). The interplay between the solute and solvent reproduces solvation

and hydrophobic effects and provides structural insights into the driving mechanism of

binding selectivity (264,265) or kinetics (244). Furthermore, the versatility of MD allows the

development of new approaches that can either speed up the sampling of rare kinetic events

or provide additional information on a system’s properties. The following sections outline

docking and MD methods deployed in this project.

4.1 Molecular Docking

Molecular docking predicts the noncovalent binding between a receptor and a ligand

and measures its binding affinity. As for all SBDD approaches, molecular docking requires

the structure of the target which can be obtained through X-ray, cryo-electron microscopy

(cryo-EM), and nuclear magnetic resonance (NMR). More recently, the neural-network-based

model AlphaFold (224) and its advancement AlphaFold 2 (266,267) have predicted the

structure of proteins in remarkable agreement with experimental structures. In molecular

docking, a search algorithm evaluates ligands’ possible conformations and rototranslational

positionings allowed by a semiempirical force field’s parameters (268). For each conformer, a

score is calculated (269) by a function which represents the stability of a ligand within the

target site.
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As a good compromise between accuracy and speed, I adopted AutoDock Vina

(270,271) and its enhanced version, QuickVina (Qvina) (272) as the main docking programs.

The setup and workflow for a general molecular docking analysis are shown in Figure 18.

Figure 18 | Molecular Docking flow chart. Molecular docking requires a receptor and a

ligand. The receptor’s structure can be retrieved from repositories and might require

additional steps before molecular docking like modelling missing residues or atoms and

assigning protonation states to tritatable side chains Ligands need to be prepared as well

and protonated accordingly. Water and cofactors should be carefully considered and kept

should they participate in molecular recognition. Molecular docking requires that both

receptor and ligand files are prepared and formatted to be used for the conformational

search algorithm. Ultimately, a set of poses is generated, ranked and outputted.

In both Vina and QVina, the binding energy is calculated as the difference between

the energies of the ligand and the protein in their unbound and bound states:

(15)Δ𝐺 =  (𝑉𝐿𝑏−𝐿𝑏 −  𝑉𝐿𝑢−𝐿𝑢) +  (𝑉𝑅𝑏−𝑅𝑏 −  𝑉𝑅𝑢−𝑅𝑢) +  (𝑉𝑅𝑏−𝐿𝑏 −  𝑉𝑅𝑢−𝐿𝑢 +  Δ𝑆
𝑐𝑜𝑛𝑓

) 

where V is the potential energy, L refers to the ligand and R to the receptor. Lb and Lu refer

to the ligand in the bound and unbound state respectively and Rb and Ru to the receptor in
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its bound and unbound states. The computation of the potential energy differences between

the bound and unbound states determines the ligand’s binding disposition toward the

selected binding site, where the estimation of the conformational entropic loss is derived∆𝑆

from the summation of all the torsional degrees of freedom of the molecule. The potential

energy terms are evaluated with a pair-wise forcefield:

+𝑉 =  𝑊
𝑣𝑑𝑤

𝑖,𝑗
∑  (

𝐴
𝑖𝑗

𝑟
𝑖𝑗

12 −
𝐵

𝑖𝑗

𝑟
𝑖𝑗

6 ) + 𝑊
ℎ𝑏𝑜𝑢𝑛𝑑

𝑖,𝑗
∑ 𝐸 (𝑡) (

𝐶
𝑖𝑗

𝑟
𝑖𝑗

12 −
𝐷

𝑖𝑗

𝑟
𝑖𝑗

10 )

(16)+ 𝑊
𝑒𝑙

𝑖,𝑗
∑

𝑞
𝑖
𝑞

𝑗

ε (𝑟
𝑖𝑗

)𝑟
𝑖𝑗

+ 𝑊
𝑠𝑜𝑙

𝑖,𝑗
∑  (𝑆

𝑖
𝑉

𝑗
+ 𝑆

𝑗
𝑉

𝑖
)𝑒

 (
−𝑟

𝑖𝑗
2

2σ2 )
 

where weights W are implemented to adjust the van der Waals, H-bond, electrostatic, and

solvation terms to empirical values. A and B are the Lennard-Jones parameters extrapolated

from the AMBER force field while C and D are atom-specific parameters adjusted to give a

maximal well depth of -5 kcal/mol at 1.9 Å for O-H and N-H. E (t) is a smoothing directionality

coefficient dependent on the deviation of the angle coefficient t from the H-bonds theoretical

optimal geometry (273). The third term is a Coulomb electrostatic potential. The final term is

a desolvation potential based on the volume (V) occupied by all the atoms surrounding a

given atom, weighted by a solvation parameter (S) and an exponential term based on the

square of the distance (274).

Despite being a widely accepted method, molecular docking’s results, are not

exhaustive: i) they are bound to the semiempirical forcefield that relies on LJ formulas and

weights ii) do not directly consider the solvation effects of explicit water molecules iii) rely on

target rigid structures that do not represent well the flexible nature of biological

macromolecules. They are, however, a consolidated and relevant starting point for MD

investigations (275).

4.2 A Classical Approach to Particles

In 1828 Robert Brown’s observations of the movement of dust and pollen particles on

a water droplet brought to attention the dynamic behaviour of particles in motion. Later in

1905, Albert Einstein explained Brownian’s motion principles as the random thermal

fluctuations that cause the dynamic movement of the particles in a system. The stochastic

effect of these motions is due to the continuous collisions of the solvent’s atoms with the

solute, which follows the Gaussian distribution law (276,277). The summative contribution of

these collisions varies the velocities and directions of the particles, causing their deflection or
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redirection which determines a trajectory over time. Brownian motion’s principles led to the

development of mathematical techniques for the investigation of probabilistic effects

(278,279) and led to the application of mathematical models and concepts deployed in MD to

simulate multi-particle systems.

MD methods (Section 4.3) are based on FFs to evaluate the potential energy of

molecules. Specifically, MD aims to replicate the thermodynamic fluctuation observed in

nature in multiatomic systems and to determine the trajectories and velocities of those

particles over time course (280).

Knowing the atomic forces, initial coordinates, and the masses of every atom of a

system, it is possible to integrate the position changes with respect to time and determine the

atoms’ trajectory. Hence, it is possible to investigate biological systems using the classical

mechanic's Newtonian equation of motion. According to Newton’s second law and its time

derivative:

(17)𝐹
𝑖
 =  𝑚

𝑖
𝑎

𝑖
= 𝑚

𝑖
δ2𝑟

δ𝑡2

defines F (i) as the force acting on the “i” th particle, m (i) the mass of particle “i”, and a (i) its

acceleration represented as the second derivative of the particle position r with respect to

time. The force is determined by the gradient of the potential energy function, which is also a

function of all the atomic coordinates r:

(18)𝐹
𝑖

=   ∇
𝑖
𝑈 (𝑟)

The force formulation of the second law can be rewritten in terms of the Hamiltonian form

where:

(19)𝐻 =   δ𝐻 (𝑟,𝑝)
δ𝑝

which indicates the variation of the total energy depending on the momentum and the

position of the individual components of the system. Knowing the positions r and the

momenta p of each particle, the calculation of the force and displacement can be derived at

any time interval using a finite-difference approach to solve the differential equation. By

approaching a discrete Taylor series expansion, it is possible to estimate the positions at

each given timestep variation t.δ

𝑟 (𝑡 + Δ𝑡) =   𝑟 (𝑡) +  𝑟 (𝑡)Δ𝑡 1
2! 𝑎 (𝑡)Δ𝑡2 +

… (20)+ 𝑟 (𝑡)Δ𝑡 1
3! 𝑎 (𝑡)∆3 + 𝑟 (𝑡)Δ𝑡 1

𝑛! 𝑎 (𝑡)Δ𝑡𝑛
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The integration is calculated step by step and in its discrete form can be rewritten indicating

the position occupied at step n (at time t) and r (n+1) and the next step indicated with “n+1”

(at time t Δt) as:

(21)𝑟
𝑛+1

= 𝑟
𝑛

+ 𝑣
𝑛
Δ𝑡 + 1

2!  (
𝐹

𝑛

𝑚 ) ∆𝑡2 + 𝑂 (∆𝑡3)

However, due to the truncation of the series expansion (usually at the second term), this

algorithm carries an error, that is largely dependent on the last truncation term O ( ).∆𝑡3

There are multiple mathematical approaches to minimise the truncation error in MD

(281) with different advantages and disadvantages. One of the most used is Verlet’s

integrator algorithm based on the summation of the back and forward series expansion such

that:

(22)𝑟
𝑛−1

= 𝑟
𝑛

+ 𝑣
𝑛
Δ𝑡 + 1

2!  (
𝐹

𝑛

𝑚 ) ∆𝑡2 − 𝑂 (∆𝑡3)

The summation of the two series (eq 22 and eq 23) leads to the cancellation of the O ( )∆𝑡3

(as all the odd terms) and the square of the even terms of the series (282).
The advantages of the velocity Verlet algorithm lie in its numerical stability,

reversibility, and accuracy with a minimal cost in overhead computation. Once the evolution

of all the positions of the atoms present in the system is determined, it is possible to

calculate the interatomic forces between the components of the system and determine

whether attractive or repulsive interactions occur. In MD simulations, the initial velocities are

assigned according to a low-temperature Boltzmann distribution (283) necessary to start the

numerical integration of the equation of motion.

4.3 Molecular Dynamics

MD's popularity increased over the years since its first deployment (284,285) and it is

now a powerful and widely used tool in chemistry, biology, physics, and materials science

(286). MD is capable of sampling transition pathways or different local minima of the phase

space (287), providing insights into ligand-receptor stabilisation, where the bound complex

corresponds to the global minimum of the energy landscape (212,214).

Recently, thanks to the advancements in the graphic processing unit (GPU) and

computational power, longer timescales are becoming more common in MD investigations

(132). While the protein-ligand association can be simulated using classic MD approaches,

the dissociation pathway requires specific enhanced sampling methods (288,289) to

overcome the energy barrier associated with the intermolecular complex unbinding (290).

46



As previously stated, an MD simulation samples the phase space of a system by

numerically integrating the equation of motion of the atoms with respect to time through the

forces that are acting upon them (291). There are different treatises to define the equation of

motion such as Newton’s classical expression (292,293), the Brownian equation of motion

(294), Langevin’s stochastic equation (295,296), or their derivation extrapolated from a

combination of quantum and classical mechanics terms (QM/MM) (297) up to a complete

ab-initio formulation (298,299). In this project, we refer to Newton’s treatise for its fast

numerical integration and the extrapolation of qualitative and quantitative thermodynamic

information.

In a classical system, the Hamiltonian (H) is a function dependent on the coordinates

r and momenta p which are used to describe the system’s energy. The atoms’ positions are

used to calculate the forces acting between them according to the force field parameters.

The Hamiltonian is equal to the total energy:

(23)𝐻 = 𝐻 (𝑟, 𝑝) = 𝐾 (𝑝) + 𝑈 (𝑟) =
𝑖

∑  
𝑝

𝑖

2𝑚
𝑖

+ 𝑈 (𝑟)

where K (p) indicates the kinetic energy and U (r) is the potential energy. In this scenario, the

phase space can be described by the relationship between its energy intended as the sum of

the angular momenta of each particle pi over 2mi, the potential energy U dependent on the

position of each particle r (282). An MD system where the number of particles (N) volume (V)

and energy (E) are constant (NVE) is called a microcanonical ensemble. The microcanonical

ensemble undergoes adiabatic processes where no thermal energy is exchanged outside the

system. It follows that in case of structural changes or prolonged collisions between the

atoms, the instantaneous kinetic energy is redistributed throughout the system, causing a

temperature drift (300). Energy drifts can derive also from the accumulation of numerical

errors (301), leading to an excessive increment in temperature (T) which might result in

non-Newtonian dynamics or unphysical results. However, experimental systems are not

generally held at constant V, but they are performed under constant pressure (P) or T. While

NVE might be appropriate to simulate gas-phase systems (302), variations in T and P are

more representative of the thermodynamic exchanges occurring in nature or biological

experiments. It is, therefore, preferable to perform such simulations in other ensembles, such

as the canonical (NVT) or the isothermal-isobaric (NPT). To correct the temperature or

pressure drifts, the system is coupled with a thermostat or a barostat which act on the kinetic

energy of the system or by scaling the location of the particles with respect to the simulation

cell size respectively (303). Many barostats and thermostat methods were developed (304)

with the Lanvegin thermostat and Monte Carlo barostat (305) being the ones used in this

project by the ACEMD engine (306).
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Controlling T might be desirable to determine conformational changes at a given

temperature or to simulate an annealing protocol where the variation of T allows for a

broader phase-space exploration as T is related to the total kinetic energy (307). For T

control, Berendsen (308) proposed coupling the system to an external bath at a fixed T to

adjust the momenta of the particles by adding or subtracting heat from the system. This

scaling is obtained by applying dissipative Langevin forces in the equations of motion as

(24)𝑎
𝑖
 (𝑡) =  

𝐹
𝑖
 (𝑇)

𝑚
𝑖

+  
𝑝

𝑖
 (𝑡)

𝑚
𝑖
τ [

𝑇
0

𝑇 (𝑡) − 1]

where T (t) is the temperature at the timestep t and is a scaling factor that controls theτ

impact on the momentum of the i-th particle.

In an isobaric ensemble, at constant pressure P, the volume V needs to accommodate the

pressure by coupling our MD system to a barostat (309) where the volume V is adjusted to

maintain the desired P. From the ideal gas statistical mechanics, the pressure P is described

as

(25)𝑃 (𝑡) =  1
𝑉 (𝑡) [𝑁𝑘

𝑏
𝑇 (𝑡) +  1

3
𝑖

𝑁

∑
𝑗>1

𝑁

∑ 𝐹
𝑖𝑗

𝑟
𝑖𝑗

]

where V is the volume at the timestep t, N is the number of particles, Kb is the Boltzmann’s

constant and Fij rij are the forces and the distances between particles. In ACEMD’s Monte

Carlo barostat, a change in volume is estimated after a time interval when forces are

calculated. Iterative volume changes are generated and are kept should they fall within a

statistical Monte Carlo acceptance threshold of 40-50% (310). The system’s box length and

the coordinates of each molecule are then rescaled according to:

and (26)𝑙'
𝑖

= 𝑙
𝑖

3 𝑉'
𝑉 𝑟'

𝑖
=  (𝑟

𝑖
− 𝑐

𝑖
) 3 𝑉'

𝑉  +  𝐶
𝑖

where i= 1, 2, 3, V’= V + ΔV and Ci are the coordinates of the centre of the periodic box

(305). Careful consideration of both thermostat and barostat parameters needs to be

dedicated to ensuring the numerical stability of the system, as well as its consistency with

biochemical experiments.

To extrapolate statistically representative averages of observable variables of an

ensemble during an MD simulation, one should know the probability ( ) of finding thatρ
system configuration at each point of the phase (311) space by calculating the Boltzmann

distribution as follows:

ρ (𝑟,  𝑝) =  − 𝑒𝑥𝑝[−𝐻 (𝑟,𝑝)/𝐾𝑏𝑇]
𝑍

(27)
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where H is the Hamiltonian and Z is the partition function that represents the number of

thermally accessible states of a system.

Specifically, the “canonical” NVT partition function Z elegantly describes all the possible

states of a system as:

(28)𝑍 (𝑁, 𝑉, 𝑇) =  1

𝑁!ℎ3𝑁 ∫ 𝑒−β𝐻 (𝑟,𝑝) 𝑑3𝑁𝑝 𝑑3𝑁𝑞

where h is Plank’s constant and the function is integrated over the whole phase space for

each particle of the system. The ergodic principle assumes that in a long enough time, a

system will explore all its possible microstates (307), and that is it therefore, possible, once

the probability distribution is known, to calculate the phase space averages of any dynamic

variable at any coordinates and momenta. In reality, very long computational simulations are

still uncommon, and this strategy would be computationally expensive, requiring also a very

large number of MD replicas.

4.4 Enhanced and Adaptive MD Sampling

MD is a powerful tool for studying qualitative and quantitative changes in biological

systems. However, as already stated in Chapter 2, biological systems are characterized by

numerous minima that sit at different positions in the PES. These many local minima are

often separated by high-energy barriers (312), which could result in a simulation being stuck

inside a saddle point of the PES. In the case of large conformational changes or the

dissociation of intermolecular complexes, classic MD approaches can be time-consuming

and carry the risk of falling into one of the PES’s saddle points (158,313). Overcoming the

energetic barriers or avoiding the oversampling of metastable states requires, therefore, new

approaches to improve the exploration of the PES. Such improvement can be achieved by

acting on the simulated properties of the system to favour the sampling of statistically rare

events. These techniques are generally distinguished into two groups: enhanced sampling

and adaptive sampling.

Adaptive sampling techniques are characterized by the preservation of the

thermodynamic ensemble where the sampling enhancement is achieved by either restarting

MD trajectories at different conditions or particularly chosen seeds (314). Enhanced

sampling techniques accelerate the exploration of the system by modifying the PES through

the addition of a force or a bias potential to the Hamiltonian of the systems (315). This bias

acts on the valleys of the PES, decreasing the energy barrier needed to sample transitions.

This allows for a gradual energy increase that pushes the system into adjacent accessible

states over the PES. A brief non-exhaustive list of methods that alter the potential energy

function includes: i) selectively scaled MD (316), where specific energy terms of the potential
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energy function are gradually altered to promote dissociative events during simulations, ii)

accelerated MD (317) where the potential energy function is varied according to reaching a

threshold, iii) temperature replica exchange (T-REMD) (318) where the states of parallel

simulations performed at different temperatures are exchanged according to a statistical

criterion iv) Hamiltonian replica exchange MD (H-REMD) where the various replicas are

simulated at constant or variable temperatures, but with different parameter sets for the

equations of motion (319).

Enhanced methods like metadynamics (320) (321) (322) require order parameters

upon which the energetic bias is applied. The force field as well as atomic coordinates can

be combined to define the order parameters. Hence, the order parameter is the

mathematical combination of multiple degrees of freedom such as the angles formed by

non-bonded atoms or distances between groups of atoms or other experimentally derived

variables (323) that describe a specific state of a system. The behaviour of an MD simulation

can be altered by influencing one or more order parameters named collective variables

(CVs) through the addition of a scalar value (324) to the potential energy of that portion of

the system. With the term CVs, we refer to the projection of the numerous degrees of

freedom of a simulated system over usually just one to three metrics to identify and separate

different macrostates (i.e. deep local energy minima). Throughout the simulation, an energy

bias can be added to these CVs to increase the probability of observing the desired transition

(Figure 19).
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Figure 19 | Energy bias applied to a collective variable. A schematic representation of an

incremental energy bias (yellow) is used to overcome the transitional energy barrier in the

direction indicated by the arrow. This bias is necessary to explore adjacent minima in the

PES and can also be gradually tuned for a natural system relaxation to the new saddle point.

Generally, the definition of the order parameters to describe binding or unbinding

events or structural changes is not trivial. Conformational changes, for instance, might

require specific sequences of structural rearrangement or simultaneous events that might

require a trial-and-error approach. Additionally, the height, the width, and the time interval at

which the Gaussian bias is introduced influence the behaviour of the system. Ideally, the

height of the Gaussian should be considerably smaller than the highest energy barrier to

prevent overfitting or unwanted unfolding. The bell shape, as well, should be small enough to

maintain a sufficient level of resolution inside multiple adjacent saddles: a broad Gaussian

potential might cover one or more adjacent minima, hiding meaningful transitory states that

might be connected through close smaller paths. The time interval plays also a crucial role in

our sampling since i) the error introduced during metadynamics is inversely proportional to

the square root of the time deposition (325) ii) the system will need adequate time to explore

the new set point iii) a frequent energy bias might lead to the instability of the system. It

follows that an adequately large time interval should be set.

The issues related to the overfilling effect of metadynamics led to the development of

well-tempered metadynamics (WTmetaD) which sets a threshold parameter to automatically

smooth the energy addition based on the previous history, limiting the PES exploration and

minimising the bias added (322).

4.5 Supervised and Multiple Walker Supervised Molecular Dynamics (mwSuMD)

Although enhanced methods are a viable aid to observe conformational shifts or to

simulate binding or unbinding pathways, they might force a system to the desired state,

rather than observing a spontaneous behaviour. In this scenario, unbiased adaptive methods

could still offer an alternative to the addition of external forces to the system. Supervised

molecular dynamics (326,327) (SuMD) is a powerful adaptive MD technique for studying

ligand-receptor binding and unbinding pathways (328). SuMD drastically reduces the

timescale necessary to sample intermolecular complex formations and dissociations to less

than hundreds of nanoseconds timescale. A tabu–like algorithm (Figure 20) is designed to

monitor the distance between the centre of masses (COM) of the ligand and a selected

binding site during short classic MD simulations. Each simulation represents a step from

which the distances of the two COMs are collected. The distances are used to define a linear
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function with angular coefficient m for two consecutive steps. If the distance between two

steps decreases and the angular coefficient m of the regression line is negative (in case of

an unbinding) then a subsequent simulation step is run. Otherwise, another unbiased

simulation is restarted from the previous step.

Figure 20 | SuMD tabu-like algorithm. The distance vector between two selections (

(dcmL-R) is collected at regular intervals. The result is then interpolated to describe a linear

regression curve where the angular coefficient m is used as a discriminant. In the case of

binding, if the coefficient m is negative, the unbiased simulation continues with a new short

unbiased MD, otherwise, the simulation will be restarted from the previous step (figure

courtesy of the Molecular Modelling Section - University of Padova).

We developed an enhanced version of SuMD named multiple walker supervised

molecular dynamics (mwSuMD). At its core, mwSuMD operates similarly to SuMD by

supervising one or two metrics of the system. Additionally, we expanded the metrics’ choices

to the positional Root Mean Square Deviation (RMSD) of a selection to measure the

geometric difference from reference coordinates, intermolecular distances for

binding/unbinding monitoring, and the occurrence of molecular contacts between two entities

to investigate molecular interaction patterns. The data are used to observe the evolution of

one or two selections defined by the user in a SuMD-like scheme of

check-continue-else-restart.
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By monitoring these metrics, mwSuMD provides invaluable insights into the binding

and unbinding pathways of interacting molecules. Moreover, paired with free energy

estimation methods such as MMPBSA and MMGBSA (329) it delves into the quantitative and

qualitative aspects of molecular contacts, shedding light on the intricacies of molecular

recognition and binding affinities. The method's ability to discern binding pathways and

conformational dynamics offers a powerful tool for investigating the interactions between

molecules of interest.

With mwSuMD, we unveiled hidden G protein-coupled receptors (GPCRs) structural

transitions (330), provided crucial ligand-receptor binding insights for small molecule design

against HIV’s Nef protein (331) and investigated the unbinding pathway for SARS-CoV-2

Mpro-S-217622, the first oral noncovalent inhibitor (332). Additionally, mwSuMD's strength

lies in its parallel architecture and compatibility with ACEMD, NAMD, GROMACS and

OPENMM engines as well as its user-friendly design.
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6. SARS-CoV-2 Project Publications

The first period of the PhD project was focused on the collection of the available

structural and biological data on SARS-CoV-2 proteins. These data included a set of

available SARS-CoV-2 protein structures alone or in complex with antibodies, either isolated

from convalescent patients and preliminary data on new or repurposed drugs. These data

guided the initial steps of work, with particular attention on the role of heparin and heparan

sulfate as infection modulators and cofactors.

6.1 Molecular Dynamics studies on the SARS-CoV-2 spike protein
I reviewed the available literature to summarise the information on the SARS-CoV-2

S protein for a broader understanding of the state of research concerning drug repurposing,

and computational methods deployed for drug discovery. Since the first stage of the project

revolved around MD, I focused the review on this method applied to SARS-CoV-2 drug

discovery. The published results, as well as the deployed methods, structures, ligands,

antibodies, and proteins analysed, were gathered from publicly available datasets and

publications, unveiling structural details that inspired the subsequent works and resulted in

the publication: “Molecular dynamics studies reveal structural and functional features of the

SARS-CoV-2 spike protein” published on BioEssays, Volume 44, Issue 9,

https://doi.org/10.1002/bies.202200060.

Authors: Ludovico Pipitò, Roxana-Maria Rujan, Christopher A. Reynolds, and Giuseppe

Deganutti

Abstract
The SARS-CoV-2 virus is responsible for the COVID-19 pandemic the world

experienced since 2019. The protein responsible for the first steps of cell invasion, the spike

protein, has probably received the most attention in light of its central role during infection.

Computational approaches are among the tools employed by the scientific community in the

enormous effort to study this new burden. One of these methods, namely molecular

dynamics (MD), has been used to characterize the function of the spike protein at the atomic

level and unveil its structural features from a dynamic perspective. In this review, we focus

on these main findings.
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Introduction
The year 2019 signalled the start of the worldwide outbreak of Coronavirus Disease

(COVID-19) (1–3) from the coronaviridae SARS-CoV-2 virus, which counts around 360

million cases around the world with more than 5.6 million certified deaths (WHO dashboard,

27 January 2022). Coronaviridae is an enveloped positive-stranded, non-segmented RNA

virus with a genome of about 30 Kb (4). Coronaviridae viruses are responsible for

cardiovascular, hepatic, respiratory, gastrointestinal, and neurological diseases, with major

symptoms associated with a hyperbolic expression of proinflammatory signals and cytokines

such as interleukins, interferon-gamma (IFN-γ), interferon-gamma induced protein 10

(IP-10), macrophage inflammatory protein 1A and 1B (MIP-1A, MIP1-B), platelet-derived

growth factor (PDGF), tumour necrosis factor (TNF-α), and vascular endothelial growth factor

(VEGF) (5).

The SARS-CoV-2 infection mechanism depends on the transmembrane spike protein

(S protein, Figure 1a,d) (6,7), a highly conserved structure amongst the coronaviridae family

responsible for extracellular binding and cell membrane fusion (8). It characterizes the shape

of this family of viruses, giving it the “solar” crown aspect (9) they are named after. The

SARS-CoV-2 strain shows a selective affinity for the angiotensin-converting enzyme 2

(ACE2, Figure 1a) receptor, a type 1 transmembrane protein with an external peptidase

domain normally responsible for the conversion of angiotensin hormone into angiotensin II

(10).

The S protein has aroused the interest of medical and pharmaceutical research, to

prevent infection and reduce the burden of clinical intervention. It is a homotrimer class I

fusion protein, with each protomer composed of domain S1 and S2 (in prefusion

conformation, Figure 1a) (11). The S1 structure is responsible for binding ACE2 (Figure

1a-c), before the conformational change in the stalk-like structure (Figure 1a,d) of the S2

subunit (12) and the subsequent membrane fusion after the cleavage of S1 from S2 by the

host transmembrane protease serine 2 (TMPRSS2) (9). The cleavage of the inter-region

S1/S2 (Figure 1a,d) allows for S2 structural conformation changes necessary for membrane

fusion and post-fusion structure adaptation (8). In the S1 ectodomain (Figure 1d), the apical

portion of the S protein, composed of the receptor-binding domain (RBD), the N-terminal

domains (NTDs), and two C-terminal domains (CTDs), folds in a hairpin motif that protects

the prefusion conformation of S2 from the external environment (13). A distinguishing feature

of the SARS-CoV-2 strain is an insertion in the protease S1/S2 cleavage site region, rich in

arginine, which configures a furin recognition site, commonly found in highly virulent

influenza viruses (14).

Several S protein structures have been determined through cryo-electron microscopy

(cryo-EM) and X-ray crystallography (Figure 2) (15). These include the inner S1 and the
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external S2 domains and indicate two different states in the RBD domain, named “up” and

“down” (11,16–18), the former determining an active state (19) favourable to ACE2 binding

(Figure 1a-c). For S1 to bind ACE2 (20), the RBD must undergo a conformational hinge

movement, exposing the hydrophobic region between A570 -T572, F855-N856 at the

interface between RBD and S2 in an “up” conformation state (17,21). The coronaviridae

family has a distinctive morphology characterized by a spherical virion with a diameter of 91

± 11 nm measured at the membrane, on whose surface there are 24 ± 9 S trimers unevenly

distributed with a prevalence of 97% of trimers in "down" conformation (16) at room

temperature. Although cryo-EM studied by Benton et al showed that only 11% of the total

trimeric structures were fully closed, 20% were open state either with one RBD (16%) or two

RBD up (4%) (13). The RBD is responsible for ACE2-specific binding through an ensemble

of 16 well-conserved residues directly interacting with the receptor (22) (Figure 1a-c). Three

different sites (Figure 1c), named according to which part of ACE2 they bind, can be

distinguished. Site 1 (identified by residue Q498, T500, N501, Y505) and Site 3 (N487 and

F486) bind to the α1 helix C (Q24 and T27), while Site 2 (R403, Y453, L455, F456, and

Q493) binds to the centre of the helix (D30, K31, H34, D38) which is slightly bent outwards,

exposing polar amino acids for interaction (23). The RBD is an important target for

preventing or treating the SARS-CoV-2 infection (9,24). A common trait shared among the

coronavirus family is the post-translational N- and O-glycosylation used to mask the S

protein epitopes and escape from immune system recognition (25,26), covering

approximately 40% of the surface protein, especially N343 which seems to hinder antibody

binding. A recent cryo-EM-derived S protein model revealed that 44 out of 66 potential sites

are heavily N-glycosylated in the ectodomain region (Figure 1a) (11).
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Figure 1. The S protein is the first promoter of SARS-CoV-2 internalization. a)

Overall architecture of the complex between S protein (prefusion conformation, cyan) and

ACE2 (violet); glycans on S protein are in van der Waals spheres; the relative positions of

the plasma and viral membranes are reported. b) Magnification of the S1 ectodomain

(glycans removed for clarity); the RBD in the up conformation is responsible for binding

ACE2. c) Magnification of the interface between the RBD and one of the ACE2 monomers;

the interactions can be divided according to the relative position into Sites 1 to 3 (red circles).

d) Fully glycosylated S protein (https://charmm-gui.org/?doc=archive&lib=covid19) with the

S1 and S2 units highlighted; B) The N-terminal domain (NTD), receptor-binding domain

(RBD), C-terminal domain (CTD), S1/S2 cleavage site, fusion peptide (FP), heptad repeat 1

(HR1), heptad repeat 2 (HR2), transmembrane domain (TM ), cytosolic domain (CD) are

reported. Glycans are shown in licorice.
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Figure 2. S protein deposited structures in the protein data bank. a) SARS-CoV-2

protein structures released and ordered according to month and year of publication from the

Protein Data Bank (15) b) S protein structures only, ordered according to resolution.

Molecular dynamics (MD) is a computational technique that simulates the evolution

over time of (bio)molecular structures. It represents a state-of-the-art tool for biophysical

studies and structure-based drug design (23) as it describes the positional changes of the
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atoms of a chemical system that explicitly includes water, ions, and other biological

components such as protein, membrane, nucleic acids (27), allowing the conformational

exploration of biological structures. The evolution over time is simulated by integrating

Newton’s classical equation of motion for each atom of the system. The result of this

many-particle motion is a trajectory, from which it is possible to extrapolate thermodynamic,

kinetics, and physical properties through statistical mechanics models (28). One of the

advantages of MD is to overcome the unnatural rigidity that characterizes X-ray

crystallography and cryo-EM structures, allowing the investigation of possible cryptic binding

pockets, allosteric effects, and structural changes in response to the binding.

In this review, we recapitulate the MD studies that have expanded our knowledge of

the SARS-CoV-2 S protein flexibility and antibody (Ab) recognition and summarise their

contribution to drug repurposing campaigns.

Molecular dynamics simulations uncover the S protein flexibility
Since the first cryo-EM structures of the S protein became available to the scientific

community, it has been possible to investigate the conformational changes and the dynamic

processes involving the S protein through MD simulations. One of the limits of the S protein

structure experimentally determined is the scarcity of structural information about the

post-translational glycosylation, due to the high dependency on the organism used for

protein expression. To address this aspect, Woo and his group proposed a set of complete

and fully glycosylated (Figure 1) S protein models (29), corroborating Wrapp et al.’s structure

of the spike protein glycosylated in 44 out of 66 possible sites in the ectodomain region (11)

including also Watanabe et al. glycans’ specifications (30).

A study by Turonova (18) as cited by Choi and co-workers (31), showed that the S1

domain displays structural compactness, while the stalk is characterized by two flexible

portions, at the heptad-repeat 2 (HR2) linker and the heptad repeat transmembrane portion

(HR2-TM) respectively. Such findings are in line with the experimental observation that the S

protein can tilt up to 90° toward the membrane, with an inclination of 48° (to the membrane

normal) being most likely to occur. Such movements might favour ACE2 binding (31) by

scanning the surrounding space for a possible alignment with the receptor, while indirectly

exposing cryptic epitopes (16). These findings, in context with the cryo-EM results (18,32),

highlighted the importance of S2 flexibility, which plays a crucial role in conformational

changes, (33), alignment, and membrane fusion process (7,16). However, the limitations of

the timescale in MD simulations restrict the exploration of long-lasting contacts between the

protein and the receptor, thus limiting our ability to characterize the interaction network that

contributes to the binding process.
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The sequence of conformational changes on the S2 domain, necessary for

membrane fusion, is triggered at the S1/S2 cleavage site on residues P681-R684 (34) and

facilitates the exposure of the FP (35). However, the experimental determination of these

conformational changes is difficult due to the rapid timescale involved. A computational

attempt was made by Remington et al (36), through the use of nontargeted parallel cascade

selection MD (nt-PaCS-MD). The variational approach to Markov processes (VAMP) analysis

indicated distinct conformational changes in cleaved SARS-CoV-2-spike models at the level

of residues V705–D1146 and residues S816 –D1146 (36). These changes seemed

necessary to expose the fusion peptide (FP) and rearrange the region between residues

I818 – V826 of the FP into an outward-facing helical structure which might mechanically

initiate membrane fusion, indicating the crucial role of the S1/S2 cleavage site in facilitating

the fusion mechanism. These findings suggest that drug discovery could target the S1/S2

cleavage site to hamper an efficient exposition of the FP, therefore interfering with the

membrane fusion mechanism.

The differences between SARS-CoV and SARS-CoV-2 were addressed to

understand the reasons behind SARS-CoV-2's high infectivity and the molecular

mechanisms required for effective therapy development. Furthermore, due to the presence

of multiple mutations that differentiated SARS-CoV-2 and its variants from the original

SARS-CoV, the molecular investigation of residues and conformational differences became

necessary for a prompt pharmaceutical response. MD studies of SARS-CoV-2 have

indicated accentuated flexibility compared to its predecessor SARS-CoV in segments of the

RBD implicated in the molecular recognition of ACE2, more precisely in the region

comprising residues Q474–G485, C488–F490, and S494–Y505 of the RBD, which enhances

binding to the ACE2 receptor (37) in B.1.351 and B.1.1.7 variants as well. It was possible,

through MD simulations, to appraise the effect of mutations such as N501Tyr and E484Lys,

which improved the binding to ACE2 by −4.5 and −1.3 kcal/mol respectively, as determined

by free energy perturbation (FEP). The flexibility of RBD in the "up" conformation has been

proposed as a determinant for the high propensity of SARS-CoV-2 to reach ACE2, giving rise

to the high infectivity associated with SARS-CoV-2 (38) compared to SARS-CoV (37). MD

investigations allowed a broader analysis of the interaction network between ACE2 and

RBD, which was not observed in the static cryo-EM or X-ray crystal structures. MD

simulations showed a large interaction network between residues I21, Q24, T27, F28, D30,

E35, D38, A80, M82, and Y83 of ACE2 and RBD (39).

A study by Barros et al. (40) indicated that ACE2 presents great motility when in

contact with S protein, suggesting that the rotation of the catalytic zinc-binding peptidase

domain (PD) along the transmembrane domain axis could sterically accommodate multiple

ACE2 bindings. This large shift appeared to be enhanced by five glycan residues bound to
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N53, N90, N103, N322, and N546 of ACE2, with N53 involved in both intramolecular

homodimer and heterodimer contacts (40,41). The results by Williams and co-workers (42),

in conjunction with those by Barros, indicated that in the RBD-ACE2 interaction pattern,

residues F486, N487, and Y489 are responsible for the adaptive flexibility of RBD in

establishing strong interactions with ACE2. Taken together, these results describe the

synergy between a strong ACE2-binding RBD which, once locked, is carried by the rotation

of the ACE2 axis, allowing for multiple receptor engagement and a subsequential binding

mechanism. At the same time, this study demonstrated how mutations in that RBD

sub-region are crucial in the selective pressure of the virus, altering the flexibility of RBD and

interfering in intra-monomer interactions within RBD (42). From a geometric perspective,

effective interaction between SARS-CoV-2-spike and ACE2 would occur at an angle of

inclination between the apical portion of RBD "up" and ACE2 of at least 52° (43). Such MD

results indicated that RBD “up” conformations have a large degree of manoeuvre to achieve

sufficient residue exposure for ACE2 binding.

Although MD is able to describe the dynamic events that lead to conformational

changes and new interactions, predictions are still limited by the computational cost and

represent a simplified scenario, where the complexity of a cellular microenvironment cannot

be adequately represented.

Molecular dynamics simulations to explore rare S protein conformational changes
The activation of a protein occurs through a series of conformational changes driven

by molecular interactions with the intended target. The exploration of metastable states is

necessary to understand the intermediate steps occurring during molecular events, and,

therefore, identify possible therapeutic targets to interfere with the functional pathway.

However, large protein conformational rearrangements usually take place in the

millisecond or second timescale, far beyond the time simulated in MD, which is usually within

tens of microseconds. In such a context, the implication of this is that rare conformational

changes can be missed. It is, therefore, necessary to apply enhanced or adaptive sampling

algorithms to overcome this intrinsic limitation of the sampling that can be achieved to

explore drastic structural changes in proteins.

From this perspective, weighted ensemble (WE) MD allows the sampling of rare

events (44), drastically increasing the computational efficiency. With WE, multiple simulations

are run in parallel and the trajectories that explored new values of a metric decided a priori (a

distance between atoms in the simplest case) are retained and replicated, thus minimizing

the randomness of conformational exploration. By using the WE path-sampling strategy,

Sztain et al. (45) were able to simulate the transition state of RBD from "down" to "up",

uncovering the crucial role of several glycan residues in allosterically stabilizing the “up”
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state. While N165 and N264 shield the RBM acting as an “up” state stabilizer (46,47), N343

pushes the RBD to the final “up” state interacting with residues F490, Y489, F456, and R457

on the interaction portion of the ACE2 binding motif (45). More recently, it has been

suggested that glycans attached to N165 and N343 contribute to the overall stability of the

RBD open conformation (46).

An approach combining WE and artificial intelligence (AI) was adopted by Casalino et

al. (48) to evaluate transition conformations during the binding between fully glycosylated S

protein and ACE2. This confirmed the role that the two N-glycan residues linked to N165 and

N234 have in modulating the dynamics of the S protein's RBD, contributing to the axial

mobility of ACE2 while triggering the opening of RBD in a “hand jive” motion. Yao and

co-workers (49), analyzed the molecular architecture of SARS-CoV-2, from cryo-electron

tomography (cryo-ET) and subtomogram averaging (STA) highlighting the complex

composition of N-glycans, which is the result of unions between branched oligomannose and

hybrids units. Such complex glycan ramification also appears to be present on N234, whose

allosteric role in the conformational change of RBD from “down” to “up” has been

demonstrated by Amaro et al. (48).

In a separate study, all-atom steered MD (SMD) forced the RBD from “down” to “up”

and highlighted the conformational changes that occur during the breaking of the salt bridges

between RBD and the neighbouring protomers with the hydrogen bonds that keep RBD in an

inactive “down” state (50). These intramolecular salt bridges, K378-E988 and K386-D985

within the S2 domain, and E516-K202 within the NTD are mainly responsible for the inactive

"down" state of the monomers and prevent the interactions with ACE2. Data obtained

through targeted molecular dynamics (TMD) have shown how glycans on RBD residues

N165, N234, and N343, can act as position locker for the active “up” conformation (51),

stabilizing a set of interdomain salt bridges involving K417, R408, and K378. Furthermore,

glycans on N165 and N234 were proposed as shielding the epitopes (Figure 3), while locking

RBD in the “up” state (47).

The description of the RBD transition from the down to the up states is a nontrivial

task, a determinant for understanding the protein activation and providing valuable

information about cryptic binding pockets. A recent study by Dokainish et al, (52) described

the opening of RBD by adopting the new generalized replica exchange with solute tempering

of selected surface charged residues method (gREST_SSCR), an enhanced method derived

from generalized replica exchange with solute tempering (gREST) (53). In this study a

selection of charged residues at the RBD interface was regarded as the solute region for

gREST, exploring a range of temperatures while the solvent was kept at a constant

temperature. The results highlighted the important intra-chain interaction between residues

R408 (chain A) and the proximal D406 (chain C) and the stabilizing role of glycans on N165
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for the “down” state, while glycan on N343 and N234 supported the opening of the chain and

the stabilization of the “up” state, respectively. Glycan on N343 interacts with Y489 and Q493

in the “up” state contributing to the structural stabilization, with the interdomain contribution of

residues S477-T385, Q493-C379, Y489-T385, and Q493-K378 pairs (51).

A remarkable effort was made by Zimmerman et al (54), to explore drastic

conformational changes through Markov-state models (MSMs) combined with the

computational power provided by “citizen-scientists” from the “Folding@home” project

(http://foldingathome.org), Very long time scale simulations, in conjunction with the FAST

algorithm, described drastic conformational changes on the S protein which opened the RBD

from its “down” to the “up” state, while the RBD domain twisted outward, exposing new

cryptic epitopes.

Hide and seek: the hunt for epitopes through MD
Access to the S protein epitope(s) is necessary for an antibody’s binding (Figure 3)

(55). From this standpoint, long MD simulations might unveil cryptic epitopes. Sikora et al.

(55) performed an extensive simulation of four S proteins embedded in a membrane, for a

total of 2.5 μs. The resulting trajectories were analyzed through simulated illumination

analysis and rigid docking of the antibody CR3022. In the illumination analysis, randomly

oriented rays emanated from a half-sphere at the centre of mass of the S protein. Rays are

then absorbed by the first heavy atom they meet within 1.5 Å. Single S protein structures are

collected every 10 ns. To evaluate the shielding effect of glycans, the analysis was replicated

without their presence. The results indicated that glycans reduce the S protein accessibility

by up to 80%, with the most marked effect occurring in the stalk region close to the viral

membrane. An interesting ab initio epitope mapping method was used by Serapian et al (56).

Possible epitopes were classified according to the coupling energy with the rest of the

structure which identifies sites on the S protein surface that are at lower binding energy

levels and could possibly energetically prefer bound states. This method suggested that

residues forming an epitope prefer to form molecular interactions with external elements

(56). The data agrees with the experimentally detected epitope recognized by antibodies

CR3022, 4A8, S309, and EY6A.

The use of small molecules or cosolvents as probes in MD simulations (mixMD)

increases the chance of discovering cryptic niches or epitopes on the surface of a protein.

Through MixMD is possible to map interesting interaction sites by considering the frequency

of contacts between protein and probe, resulting in a volumetric map. Using a concentration

of around 1-5% cosolvent usually improves the sampling of hot spots for interactions without

denaturing the protein. Pyrimidine (Py), acetonitrile, and isopropanol were used to discover

possible docking niches on the interface between RBD and ACE2 and to inspire the drug
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design of antagonists or antibodies (57). Py showed the most relevant volumetric maps

within the RBM that span from residue Q498 to residue Y505. Knowledge of these types of

interactions, in conjunction with the molecular mechanics with generalized Born surface area

solvation (MM-GBSA) analysis, leads drug design processes and virtual screening in

concordance with experimental data from antibodies, with the data suggesting a set of new

molecules (DB02651, DB03714, DB08248, and DB14826) as possible RBD interaction

modulators.

Figure 3. Human antibodies can bind to different S protein epitopes. The binding

position of five human antibodies (Abs) on the surface of the S protein, is coloured according

to the legend. Abs names and protein data bank database IDs are reported in the legend.

The S protein is represented as a white surface, with the RBD in red.

Computer-aided drug repurposing to tackle COVID-19: the role of molecular dynamics

simulations

Box 1. A possible strategy to overcome the barriers in the research and development

of new active compounds is through drug repurposing of existing formulations for a

different therapeutic indication (drug repurposing is usually characterized by a

substantial variation from its original use). Since the COVID-19 outbreak, the alarming

spread of the virus and the gravity of the infection led the scientific and medical

community to seek rapid responses. The general approach to drug repurposing ideally

starts with three steps: identifying the candidate molecule to generate the hypothesis,
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preclinical studies of the candidate molecule, and evaluation of efficacy in phase II

clinical trials (58). A wide set of computational techniques and software, which falls

under the category of computer-aided drug design (CADD), is routinely used during

the first step of drug repurposing to pinpoint potential drug candidates. CADD

includes a plethora of ligand-based and structure-based approaches, involving target

structural validation, binding energy evaluation in both static and dynamic models,

and pharmacokinetics prediction.

A huge drug repurposing effort (Box 1) was put in place (59), worldwide, to shorten

as much as possible the approval of therapeutics against SARS-CoV-2 validated targets.

Necessarily, the S protein has been one of the most investigated COVID-19 therapeutic

targets due to its unique function and central role in the early stage of infection.

The general idea behind targeting the spike protein is to act as a preventive defence

against infection, with the intent of minimizing the risk of triggering a potentially dangerous

over-reaction of the immune system, reducing de facto the burden on the public health

sector. In May 2020, news about the efficacy against COVID-19 of hydroxychloroquine

(HCQ) originated in China, and the use of HCQ and azithromycin (ATM) was indicated as a

possible front-line treatment. Simulations indicated that HCQ and ATM would have a

synergistic effect in the treatment of the infection, where HCQ acts as a competitive binder

against gangliosides, another proposed receptor for S protein, and ATM interacts with the tip

of SARS-CoV-2-spike (60). Although these results seemed promising, the outcomes of

clinical trials appeared highly controversial and the hypothesis of adopting the combined

HCQ and ATM therapy has been abandoned.

To face the threat of SARS-CoV-2 and its mutations, including the British (alpha)

variant (61,62), large companies such as Pfizer BioNTech and AstraZeneca (63,64) have

developed vaccines capable of activating an immunogenic response against the S protein. A

global vaccination campaign has started, with more vaccines currently under development all

around the world (65). However, as low-income countries struggle to have access to

vaccines and immunosuppressed and allergic subjects cannot take advantage of the

protection offered, alternative therapeutic approaches are still needed. Also, despite the high

efficacy of vaccines, the full compliance of the population of high-income countries is yet to

be reached, due to the limited knowledge of the long-term effects of new mRNA technologies

and their implementation (64). In this scenario, drug repositioning could bring many

advantages in terms of risk control and unwanted side effect management – because

repurposed drugs have already passed safety assessments. Understandably, antiviral
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agents were among the first agents to be tested against COVID-19. This approach led to the

approval of Remdesivir as the first treatment for hospitalized patients (66–68), but not

without controversies, due to uncertain outcomes of many clinical trials (67,69,70).

Long MD simulations have become a state-of-the-art computational tool in CADD

(23) as they represent the best tool to validate in silico results of molecular docking and

virtual screening campaigns. Here we report insights from MD simulations applied to the

discovery of potential drugs able to interfere with the binding between RBD and ACE2. Only

molecules tested both in vitro and in silico are reported.

One of the first computational works on SARS-CoV-2 proposed denopamine (Table

1A), bometolol, and Rotigaptide as possible inhibitors of S protein-ACE2 binding (71). The

authors tested denopamine in vitro, observing a diminishing of RBD binding at denopamine

concentrations > 100 μM (71). An in silico study highlighted simeprevir and lumacaftor as

putative RBD binders (72). Lumacaftor (Table 1B) was subsequently proved to weakly bind

to S protein with an IC50 of 84 ± 4 μM, although showing a good inhibition profile in Vero-E6

assays (73). Simeprevir (Table 1C) reduces the cellular viral load, synergizing with

Remdesivir, but this effect was attributed to a direct action on the main protease and the

RNA-dependent RNA polymerase (RdRp) (74). Post-docking MD simulations identified

KT203, BMS195614, KT185, RS504393, and GSK1838705A (Table 1G-H), five compounds

from the Sigma-Aldrich library of pharmacologically active compounds (LOPAC), as potential

binders of the S protein (75). A retrospective MD investigation on arbidol (Table 1I), a

therapeutic agent approved in China and Russia for influenza, showed an inhibitor effect on

the original SARS spike protein (76); they proposed arbidol intercalated between different

spike protein subunits, and so affecting the trimerization of the S protein (77). Docking and

MD simulations performed by ourselves (78) and others (79) proposed Nilotinib (Table 1J)

as a potential binder of the RBD or disruptor of the RBD-ACE2 complex. The anti-SARS-CoV

potential of nilotinib was first reported in 2016 in the early stages of infection by inhibiting

viral fusion at the endosomal level (80). A couple of years later further results pointed out an

action of nilotinib and other Abl kinase inhibitors, on the virus-cell membrane fusion (81). In a

recent study, the EC50 of imatinib was quantified as 1.44 μM and 3.06 μM in Vero-E6 cells

and human respiratory cells respectively (82). Therefore, no experimental evidence for

imatinib binding to RBD has been reported. The same goes for nafamostat, which we

suggested as a putative RBD binder (78), but it is proposed to act as a TMPRSS2 inhibitor in

the low nanomolar range (83,84).

Table 1. Summary of the drugs, recently identified as protective against SARS-CoV-2 in

vitro, proposed as RBD binders by MD simulations.
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Denopamine: cardiotonic drug acting as an

agonist at β1 adrenergic receptor; used in

the treatment of angina (85)

Lumacaftor: used for the treatment of cystic fibrosis in

patients that present the F508del in the CFTR (cystic

fibrosis transmembrane conductance regulator)

proteins (86); IC50 of 84 ± 4 μM towards the S protein

Simeprevir: inhibitor of the hepatitis C

virus (HCV) NS3/NS4A protease (87) [71]

IC50 of 9.6 ± 2.3 μM towards the Mpro and an

IC50 value of 5.5 ± 0.2 μM towards the RdRp

(RNA-dependent RNA polymerase) (74)

GSK1838705A: inhibitor of the insulin-like growth

factor-1 receptor (IGF-IR), insulin receptor and

anaplastic lymphoma kinase (ALK) (88)
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BMS195614: antagonist of the retinoic acid

receptor (RAR) 

KT185: inhibitor of α/β-hydrolase domain-containing

6 (ABHD6) in the brain and liver of mice

RS504393: antagonist of the CC2

chemokine receptor

KT203: inhibitor of ABHD6 activity in the liver of mice

I. J.
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Arbidol: used as a treatment for influenza

and other respiratory infections in Russia

and China (77)

Nilotinib: a BCR-ABL tyrosine kinase inhibitor used for

the treatment of chronic myelogenous leukaemia

(CML) (89)

Perspectives for Targeting the Spike Protein
Although the worldwide effort to discover approved drugs to repurpose against the

SARS-CoV-2 S protein, to date no MD-based study has delivered working hypotheses

resulted in clinical trials. Open access COVID-19 drug repurposing databases (90,91) are a

precious source of information but do not consider potential therapeutic agents proposed in

silico, thus, there is a coordination gap between theoretical and experimental scientific

communities (92).

Box 2. From a technical perspective, the amount of MD sampling to confirm molecular

docking predictions has been generally limited to the time scale of a few tens of

nanoseconds and this has probably produced numerous in silico false positives,

undermining the credibility of computation studies. Simulations over tens or a few

hundreds of nanoseconds showing a docking complex as stable should not be

faithfully trusted. For example, a molecule with a residence time of a few

microseconds (way longer than usual MD post docking simulations) and an optimistic

binding kon of ≈107 M-1s-1 would have a kinetic affinity of about 10-2 M and therefore

would not be a binder despite the indication provided by MD.

The discrepancy between the time scale of the real world and the simulated models

(Box 2) can be partially overcome with end-state methods such as the MM-PBSA or

MM-GBSA (93), which can quantify the binding free energy using short MD simulations.

However, the accuracy of these methods is system-dependent and usually best suited for

comparisons between congeneric ligands (94) rather than very different chemotypes, as is

usually required by repurposing strategies. Enhanced MD sampling techniques such as

metadynamics (95) speed up the time required to dissociate docking complexes and allow

estimation of the stability of the bound ligand, therefore can aid in recognizing docking false

positives.
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We screened in silico more than 2000 approved small molecules (78). After the

docking and post-docking MD simulations of the best-ranked compounds docked in situ to

the RBD, we performed a further step consisting of simulating the encounter of the RBD and

ACE2 in the presence of the best compounds Despite the stability displayed during the

cefsulodin / RBD simulations, ACE2 easily displaced the proposed ligand in half of the

supervised MD (SuMD (96,97) replicas. Increasing the complexity of the modelled system

highlighted the limit of common computational protocols for correctly selecting small

molecules able to hinder the recognition between S protein and ACE2. Therefore, dynamic

approaches that consider the formation of the ternary systems between the S protein, ACE2,

and the potential binding inhibitor should be routinely considered. Besides this,

structure-based drug repurposing strategies should take into account the fully glycosylated S

protein and the discovery of allosteric sites on the RBD to overcome the targeting obstacles.

The extreme flexibility of the glycans on the surface of the S protein and the effective steric

hindrance they offer affect the ability of antibodies or potential therapeutic molecules to bind

to a sufficiently exposed epitope (98). To combat this, Haji-Ghassemi et al. suggested

searching for drugs to target this shield (99) this is a different approach from the traditional

protein-oriented one.

Molecular Dynamics insights on new SARS-CoV-2 variants:
Since the beginning of the pandemic, the evolutionary impact of SARS-CoV-2 has

been kept under observation by the scientific community to evaluate the possible effects of

mutations on transmissibility, severity, and viral evasion of the immune mechanism

(100–103). Among the SARS-CoV-2 variants, the major preoccupations regarded those

strains that carried important mutations and deletions, especially on the RBD. (categorized

as variants of concern (VOC)) (100). Such VOC have important RBD mutations: B.1.1.7

(Alpha), carries E484K, N501Y, D614G, P681H; B.1.351 (Beta) carries K417N, E484K,

N501Y, D614G, A701V; P1 (Gamma) carries K417T, E484K, N501Y, D614G, H655Y;

B.1.617.2 (Delta) carries L452R, T478K, D614G, P681R (102). Concerns among the

scientific community have risen due to their potential to elude the immune system and

overcome vaccine protection (104–106) despite showing an overall similarity between

variants, which diverged only in terms of flexibility (107).

More recently, a new B.1.1.529 (Omicron) VOC (108–110) carrying N440K, G446S,

S477N, 118 T478K, E484A, Q493R, G496S, Q498R, N501Y, and Y505H mutations, and its

lineages became predominant over the Delta variant, possibly due to a more rapid entry or

different mechanism (111–113), an enhanced ability to evade the immune system

(103,114,115), and its increased affinity for ACE2 (116–118) although showing a milder

pathogenic impact (119). New VOCs are expected to pose a new threat should they become
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widespread (120,121) and further studies should follow to evaluate the potential risk of new

mutations.

MD-based computational efforts evaluated the effect of omicron’s mutations on ACE2

binding strength (118,122,123), suggesting that YG339D, N440K, S477N, T478K, Q493K,

N501Y increase the binding affinity, as also reported by Socher et al, (124). S371L, S373P,

S375F, K417N, G446S, E484A, G496S, Q498R, and Y505H, on the other hand, decreased

the binding affinity for ACE2, in agreement with a compensatory effect that moderates the

binding strength of the enhancing mutations (125). However, the reinforced network of

hydrogen bonds involving T500-D355, G502-K353, N487-Y83, as well as R493-D38, and

A475-S19, paired with the electrostatic matching between R493-D38 and the loop shift

caused by E484A and T478K mutation as suggested by Zhao et al, (126), suggesting an

overall increase in the binding energy. These shifts seem to increase the complementarity

between ACE2 and Omicron’s RBD and could be the reason for the increased binding

affinity, as also highlighted by Nie et al, (127).

The advent of the new VOC highlighted the necessity to follow multiple paths, for a

broad-spectrum therapeutic approach, which should not only consider RBD as the target of

main interest but should also consider more conserved viral proteins among the variants.

MD studies were carried out to investigate non-structural proteins (NSP) as potential

druggable targets (128,129) whereas Vivek et al, suggested NSP13 helicase ATP-binding

sites as a druggable target, while Vardhan et al, included the NSP14 and NSP15

exonuclease and endonuclease respectively. Both groups used phytochemicals small

molecules as target binders, which, however, still require experimental data to confirm their

efficacy.

Alternatively, PF-07321332 a promising oral antiviral candidate against the main

protease (MPro) catalytic dyad on residues H41-C145 was investigated using MD simulation

by Macchiagodena et al, using preliminary data structures available (130). According to

Macchiagodena’s work, the formation of the thiolate-imidazolium, paired with the exposition

of the nitrile warhead in the proximity of the C145 would allow for the electrophilic attack on

the MPro, for effective enzyme inhibition.

However, MD is not the most adequate method to represent bond formation or

breaking, but the insights provided by contact frequency and interatomic distances could

support the description of the experimental data, once the PF-07321332-MPro complex

structure becomes publicly available.

Other attempts against MPro were made (130–133) but require further experimental

data to validate the hypothesis. The RNA polymerase, (134) as well as the nucleocapsid

(135), and envelope protein (136) were proposed as a druggable target, but these studies
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will require further confirmation by experimental data to verify whether NSPs could be

considered viable targets.

Conclusion
As a state-of-the-art computational technique, MD has been broadly employed to

interrogate the structure and function of the S protein at the atomic level to understand how

its inherent flexibility modulates the binding to ACE2 receptors and, therefore, SARS-CoV-2

virulency. MD suggested unexpected flexibility of the stalk region S2, the role of glycans on

the S protein surface, and the contribution of single residues on the RBD to the interactions

with ACE2. MD contributed to describing important dynamics and structural elements such

as the minimum angulation required for molecular recognition between ACE2 and RBD, the

effects of mutations on the binding capacity of the S protein, as well as the structural and

protective role of glycans. Through MD it was possible to understand the spontaneous

motions that open RBD from the "down" to "up" conformation, revealing numerous cryptic

pockets, possible targets of new drugs. The “down” to “up” transition that the RBD undergoes

before ACE2 recognition was another important phenomenon MD MD-delivered structural

insights.

From a future perspective, we believe there is scope for an increasingly important

contribution of MD in the study of Ab and their rational development as therapeutic agents.

Also, MD contributed to rationalizing in vitro data on potential S protein binding antagonists,

but with limited utility in drug repurposing. Approaches to address COVID-19 start to fade

away from drug repurposing and the S protein to more classic rational strategies to target

functional viral proteins, as demonstrated by the main protease (Mpro) inhibitor nirmatrelvir,

the first oral anti-COVID-19 drug approved by the FDA. In this scenario, it is plausible that

MD will regain a central role in aiding the development of future new classes of therapeutics

against SARS-CoV-2.

Videos available at

https://www.biorxiv.org/content/10.1101/2022.07.05.498807v1.supplementary-material.
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6.2 Understanding The Role of Heparinoids on the SARS-CoV-2 Spike Protein through
Molecular Dynamics Simulations

The review of the literature on the S protein brought to my attention the challenges in

drug discovery for SARS-CoV-2 due to the epitope-masking effect of the glycocalyx, the high

mutagenicity of the spike protein (S protein), the structural mobility of the SARS-CoV-2 stalk

(the S2 domain) and the unclear role of heparinoids in the molecular recognition with the

ACE2 receptor. Since the start of the pandemic, up to the time of this writing (November

2023), the treatments for SARS-CoV-2 infection and symptoms include a combination of

antiviral protease inhibitors Nirmatrelvir and Ritonavir (under the name Paxlovid),

Remdesevir and Molnupiravir (nucleoside analogues), and an injectable neutralising

monoclonal antibody (Sotrovimab). No S protein:ACE2 inhibitor has been approved for

clinical use. Intriguingly, the role of “heparinoids” (i.e. heparin - and its various degrees of

sulfonation - as well as heparan sulfate) in the S protein:ACE molecular recognition

mechanism was unclear with different findings being reported up until November 2020. To

formulate functional hypotheses I investigated the role of different types of heparinoid

disaccharides, from fully sulfated heparin to heparan sulfate, against the S protein,

highlighting the crucial role of sulphate groups in the binding mechanism. My findings

analyses are published in the preprint: “Understanding The Role of Heparinoids on the

SARS-CoV-2 Spike Protein through Molecular Dynamics Simulations”. These findings

inspired the screening of a large database of compounds for heparin-like matching

molecules.

Authors: Ludovico Pipitò, Christopher A. Reynolds, and Giuseppe Deganutti*

Abstract

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

resulted in an estimated number of more than 6.8 million deaths. SARS-CoV-2 entry into the

cell is mediated by its transmembrane spike glycoprotein (S protein) interacting with the

angiotensin-converting enzyme 2 (ACE2) receptor on the human cells’ surface through the

receptor binding domain (RBD). The extracellular heparan sulphate (EcHS) and heparin (HP)

in the proximity of the ACE2 receptor enhance S protein binding through a poorly understood

mechanism. Surprisingly, low molecular weight heparin (LMWH) and heparan sulphate

disaccharides (dHS) hinder the S protein binding to ACE2, despite their structural similarity

to EcHS and HP. In our study, we highlighted the region-selectivity of SARS-CoV-2 RBD for

the highly sulphated glycosaminoglycans (GAGS) while identifying binding sites intended for

low or non-sulphated extracellular GAGS.
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By using both desulphated heparan disaccharides (dH) and heparin disaccharides (dHP)

probes, we identified key-specific S Protein sites intended specifically for high and

low-sulphated heparinoids using both mixed molecular dynamics (MixMD) and classic

molecular dynamic (cMD) simulations. By mapping the unique interaction areas for each

disaccharide on the S protein and the ACE2 receptor we propose the dHP role in hampering

the opening of RBD. Furthermore, we identified dH-specific binding areas that suggest their

role in the ACE2:RBD alignment.

Our study advances the understanding of the different mechanisms behind the SARS-CoV-2

infection dHS inhibitory effect and the EcHS enhancing mechanism with respect to their

sulphonation.

Keywords: SARS-CoV-2, Spike Protein, ACE2, Heparan Sulphate, Heparin; Molecular

Dynamics, MixMD

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S

protein) has a strong affinity for the human angiotensin-converting enzyme 2 (ACE2)

receptor, a type 1 transmembrane protein responsible for the extracellular conversion of the

angiotensin hormone into angiotensin II (1). The S protein (Figure 1A) is a highly

glycosylated trimeric structure that is conserved amongst the coronaviridae family. Each S

protein monomer can be divided into two main domains, S1 and S2 (2). While S1 recognizes

ACE2, S2 perforates the membrane of the host cell to transfer the genetic material into the

cytoplasm. The receptor-binding domain (RBD) of S1 (residues R319-F541) is responsible

for the molecular recognition of ACE2 (Figure 1B) and for triggering conformational changes

that initiate the infectious mechanism.

112



Figure 1. The S protein with its domains and docking results. A) The fully glycosylated S

protein with each domain coloured as follows: signal peptide (SP) (red), N-terminal domain

(NTD) (orange), receptor binding domain (RBD) (magenta), C-terminal domain (CTD)

(green), S1/S2 cleavage site (black), the fusion peptide (FP) (blue), heptad repeat 1 (HR1)

(light grey), heptad repeat 2 (HR2) (pink), transmembrane domain (TM) (yellow), and

cytosolic domain (CD) (cyan). Glycans are depicted in sticks. (3). B) S1 (grey) - ACE2 (blue)

complex; RBD “up” residues (red) close to ACE2 are responsible for molecular recognition.

C) Heparin’s most representative disaccharide unit (dHP), consisting of alpha-L-iduronate
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2-O-sulphate and glucosamine 2,6-disulphate. D) The dH model used for simulations

(glucuronic acid and N-acetylglucosamine). dH is also a common unit in HS (4). E) Results

for Molecular docking dH and dH to S protein. The RBD in the “up” state (RBD up) is covered

by overlapping dH and dHP (cyan surface). dH and dHP units were predicted to bind a large

area of the S protein (grey ribbon) around residues N388, K417-F486, and N501 of RBD “up”

(IW). Both disaccharides were also predicted on residues N165, N450-T470, and N501 (IC)

on RBD “down”. The spaces around glycan residues (red stick representation) on N165 and

the RBD indicated gaps between the RBD and the NTD where disaccharides were also

predicted to bind.

Several S protein structures in the pre-fusion state (Figure 1 A) have been solved through

cryo-electron microscopy (cryo-EM) (5, 6), allowing the distinction of two different RBD

configurations, named “up” and “down” (7), the former responsible for binding to ACE2. A set

of 13 RBD residues (T402, R439, Y436, N440, Y455, N473, Y475, F486, G488, Y491, Q493,

Q498, N501) is involved in interactions with ACE2 (8) and constitutes the receptor binding

motif (RBM) on the apical portion of RBD (Figure 1B) (9).

1.1. Heparin and Heparan Sulfate
Heparin (HP) and heparan sulphate (HS) are similar molecules but can be distinguished by

their chemical structure and their degree of sulfonation. HP is a high molecular weight

glycosaminoglycan that occurs naturally primarily in the connective tissue of mammals, such

as intestinal and lung mucosa, liver, and skin and it is used as an anticoagulant for its

antithrombotic effects (10), thus preventing blood from clotting.

HS, on the other hand, is another type of glycosaminoglycan found in animal tissues, such

as the basement membrane, connective tissues, and blood plasma, with a high molecular

weight and is composed of sugar chains. However, unlike HP, HS has no anticoagulant

properties but plays a regulatory role in inflammation (11).

HP consists of a linear chain of repeating disaccharides, each of which is composed of a

residue of uronic acid (D-glucuronate or L-iduronate) and N-acetylglucosamine (GlcNAc),

with an average of 2.7 units of disaccharide containing at least one sulphate group (12). In

contrast, HS has a similar structure but contains a higher percentage of iduronic acid than

HP, and around one sulphate group (13).

The degree of sulfonation influences the chemical and biological properties of the molecules

with HP being more hydrophilic, negatively charged, and with a greater ability to interact with

proteins and clotting factors, inhibiting blood clotting. HS, on the other hand with a lower

degree of sulfonation, has a lower anticoagulant capacity.
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In summary, HP and HS are two different molecules, although they share some similar

structural characteristics. HP has anticoagulant properties, while HS does not. Our aim is to

create two precise characterizations in chemical terms: a very electronegative HP with a

more important steric encumbrance due to the presence of sulphate groups and a

sulfate-free heparan to reduce the "noise" caused by the presence of single functional

groups such as heparan sulfate. By generating two different chemical probes, in which one

lacks sulphate groups, we will determine the importance of the sulphate constituting the ECM

and their role in the Spike and ACE2 alignment. At the same time, highly sulphated units

such as HP will be used to detect possible sulphate-dependent overlapping zones across the

S protein.

1.2. Glycosaminoglycans play a role in infection
Glycosaminoglycans (GAGs), such as HP and HS (EcHS), play a crucial role in regulating

the immune response by regulating cell adhesion, tuning cytokine and chemokine function,

and mediating inflammatory reactions (10,14) through HS-binding motifs (HSBM). HP, also

produced by basophils and mast cells (15), is constituted by highly sulphated repeating units

of 1-4 pyranosyl uronic acid and 2-amino-2-deoxy glucopyranose (Figure 1C) (glucosamine)

and it is known for its major role as an anticoagulant when formulated in low molecular

weight (LMWH). HP is characterized by a wide structural heterogeneity and high negative

charge due to the presence of numerous sulphate groups per disaccharide unit of

O-sulfonated, D-glucosamine, and O-sulfonated hexuronic acid (Figure 1D) (16). The high

level of sulfonation makes the HP formal charge higher than EcHS (10) and is responsible

for LMWH pharmacodynamics properties on the coagulation cascade by binding to

antithrombin (13). EcHS is diffusely expressed on the cellular surface in the form of high

molecular weight HS proteoglycans (17). EcHS has various roles as an immune regulator

(14), and anticoagulant (18), and reportedly assists microbial and viral infections by acting as

molecular adhesion receptors in human immunodeficiency virus (HIV).

The role of EcHS in assisting viral infections in general (19) is carried out both by promoting

virus-host cell adhesion and by acting as a "glue" between viral proteins and host cell

receptors. Schuurs and co-workers suggested an intermediary role of EcHS between the S

protein furin cleavage site (20), favouring the membrane fusion mechanism. HP has been

proposed to play a role in promoting SARS-Cov-2 infection (21,22), probably by inducing

conformational changes upon binding (23) through interactions on the S1/S2 cleavage site

(24). Clausen and collaborators (25) experimentally demonstrated that HP allosterically

facilitates interactions between S protein and ACE2 and provided a preliminary model of the

RBD regions possibly implied in the recognition of both EcHS and HP. Other studies
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suggested the intriguing hypothesis that HP and low molecular weight heparins (LMWH) may

function as antagonists (26,27) of ACE2 binding by competing for the EcHS binding site on

the S protein (28). While existing studies have proposed the role of HP as an RBD:ACE2

intermediator (29,30) proposing HP-like properties to compete with HP (31), to date, much

remains unexplored about the totality of the S Protein S1 domain and its interactions

between differently sulfonated HP and HS molecules.

To pinpoint possible divergent binding sites on the S protein and ACE2 between HP and

EcHS, and inform on why sulphated groups, abundant on HP, play a role in the SARS-CoV-2

binding to ACE2, we present an investigation of the binding profile of these two heparinoids

on both S protein and ACE2 receptor by using a mixed molecular dynamics (MixMD)

approach (32).

2. Methods

2.1. Structure Preparation and Force Field Settings
All systems were prepared using the CHARMM36 (33,34)/CGenFF 3.0.1 (35,36) force field

combination. To speed up the simulations, only the apical portion of the fully glycosylated S

protein was kept from the spike protein model 6VSB_1_2_1 available at

(https://charmm-gui.org/?doc=archive&lib=covid19) (37). Such regions (residues 1-1003)

included the S1 and S2 domains SP (1 - 13), NTD (14-305), RBD (306-541), CTD (542 -

652), S1 / S2 (653 - 686), and FP (687-911). The dHP and dH (Figure 1C, 1D) were

designed with the VMD Molefacture plugin

(https://www.ks.uiuc.edu/Research/vmd/plugins/molefacture/).

The ACE2 peptidase domain dimer (ACE2-PD) was taken from the PDB entry 6M17

(residues I21-L731) (38). Hydrogen atoms were added to the S protein and ACE2 by Propka

(39) at a simulated pH of 7.0, while disulfide bonds were identified by HTMD (40), visually

inspected, and patched manually through VMD (41) as previously reported (42). The

resulting structure was minimised using the conjugate gradient algorithm by ACEMD (40).

2.2. Molecular Docking
Multiple docking experiments were performed using Autodock Vina (43) on the apical portion

of the fully glycosylated S protein S1 domain prepared as reported above. As a reference for

docking, the centre of the grid box was located on residue C432 of each monomer in the “up”

and “down” state (Figure 1E). The docking was repeated six times by moving the box +5 Å

on the z-axis on the RBD “up” to map the whole surface of S1, including residues

Q493-Y505. Finally, blind docking was performed on the whole S protein to extend the

investigation for possible binding sites to the whole system. We extended the docking area
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to compare the set of affinities of all possible binding pockets and, at the same time, to add

regions of S1 that had not been sufficiently covered with the previous dockings, including,

therefore, the NTD subdomains.

2.3. MixMD system preparation
To map possible S protein and ACE2 sites interacting with HS and HP, each probe was

simulated individually using a MixMD approach (44). In total, four systems were prepared

using dimeric HP (dHP) or dimeric HS (dHS) (100 molecules in each system) through

Packmol (45). A minimum distance of 4 Å was set to avoid clashes and secure an ordered

placement of the molecules within a 150 Å x150 Å x150 Å box (46). TIP3P water molecules

(47) were added to the simulation box considering a 15 Å water padding by the Solvate

plugin 1.5 (http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/). The charge neutrality of

the system was achieved by adding Na+ /Cl− to the concentration of 0.150 M using the

Autoionize plugin 1.3 (http: //www.ks.uiuc. edu/Research/vmd /plugins/autoionize/). ACEMD

was used for both equilibration and MD production. The energy of the systems was reduced

through 2000 conjugate-gradient minimization (CG) steps to eliminate possible clashes and

optimize atomic distances. Equilibration was reached in isothermal-isobaric conditions (NPT)

using the Berendsen barostat (48) (target pressure 1 atm) and the Langevin thermostat (49)

(target temperature 310 K) during a 4 ns simulation (integration time step 2 fs). During the

equilibration, a positional restraint of 1 kcal/ mol Å2 was applied only on the alpha carbons at

the base of the S protein, where the structure was cut from the rest of the protein, leaving the

glycans and the three RBDs free to move. Two 500 ns productive trajectories were produced

with an integration time step of 4 fs, using the hydrogen mass repartition (HMR) (50), in the

canonical ensemble (NVT), with the same positional restraints used in the equilibration. The

cut-off distance for electrostatic interactions was set at 9 Å, with a switching function applied

beyond 7.5 Å. Long-range Coulomb interactions were handled using the particle mesh Ewald

summation method (PME) (51) with default ACEMD settings. In summary, two trajectories

were produced for ACE2-HP, two for ACE2-HS, two S protein-HP, and two S protein-HS,

reassigning the atomic velocities on each replica, for a total of 1000 ns for each system.

2.4. MD trajectories analysis

MD Trajectories were merged using MDtraj (52). The root-mean-square deviation (RMSD)

and Root-Mean-Square Fluctuation (RMSF) analysis were computed using VMD (41).

Ligand-protein contacts, including hydrogen bonds, were detected using GetContacts

(https://getcontacts.github.io), with a threshold distance and angle of 3.5 Å and 120°,

respectively. Contacts and hydrogen bonds were expressed as occupancy (% of total MD

frames) over the two merged replicas for each system. Molecular graphics images were
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produced using UCSF Chimera (53). Volumetric maps were computed using the VMD

VolMap plugin with a space grid of 0.25 A, averaging all frames

(https://www.ks.uiuc.edu/Research/vmd/vmd-1.9.1/ug/node153.html).

3 Results

Low molecular weight HS (LMWHS) have been proposed as possible antagonists of the

ACE2 binding to the S protein (26) thanks to the high degree of sulfonation (22). We tried to

clarify the heparinoids’ S protein binding profile to better understand this mechanism,

focusing on the crucial S protein regions involved in ACE2 molecular recognition (9). Our

hypothesis was that the electrostatic interactions driving the binding of EcHS and LMWH to

the S protein can be sampled also by shorter disaccharide units (dH and dHP).

3.1. Molecular Docking Suggests a Broad Distribution of HP and HS Interaction Sites

Molecular docking of disaccharide HP (dHP) and HS (dHS) was performed to reproduce the

data obtained by Clausen et al. (25) using a different protocol. In Clausen's study,

tetra-saccharide HP (dp4) units were docked with ClusPro against RBD in both "up" and

"down" states, suggesting interactions with residues R346, R355, K444, and R466. Residues

F347, S349, N354, G447, Y449, and Y451 were suggested favoring the S protein - ACE2

alignment. Our docking results agree and show a homogeneous distribution of poses on the

S protein. Furthermore, our results predicted a broader distribution of both dHP and dH on

the RBD “up” conformation, in the vicinity of residues N388 - F486 (Figure 1E) with scores

ranging from -7.2 to -8.1 kcal/mol. Docking on RBDs “down” indicated a lesser engagement,

with dH and dHP, predicted to bind to a small cleft between NTD and RBD close to residues

K150 and T470, i.e. the region between K150 (chain B, “down” state) and T470 (chain A,

“up” state (Figure 1E) suggesting a stronger engagement of dHP in respect to dH.

Additionally, dH was also predicted to bind the RBD, responsible for the molecular

recognition with ACE2, at the level of residues K417- T500 but with the lowest docking score

among all poses. These initial results suggest that the disaccharides are likely to lodge into

niches at the base of RBD, rather than engaging with the ACE2 binding site directly.

118



3.2. MD simulation elucidates the flexibility of the S protein and its glycoshield

Although molecular docking predicted a large area of the S protein potentially involved in

interactions with dH and dHP, it did not consider the protein flexibility and explicit solvent. To

overcome these intrinsic limits, we performed MixMD simulations to sample S protein sites

potentially interacting with dH and dHP, in a flexible and fully hydrated environment (Video

S1, Video S2). During the MixMD replicas, the RBDs "down" remained stable due to the

presence of salt bridges between K378-E988 and K386-D985 in the S2 domain, and

E516-K202 in the N-terminal domain (NTD), in accordance with Gur et al (54). The RBD “up”

showed overall higher mobility but moderate flexibility in the loop between F485 and Y505

and high flexibility in the I468-Q493 region. The glycan residues bound to N165 intercalated

between N427 and E465 at the base of the RBD, preventing it from folding back to the

“down” conformation (55). Overall, glycan chains displayed the highest mobility among all the

residues in the system. Polysaccharides bound to N165, N234, and N343 restricted the

access to the apical portion of S1, while the glycans linked to N165 locked RBD in the “up”

state, in agreement with Casalino and co-workers (56). These results indicate that the

dynamics of the S protein, combined with the sweeping motion of glycans, impede access to

the inner wall of the RBD (residues R346, N354-R357), provide protection to the cavity

formed by the junction between the NTD of one chain and the RBD of the adjacent chain

(between N165 and N450), and reduce accessibility to residues R403-R408 at the centre of

the S1 domain. Areas across the NTD and close to the RBD “up” were more likely to engage

dH and dHP in productive contacts due to the lower shielding of glycans.

3.3. Simulations identified specific zones for dHP and dH on the S protein
MixMD simulations against the glycosylated S protein indicated areas involved in interactions

with dH or dHP, including the NTD and both RBDs “up” and “down”. dHP and dH engaged

the S protein in persistent contacts in areas not covered by the glycan residues' sweeping

motion (Video S1).
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Figure 2. Interactions between disaccharide HS or HP and the S1 domain. A)

Differences in S protein contacts with dH or dHP, plotted on the S protein (surface

representation) and coloured according to the occupancy prevalence (% MD frames). The

polar residues R158, N164, R357, and V407 made more contacts with dHP, while F4, Q14,

N17, Q169, and Y248 engaged more dHS, at the “corners” of the S protein, in agreement

with Clausen’s results. B) Volumetric density map of dHP (red, isovalue 20%) showing the

averaged atomic positions for the ligand across the simulation box. C) Volumetric density

map of dH (blue, isovalue 20%); The circles in both images indicated the spots with

maximum persistence, around NTD and SP domains, located at the base of S1.

120



Many persistent contacts occurred between dHP and most of the S protein surface,

specifically on residues N164, R355-R357, V407, N501, and Y505, and the inner RBD

“down” site on residues I231, G404, N501, and Y505 (Figure 2A). Residues R355-R357 and

residues N501-T505 were engaged by dHP in both RBD “up” or “down” conformations

suggesting the importance of sulphate groups in the disaccharides’ stabilization. Notably,

none of these residues were part of the binding site for ACE2, except for N501-Y505. dHP

engaged shortly with R357, G404, V407, N501, and Y505 on the monomer in the open

conformation, and more prominently on R237 and N164 on the NTD. dHP formed more

persistent interactions than dH with R354-K356, due to the negative charge of its sulphate

groups, which favoured the contacts between the arginine-rich chains of the S protein

constituting the trimeric system. The volumetric density maps highlight the differences

between dHP and dH's most persistent interaction sites (Figure 2B, 2C). dH stationed by the

NTD apical region close to the S protein base on residues S98-K147, R237, R246-Y248,

R357 and by the RBD “up” residues R355-R357, K378, G404.

Notably, other S protein positions, like residues V407, S477, Q474, and the surrounding

areas at the centre of the trimer did not show selective interactions between the S protein

and one heparinoid over the other. Our results highlight a selective affinity for HP with

respect to HP on residues R346, N354, R355, K356, R357, R466, and K444 in agreement

with experimental nuclear magnetic resonance (NMR) results (57), indicating a

sulfonation-dependent selectivity on the S protein. Furthermore, this selectivity enforces the

idea that negatively charged chains of HP find a multi-modal lodge around R355 which

triggers the opening of the RBD, without interfering in the ACE2:S protein molecular

recognition.

In summary, dH and dHP probes clearly identified three domain-specific sites of interaction

along the S protein surface. dHP resided specifically along the RBD in the “up” state, while

dH mapped the corners of the S protein on the NTD domain. We speculate that the S protein

might exhibit a domain-specific interaction preference, where LMWH is stabilized mostly on

the RBD, while EcHS are more specific for the NTD. The protruding portion of the NTD may

represent a possible engagement point for EcHS, providing support in the alignment of the S

protein and ACE2, while HP could support the RBD “up” conformation without interfering with

the ACE2 interaction. The contacts between G502 and Y505 would provide interaction sites

for HP to support the opening of RBD in the “up” conformation, in agreement with Clausen’s

experimental results. Finally, we identified specific interaction hotspots intended for dH on

the NTD. dH probes, used in this study because considered representative of EcHS

interactions, would aid the alignment between the S1 domain and ACE2. We speculate that

SARS-2 might distinguish between EcHS and HP thanks to their different sulfonation state
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and a specific molecular recognition fingerprint for the RBD, therefore using HP to lock the

RBD in its “up” state and HS for a favourable alignment on top of ACE2.

3.4. Simulations identified specific zones for dHP and dH on ACE2
We focused on ACE2 to pinpoint possible interaction sites for HP and EcHS, involved in the

enhanced binding between ACE2 and S protein (58,59). During MixMD simulations, the

ACE2 pincer-shaped domains underwent an outward opening movement (Video S3, Video

S4) and exhibited flexibility at the PD domain level on chain D.

Figure 3. Interactions between dHP or dH and ACE2. A) Contact frequency difference

between dH and dHP according to the frequency of interactions during the MixMD
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simulations. B) ACE2-dH density map (blue, isovalue 20%). C) dH density map (red,

isovalue 20%) on ACE2.

Overall, the higher sulfonation of dHP increased electrostatic interactions with lysine and

arginine residues indicating that dHP is more likely to engage with ACE, especially at the

base of the extracellular domain. Interactions were predominant around residues K625,

K676-R678 (Figure 3A), and G726. dH MixMD simulations indicated lower distribution

around ACE2 (Figure 3B) suggesting a lower engagement in the S protein-dHS-ACE2.

From a mechanistic perspective, we propose that HP could bind the ACE2 while engaging

the S protein without hindering the S protein: ACE2 molecular recognition mechanism. dH

engaged ACE2 on residues H239, R306, W328, D597, and S602 (Figure 3C).
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Figure 4. The proposed interaction model for EcHS and HP on the S protein-ACE2
complex. The presence of EcHS in the glycocalyx on the host’s extracellular matrix could

be exploited by SARS-2 to better anchor and align the virion to the host cell, without

interfering with the receptor binding motif (RBM). Long EcHS chains could also act as

three-point adhesives, enhancing the SARS-2 infective mechanism. HP could lock the RBD

in the “up” state without affecting the molecular recognition with ACE2. (Figure modified with

permission from (60)).

Our results indicated that the most persistent contacts between dHP and ACE2 occurred at

the base of the receptor. According to the distinct interaction specificity of both dHP and

dHS, we speculate that cellular EcHS could bind to the corners of the S protein to facilitate a

favourable orientation of the trimer toward ACE2 around residues K182-H245. At the same

time, long EcHS chains could favour the molecular recognition between ACE2 and the S

protein by supporting the “up” state of the RBD. We hypothesize the synergic interaction of

long HP chains with the extracellular ACE2 domain around residues K619-R678.

In summary, simulations suggested that long-chained heparinoids bound to the S protein can

extend toward the base of the ACE2, providing an additional anchoring point to facilitate viral

binding without occupying the site intended for RBD molecular recognition.

4. Discussion
We have identified potential sites on the S protein and ACE2 receptor where EcHS and HP

could bind and compete. Our results indicate that both heparinoids can linger between the

RBD external wall, around R355, and the adjacent NTD close to N165. dH formed more

contacts at the corners of each S protein monomer NTD domain, including a portion of the

SP. Strong similarities between the interaction heatmaps of dH and dHP indicate that

SARS-CoV-2 could exploit both HP and EcHS, regardless of their sulfonation state, to initially

approach the host’s cellular membrane by using the proteoglycans-bound EcHS, while using

the highly sulphated heparin to initiate the conformational changes. The presence of

restricted S protein areas selective for either of the two heparinoids suggests that the long

HP chain could unwind from K148, pass close to N165, and stabilize the RBD “up” in

correspondence with N165 and between R355-R357 (Figure 4) using their high sulphonation

degree as a region-selective means.

We propose the hypothesis where the S protein initially exploits both HP and EcHS on

residues R346, R355-R377, G404, R408, K444, and G502-G504, to favor the initial RBD

transition to the “up” state with HP specifically supporting the transition between the states in
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a more efficient manner. Hence, the role of heparin would be to favour, together with the

glycan on N165, the opening and stabilization of RBD towards the "up" state.

On the other hand, SARS-CoV-2 could use low-sulphated EcHS to approach the membrane

through the residues F4, Q14, N17, H245, R246, and Y248 to favour a proper S1:ACE2

alignment. Our hypothesis sees EcHS as a landing “hook” for the S protein NTD orientation

of the RBD toward ACE2, as indicated by the numerous contacts on multiple residues on

NTD. In this scenario, the HP present on the ECM could additionally stabilize and anchor the

S protein to ACE2, as indicated by the contacts on both the S protein and the extracellular

portion of ACE2, suggesting a synergic effect of EcHS and HP, in agreement with Clausen’s

experimental results.

We speculate that long EcHS chains projected towards the extracellular lumen could

intercept the S protein through electrostatic interaction with the less sulphated disaccharide

chains of EcHS on residues V407, S477 and Q474 where the sulphonation profile was not

decisive. This approaching mechanism, in conjunction with HP RBD stabilisation, might

regulate alignment and affinity with the subsequent conformational changes, in agreement

with Tandon’s group binding experimental data (61).

It is reasonable to assume that the inhibition experimentally displayed by dHP and dH is due

to the ability of short chains to saturate all the binding sites for EcHS and HP onto the S

protein and ACE2 surface, preventing longer HP chains from binding and facilitate the

conformational shift of RBD from “down” to “up”, or hindering the alignment with ACE2.

5. Conclusion:
Using dH and dHP as molecular probes, we suggest both common zones and specific sites

of the glycosylated S protein and ACE2 receptor where HP and EcHS can potentially

engage. dH is proposed to bind areas around the NTD responsible for the molecular

recognition of the extracellular matrix, hampering the correct S protein-ACE2 alignment and

altering S protein stabilization in the proximity of the membrane. dHP interacts on the RBD,

preventing the opening and locking of the ACE-2 binding domain, reducing SARS-CoV-2

infectivity. Our results support the scenario in which short-chain HP and HS could saturate S

protein binding spots RBD for glycocalyx EcHS on the NTD and RBD, in agreement with the

experimental observations available in the literature.

In summary, we distinguished the different behaviour of the dH and dHP, suggesting that HP

plays an opening and stabilizing role on the RBD, while low-sulphated heparan is

responsible for the RBD:ACE2 alignment, addressing the reasons behind the different

behaviour of similar disaccharides to their sulphonation profile.

6. Videos:
https://www.biorxiv.org/content/10.1101/2022.07.05.498807v1.supplementary-material
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6.3 Is the SARS-CoV-2 Spike Protein Stalk Druggable?

The mutations of the RBD of the S protein led to the diffusion of different

SARS-CoV-2 variants. These variants, named after the Greek alphabet letters, highlighted

the criticalities of the antibody discovery approach, due to epitope changes caused by the

mutations. My efforts primarily targeted the most diffused and concerning variants, namely

the Alpha (B1.1.1.7), Delta (B.1.617.2) and Omicron (B.1.1.529). Epitope mutation is a

prominent escape mechanism and represents an urgent challenge for the development of

infective treatments (see the HIV section, Chapter 7). Identifying conserved structures

between the different variants to target represented an intriguing approach for drug

discovery. The structural comparison of the different SARS-CoV-2 variants inspired a new

study for targeting conserved regions of SARS-CoV-2. Sequence and structural alignment of

Alfa, Delta, and Omicron revealed conserved regions at the base of the S2/S1 domain and

along the stalk (S2 domain) shared across the “variants of concern”. The S2 domain is

responsible for the S protein’s flexibility mediated by three hinges. This flexibility explains

why multiple spikes simultaneously engage onto the surface of a host cell, providing an

effective S protein:ACE2 alignment. Identifying S2 binders would possibly lead to the

development of a pan-coronavirus treatment to reduce the stalk’s fexibility and it’s ability to

align to ACE2. For this purpose, I performed the virtual screening of a small but optimised

library of fragments. These results defined the opportunities and limits of targeting

SARS-CoV-2 flexible and dynamic structures. The published manuscript that collects the

results and observations is titled “Is the Stalk of the SARS-CoV-2 Spike Protein Druggable?”

published on Viruses 2022, 14 (12), 2789; https://doi.org/10.3390/v14122789.

Authors: Ludovico Pipitò, Christopher A Reynolds, Giuseppe Deganutti

Abstract
The SARS-CoV-2 virus spike protein (SP) is the vector of the virus infectivity. The

high propensity to mutate in key regions responsible for the recognition of the human

angiotensin-converting enzyme 2 (hACE2) or the antibodies produced by the immune

system following infection or vaccination makes subunit 1 of the SP a difficult to target and,

to date, efforts have not delivered any ACE2 binding inhibitor yet. The inherent flexibility of

the stalk region within subunit S2 is key to SARS-CoV-2 high infectivity because it facilitates

the receptor binding domain encounter with ACE2. Thus, it could be a valuable therapeutic

target. By employing a fragment-based strategy, we computationally studied the druggability

of the conserved part of the SP stalk by means of an integrated approach that combines

molecular docking with high-throughput molecular dynamics simulations. Our results suggest
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that the druggability of the stalk is challenging and provide the structural basis for such

difficulty.

Introduction
The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic

that was first identified in 2019 in the city of Wuhan (1) continues to raise concerns amongst

governments and the scientific community with almost 530 million cases around the world

with more than 6.2 million certified deaths (WHO dashboard, 08 June 2022,

https://covid19.who.int). SARS-CoV-2 shows a strong affinity for the human

angiotensin-converting-enzyme 2 (ACE2) receptor, a type 1 transmembrane protein

responsible for the extracellular conversion of the angiotensin hormone into angiotensin II (2)

through the SARS-CoV-2 spike protein (SP). The SP is a highly glycosylated trimeric

structure, common amongst the coronaviridae family (3), which is constituted by two main

units named S1 and S2. While S1 is responsible for molecular recognition of ACE2, S2 is

paramount to structural stability and orientation of the whole SP and membrane fusion to

deliver the viral genome (4). The efforts of the scientific community were dedicated to

promptly developing vaccines or a variety of small molecules(5–8), specifically designed to

bind and neutralize the area on S1 responsible for ACE2 binding, namely the

receptor-binding domain (RBD).

In 2020, the term variants of concern (VOC) was introduced to describe new

SARS-CoV-2 strains which differentiated from the original SARS-CoV-2 wild type (WT)

through a series of mutations, mainly on the RBD, which cause drastic changes in

transmissibility and pathogenicity (9–11). The B.1.617.2 strain (Delta variant) was identified

in India by January 2021 and spread rapidly across the globe (12), overcoming the WT in a

short amount of time. n November 2021 the B.1.1.529 (Omicron variant) became the

dominant VOC over the Delta (13).

Among the SARS-CoV-2 VOCs, major preoccupations regarded those strains that carried

important mutations and deletions, especially on the RBD (14). VOC has important RBD

mutations: B.1.1.7 (Alpha), carries E484K, N501Y, D614G, P681H; B.1.351 (Beta) carries

K417N, E484K, N501Y, D614G, A701V; P1 (Gamma) carries K417T, E484K, N501Y, D614G,

H655Y; B.1.617.2 (Delta) carries L452R, T478K, D614G, P681R (15). Concerns among the

scientific community have risen due to their potential to elude the immune system and

overcome vaccine protection (16,17) despite showing an overall similarity between variants,

which diverged only in terms of flexibility of SP. More recently, a new B.1.1.529 (Omicron)

VOC (18) carrying N440K, G446S, S477N, 118 T478K, E484A, Q493R, G496S, Q498R,

N501Y, and Y505H mutations, and its lineages became predominant over the Delta variant,

possibly due to a more rapid entry or different mechanism (19–21), an enhanced ability to
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evade the immune system(22–24), and its increased affinity for ACE2 (25–27) although

showing a milder pathogenic impact (28). New VOCs are expected to pose a new threat

should they become widespread (22,29) and further studies should follow to evaluate the

potential risk of new mutations.

The vaccine technology developed so far is designed to specifically target RBD,

where the majority of the mutation occurred, increasing the risk for antibody inefficacy

(30–32). The potential loss of efficacy against the Omicron variant was attenuated by a loss

of replication and lethality power, probably due to Omicron’s inefficiency to exploit the cellular

transmembrane protease serine 2 (TMPRSS2) (28). However, with the continuous viral

diffusion, the likelihood of new mutations remains critical and new variant-specific vaccines

need to be developed regularly to keep up with the rate of mutation (33). While S1 and RBD

are the SP domains most prone to mutation, S2 has a higher level of conservation among

the coronaviridae family (34). The only S2 mutations identified so far are N764K, D796Y,

N856K, Q954H, N969K, and L981F. Residues I921, S980, V1187, F1218, and I1219 (Figure

1), conserved in both the Delta and Omicron strains, are pivotal residues that confer

increased flexibility to the stalk(35,36). Interestingly, the region between residues

L1145-L1186 (Conserved Region 1, Figure1), and between E1188-W1217 (Conserved

Region 2, Figure1) contain Loop 1 and Loop2 that contribute to the S1 domain flexibility

(37), are conserved amongst all the VOC, and exhibit specific highly-conserved sequences

(38). Molecular dynamics (MD) simulations highlighted unexpected flexibility of the SP stalk

(36), which has been proposed as paramount for ACE2 binding and infectivity (39). In

principle, a small molecule able to target the stalk region would be effective on all the VOC

by impairing the flexibility of the SP, thus the infectivity of SARS-CoV-2. For this reason, we

integrated molecular docking and molecular dynamics (cMD) simulations to study the

druggability of the conserved S2 stalk region E1144-R1185 (Figure 1B) and its potential as a

drug target. Possible cryptic binding sites were sampled using a mixed MD (mixMD)

approach(31,40,41) to evaluate the accessibility of the stalk in the presence of the branched

glycans on the SP surface. We docked a small library of optimized fragments (32) to the SP

stalk and performed hundreds of high-throughput post-docking cMD simulations combined

with binding free-energy calculations to determine if small molecules can target this

important SARS-CoV-2 protein domain.
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Figure 1T. A) Sequence alignment between the conserved SP stalk region of the wild
type (WT) or Omicron and Delta variants. B) Structural comparison between WT or

Omicron (tan ribbon) and Delta S2 region (cyan). The area between residues L1145-W1217

is almost identical between the strains and could represent a therapeutic target. Glycans

were removed for clarity; the S1 subunit with the three receptor binding domains (RBDs)and

the viral, membrane are schematically represented.

Methods
General Workflow
MD simulations and molecular docking were combined in a computational pipeline (Figure 2)

aimed to discern potential fragments able to overcome the steric barrier provided by

glycosylation and engage the SP stalk in specific interactions. Initial MD simulations of the

stalk prepared the structure for molecular docking, while mixMD sampled the accessibility of

potential pockets. Molecular docking followed by high throughput post docking MD

simulations discerned the stability of the predicted poses, narrowing the number of putative

binders to five, which were further evaluated in further, extended MD and mixMD simulations.

Preliminary classic MD of the spike protein stalk
The SP stalk was prepared using CHARMM36 (42,43). The fully glycosylated SP model was

retrieved from the CHARMM-GUI repository

(https://charmm-gui.org/?doc=archive&lib=covid19), (44), and subsequentially trimmed from

residue E1144-W1214, keeping the glycans in their original position at their original length.

Hydrogen atoms in the S2 domain were added by Propka (45) at a simulated pH of 7.0, while

structural integrity was checked through HTMD (46), visually inspected, and patched

manually through VMD (47) according to previous structural knowledge (4). Each system

was solvated with TIP3P water molecules (48) added to the simulation box considering a 15

Å padding in every direction by Solvate plugin 1.5

(http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/). The charge neutrality was achieved

by adding Na+/Cl− to the concentration of 0.150 M using Autoionize plugin 1.3 (http:

//www.ks.uiuc. edu/Research/vmd /plugins/autoionize/). The initial geometry and internal

energy were optimized using the conjugate gradient algorithm by ACEMD (49)to eliminate

possible clashes and optimize atomic distances. The equilibration was achieved in

isothermal-isobaric conditions (NPT) using the Berendsen barostat (50) (target pressure 1

atm) and the Langevin thermostat (51) (target temperature 300 K) with low damping of 1 ps-1.

During the 4 ns equilibration, a positional restraint of 1 kcal/ mol Å2 was applied on the alpha

carbons for the first 3 ns, and on protein side chains for the first 2 ns.
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Fragments preparation and molecular docking
A set of 240 optimized molecular fragments from X-ray complexes (32), the SpotXplorer

database, was converted to 3D conformers through the RDkit module (52), protonated at pH

7.4 with Chimera (53), and energy minimized with RDkit. Each fragment was docked using

Autodock Vina(54,55), to the Conserved Region 1 of the SP stalk using the structure from

the last frame of the cMD equilibration and the residue V1164 as the center of a grid with a

46 Å side length, for a broad exploration of the stalk surface. For each fragment, ten poses

were ranked according to the docking score. Poses in contact with glycans or outside the

conserved region were discarded. The rationale behind our selection was to narrow our list

of fragments to those able to specifically target protein residues of the stalk. Poses away

from the density maps produced by benzene (BENZ), formic acid (FAC), and methylamine

(MTA) (see below) or not engaging simultaneously with at least two monomers, were also

excluded.

Post-docking cMD
The best 559 docking complexes were subjected to 10 ns of post docking cMD. Initial

CGenFF force field(56,57) topology and parameter files of molecular fragments were

obtained from the CGenFF software. Restrained electrostatic potential (RESP) charges were

calculated with AmberTools20 (58) after geometry optimization through Gaussian09 at the

HF/6-31G* level of theory (59). Each complex was prepared for cMD, equilibrated, and

simulated as reported below. For each simulation, similarly to Sabbadin et al (60), we

calculated the dynamic energy score (DES, Equation 1), which is the sum, over all the MD

frames, of the ratio between the generalized born surface area GBSA binding energy and

fragment root mean square deviation (RMSD) to the initial docking pose, using

AmberTools20 and VMD.

Equation 1𝐷𝐸𝑆 =
𝑖=1

𝑛

∑ 𝐺𝐵𝑆𝐴
𝑅𝑀𝑆𝐷

We excluded all the complexes with an average RMSD < 10 Å, and RMSD standard

deviation < 5 Å, and ranked them according to the best final score. We then chose the five

best fragments, which were visually inspected to avoid important interactions with glycans.

These candidates were then further evaluated with 500 ns of cMD or mixMD (see below).
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Mixed Molecular Dynamics (MixMD)
Fragments 1-3 and three common molecular probes such as benzene (BENZ), formic acid

(FAC), and methylamine (MTA) were used for mixMD(31,40) to explore the accessibility of

the stalk region to both very low (BENZ, FAC, MTA) and intermediate (fragments 1-3)

molecular weight molecules, as well as possible cryptic binding sites. MixMD systems were

prepared using PACKMOL (61), setting a minimum distance of 4 Å between each component

to avoid clashes and secure a broad placement of the cosolvent molecules. An adequate

number of cosolvent molecules were introduced to reach a virtual concentration of 5% w/w.

The systems were then solvated, neutralized, equilibrated, and simulated as reported above.

Density maps were computed using the Volmap VMD plugin

(https://www.ks.uiuc.edu/Research/vmd/plugins/volmapgui/) setting a grid of 0.5 Å while

Solvent accessible surface area (SASA) were estimated using vmdICE (62) and Chimera.

Figure 2. Computational workflow of the study. Preliminary classic molecular dynamics

(cMD) and mixed MD (mixMD) were performed on the spike protein stalk (SP); an

MD-extracted conformation of the SP stalk was used to dock 240 molecular fragments. The

best 560 poses according to Vina score were subjected to 10 ns of cMD ed evaluated

according to the dynamic energy score (DES, Equation 1). The best 5 fragments according

to DES were finally further simulated through cMD and mixMD.
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Results
The flexible loops promote stalk flexibility.
Our investigation focused on the SP stalk Conserved Region 1, between residues L1145 and

L1186, which is conserved and less glycosylated than other SP domains. During preliminary

cMD simulations of the stalk (Figure 3), the trimer maintained a stable quaternary structure in

the region L1154-L1166, while displaying the highest flexibility at the level of the N-terminus

(residues 1144-1156) and C-terminus (residues 1202-1214). The flexible Loop 1 (residues

1160-1170) was characterized by intermediate flexibility. The high RMSF (Figure 3A) of the

N- and C- termini is ascribable to the artificial cut necessary to isolate the stalk region from

the rest of the SP, which created unnatural protein ends. For this reason, we excluded the

terminal four N-terminal amino acids for the successive docking studies. Computational

studies have suggested high flexibility of the SP stalk due to the presence of two

unstructured knees (63). Our simulations displayed similar behavior, where the bending of

the stalk was aided by the opening of transitory pockets within the flexible loops, which

temporarily moved away more than 20 Å from each other (Figure 3B) with an angle of about

133° between the alfa carbons of P1143-V1164-I1172.

Figure 3. A) Root mean square fluctuation (RMSF) of the SP stalk during cMD simulations.

The RMSF of each residue is mapped on the structure (left panel) and color coded according

to the value (flexible residues are red) plotted; RMSF are also plotted on the sequence (right

panel); B) the SP stalk Conserved region 1 (orange) is subjected to high flexibility during

cMD simulations at the level of Loop 1; the position of the S1 domain and the Loop 2 is

reported for reference.

139



The conserved region of the stalk is accessible to solvent and small fragments
Preliminary MixMD simulations were employed to assess the accessibility of the Conserved

Region 1. The probes benzene (BENZ), formic acid (FAC), and methylamine (MTA) indicated

accessible sections across the stalk. BENZ sampled possible hydrophobic pockets on both

the N- (close to K1149) and C-terminal (close to E1195) of the stalk. The latter was explored

also by FAC, alongside a further interhelical volume in the proximity of E1182. MTA, and to a

lesser extent BENZ, weakly interacted with the stalk at the level of the flexible loops’

residues V1164-S1170. These results indicate that the glycosylation of the stalk efficiently

protects the SP, although some small areas are accessible for potential binding. Interestingly,

molecular probes were able to intercalate within the three stalk helices, indicating possible

pockets. SASA analysis indicated more solvent-exposed sites at the N-terminal of the stalk,

below the connection with S1, and below the flexible Loop 1 in agreement with mixMD

results.

Molecular docking and high throughput post-docking cMD predict interactions with
Loop 1
Molecular docking of the optimized small library of fragments, performed on the fully

glycosylated stalk, produced binding poses with scores ranging from -6.7 kcal/mol to -2.3

kcal/mol with limited convergences with density maps obtained from MixMD simulations. We

discarded the last half of the poses (poses 1201-2400) as their docking score was lower than

the arbitrary value of -4.5 kcal/mol and all the poses that did not interact with at least two

monomers of the stalk or that made contacts with the glycans. The remaining 559 poses

were then simulated during 10 ns of post-docking MD simulations, for a total MD sampling of

almost 5.6 μs, in a fully hydrated and flexible environment. We computed the DES (Equation

1), which considers both the generalized born surface area (GBSA) binding energy and the

root mean square deviation (RMSD) to the initial docking pose, for each fragment. After

visually inspecting the resulting best poses according to the DES, we kept only those closest

to the Conserved Region 1 and not in contact with any glycan residue, retaining 19

fragments, that were subjected to a further 500 ns cMD simulation.

Longer post-docking MD simulations rebut molecular docking predictions
Disappointedly, 14 out of the 19 fragments were completely displaced in the first 100 ns of

the extended simulations. Rotations, openings, and closures of the flexible Loop 1 rapidly

disentangled the fragments, causing the rapid displacement of most of the fragments. The

remaining five compounds (fragments 1-5, Figure 4, Table 1, Video S1) initially interacted

with Loop 1, in correspondence with residues N1158-S1170, before moving away from the

initial position. Overall, all the fragments changed orientations towards and formed
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alternative interactions before being displaced after less than 300 ns (Figure 4E-I). Planar

compounds, predicted by docking in correspondence with the volumes identified by the initial

mixMD as possible pockets, displayed better interactions with Loop 1 residues N1158-S1170.

1-3 resided at the center of the trimer for more than 100 ns, before moving upward towards

the N-terminal through the three chains and dissociating; 4 and 5 resided mainly on the

C-terminal end of Loop 1 before unbinding through a temporary tunnel formed between the

stalk chains.

Figure 4. A-D) The best five fragments (1-5) according to molecular docking followed by 10

ns of post-docking cMD simulations; the final conformation (stick representation) after 10 ns

is reported. E-I) Stalk residues (ribbon) that most interacted with fragments 1-5 during 500 ns

of cMD; residues with the highest occupancy are in maroon. The density maps (iso surface

20%, grey surfaces) of the fragments are also reported.

Table 1: Summary of the best 5 fragments after 500 ns of cMD.

Fragme
nt

IUPAC NAME

Ligand Position
on the stalk

before
unbinding

Displacement Time

1 1-pyridin-2-ylpiperidin-4-one N-terminal ~160 ns

2 N-phenyl-1,3,4-thiadiazol-2-amine N-terminal ~200 ns

3 6-fluoro-3-piperidin-4-yl-1H-indole N-terminal ~300 ns
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4 3H-[1]benzofuro[2,3-d]pyridazin-4-one C-terminal ~200 ns

5 1,3-benzothiazole-6-carbonitrile C-terminal ~110 ns

Mix MD to check the fragments’ accessibility to Conserved Region 1
Since mixMD simulations of the molecular probes BENZ, FAC, and MTA suggested some

degree of accessibility to the stalk despite the high glycosylation of the SP, we run further

mixMD simulations using 1-3 (Table 1, Figure 4) to investigate the accessibility of larger

compounds, and any convergence with the metastable configurations sampled during the

500 ns post-docking cMD simulations. During mixMD simulations, the fragments were able to

reach the stalk protein surface on isolated spots, overcoming the shield provided by the

glycans (Figure 5). Fragment 1 made fewer interactions with the stalk among the three

compounds , mainly engaging residues T1155, K1149, E1151, and L1152 and transiently

intercalating between the stalk chains (Figure 5A, Video S2), within a cryptic niche formed by

L1152, F1148, Y1155, and F1156. Fragment 2 formed interatomic contacts with residues

K1149, Y1155, E1151, L1152, V1176, H1159, Q1180, N1173, F1156, S1175, and F2248 (,

Figure 5B). Compound 3 formed the most persistent interactions with the stalk Conserved

Region1, engaging Y1155, E1182, E1151, N1178, Q1180, K1149, H1159, L1152, R1185,

ASP1153, F1156, V1177, and D1153 side chains along both the N- and C-termini (Figure

5C). Interactions highlighted the presence of a possible cryptic pseudo-pocket around

residues Y1155-F1156 and H1159. In contrast with the previous docking predictions and

cMD simulations, MixMD identified putative interactions along the N-terminal section of the

Conserved Regon1 of the stalk, right above Loop 1.
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Figure 5. Contacts formed during mixMD simulations of fragments 1-3. The stalk is

reported as a ribbon, while the most involved residues (maroon) are in stick representation.

Conclusion
The SP stalk region is conserved amongst the SARS-CoV-2 VOCs. Given its role in orienting

the RBD for binding to ACE2, impairing the flexibility of the loops formed by residues

1160-1170 through the binding of a drug, could represent a therapeutic approach to

explore(38,64). We investigated the druggability of the SP stalk using 240 molecular

fragments and considered the shielding effect of the glycans on the protein surface. Our

computational workflow combined molecular docking, high-throughput MD simulations, and

mixMD as orthogonal methods to evaluate putative interactions on the stalk region.

Molecular docking predicted putative interaction sites around residues T1160 - S1170. High

throughput cMD simulations of 559 docking poses suggested the instability of docked

fragments, except for a few ligands that were further evaluated in longer simulations.

Possible metastable interactions on the stalk region were confirmed in the proximity of

residues H1159 – I1169. Finally, mixMD simulations of the three most promising fragments

sampled a few narrow binding sites within the three helices of the stalk, which allowed for the

transient binding of small, planar ligands.

Overall, our results suggest that the binding at the level of the most rigid part of the

stalk is possible for planar fragments, however, the flexibility of Loop 1 does not provide
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structural stability for binding, reducing the overall druggability of Conserved Region 1.

Although it would be possible to design chemicals bearing a planar group that intercalates

between the stalk helices and a linear portion that impairs Loop1 dynamics and likely, the

whole SP flexibility, this strategy appears complicated. Future investigations could explore

alternative approaches to exploit the symmetry of the trimeric stalk with high molecular

weight molecules, rather than a fragment-based one we reported here.

Video:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786045/bin/viruses-14-02789-s001.zip
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6.4 A Pathway Model to Understand the Evolution of Spike Protein Binding to ACE2 in
SARS-CoV-2 Variants

With Omicron cases rising worldwide, the concerns of the scientific community were

focused on predicting the effects of the mutation on both antibodies’ affinity and the

pathogenic effects. Surface plasmon resonance (SPR) experiments in the literature reported

a stronger binding affinity to ACE2 of the Omicron variant but a slower binding kinetics,

compared to the Delta and Alfa. Supervised molecular dynamics (SuMD) revealed the

RBD:ACE2 binding pathway for the Alpha, Delta, and Omicron variants, and highlighted the

effect of the mutations on the RBD in the stability of the complex. My work compared the

binding properties and pathways of different SARS-CoV-2 RBD variants (RBDΔ, RBDwt and

RBD°) to understand how key mutations impact infectivity. The mutation's impact on binding

dynamics affects the association rate by destabilizing unbinding states (USs), enhancing

RBD° complex stability, and potentially prolonging receptor residence time. The insights and

observations led to the publication of the work titled: “A Pathway Model to Understand the

Evolution of Spike Protein Binding to ACE2 in SARS-CoV-2 Variants” published on

Biomolecules. 2022 Nov; 12 (11): 1607; doi: 10.3390/biom12111607.

Authors: Ludovico Pipitò, Christopher A. Reynolds, Juan Carlos Mobarec, Owen Vickery,

and Giuseppe Deganutti

Abstract

After the SARS-CoV-2 Wuhan variant that gave rise to the pandemic, other variants named

Delta, Omicron, and Omicron-2 sequentially became prevalent. Mutations spread around the

viral genome, including on the spike (S) protein resulting in gains in infectivity, potentially

through enhanced binding of the virus to the angiotensin-converting enzyme 2 (ACE2)

receptor on the cell’s surface. We interrogated in silico the molecular recognition between the

receptor-binding domain (RBD) of different variants and ACE2 through supervised molecular

dynamics (SuMD) and classic molecular dynamics (MD) simulations to address the effect of

mutations on the possible S protein binding pathways. Our results indicate that

compensation between binding path efficiency and stability of the complex exists for the

Omicron receptor binding domain, while Omicron-2’s mutations putatively improved the

dynamic recognition of the ACE2 receptor, suggesting an evolutionary advantage over the

previous strains.
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Introduction

The new strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

B.1.1.529 (Omicron), originated in South Africa

(https://www.gisaid.org/phylodynamics/west-africa/) was identified by the World Health

Organization (WHO) on the 24th of November 2021 and a declared variant of concern (VOC)

two days later (1). Various Omicron cases were reported from travellers coming from South

Africa and people all around the world (2,3), raising concerns amongst the scientific

community and governments alike. Omicron cases in South Africa, America, and India

drastically reached their peak in January right after the Delta variant started to be under

control (4), with a similar scenario in Europe where Delta and Omicron are still competing in

the infection’s ratios, while new Omicron variants B.A.2 and B.A.3 are kept under

observation (4).

The presence of more than 50 mutations (Figure 1), including deletions, raised

concerns and speculations about Omicron’s ability to evade the innate immune response.

K417N, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y and Y505H are part

of the immunodominant antigenic site I (5). Despite the concerns about Omicron and its

evasion mechanism, experimental data indicated how Omicron’s mutation heavily impact the

viral replication and pathogenicity due to inefficiency to exploit the cellular serine protease

TMPRSS2 (6) compared to Alfa, Beta and Delta variants. In Shuai’s experiments, mice

infected with the Omicron showed a drastic reduction in viral replication and a strongly

reduced pro-inflammatory response as indicated by the modest gene expression of

interferon-gamma induced protein 10 (IP-10) and the reduced interferon-gamma production

(IFNγ). The mutations on the S1/S2 domain and the N-terminal Domain (NTD) suggested the

intriguing hypothesis that Omicron could compromise the cell’s ability to degrade its viral

components while also reducing the efficacy of the majority of the vaccines (7) due to 15

mutations, some of which are conserved between Beta and Delta strains (8), present on the

receptor-binding domain (9) (RBD). According to deep mutational scanning experiments,

almost all the mutations involving the receptor-binding motif (RBM) did not increase ACE2

binding affinity when present individually (10), while N501Y mutation enhances RBD binding

to ACE2 by 6-fold or more(11–13) relative to other strains, due to increased shape

complementarity with ACE2 Y41ACE2 and K353ACE2 side chains. Mutations Q493K (or Q493R)

and Q498R introduce new ionic interactions with E35ACE2 and E38ACE2 but displayed slightly

reduced avidity when tested individually in yeast-displayed SARS-CoV-2 RBD (10). The

K417N mutation, on the other hand, worsens ACE2 recognition by about 3-fold(11,14)

through loss of a salt bridge with D30ACE2, although the effect on the binding when combined

with other mutations is reportedly smaller (15). Notably, these numerous omicron mutations
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seem to compensate each other when it comes to the binding affinity for ACE2, as the RBD

of Omicron (RBDO) was similar to other strains(15–17).

In the present work, we first interrogated the ACE2 ectodomain in complex with the

RBDs from the wild type S protein, Delta, and omicron variants by means of molecular

dynamics (MD) simulations, proposing a unique network of hydrogen bonds characterizing

omicron. We then studied the out-of-equilibrium binding process of Delta TBD (RBDD) or

RBDO to ACE2 employing supervised MD(18,19) (SuMD) simulations. We propose that the

same mutations stabilizing the omicron complex with ACE2 hamper the kinetics of binding,

accounting for the overall compensation on the measured affinity for the receptor.

Figure 1. Comparison between SARS-CoV-2 RBD wild type and SARS-CoV-2 RBD
Omicron. A) SARS-2 WT RBD model showing residues T333-P527, with the original WT

amino acids represented as licorice. B) SARS-2 WT RBD model showing residues

T333-P527, with the Omicron mutations highlighted and represented as licorice. With a total

of 50 mutations, 15 of which on RBD, the Omicron variant possesses a different

configuration of polar residues in the region between N477-H505 and an intriguing K417N

mutation.
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Methods

Structure Preparation and Force Field Settings

All systems were prepared using the CHARMM36(20,21)/CGenFF 3.0.1(22,23) force field

combination. The model of the RBDO of the spike protein RBD model was modeled through

alphafold2 (24) and comprised residues T333-P527. RBDD was retrieved from PDB ID 7V8B.

ACE2 residues S19 to A614 were obtained from PDB ID 6M17.

The protonation state of residues side chains was calculated by Propka (25) at a simulated

pH of 7.45, to match the crystallography experimental data, and added by pdb2pqr (26) while

disulfide bonds were identified by HTMD (27), visually inspected, and patched manually

through VMD (28). The initial geometry and internal energy were optimized using ACEMD

(29).

System preparation for classic molecular dynamics (MD)

The RBDWT:ACE2 complex from PDB 6M17, as per our previous work (19), was used as a

reference for the preparation of both RBDD:ACE2 and RBDO:ACE2 complexes. RBDD:ACE2

was obtained by superimposing RBDD from PDB 7V8B onto RBDWT:ACE2, while the

RBDO:ACE2 complex was obtained superimposing an RBDO model obtained by AlphaFold2

(24) on the RBDWT:ACE2 complex. Glycan residues were removed and topology files were

prepared using VMD’s Psfgen plugin

(https://www.ks.uiuc.edu/Research/vmd/plugins/psfgen/), and the resulting structures were

visually inspected after their creation. The systems were simulated for a total time of 500 ns

in triplicate with TIP3P water molecules (30) added to the simulation box considering a 15 Å

padding in every direction by Solvate plugin 1.5

(http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/). The charge neutrality was achieved

by adding Na+/Cl− to the concentration of 0.150 M using Autoionize plugin 1.3 (http:

//www.ks.uiuc. edu/Research/vmd /plugins/autoionize/). ACEMD was used for both the

equilibration and the productive MD trajectories . The energy of the systems was reduced

through 1000 conjugate-gradient minimization steps to eliminate possible clashes and

optimize atomic distances. Equilibration was reached in isothermal-isobaric conditions (NPT)

using the Berendsen barostat (31) (target pressure 1 atm) and the Langevin thermostat (32)

(target temperature 310 K) during a 4 ns long MD simulation (integration time step 2 fs).

During the equilibration, a positional restraint of 1 kcal/ mol Å2 was applied on the alpha

carbons of both ACE2 and RBD for the first 3 ns, and on protein side chains for the first 2 ns.

Productive trajectories were produced in triplicate with an integration time step of 4 fs, using
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the hydrogen mass repartition (33) in the canonical ensemble (NVT), with no positional

restraints. The cut-off distance for electrostatic interactions was set at 9 Å, with a switching

function applied beyond 7.5 Å. Long-range Coulomb interactions were handled using the

particle mesh Ewald summation method (PME)(34) with default ACEMD settings. Atomic

velocity was reassigned in each replicate to increase the sampling and explore possible

alternate conformations.

Supervised molecular dynamics (SuMD)

SuMD is an adaptive sampling method (35) for speeding up the simulation of the

binding(18,36) and unbinding processes (37). During SuMD, sampling is gained without the

input of any energetic bias, by applying a “tabu–like” algorithm to monitor the distance

between centers of mass (or geometrical centers) chosen on ligand and receptor.

Consecutive unbiased short MD simulations are performed, and, after each simulation, the

distances (collected at regular time intervals) are fitted to a linear function. If the slope of the

linear fitting function is negative, then the next short MD will start from the last coordinates

and velocities, otherwise, the simulation will be restarted by randomly assigning the atomic

velocities according to the Boltzmann distribution (38).

An initial distance between RBDWT and ACE2 was set at 25 Å, allowing conformational

exploration during the binding path as per our previous work (19). The initial position of RBDD

or RBDO was obtained by superimposing them on RBDWT through Chimera’s aligning feature,

producing identical starting conditions. Ultimately, the topology files were built through VMD’s

Psfgen and visually inspected. TIP3P water molecules were added to the simulation box

considering a 15 Å water padding, using the minimum and maximum coordinates of the

structures as a reference. The charge neutrality of the system was achieved by adding Na+

/Cl− to the concentration of 0.150 M using Autoionize plugin 1.3. Eight independent replicas

of SuMD were produced for each DV and OV system. The simulations were produced by

supervising the distance between RBD residue K31ACE2 and Q493D or K493O on the RBD

“up” binding motif (RBM). A series of 600 ps-long time windows were simulated until the

distance reached a value lower than 10 Å without further improvements in the distance.

Frames were saved every 200 ps and used to interpolate the linear function of the distance

during the simulated 600 ps. To simulate the engagement between RBD and ACE2, a 200 ns

long MD trajectory was produced starting from the last coordinate produced by SuMD.
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MD trajectories analysis

Out of eight SuMD binding replicas, the best four and three replicas in terms of reproducing

the experimental complex geometry (Figure 3A, C) were analyzed for RBDD and RBDO,

respectively. The root mean square deviations (RMSD) analysis were computed using VMD

and MDTraj (39). Ligand-protein contacts, including hydrogen bonds, were detected using

the GetContacts scripts tool (https://getcontacts.github.io), with a threshold distance and

angle of 3.5 Å 120°, respectively. Contacts and HB were expressed as occupancy (% of total

MD frames). The molecular mechanics energy combined with the generalized Born surface

area (MM-GBSA) was computed with the MMPBSA.py (40) script (AmberTools20 suite at

http://ambermd.org/), converting the CHARMM psf topology files to Amber prmtop format

through ParmEd (http://parmed.github.io/ParmEd/html/index.html).

RESULTS

Omicron mutations strengthen the interaction with ACE2 compared to WT and Delta
complexes

During the preparation of this manuscript, the cryo-EM structure of omicron S protein in

complex with ACE2 was released (41). We assessed the quality of our model by measuring

the RMSD of RBDO to the experimental structure during MD simulations of the complex with

ACE2, which resulted in alpha carbon atoms displacement of 0.8 Å and side-chain atoms

displacement of 3.1 Å, respectively. The latter value is closed to the nominal resolution (2.45

Å to 3.40 Å) of the available RBDO structures (7T9L, 7T9K, and 7WBL), indicating the validity

of the AlphaFold2 model we used. We assessed the structural binding properties of RBDWT,

RBDD, or RBDO in complex with ACE2 through MD simulations of each system, performed in

triplicate (Table 1). The comparison of the three RBD strands in terms of thermic fluctuations

show similar RMSD values for DV and OV, while the WT resulted more flexible when bound

to ACE2 (Figure 2A). This is in line with previous work suggesting higher dynamicity of the

RBDWT complex compared to the omicron strand (42).

Mutations characterizing the RBDD did not modify the interaction pattern observed for RBDWT

with ACE2 (Figure 2B), although residues common to both strands formed a different

number of contacts in the two complexes. More precisely, Q498D, T500D, and N501D on

RBDD engaged ACE2 more than RBDWT did, while the latter tent to interact more through

N487WT and Y505WT. This slightly asymmetric interaction pattern is not mirrored by

MM-GBSA energy analysis (Figure 2C). Indeed, per residue energy contribution to the

stabilization of the ACE2 complexes show a high degree of similarity between RBDWT and
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RBDD and overall very similar computed binding energies of -23.38 kcal/mol for

RBDWT:ACE2 and -22.95 kcal/mol for RBDD:ACE2, respectively. Intriguingly, simulations of

RBDO suggested a substantial change of the interaction pattern with ACE2, compared to

RBDWT (Figure 2C). RBDO residues R498O, K493O, S496O, Y501O (Q493WT, G496WT, N501WT

in RBDWT), and T500O formed more contacts with the receptor than RBDWT, which was

instead more engaged at the level of Y505WT (H505O in RBDO) and K417WT (N417O in RBDO).

N477O had a very limited impact on the hydrogen bonds network with ACE2 by transitory

interacting with Q24ACE2, S19ACE2, and T20ACE2. All the other mutated residues characterizing

RBDO did not participate in hydrogen bonds with the receptor. N501Y appears particularly

important for the RBD affinity towards ACE2(12,13).

From an energetic perspective, this interactions frame is suggested to be particularly

important for K493O, which was able to form stabilizing salt bridges with the ACE2 residues

E35ACE2 and D38ACE2 , compensating unfavorable interactions with D30ACE2 and K31ACE2. Both

RBDWT and RBDD present, instead, a glutamine residue, Q493WT/D, forming a simple

hydrogen bond with E35ACE2, while Y449WT/D engaged D38ACE2 in a further, weak, hydrogen

bond. The computed binding energy of the RBDO:ACE2 complex was -28.49 kcal/mol , about

5 kcal/mol more stable than RBDWT:ACE2 and RBDD:ACE2, likely thanks to these specific

electrostatic interactions involving K493O. Our MM-GBSA binding energy results are

consistent with Rajender K, et al (43) and Lupala C.S et al (44), but in disagree with findings

from other groups(45–47) suggesting RBDD as a stronger ACE2 binder than RBDWT and

RBDO. Reasons for these discrepancies could lie in the different lengths of the simulations or

the divergent number of replicas considered for the binding energy computation. Other

technical aspects such as the force field in the simulations and the GBSA parameters should

influence the output limitedly (48). Surface plasmon resonance (SPR) binding assays

quantified the RBDO binding affinity for ACE2 being either 2.4-fold higher (16) than RBDWT or

unchanged (41), with relative differences between RBDDand RBDO in the range of 1 to 3

fold(17,41) in favor of the latter. Surprisingly, such affinities indicate very similar binding

properties between RBD variants despite the high number of mutated residues present on

the RBDO receptor binding motif (RBM).
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Figure 2. MD of ACE2 in complex with RBDWT, RBDD, and RBDO. A) RMSD of RBDWT,

RBDD, and RBDO over the time course of three replicas (left panel, the curves were
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smoothed to interpolate the RMSD values) and the relative frequency distribution. B)
Comparison between the intermolecular contacts formed in ACE2:RBDWT and ACE2:RBDD

complexes; red residues interacted more in ACE2:RBDD, while blue residues were more

engaged in ACE2:RBDD. C) Comparison between the intermolecular contacts formed in

ACE2:RBDWT and ACE2:RBDO complexes; red residues interacted more in ACE2:RBDO,

while blue residues were more engaged in ACE2:RBDD. D) Comparison between the per

residue interaction energy in ACE2:RBDWT and ACE2:RBDD complexes; red residues

stabilized ACE2:RBDD, while blue residues stabilized more ACE2:RBDD. E) Comparison

between the per residue interaction energy in ACE2:RBDWT and ACE2:RBDO complexes; red

residues stabilized ACE2:RBDD, while blue residues stabilized more ACE2:RBDO.

Omicron RBM mutations impede the binding to ACE2

Since equilibrium MD simulations of the ACE2:RBDs complexes indicated gain in binding

stability for ACE2:RBDO, not supported by experimental binding data in the recent literature,

we further investigated the RBD binding properties by means of SuMD, an energetically

unbiased out-of-equilibrium MD technique. The goal was to study the first step of the

molecular recognition between ACE2 and RBDD or RBDO, starting from the completely

dissociated heterodimer and allowing a direct comparison between the two dominant

SARS-CoV-2 variants (Video S1 and Video S2). We first performed height SuMD binding

replicas for both RBDD and RBDO, followed by 200 ns of unsupervised, classic MD to allow

the metastable complexes during the SuMD stage to relax. The replicas better reproducing

the experimental complex geometry (four for ACE2:RBDO and replicas for ACE2:RBDD,

Figure 3A,C) were further analyzed. In three SuMD replicas out of four (Figure 3B) the

ACE2:RBDD complex reached stabilization energy close to the one computed for the

complex (e.g. -23.38 kcal/mol, Table S3), while all the three ACE2:RBDO SuMD binding

simulations (Figure 3D) showed a transitory stabilization of about -20 to -30 kcal/mol before

experiencing an energy increase at the end of the simulations. The lower stabilization of

ACE2:RBDO during the simulated binding events compared to ACE2:RBDD is supported by

the higher RMSD values to the bound complex (Figure 3A,C) and preliminarily suggests a

less efficient propensity to engage ACE2 for some reasons.

To address the differences between ACE2:RBDD and ACE2:RBDO that emerged during

SuMD binding simulations, we extracted and analyzed all the frames with an MM-GBSA

energy > 5 kcal/mol. The rationale for this is that the kinetics of binding is governed by the

energy of the transition states (TS) along the path and therefore the RBD propensity to bind

ACE2 can be understood by determining the driving forces of potential transition states.

Importantly, we did not consider the less stable configurations from SuMD simulations as the
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actual TS of binding, for two reasons. The first is that TS inherently suffer from poor MD

sampling and extensive simulations are required to capture high energy states of the system.

The second reason is that the MM-GBSA analysis we performed, which uses an implicit

solvent, neglected the entropic contribution to the energy of binding. It follows that the

conformational entropy of the proteins, the roto-translational entropy of water molecules and

the contribution of desolvation to the free energy of binding were overlooked. However, we

assumed the frames with an MM-GBSA energy > 5 kcal/mol to be closed enough to give

insight into the enthalpic nature of the TS during RBDD and RBDO to ACE2. In these unstable

states (USs) RBDO made atomic contacts and hydrogen bonds with ACE2 mainly through

the apical portion of the domain, especially involving Y449O and S446O (Figure 3E,F). RBDD,

instead, made spreader interactions with the receptor, through N501D, Y453D, and N417D

(Figure 3E,F). The MM-GBSA per residue energy decomposition (Figure 3 G,H) highlights

the RBDD and RBDO residues that stabilized or destabilized the USs during binding. D405D,

E406D, D420D contributed to the high energy of the complex during the binding, while K417D

and V503D putatively stabilized these states thanks to hydrogen bonds with ACE2 residues

D30 in the case of the former residue . Moving to RBDO, the most stabilizing residues during

binding were Y449O, which formed a hydrogen bond with E37 and F486O, while K493O

increased the energy of the USs intermediate states (Figure 3 G,H) despite weak hydrogen

bonds with E35 and D38.

Altogether, these results suggest a different binding path for RBDD and RBDO driven by some

of the mutations occurring between the two strains of the virus. Residue K417D appears

pivotal in orienting the binding to ACE2 by forming the strong hydrogen bond with D30 since

the first step of RBDD recognition. From this standpoint, the smaller and neutral N493D side

chain is predicted not to affect the binding transition states, compared to K493, which instead

destabilized the binding path.

Kinetics experiments ruled any influence of mutation N501Y on the RBD binding on-rate

(13), however, N501D formed a stabilizing hydrogen bond with K353ACE2 in the first steps of

RBDO binding to ACE2, whilst Y501O was not involved during USs. This inconsistency could

be due to the fact that the kinetics data refers to the single RBD mutant or to the inherent

limits of the MM-GBSA model.
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Figure 3. SuMD binding of RBDD and RBDO to ACE2. Only frames with binding energy > 5

kcal/mol were analyzed (unstable states). A) RMSD of RBDD to the bound final complex over

the time course of the best four SuMD replicas; B) MM-GBSA energy over the time course of

the best four RBDD SuMD replicas; C) RMSD of RBDO to the bound final complex over the

time course of the best three SuMD replicas; D) MM-GBSA energy over the time course of
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the best three RBDO SuMD replicas. Curves were smoothed to interpolate the RMSD values.

E) Comparison between the intermolecular contacts formed by RBDD or RBDO in the

unstable states of SuMD binding to ACE2; red residues interacted more in RBDO while blue

residues were more engaged in RBDD. F) Comparison between the hydrogen bonds formed

by RBDD or RBDO in the unstable states of SuMD binding to ACE2; red residues interacted

more in RBDO while blue residues were more engaged in RBDD. G) Per residue energy

decomposition of RBDD in the unstable states of SuMD binding to ACE2; F) Per residue

energy decomposition of RBDO in the unstable states of SuMD binding to ACE2.

Conclusion

The late months of 2021 and early 2022 have witnessed the spread of the omicron

SARS-CoV-2 strain as the dominant variant responsible for COVID-19, replacing the Delta

variant. Important efforts have been addressed to understand the role of new Omicron

mutations in the etiology of its rapid diffusion. Mutations of RBD residues in contact with the

N-terminal domain (NTD) of the S protein can favor a shift of the up and down

conformational equilibrium towards the up form, increasing the probability of ACE2

recognition and, therefore, infectivity. However, this has not yet been reported for Omicron,

which shows instead a high number of mutations grouped on the apical part of the RBD,

responsible for direct interactions with ACE2 receptors. In this work, we computationally

assessed and compared the binding properties of RBDD and RBDO to understand the

putative role of key mutations in enhancing the infectivity, despite the binding affinity for

ACE2 being almost unchanged, compared to the Delta variant. Our simulations of RBDWT,

RBDD and RBDO suggest that RBDO:ACE2 is more stable than the former complexes, thanks

to the contribution of new salt bridges formed by K493O. The same mutation disfavored the

dynamic binding to ACE2 by destabilizing the transition states during the recognition. In this

scenario, a compensation between kinetics constants of binding, kon and koff, would explain

the similar affinity for ACE2 displayed by RBDD and RBDO. The higher stability of the RBDO

complex could produce a higher residence time on the receptor, increasing the chances for

the TMPRSS2 to cleavage the S protein and start the membrane fusion, with the final effect

of enhancing the infectivity. Bearing in mind the inherent limits of MM-GBSA computations

(49), we believe this is a new angle to understand infectivity from the dynamic perspective of

RBD binding.

Videos:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687612/bin/biomolecules-12-01607-s001.zip

161



References

1.  Gao S-J, Guo H, Luo G. Omicron variant (B.1.1.529) of SARS-CoV-2, a global urgent

public health alert! J Med Virol. 2022 Apr;94(4):1255–6.

2.    Gu H, Krishnan P, Ng DYM, Chang LDJ, Liu GYZ, Cheng SSM, et al. Probable

Transmission of SARS-CoV-2 Omicron Variant in Quarantine Hotel, Hong Kong,

China, November 2021. Emerging Infect Dis. 2022 Feb;28(2):460–2.

3.    Callaway E. Heavily mutated Omicron variant puts scientists on alert. Nature. 2021

Dec;600(7887):21.

4.    Desingu PA, Nagarajan K, Dhama K. Emergence of Omicron third lineage BA.3 and

its importance. J Med Virol. 2022 Jan 18;

5.    McCallum M, Czudnochowski N, Rosen LE, Zepeda SK, Bowen JE, Walls AC, et al.

Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement.

Science. 2022 Feb 25;375(6583):864–8.

6.    Shuai H, Chan JF-W, Hu B, Chai Y, Yuen TT-T, Yin F, et al. Attenuated replication and

pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature. 2022

Mar;603(7902):693–9.

7.    VanBlargan LA, Errico JM, Halfmann PJ, Zost SJ, Crowe JE, Purcell LA, et al. An

infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by

therapeutic monoclonal antibodies. Nat Med. 2022 Mar;28(3):490–5.

8.    Kannan S, Shaik Syed Ali P, Sheeza A. Omicron (B.1.1.529) - variant of concern -

molecular profile and epidemiology: a mini review. Eur Rev Med Pharmacol Sci. 2021

Dec;25(24):8019–22.

9.    Thakur V, Ratho RK. OMICRON (B.1.1.529): A new SARS-CoV-2 variant of concern

mounting worldwide fear. J Med Virol. 2022 May;94(5):1821–4.

10.   Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, et al. Deep

Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints

on Folding and ACE2 Binding. Cell. 2020 Sep 3;182(5):1295-1310.e20.

11.   Collier DA, De Marco A, Ferreira IATM, Meng B, Datir RP, Walls AC, et al. Sensitivity

of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature. 2021

May;593(7857):136–41.

162



12.   Tian F, Tong B, Sun L, Shi S, Zheng B, Wang Z, et al. N501Y mutation of spike

protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife. 2021 Aug

20;10.

13.   Liu Y, Liu J, Plante KS, Plante JA, Xie X, Zhang X, et al. The N501Y spike substitution

enhances SARS-CoV-2 infection and transmission. Nature. 2022

Feb;602(7896):294–9.

14.   McCallum M, Walls AC, Sprouse KR, Bowen JE, Rosen LE, Dang HV, et al.

Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants.

Science. 2021 Dec 24;374(6575):1621–6.

15.   Dejnirattisai W, Huo J, Zhou D, Zahradník J, Supasa P, Liu C, et al. SARS-CoV-2

Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody

responses. Cell. 2022 Feb 3;185(3):467-484.e15.

16.   Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K, et al. Broadly

neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature. 2022

Feb;602(7898):664–70.

17.   Zhang X, Wu S, Wu B, Yang Q, Chen A, Li Y, et al. SARS-CoV-2 Omicron strain

exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct

Target Ther. 2021 Dec 17;6(1):430.

18.   Cuzzolin A, Sturlese M, Deganutti G, Salmaso V, Sabbadin D, Ciancetta A, et al.

Deciphering the Complexity of Ligand-Protein Recognition Pathways Using

Supervised Molecular Dynamics (SuMD) Simulations. J Chem Inf Model. 2016 Apr

25;56(4):687–705.

19.   Deganutti G, Prischi F, Reynolds CA. Supervised molecular dynamics for exploring

the druggability of the SARS-CoV-2 spike protein. J Comput Aided Mol Des. 2021

Feb;35(2):195–207.

20.   Huang J, MacKerell AD. CHARMM36 all-atom additive protein force field: validation

based on comparison to NMR data. J Comput Chem. 2013 Sep 30;34(25):2135–45.

21.   Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, et al. CHARMM36m:

an improved force field for folded and intrinsically disordered proteins. Nat Methods.

2017 Jan;14(1):71–3.

163



22.   Vanommeslaeghe K, MacKerell AD. Automation of the CHARMM General Force Field

(CGenFF) I: bond perception and atom typing. J Chem Inf Model. 2012 Dec

21;52(12):3144–54.

23.   Vanommeslaeghe K, Raman EP, MacKerell AD. Automation of the CHARMM General

Force Field (CGenFF) II: assignment of bonded parameters and partial atomic

charges. J Chem Inf Model. 2012 Dec 21;52(12):3155–68.

24.   Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly

accurate protein structure prediction with AlphaFold. Nature. 2021

Aug;596(7873):583–9.

25.   Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH. PROPKA3: Consistent

Treatment of Internal and Surface Residues in Empirical pK Predictions. J Chem

Theory Comput. 2011 Feb 8;7(2):525–37.

26.   Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an automated

pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids

Res. 2004 Jul 1;32(Web Server issue):W665-7.

27.   Doerr S, Harvey MJ, Noé F, De Fabritiis G. HTMD: High-Throughput Molecular

Dynamics for Molecular Discovery. J Chem Theory Comput. 2016 Apr

12;12(4):1845–52.

28.   Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph.

1996 Feb;14(1):33–8, 27.

29.   Harvey MJ, Giupponi G, Fabritiis GD. ACEMD: Accelerating Biomolecular Dynamics

in the Microsecond Time Scale. J Chem Theory Comput. 2009 Jun 9;5(6):1632–9.

30.   Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of

simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926.

31.   Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular

dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684.

32.   Loncharich RJ, Brooks BR, Pastor RW. Langevin dynamics of peptides: the frictional

dependence of isomerization rates of N-acetylalanyl-N’-methylamide. Biopolymers.

1992 May;32(5):523–35.

164



33.   Hopkins CW, Le Grand S, Walker RC, Roitberg AE. Long-Time-Step Molecular

Dynamics through Hydrogen Mass Repartitioning. J Chem Theory Comput. 2015 Apr

14;11(4):1864–74.

34.   Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth

particle mesh Ewald method. J Chem Phys. 1995;103(19):8577.

35.   Deganutti G, Moro S. Estimation of kinetic and thermodynamic ligand-binding

parameters using computational strategies. Future Med Chem. 2017

Apr;9(5):507–23.

36.   Sabbadin D, Moro S. Supervised molecular dynamics (SuMD) as a helpful tool to

depict GPCR-ligand recognition pathway in a nanosecond time scale. J Chem Inf

Model. 2014 Feb 24;54(2):372–6.

37.   Deganutti G, Moro S, Reynolds CA. A Supervised Molecular Dynamics Approach to

Unbiased Ligand-Protein Unbinding. J Chem Inf Model. 2020 Mar 23;60(3):1804–17.

38.   Sabbadin D, Salmaso V, Sturlese M, Moro S. Supervised molecular dynamics (sumd)

approaches in drug design. Methods Mol Biol. 2018;1824:287–98.

39.   McGibbon RT, Beauchamp KA, Harrigan MP, Klein C, Swails JM, Hernández CX, et

al. Mdtraj: A modern open library for the analysis of molecular dynamics trajectories.

Biophys J. 2015 Oct 20;109(8):1528–32.

40.   Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA.py:

An Efficient Program for End-State Free Energy Calculations. J Chem Theory

Comput. 2012 Sep 11;8(9):3314–21.

41.   Han P, Li L, Liu S, Wang Q, Zhang D, Xu Z, et al. Receptor binding and complex

structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell.

2022 Feb 17;185(4):630-640.e10.

42.   Rath SL, Padhi AK, Mandal N. Scanning the RBD-ACE2 molecular interactions in

Omicron variant. Biochem Biophys Res Commun. 2022 Jan 6;592:18–23.

43.   Kumar R, Murugan NA, Srivastava V. Improved binding affinity of the Omicron’s spike

protein with hACE2 receptor is the key factor behind its increased virulence. BioRxiv.

2021 Dec 28;

165



44.   Lupala CS, Ye Y, Chen H, Su X-D, Liu H. Mutations on RBD of SARS-CoV-2 Omicron

variant result in stronger binding to human ACE2 receptor. Biochem Biophys Res

Commun. 2022 Jan 29;590:34–41.

45.   Jawaid MZ, Baidya A, Mahboubi-Ardakani R, Davis RL, Cox DL. Simulation of the

omicron variant of SARS-CoV-2 shows broad antibody escape, weakened ACE2

binding, and modest increase in furin binding. BioRxiv. 2021 Dec 15;

46.   Wu L, Zhou L, Mo M, Liu T, Wu C, Gong C, et al. SARS-CoV-2 Omicron RBD shows

weaker binding affinity than the currently dominant Delta variant to human ACE2.

Signal Transduct Target Ther. 2022 Jan 5;7(1):8.

47.   Wu L, Zhou L, Mo M, Li Y, Han J, Li J, et al. The effect of the multiple mutations in

Omicron RBD on its binding to human ACE2 receptor and immune evasion: an

investigation of molecular dynamics simulations. 2021 Dec 7;

48.   Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, et al. End-Point Binding Free

Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in

Drug Design. Chem Rev. 2019 Aug 28;119(16):9478–508.

49.   Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate

ligand-binding affinities. Expert Opin Drug Discov. 2015 May;10(5):449–61.

166



7. HIV Project Publication
Viral escape mechanisms pose numerous challenges to the development of potent

antiretroviral therapies (ART). Such mechanisms include epitope mutation (1) and shielding

(2,3), the alteration of the host’s immune response and biological response to infection (4),

as well as the manumission of the host cell’s replicative cycle (5). Specifically, HIV-1 and

HIV-2 of the Lentivirus genus of the Retroviridae family, adopt a combination of immune

escape mechanisms that pose a difficult challenge to pharmacological research. While most

of HIV’s proteins are well known, the structural characterization of accessory proteins (Vif,

Vpu, Vpr, Vpx, and Nef) along with structural /enzymatic (Gag, Pol, and Env) and

gene-expression regulatory proteins (Tat and Rev) essential for viral replication is not fully

understood. As the role of multifunctional proteins becomes clearer, the interest in these

non-structural proteins increases among the scientific community, offering new opportunities

for the development of new treatments or structural characterizations.

During the project, I collaborated with Kolkata University (India) the de-novo drug

discovery of molecular disruptors against HIV-1’s Negative Factor protein (Nef). In this phase

of the project, I expanded the array of methods at my disposal, including generative

combinatorial techniques (6) for new molecules and the use of water-based insights for

ligand optimization. Furthermore, I used the new multiple-walker supervised molecular

dynamics (mwSuMD, see Chapters 4.5 and 8.2) to describe Nef’s binding pathway. The

scientific publication related to these exertions is titled “Computer-aided De Novo Design and

Optimization of Novel Potential Inhibitors of HIV-1 Nef Protein”.
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Abstract

Nef is a small accessory protein pivotal in the HIV-1 viral replication cycle. It is a

multifunctional protein and its interactions with kinases in host cells have been well

characterized through many in vitro and structural studies. Nef forms a homodimer to

activate the kinases and subsequently the phosphorylation pathways. The disruption of its

homodimerization represents a valuable approach in the search for novel classes of

antiretroviral. However, this research avenue is still underdeveloped as just a few Nef

inhibitors have been reported so far, with very limited structural information about their

mechanism of action. To address this issue, we have employed an in silico structure-based

drug design strategy that combines de novo ligand design with molecular docking and

extensive molecular dynamics simulations. Since the Nef pocket involved in

homodimerization has high lipophilicity, the initial de novo-designed structures displayed

poor drug-likeness and solubility. Taking information from the hydration sites within the

homodimerization pocket, structural modifications in the initial lead compound have been

introduced to improve the solubility and drug-likeness, without affecting the binding profile.

We propose lead compounds that can be the starting point for further optimizations to deliver

long-awaited, rationally designed Nef inhibitors.
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Graphical Abstract

Keywords: HIV-1 Nef protein, De Novo ligand design, Supervised molecular dynamics

1. Introduction

Human immunodeficiency virus 1 (HIV-1), a member of the Lentiviral family, is the causative

agent of acquired immune deficiency syndrome (AIDS). It encodes six accessory proteins

(Tat, Rev, Vpu, Vif, Nef, and Vpr) along with other regulatory proteins (Sterbel et al., 2013).

Nef is a relatively small (27–34 kDa) nonenzymatic auxiliary protein that is expressed early in

the viral life cycle and performs a plethora of functions inside the host cells. Early research

indicated that Nef was a "negative factor" for HIV-1 replication, which led to its initial naming

(Ahmad and Venkatesan, 1988). Nef is an important player in viral pathogenesis by

promoting viral replication and enabling immune escape in infected hosts (Staudt et al.,

2020). Early pieces of evidence showed that expression of Nef in CD4+ T-cells and

macrophages causes AIDS-like disease in transgenic mice and that patients infected with

nef defective HIV-1 fail to progress to AIDS suggesting a direct role for Nef in HIV-1

pathogenesis (Jolicoeur, 2011; Hanna et al., 1998, Rhodes et al., 2000; Kirchhoff et al.,

1995).

Nef is composed of two main parts: the N-terminal anchor region and a folded core region in

which a flexible internal loop (∼25 residues) is present. The N-terminal 60 amino acids that

make up the anchor region are mainly unstructured and contain a myristoylation site at the

starting glycine residue. This myristoylation helps the Nef anchor to the flexible core of the

membrane leaflet. It interacts with a plethora of membrane proteins and factors such as

CD4, CXCR4, CCR5, MHC-I, T-cell receptor, SERINC5, trafficking proteins, guanine

nucleotide exchange factors, protein kinases, etc. (Usami et al., 2015; Saksela, 2011;

Gerlach et al., 2010, Geyer et al., 1999 Akgun et al., 2013; Jäger et al., 2011, Kent et al.,

2010). Numerous structural and in vitro studies on the recruitment and activation of
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Src-family kinases indicated that Nef preferentially binds to the SH3 domain of the Hck and

Lyn kinases and displaces the SH3 domain from the kinase regulatory position resulting in

constitutive kinase activation in vitro systems (Moarefi et al., 1997; Briggs et al., 1997).

Nef-dependent activation of the Hck is a conserved function of all HIV-1 Nef M-group

subtypes (Narute et al., 2012) Previous studies showed that both the expression of a

dominant-negative Hck mutant and suppression of Hck expression impairs HIV-1

transcription and viral replication in macrophages (Komuro et al., 2003; Biggs et al., 1999).

Structural studies show that Nef preferentially forms dimer when it is complexed with Fyn

kinase SH3 domain and Hck kinase SH3-SH2 domain. The additional contacts resulting from

the dimer formation contribute to the kinase activation (Alvarado et al., 2014; Staudt et al.,

2020). It was shown that when L112 and Y115, two important residues for homodimerization,

are replaced with aspartate residues (Nef-DD), the Nef-DD mutant interacts with Itk kinase

but is unable to stimulate the kinase activity, indicating the essential role for Nef homodimer

formation in the Itk activation mechanism (Poe et al., 2014). Another study showed that when

Nef-ER (estrogen receptor) and Hck are expressed together in rodent fibroblasts,

4-hydroxytamoxifen treatment induces Nef-ER dimer formation, Hck activation, and

oncogenic transformation (Ye et al., 2004). Nef residues that play a crucial role in homodimer

formation (e.g. L112, Y115, F121) are highly conserved across HIV-1 M-group subtypes with

many conserved or homologous amino acids in the corresponding positions of Nef from

HIV-2 and SIV Nef (Narute et al., 2012; Arold et al., 2000). Nef harbours a conserved

PxxPxR motif which serves as the docking site for the recruitment of Src-family kinases and

other proteins that contain SH3 domains (Herna et al., 2000). To date, there are no reported

Nef structures in complex with antiviral, small molecules, or binder, with only Nef dimer X-ray

structure being characterized (PDB: 6B72). The homodimerization is mainly induced by the

Nef αB helices and there exists a hydrophobic pocket that participates in many essential

hydrophobic contacts to stabilize the dimer (Fig. 1) (Wu et al., 2018). Homodimerization is

essential for Nef to activate the Kinase function. So disrupting the dimerization of Nef could

prevent the dimer formation and the activation of the kinase.
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Fig. 1. Nef homodimerization pocket (blue residues) and Hck kinase binding domain (red

residues). Residues are represented as van der Waals spheres.

To date, several compounds have been identified through high-throughput screening (HTS)

assays mainly harnessing kinase activation by Nef for anti-retroviral drug discovery. A

diphenyl hydroxypyrazolodiazene compound (also known as B9) was first identified through

HTS and originally showed inhibitory activity against multiple Nef functions, including the

enhancement of viral replication via activation of Src-family kinase and MHC-I

downregulation (Emert-Sedlak et al., 2013; Mujib et al., 2017). Later, using the

hydroxypyrazole core of B9, several new compounds were synthesized. They not only

retained the MHC-I downregulation activity but also completely suppressed Itk kinase activity

(Shi et al., 2020). However, whether these compounds bind to Nef directly or to the

Nef-kinase complex and the mechanism of binding at the atomic level are still unknown.
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In a previous study, using docking and molecular dynamics (MD) simulation, it was proposed

that B9 binds to the Nef homodimerization surface, located far from the Hck-kinase binding

site, and that the kinase becomes active after the homodimer formation (Moonsamy et al.,

2017). However, B9 was docked onto the already-formed dimer and the possibility that this

molecule binds to the dimer-forming pocket of the monomeric Nef was not explored. In

another study, a class of 4-amino-diphenylfurano-pyrimidine (DFP) compounds were

discovered in a small library of kinase inhibitor–based compounds. These compounds

function through the Hck active site, but in the presence of Nef, they demonstrated increased

potency for Hck inhibition, indicating that Nef binding may have an allosteric effect on the

Hck active site to improve the inhibitor binding (Emert-Sedlak et al., 2009). This finding is

further supported by subsequent hydrogen exchange mass spectroscopy (HX MS) studies of

the Nef-Hck complex in the presence of a DFP-based compound with antiretroviral activity

(Wales et al., 2015). A phenoxyacetamido benzoic acid analogue called D1 was identified

using combined in silico screening with a cell-based protein-protein interaction assay that

blocked Nef-SH3 complex formation (Betzi et al., 2007). Several other compounds, such as

the isothiazolopyridinone analog SRI-37264, the synthetic analog known as ‘2 C’ which was

derived from the Streptomyces metabolite UCS15A, lovastatin, and concanamycin A were

shown to inhibit Nef mediated MHC-I downregulation. It was found that compounds that

block the MHC-I downregulation pathways, also block the Nef-kinase activity, but whether

these compounds could prevent the homodimerization event is not understood

(Emert-Sedlak et al., 2022).

In this study, we first designed in silico novel compounds to specifically target the Nef pocket

fundamental for homodimer formation, through a fragment de novo approach, combined with

extensive MD simulation and molecular mechanics with generalized Born and surface area

solvation (MM/GBSA) binding free energy calculation. The best compound was further

analyzed using the ColDock method (Takemura et al., 2018). Structural modifications were

informed by protein hydration site analysis and led to the evaluation of further modified

compounds with lower lipophilicity and increased drug-likeness. Using multiple walker

supervised molecular dynamics (mwSuMD) simulations, the mechanism of binding of the

most promising compound inside the pocket was assessed (Deganutti et al., 2022). This

study represents the first rational design of Nef homodimerization inhibitors and paves the

way for a new antiretroviral therapy.

2. Materials and methods

2.1. Protein structure preparation
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We retrieved the Nef protein structure from the Protein Data Bank (PDB) entry 4U5W which

is a dimer in complex with Hck SH3-SH2 kinase (Alvarado et al., 2014). We excluded the

unstructured region 1–71, which harbors only the myristoylation sites for membrane fusion.

Nef from 4U5W was compared with all other available Nef structures (containing the region

of interest) in the PDB and found to be very similar in terms of 3D structure (RMSD of the

backbone atoms < 1.5 Å). This step ensures that Nef does not undergo major conformational

change upon binding with various cellular partners. Modelling of the missing segments was

done in CHARMM-GUI (Lee et al., 2016). Hydrogen atoms were added considering the pH of

7.4; the protonation of the titratable side chains was checked by visual inspection.

2.2. Identification of druggable pockets

To identify viable druggable binding sites on Nef, we used DeepSite and FTMap (Jiménez et

al., 2017, Kozakov et al., 2015). DeepSite is a knowledge-based approach where 7622

proteins from the scPDB database of binding sites were used to construct the convolutional

neural networks (CNN) (evaluated using both a distance and a volumetric overlap approach)

(Desaphy et al., 2014). Pockets with a high DeepSite score (in the range of 0–1) were taken

into consideration. FTMap method distributes 16 small organic probe molecules of varying

shape, size, and polarity on the protein surface; then it finds the most favorable positions for

each probe type, clustering and ranking the results on the basis of their average energy.

Clusters with the highest density of probes are considered possible hotspots.

2.3. Fragment-based small molecule design

AutoGrow4 was used for fragment-based drug design (FBDD) to generate novel drug-like

molecules (Spiegel and Durrant, 2020). It uses a genetic algorithm to create new predicted

ligands. First, an initial population of seed molecules is used to create a new population (i.e.

a generation) of potential ligands. These compounds are then docked using Autodock VINA

(Trott and Olson, 2010) to a user-specified protein pocket and the poses are ranked by their

calculated fitness. New generations are seeded from the top-scoring (VINA score expressed

in kcal/mol) molecules of the previous generation. In this study, we have used all its default

fragment library molecules, which are divided into four groups according to molecular weight

(MW ≤ 100 Da, 100 Da < MW ≤ 150 Da, 150 Da < MW ≤ 200 Da, and 200 Da < MW ≤

250 Da) and are obtained from ZINC15 database (Sterling and Irwi, 2015). OpenBabel 2.3.1

was used to convert the SMILES fragment libraries into 3D pdbqt format, adding hydrogen

atoms and optimizing the intramolecular hydrogen-bond network (pH 7.4) (O’Boyle et al.,

2011). We set a docking grid of 22 Å × 20 Å× 20 Å at the specified pocket by taking the center

of mass (COM) of the FTMap probe cluster (probes that bound with pocket 3) as the grid
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center (grid center coordinate: −1.57, −0.653, 19.762 in x, y and z direction). RobustRxn set,

a library of 58 reactions, was used for the in silico reactions. Evolving molecules were

subjected to the lenient form of Lipinski’s filter to increase the drug-like properties. The

number of generations was set to 50 for all the MW groups but 150 Da < MW ≤ 200 Da

fragments, as the docking affinity (VINA score), reached a plateau from generation 24 (see

result and discussion). Docking exhaustiveness was set to 15. The docking of modified

compounds into the Nef pocket utilized the same grid coordinates, grid box, and other

parameters as in Autogrow4. Prior to docking, we calculated the Kollhman charge of Nef,

which was determined to be − 5. Additionally, the Gasteiger charges of the modified

compound were calculated to be 0. The top 10 poses were generated for each docking run.

2.4. General MD simulation setup and MMGBSA binding free energy calculation

The MD engine GROMACS 2020.5 was used for both equilibration and productive

simulations (Abraham et al., 2015). The AMBER99SB-IILDN protein force field was used for

the simulations and ligand molecules were parameterized using the Acpype tool by

introducing bcc charge types and GAFF atom types (Lindorff-Larsen et al., 2010, Sousa da

Silva and Vranken, 2012. Nef was solvated using TIP3P water molecules in a dodecahedron

box (box edge of 12 Å) and the box edge distance from protein atoms was set to 10 Å.

Overall charge neutrality was reached by adding Na+/Cl− counter ions up to the final

concentration of 0.150 M. Energy minimization of the neutralized system was done using

5000 steps of the steepest-descent algorithm. 500 ps long NVT and NPT equilibrations were

run with a positional constraint of 1 kcal/mol Å−2 on protein and ligand heavy atoms at 300 K

temperature. The NPT equilibrated system was then subjected to 100 ns long production

runs with 2 fs timestep. Twenty independent simulation runs were conducted for Nef in

pseudo-apo form (total of 2 μs), while for Nef-ligand complexes, it was triplicated. MMGBSA

binding free energy was calculated using the gmx_MMPBSA tool (Valdés-Tresanco et al.,

2021). Each trajectory was saved at every 100 ps resulting in a total of 1000 snapshots and

using this trajectory the free energy is calculated for every run. General MD simulation

analyses such as radius of gyration (Rg), root mean square fluctuation (RMSF), and solvent

accessible surface area (SASA) were calculated with GROMACS’s internal tool, using

default settings (Gupta et al., 2022).

2.5. Principal component analysis (PCA)

PCA is used in molecular dynamics data to study essential motions of the protein backbone

and sample out the most probable conformation of the protein. It is also used to construct the

free energy landscape of the proteins where the free energy is mainly plotted along the first
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two principal components (PCs). In summary, to obtain PC modes first correlation matrix is

computed using the following formula:̅̅

Here x (k, i) and x (k, j) are a pair of elements of vector (where is a vector containing the

cartesian coordinates of the atoms of the protein), which describes the configuration of the

system at time step, while, are their average values calculated from the structures sampled

in the MD simulation. Then this correlation matrix is diagonalized using the formula

where T is the transformation matrix whose columns are the eigenvectors of theΛ =  𝑇𝑇𝐶𝑇

motions and the diagonal elements of are the associated eigenvalues (Majumder et al.,Λ

2021). PCA was carried out using PyEMMA 2.5.7 and the plotting was done using matplotlib

(Scherer et al., 2015).

2.6. ColDock

In the ColDock method, multiple ligands were randomly placed within 20 Å of the protein

atoms inside a cubic box with dimensions 30 Å × 30 Å × 30 Å (Takemura et al., 2018). We

prepared separate systems with the following numbers of ligand molecules: 6, 8, and 10.

Systems were solvated with TIP3 water molecules and salt concentration was set to 0.15 M.

AMBER99SB-IILDN force field was used for the simulations and five independent runs of

50 ns each were conducted: 2 × 6 ligand system, 2 × 8 ligand system, 1 × 10 ligand system.

This high concentration of ligands increases the likelihood that the ligand will explore the

protein surface, leading to spontaneous binding to the proper binding sites. Ligand

aggregation is prevented during MD simulation by imposing repulsive force ELJ in the form of

a Lennard-Jones potential between ligand molecules:

where ε = 10–3 kJ/mol, σ = 20 Å, and r is the distance between the centres of mass of the

ligands. When ε is extremely low, the attractive force is negligibly small in comparison to

thermal noise, and if two ligands approach one another within 10 Å, the repulsive force

becomes significantly large. This prevents aggregation of the ligands. Preliminary MD

simulations of 50 ns have been conducted using 33 ligand molecules inside a 12 Å × 12 Å

× 12 Å cubic box with TIP3 water molecules and 0.15 M Na+ and Cl- ion concentration. Then
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radial distribution function (RDF) is computed using the central C18 atom to see if the

parameters prevent aggregation.

Without adding a virtual site, the ligand molecules aggregated (peak around 6 Å) due to the

hydrophobic interactions. When a repulsive force was added, the ligand molecules did not

aggregate. The flat value of radial distribution function (g (r)) around unity at r > 10 Å

indicates a uniform distribution of ligand molecules during the MD simulation at this distance

range. When the ligands came closer to each other (<10 Å), the repulsive force pushed the

ligands from each other and prevents aggregation. The distance between protein atoms and

ligands was kept at least 20 Å.

After conducting Nef-multiple ligands system simulations, ligand poses were clustered.

During clustering, the ligands in contact with Nthr (threshold number, 6 by default) or more

protein residues were considered to be bound to Nef. A contact is defined when the shortest

heavy atom distance between the protein and the ligand is less than 5 Å. This procedure

permits the selection of multiple ligand poses from one MD snapshot. Each ligand pose is

translated and rotated so that the corresponding protein pose is superimposed onto a

reference; then the ligand poses are clustered based on a defined RMSD cutoff (2 Å is used

in this study).

2.7. AquaMMapS water analysis

The Nef protein structure was retrieved from the PDB entry 4U5W and prepared for the

CHARMM36 force field as follows: the Hck SH3-SH2 kinase monomer was removed and

hydrogen atoms were added employing the pdb2pqr and propka software (considering a

simulated pH of 7.0); the protonation of titratable side chains was checked by visual

inspection and TIP3P water molecules were added to the simulation box utilizing the VMD

Solvate plugin 1.5 (Solvate Plugin, Version 1.5. at

<http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/) (Huang et al., 2017, Huang and

MacKerell, 2013; Dolinsky et al., 2004; Jorgensen et al., 1983, Olsson et al., 2011). Finally,

overall charge neutrality was reached by adding Na+/Cl- counter ions up to the final

concentration of 0.15 M, using the VMD Autoionize plugin 1.3 (Autoionize Plugin, Version

1.3. at <http://www.ks.uiuc.edu/Research/vmd/plugins/autoionize/). The MD engine ACEMD3

was employed for both the equilibration and the productive simulation (Harvey et al., 2009).

The equilibration was achieved in isothermal-isobaric conditions (NPT) using the Berendsen

barostat (target pressure 1 atm) and the Langevin thermostat (target temperature 300 K) with
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low damping of 1 ps-1 (Berendsen et al., 1984; Loncharich et al., 1992). A multi-stage

procedure was performed (integration time step of 2 fs): first, clashes between atoms were

reduced through 500 conjugate-gradient minimization steps, then 1 kcal/mol Å-2 positional

restraints on protein atoms other than Cα was gradually removed over 4 ns, keeping the

same restraints on protein Cα atoms. The productive trajectory was computed with an

integration time step of 2 fs in the canonical ensemble (NVT). The target temperature was

set at 300 K, using a thermostat damping of 0.1 ps-1; the M-SHAKE algorithm was employed

to constrain the bond lengths involving hydrogen atoms (Forester and Smith, 1998; Krautler

et al., 2001). The cut-off distance for electrostatic interactions was set at 9 Å, with a switching

function applied beyond 7.5 Å. Long-range Coulomb interactions were handled using the

particle mesh Ewald summation method (PME) by setting the mesh spacing to 1.0 Å

(Essmann et al., 1995). Structural water molecules were detected in the simulation cell using

AquaMMapS (Cuzzolin et al., 2018). A short 10 ns simulation was performed with time step 2

fs, restraining the Cα atoms and saving a frame every 10 ps of simulation.

2.8. Multiple walkers supervised molecular dynamics (mwSuMD) simulations

The Nef protein structure was retrieved from the PDB entry 4U5W and prepared with the

Amber14SB force field. A single molecule of ligand was placed about 35 Å from pocket 3 and

parameterized for the GAFF force field using Antechamber (Maier et al., 2015; Wang et al.,

2004). Six independent mwSuMD replicas were performed (Deganutti et al., 2022).

mwSuMD needs as input the initial coordinates of the system as a PDB file, the coordinates,

and the atomic velocities of the system from the equilibration stage, the topology file of the

system, and all the necessary force field parameters. Then, a series of batches of short

unbiased MD simulations (walkers) are performed (integration time step if 4 fs in this work).

When all the walkers of a batch are terminated, the best walker is selected and extended by

seeding the same number of walkers, with the same duration as the step before. The

decision to continue one walker after any batch was based on the distance between the

centroid of the ligand and the centroid of pocket 3 residues’ L95, L101, and L114. The single

metric score (SMscore) score was used: (1)

̅

The SMscore is computed as the square root of the product between the distance in the last

frame (Xlast frame) and the average distance value over the short simulation (X̅). After any batch

of walkers, the walker with the lowest SMscore was continued by seeding the new batch of
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walkers. The current implementation of mwSuMD is for python3 and exploits MDAnalysis

and MDTRaj modules (Michaud-Agrawal et al., 2011; McGibbon R.T. et al., 2015). Atomic

contacts were computed using the GetContacts analysis tool (at

https://getcontacts.github.io/), with the donor-acceptor threshold distance set to 3.5 Å and the

angle set to 120°. The MMPBSA.py script, from the AmberTools20 suite (The Amber

Molecular Dynamics Package, at http://ambermd.org/), was used to compute molecular

mechanics energies combined with the generalized Born and surface area continuum

solvation (MM/GBSA) method (Miller et al., 2012).

3. Results

3.1. Selection of the most suitable pocket for FBDD

To identify putative druggable sites on Nef, we employed both the convolutional neural

network (CNN) based predictor DeepSite and the probe scanning-based method FTMap. We

considered the three pockets with the highest DeepSite score, predicted in the Nef core

region (79–153 and 184–201, amino acid numbering based on the crystal structure 4U5W).

Then we compared the DeepSite predicted pockets with the FTMap result and found that

probe densities were highest in the three predicted DeepSite pockets than in other

sub-pockets (Fig. 2). Residues that constitute each pocket were identified as the residues

within 3.5 Å from the FTMap cluster COMs.

Fig 2. Top 3 pockets predicted through DeepSite and FTmap. A) Pocket 1, B) pocket 2, C)

pocket 3. The pocket grooves are colored cyan and important pocket residues are labeled.

FTMap probes are colored in red. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

From 20 independent MD simulations of monomeric apo Nef, we computed the root mean

square deviation (RMSD) probability histogram of each pocket and found that pocket 3 was

the most promising for structure-based drug design (SBDD) because it displayed very low

overall RMSD (≤ 1.5 Å) indicating inherent stability. Pocket 1 was considered less promising
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than pocket 3 because of a secondary RMSD peak around 3 Å indicating slight instability in

some of the trajectories. Based on PDB entry 6B72, the residues lining pocket 3 are very

important for dimerization where the dimer is without any kinase. The important dimer

forming contacts are (numbering based on PDB entry 6B72): L100 and R106 form two

Pi-alkyl interactions with the phenyl ring of F68 from the other monomer; P69 and L110 form

Pi-alkyl interactions with W113, while the backbone oxygen atom of the W113 forms a

hydrogen bond with G96; R105 and R106 form three important salt bridges with E64. We

analyzed the structural integrity of the core region (79–153 and 184–201), containing the

three pockets, through PCA analysis considering only the core region backbone atoms, as

the loop region would have added noises because of its inherent high flexibility. The first four

principal components (PCs) were considered as they correspond to 85 % of the total

variance. Representative structures were taken from the high-density region of each

combination of PC plots and an extra structure was taken from the low-density region of the

PC1 vs PC2 plot, randomly. The heatmap shows that the randomly chosen structure from the

low-density region (named PC1_PC2_2) has slightly higher RMSD values in comparison to

all other extracted structures (< 2.4 Å in most cases) and the PDB 4U5W (2.8 Å). The

PCA-extracted structures are also very similar to all other available Nef structures in the PDB

(mean RMSD ≤ 2.0 Å). This similarity confirms that the pockets formed in the core region are

very stable and suitable for FBDD. Some high flexibility was present in the residues lining

pocket 3, although this did not affect the overall pocket RMSD. Pocket 3 groove is highly

hydrophobic but presents some H-bond donors on the pocket boundary (R110, L114, G99,

and G100). In PDB 4UW5, the backbone of R110 forms a hydrogen bond with

(4 S)− 2-methylpentane-2,4-diol cosolvent molecule, suggesting a possible role for this

residue’s backbone in ligand design. Furthermore, G100, E97, and F94 form backbone

H-bonds with a water molecule.

3.2. De-novo generation of a lead compound

We employed Autogrow4 to construct a lead compound against pocket 3, halting the

algorithm at generation 30 because docking scores reached a plateau after generation 24.

Fig. 3 reports the docking scores per generation and the top-ranked compounds. One

common structural feature is the presence of lipophilic ring moieties in the scaffold, as a

consequence of the hydrophobic nature of pocket 3.
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Fig. 3. Autogrow4 generated compounds using ZINC fragment library of molecular weight

(MW) A) ≤ 100; B) 100 ≤ MW ≤ 150; C)150 ≤ MW ≤ 200; D) 200 ≤ MW ≤ 250. The docking

energy of the top compound from each category is reported.

Various physicochemical properties of the compounds were calculated using SwissADME14.
The four top-ranked compounds are poorly soluble in water, and in the docked poses formed

multiple hydrophobic contacts with pocket 3. No H-bond was formed due to the absence of

any donor or acceptor group in the aromatic scaffolds. We considered the compounds with

the highest VINA score (−9.7 kcal/mol) for further MD simulations, named compound 1 and

compound 2.

3.3. MD simulation of selected compounds

We conducted five independent replicas of 100 ns for compound 1 or compound 2 Nef

docked complex, starting from the same energy-minimized system but assigning different

initial velocities. RMSD values distribution (Fig. 4) suggested that compound 2 was more

stable than compound 1, as indicated by the high probability of RMSDs around 2.0 Å (Fig.

4B). On the other hand, compound 1 displayed overall instability and it did not retain the

initial docking pose during all the simulations (lowest RMSD peak at 3 Å and another

prominent peak around 7 Å). To investigate the reason behind compound 2 stabilization, we
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performed the PCA analysis of the ligand (using the concatenated trajectories) followed by

K-means clustering using the first 20 PCs and the top four densest clusters. We also

extracted the water molecules within 3.5 Å from the ligand’s heavy atoms to analyze any kind

of water involvement. The oxygen atom of the cyclohexanone moiety was solvent-exposed in

every cluster but did not engage Nef in direct electrostatic interactions.

Fig. 4. RMSD graph (with a running average of 100 ps interval) and probability histogram

(inset) of A) compound 1 and B) compound 2.

The fluorine (F) atom also formed H-bonds with water molecules in three out of four top

cluster representative structures. In cluster 2 and cluster 4, one of the water molecules that

formed H-bonds with the oxygen atom of the ligand also formed two potential H-bonds with

R110. On the other hand, a water molecule that contacted the F atom in cluster 2 also

formed H-bonds with E97 and F94. These water bridge interactions likely compensated for

the lack of direct H-bonds between compound 2 and Nef. This kind of water

molecule-mediated stabilization is absent in compound 1. In the crystal structure (4U5W)

there are water molecules close to F94, E97, P99, G100, and an MPD molecule that forms

an H-bond with R110 backbone, which suggests that compound 2 mimics a similar H-bond

network. The MMGBSA analysis indicated similar binding energy for compound 1

(−27.92 ± 2.3 kcal/mol) and compound 2 (−24.53 ± 2.3 kcal/mol).

3.4. Assessing the accessibility of compound 2 toward pocket 3

To determine if compound 2 can spontaneously bind to the Nef pocket 3, we performed

ColDock simulations. We run a total of five simulations (two replicas considering six ligand

molecules, two replicas considering eight ligand molecules, and one replica considering 10

ligand molecules). Ligand binding to several distinct positions was observed during the
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simulation. After 50 ns, compound 2 poses were clustered and representative structures

were extracted from the largest cluster. Two replicas (one from the six-ligands system and

the other from the ten-ligands system) out of five produced poses very similar to the VINA

docked pose (Fig. 5), indicating that compound 2 is a potential binder for pocket 3.

Convergent binding poses were also obtained with lower simulated ligand concentration. In

another two replicas (one six-ligand system and one eight-ligand system), we found that the

cyclohexanone moiety of compound 2 in the highest cluster tends to reach toward pocket 3

but did not produce the native VINA pose. This data also suggests the specificity of

compound 2.

Fig. 5. Alignment of VINA docked pose (Cyan) and ColDock generated pose (Orange). A)

Central representative snapshot from the largest cluster of the six-ligands systems. RMSD

between two poses is 1.37 Å. B) Central representative snapshots from the largest cluster of

the eight-ligand system. RMSD between two poses is 1.49 Å. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this

article.)

3.5. Ligand modification to increase the solubility and druggability

Compound 2 (Chemical name: 4-[ (1Z)− 2-[7-

(3-fluorophenyl)− 1,2-dihydroacenaphthylen-3-yl] prop-1-en-1-yl] cyclohexan-1-one) is very

lipophilic as it bears only an H-bond acceptor, and no H-bond donor atoms. It is predicted to

be poorly soluble in water (as evident from SwissADME prediction) in the following solubility

prediction methods: log S (ESOL), log S (Ali), log S (SILICOS-IT). Its pharmacokinetics is

likely to be also very poor. To fine-tune the drug-likeness and the solubility of compound 2,
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we introduced some structural modifications. We reasoned that it would be possible to mimic

the hydrogen bonds between structural water molecules and Nef. In 4U5W, a water molecule

is coordinated by the backbone within the loop formed by F94, E97, and G100, while an

oxygen atom of the co-solvent MPD forms a hydrogen bond with the backbone of R110. We

also inspected the structural water molecules in the apo Nef through the AquaMMapS

analysis. Interestingly, a stable water molecule was suggested in correspondence with the

MPD oxygen atom, confirming the presence of a hydrophilic spot within pocket 3. Therefore,

we designed a new ligand, compound 2_mod-1 (chemical name: 3-{8-[ (1E)− 3-hydroxy-1-

(4-oxocyclohexyl) prop-1-en-2-yl]acenaphthylen-4-yl}benzamide) by adding a hydroxyl group

(-OH) to the methyl group of compound 2 to introduce an H-bond with the R110 backbone.

Also, a carboxamide (CONH2) group was added in place of the fluorine atom because this

H-bond donor/acceptor would be able to interact with the backbone of residues F94 and

G100 as suggested by the water molecule present in the X-ray structure. In a further ligand,

Compound 2_mod-2 (chemical name: 3-{2,2-difluoro-5-[ (1E)− 3-hydroxy-1-

(4-oxocyclohexyl)prop-1-en-2-yl]− 6,9-diazatricyclo[6.3.1.04,12]dodeca-1

(12),4,6,8,10-pentaen-10-ylbenzamide), we replaced two carbon atoms of the planar scaffold

of modification 1 with nitrogen atoms, retaining aromaticity, and two hydrogens with fluorine

atoms at one of the methylene groups of the scaffold, to increase the polarity of the molecule

(Fig. 6). These modifications increased the computed solubility and drug-likeness of the

molecules. Compound 2_mod-1 and compound 2_mod-2 were docked in pocket 3 using

VINA taking the same Autogrow grid center. As expected, in compound 2_mod-1 the OH

group was predicted to make an H-bond with the backbone of R110, while the CONH2 group

formed an H-bond with the backbone of F94. For compound 2_mod-2, instead, the CONH2

group was predicted to form an H-bond with E97 and the OH to H-bond with L114. Several

new hydrophobic contacts between Nef and modified compounds were seen (Fig. 7).

Fig. 6. Modifications of the original lead compound (compound 2) to increase the solubility

and drug-likeness.
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Fig. 7. Docked poses of the modified compounds with Nef. A) Compound2_mod-1 and B)

compound2_mod-2. Dashed colored lines are the various interaction types. 2D interaction

diagrams are generated in BIOVIA discovery studio.

Three independent 100 ns post-docking MD simulations were carried out for each

Nef-modified compound, and the MMGBSA binding free energy was calculated. Although the

modifications increased the number of H-bonds as expected (Fig. 8C), compound 2_mod-1

was less stable than the original compound 2, as evident from the RMSD values throughout

the trajectory (Fig. 8A), showing a peak around 4 Å and another large peak at about 5.5 Å.

Compound 2_mod-2, on the other hand, was more stable inside the pocket, with a larger

peak at 1.4 Å and a smaller peak with a relatively low probability at 3.5 Å. From the

PCA-based clustering analysis, we extracted the representative structures from the three

largest clusters and analyzed the poses and interaction patterns. Compound 2_mod-1

disrupted the starting binding pose and formed solely an H-bond with H170, which is part of

the loop region. Also, simulations displayed the involvement of the N-terminal random coil

region (residues 72–78) of Nef in the ligand binding. P73 made a hydrophobic contact with

the ligand molecule. In this pose, two H-bonds were formed with G100 and E162, which are

in the loop region. Only hydrophobic contacts restrained compound 2_mod-1 within pocket 3.

The N-terminal random coil region made several hydrophobic contacts also with compound
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2_mod-2 to stabilize it inside the pocket groove (Fig. 8B) in all three cluster representatives.

Interestingly, compound 2_mod-2 flipped by 180° along its major axes relative to the initial

VINA docked pose. The OH group, which made an H-bond with L114 in the initial pose,

reoriented out of the groove and does not involve in any H-bond with Nef. Another stabilizing

interaction of compound 2_mod-2 was the H-bond between carboxamide (CONH2) and F94

backbone during the full course of the simulation. The MMGBSA free energy calculation (Fig.

8D) shows an opposite scenario to the RMSD analysis; compound 2_mod-1 has a relatively

stronger binding free energy (−52.22 ± 6.5 kcal/mol) than compound 2_mod- 2

(−35.6 ± 2.91 kcal/mol). We also computed other parameters such as RMSF of the residues

responsible for binding the compounds, the Rg of Nef backbone atoms, and SASA for the

comparison with apo-Nef. Rg and SASA show a similar pattern for apo-Nef and complexed

Nef indicating no drastic effect of the compounds on the whole protein structural level. From

RMSF data we found that the compounds significantly reduce the fluctuations of the residues

in pocket 3 in comparison with the apo-Nef, consistently with a reduction of the local kinetic

energy in favor of the potential energy necessary to form noncovalent interactions with the

ligands.
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Fig. 8. Post-docking MD simulation analysis of the Nef and modified ligand systems. A)

RMSD graph and probability histogram (inset) of compound2_mod-1; B) RMSD graph and

probability histogram (inset) of compound2_mod-2; C) Hydrogen bond number counts

calculated from concatenated trajectories. D) MMGBSA binding free energy calculation at

300 K (C2 =compound 2, C2_mod1 = compound2_mod-1, C2_mod2 = compound2_mod-2).

3.6. Binding simulations of compound 2_mod-2

Previous high-concentration ColDock simulations of compound 2 showed a spontaneous

propensity to bind pocket 3 in a fashion similar to the docking prediction (Fig. 5). Similarly, to

assess the binding of compound 2_mod-2 to Nef we performed multiple walkers supervised

MD (mwSuMD) simulations. mwSuMD is an adaptive method to simulate the (un)binding of

ligands without the introduction of any energy bias.

A total of six replicas were collected and the best one in terms of binding stability was

extended for a further 200 ns of classic MD to evaluate the binding characteristic of the

formed complex. Along the binding path to Nef, the ligand first formed metastable

interactions (< −20 kcal/mol) with pocket 3 boundary residues at about 5–7 Å from the

binding site (Fig. 9A, Video S1), then reached Pocket 3 orienting the cyclohexanone ring

toward R100 side chain and the benzamide ring towards F94. During the post-mwSuMD

classic MD simulation, compound 2_mod-2 flipped along its major axes to align the fluorine

atoms in the direction of G100, in accordance with post-docking MD simulations. While the

scaffold remained stably bound, the benzamide ring experienced different orientations and

interacted with F94, E97, and W117 . Overall, the stabilization gained ranged between − 20

and − 45 kcal/mol (Fig. 9B), with an average of − 31.4 ± 5.8 kcal/mol. The side chains most

involved in the binding were F94, W117, L95, and L115 (Fig. 9C).
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Fig 9. MwSuMD binding simulations pf Compound 2_mod-2. A) Binding energy landscape;

B) MMGBSA analysis of the post-mwSuMD classic MD simulation; C) Nef per-residue

interaction energy during the post-mwSuMD classic MD simulation.

4. Discussion

Nef is a crucial protein for HIV-1 pathogenesis and several crystal and NMR structures are

available in the PDB database. Apart from the NMR structure of truncated Nef and the

anchor domain, in all other structures, Nef is in complex with different proteins (Geyer et al.,

1999, Grzesiek et al., 1997). Recruitment and activation of Src-family kinases by Nef have

been the focus of many structural, cellular, and in vitro studies, and several crystal structures

of Nef were solved in complex with Kinase SH3 or SH3-SH2 domain (Staudt et al., 2020). As

187



Nef homodimers form complexes with kinases, Nef mutants that are unable to form

homodimers are also unable to stimulate kinase (e.g. Itk) activity (Poe et al., 2014). For this

reason, inhibiting the formation of the Nef homodimer is a potential therapeutic strategy,

understudied so far.

We have identified three druggable pockets using a neural network-based method and a

probe scanning-based method. MD simulations suggest the highest stability for pocket 3,

which is directly involved in homodimerization, and mainly hydrophobic but presents H-bond

donor residues at the backbone level of G99, G100, R110, and L114 (PDB ID 4U5W).

Indeed, FTMap showed that multiple polar probes (e.g. urea, benzaldehyde, ethanol,

N,N-dimethylformamide, phenol, isopropanol, and dimethyl ether) are able to form H-bond

with these residues, while the core of the pocket is encompassed by hydrophobic probes

only (i.e. cyclohexane, benzene). The hydrophobic nature of pocket 3 drove the de novo

generation of compounds by AutoGrow4 biased towards lipophilicity. This was because

hydrophobic complementarity gave the best VINA docking scores during the compound

generation process. Amongst the structures predicted by AutoGrow4, compound 2 was the

most stable inside pocket 3 thanks to hydrophobic contacts.

Protein-ligand binding MD simulations are attractive methods for assessing ligand specificity

and affinity, but they suffer from the stochastic nature of rare events, requiring

computationally expensive simulations to capture spontaneous association events. Adaptive

sampling methods have been applied to capture spontaneous ligand binding events (Betz,

Dror, 2019). Another way to address this issue is to increase the chances of binding by

placing a high concentration of ligands around protein. In this way, compound 2 achieved

docking-like poses in two ColDock replicas out of five. This corroborated the specificity of

compound 2 towards pocket 3.

Several studies have proved the importance of water molecules in increasing ligand binding

affinity and promoting specificity towards proteins (Rudling et al., 2018; Balázs Zoltán,

Csaba, 2021). In the case of pocket 3, most of the water molecules are unstable and can be

expelled, increasing binding affinity. Pocket 3 is primarily hydrophobic, however, the

solvent-exposed backbone of F94, E97, G99, G100, R110, and L114 represents a potential

site for H-bonding, as suggested by hydration analysis. Therefore, we introduced the

hydroxyl and carboxamide groups to compound 2 (compound2_mod-1). These two

modifications increased the predicted water solubility and aided the formation of H-bonds

with the backbone of R110 and F94. We further replaced two carbon atoms of the planar

scaffold with nitrogen, retaining aromaticity, and added two fluorine atoms at one of the

methylene groups of the scaffold (compound2_mod-2) to further increase the predicted
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solubility. Molecular docking suggested an H-bond between compound2_mod-2 and the

L114 backbone rather than R110.

Since compound2_mod-2 was the best-proposed structure in terms of predicted

pharmacokinetics, drug-likeness, and stability inside pocket 3, we further characterized its

binding mechanism using mwSuMD simulations, which suggested the flipping of the scaffold

compared to the initial docking pose, in accordance with the three PCA clusters extracted

from post-docking MD simulations. Average MMGBSA binding energy from the mwSuMD

simulation was comparable to post-docking MD simulations, supporting compound2_mod-2

as a Nef binder for pocket 3 and indicating the possibility of using this compound for in vitro

testing.

5. Conclusion

This study represents the first rational attempt to design inhibitors against Nef

homodimerization. Using a fragment-based de novo approach and extensive molecular

dynamics simulation we have designed compounds specifically toward the dimerization

pocket 3. Computationally, the initial lead compound 2 was very specific towards the

homodimerization pocket and the modified compounds also showed the same

characteristics. Although these compounds have high in silico synthetic accessibility scores

and good ADMET properties, further in vitro studies are needed to completely assess their

predicted properties, binding specificity, and whether they could inhibit the kinase activity.

Although our findings are computational and experimental validation will be needed, we

believe that this predictive computational study will pave the way for the rational

development of new Nef binders and possibly anti-HIV drugs specifically targeting Nef.

Videos:

https://www.sciencedirect.com/science/article/pii/S1476927123000622?via%3Dihub#ec0005
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8 Extra-project Publications and Preprints
While most of the PhD studies were dedicated to SARS-CoV-2 and HIV, I also

worked on two further projects: a new approach to elucidate and inhibit the mechanism of the

human pyruvate kinase 2 (hPKM2) enzyme expressed in many cancer phenotypes and the

enhancement of the supervised molecular dynamics (SuMD) protocol.

Anaerobic glycolysis is a key feature in cancer cells, sustaining their unregulated

proliferation through hPKM2-mediated ATP production, particularly in hypoxic tumour

microenvironments. Targeting overexpressed hPKM2 could disrupt glycolytic ATP

production, potentially reducing cancer cell replication and enhancing chemotherapy

effectiveness. I characterised the molecular recognition mechanism for hPKM2 and

phosphoenol pyruvate (PEP), providing insights into its binding mode while screening and

designing PEP isosteres, with optimized interactions and an overall safer toxicological

profile. It is the first publication that describes the hPKM2-PEP binding mode through MD

and highlights the importance of the presence of the anionic centres for a bioisosteric drug

design.

8.1 Targeting hPKM2 in cancer: a bio isosteric approach for ligand design

The metabolic reprogramming of cancer cells under a hypoxic tumour

microenvironment was first observed by Otto Warburg in 1920 who reported an abnormal

glucose uptake. This metabolic reprogramming is shared amongst many cancer phenotypes

as well as the overexpression of the human pyruvate kinase 2 (hPKM2), a rate-limiting

kinase enzyme responsible for the phosphorylation of adenosine diphosphate (ADP) to

adenosine triphosphate (ATP) in cancer, necessary for cancer pro-survival mechanisms. In

addition to the phosphate transfer, hPKM2 plays a crucial role as a transcriptor factor which

leads to the overexpression of glucose transporters, multidrug resistance proteins, as well as

a wide array of oncogenes that promote and sustain cancer development. This work aimed

to describe the molecular recognition mechanism between hPKM2 and phosphoenol

pyruvate (PEP) and propose a set of viable bioisosteric replacements based on previous

experimental approaches. This work included extensive parameterization work, as well as a

structure-based optimization strategy with different generative approaches. The results of

such exertion were published with the title: “Targeting hPKM2 in cancer: a bio isosteric

approach for ligand design” published in Computers in Biology and Medicine, Volume 158;

https://doi.org/10.1016/j.compbiomed.2023.106852

Authors: Ludovico Pipitò, Thomas Arron Illingworth, Giuseppe Deganutti
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Abstract:

The term cancer refers to a plethora of diseases characterized by the development of

abnormal cells that divide uncontrollably and can infiltrate further proximal or distal body

tissues. Each type of cancer can be defined by aggressiveness, localization, metabolism,

and response to available treatments. Among the most common hallmarks of cancer is a

more acidic intracellular microenvironment. Offset pH values are due to an excess of lactate

and an increased hypoxia-inducible factor (HIF) expression, which leads to a hypoxic state

and a metabolic shift towards glycolysis to produce adenosine-5’-triphosphate (ATP)

necessary for cellular metabolism. Warburg’s hypothesis underpins this concept, making

glycolysis and its central enzyme pyruvate kinase (hPKM2), an ideal target for drug

development. Using molecular docking and extensive molecular dynamics (MD) simulations

we investigated the binding mode of phosphoenolpyruvate (PEP) inside the hPKM2 active

site, and then evaluated a set of known bio-isosteric inhibitors to understand the differences

caused by their substitutions on their binding mode. Ultimately, we propose a new molecular

entity to hamper hPKM2, unbalance cellular energy, and possibly trigger autophagic

mechanisms.

Introduction:

Cancer is characterised by an uncontrolled proliferative capacity (1), driven by genetic and

epigenetic alterations of cell functions like metabolism (2), and proliferative and survival

pathways. The result is cells that are capable of growing exponentially, impairing tissue and

organ function in the process (3). Cancer cells have higher metabolic outputs compared to

healthy cells, which is achieved through over-expression and hyperactivity of various

enzymes (2) involved in key metabolic pathways, including glucose uptake and glycolysis (4)

to promote a pro–survival environment for cancer. The “Warburg hypothesis”(5) describes

the glycolytic metabolic shifts in both aerobic and anaerobic conditions observed within

solid-state tumours (6,7), gained through overexpression of glucose transporters, increased

ATP production, and lactate accumulation in the tumour microenvironment (TME). Metabolic

remodelling of the tumour favours disease progression and impedes treatment opportunities,

due in large part to chemotherapy resistance, shifting preference for hypoxic states through

lactate-dependent mechanisms to produce ATP in absence of oxygen (8). The result of this

is a survival advantage with respect to energy production, leading to tumour progression,

angiogenesis, and metastasis (9). Oxygen deficiency also promotes hypoxia-inducible

factors (HIF), which in turn over expresses glucose transporter (GLUT1) to facilitate glucose

uptake for tumour progression (10). HIF-1α triggers several tumour-promoting pathways.

HIF1α alters lactate dehydrogenase A isoform expression (LDH-A), impacting cellular pH, ion
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balance, as well as hypoxia response elements linked to cancer progression (11).

Additionally, HIF-1 is involved in the transcription of glycolytic enzymes ultimately linked with

metabolic regulators such as the mammalian target of rapamycin (mTOR), through the

AMP-activated protein kinase pathway (AMPK 5). This inhibits apoptotic response elements

in response to increased concentrations of ATP (10). Cancers exhibiting a HIF-glycolytic

state act within the extracellular space, where interleukin 1 beta (IL-1β) and tumour necrosis

factor-alpha (TNF-α) promote an increased expression of pro-inflammatory factors and

angiogenesis via HIF-mediated vascular endothelial growth factor (VEGF) overexpression

with increased M1 macrophage recruitment (12–14). It might also restore physiological

lactate levels, reducing expression levels of phosphofructokinase 1 (PFK1), histone

acetylation, inactivation of p53, and the overexpression of the multi-drug resistance (MDR)

factors and genes (15), responsible for drug resistance (16). In conditions of reduced

oxidative phosphorylation and fatty acid oxidation for ATP production, the prominent

resource left to sustain the hyperactive cell metabolism is glycolysis, making glycolysis an

ideal target for therapeutic approaches (17). All the interconnected pathways mentioned and

their influence on oncogenic phenotype are summarised in Figure 1.
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Figure 1: The central role of hPKM2 in conjunction with metabolic adjustments occurring in

oncotic phenotypes. The positive feedback contributes to establishing new pathological

homeostasis with distinctive hallmarks which act in TME. The endpoint of all the

transformations leads to tumour development and increased therapy resistance, which is

linked to poor prognosis.

Pyruvate kinase (hPK) is a rate-limiting glycolysis enzyme, responsible for the irreversible

transphosphorylation of a phosphate group from phosphoenolpyruvate (PEP) to adenosine

diphosphate (ADP) to produce ATP (18). There are four human isoforms of PK, encoded by

three tissue-specific genes: the L isoform is expressed in the liver, R in erythrocytes, and M

in muscles as a result of alternative splicing of exon 9 and 10 (M1 and M2) which differ by 22

positions, located near the allosteric regulation site for 1,6 fructose bisphosphate (FBP) and

specific deletions in tumour cells (19). Human pyruvate kinase M2 (hPKM2) increased level

of expression is found in a variety of cancers such as gastric, colorectal, and bile duct,
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rheumatic diseases, lung cancer, breast cancer, neuroendocrine tumours, urological

malignancies, renal cell carcinoma, diabetic nephropathy, haematological malignancies,

prostate cancer, and thyroid carcinoma (20). hPKM2 is expressed in tissues with anabolic

functions, including proliferating cells and cancer (21), suggesting that it could be a suitable

target in cancer therapy. The development of safe and effective treatments targeting the

glycolytic pathway provides an opportunity to interrupt the dysregulated homeostasis

observed in cancer. Numerous studies related hPKM2 inhibition with a positive effect on

cancer progression (22–26), however the specific mechanism of action is still not fully

understood. A promising clinical trial for the hPKM2 inhibitor TLN-232/CAP-232 was

conducted by Thallion Pharmaceuticals in 2007 but was terminated due to legal reasons

(10). Shikonin and its analogues have been shown to effectively inhibit hPKM2,

demonstrating selectivity for hPKM2 (25–28), impairing the glycolytic pathway for ATP

production.

Using hPKM2 crystallographic information as a starting point, we employed extensive

molecular docking and molecular dynamics (MD) simulations to highlight, for the first time,

the binding mode of PEP inside the hPKM2 catalytic site. Additionally, we describe the

binding mode for a set of experimentally tested PEP bio-isosteres compounds (29,30), then

propose and test in silico a modification of the enol moiety of PEP as a bio-isosteric

substitution to improve the inhibitors’ stability to possibly reduce chemotherapy resistance

(27). We evaluate the binding energy of the compounds with extensive molecular mechanics

energy combined Poisson-Boltzmann energy surface area (MM-PBSA). This work

reinvigorates the research of small molecules able to inhibit hPKM2, with the aim of depleting

cancerous cells of their main ATP source.

Methods

Protein Preparation and Force Field Settings

All systems were prepared using the CHARMM36/CGenFF 3.0.1 (31,32) force field

combination. hPKM2 structure tetramer was retrieved from PDB 1T5A (20) and modelled,

restricting our system to a single chain. The Na+ and Mg2+ ions were kept, while FBP was

removed to study the binding capacity of the enzyme in its unbound pre-activation state,

where the Mg2+-ADP complex is not present in the binding site. FBP was not considered, as

we aimed to study PEP inside the catalytic site in the pre-catalytic state. The protonation

state of residues was calculated by Propka (33) at a simulated pH of 6.5 to match the tumour

intracellular pH (34,35), and edited by pdb2pqr (36), while disulfide bonds were identified by

HTMD (37), visually inspected, and patched manually through VMD (38). The protein
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potential energy was minimised through 1000 steps of the conjugate gradient algorithm using

ACEMD (39).

Ligand Preparation and Parameter Settings

PEP structure (PubChem: 348274362) was built as a template for building all the bio

isosteric molecules considered (Figure 2A, Table 1) using the VMD Molefacture plugin

(https://www.ks.uiuc.edu/Research/vmd/plugins/molefacture/) while functional group

substitutions or ligand modifications were performed with Chimera (40). ADMET prediction

was computed using ADMETlab 2.0 (41) and included the toxicological profiles . Ligand

descriptors were calculated with RDkit (42,43). For each ligand, the initial docking poses and

scores were obtained using Autodock Vina (44,45) by centring an isometric grid box on

residue K270 with a side of 25 Å. To validate the docking protocol we performed the

self-docking of the only inhibitor with structural information available, oxalacetate (OXL)

(PDB entry 1T5A). The OXL self-docking displayed an RMSD of 0.93 Å in agreement with

the crystallography resolution. Results that displayed conformations similar to the X-ray

crystallography in terms of the orientation of the phosphate moiety toward the P04
- group as

resolved in 1T5A were used as starting coordinates for MD simulations. For each ligand, the

initial parameters were obtained through the CGenFF server (46,47). Atomic charges were

calculated with the restrained electrostatic potential (RESP) using the Antechamber package

(48), while angles and dihedrals with high penalty scores were optimised using Gaussian 09

(49) using the MP2/6-31g(d) level of theory. All ligands were simulated individually in water in

short MDs for a visual evaluation of the reliability of the parameters.
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Table 1. List of hPKM2 inhibitors

Name Molecular Weight (Da) pKd or pIC50

PEP 164.96 5.6 [1]

Compound 2 182.92 7 [2]

Compound 3 198.92 7.3 [2]

Compound 4 165.95 2.3 [2]

The table above shows the different functional group addition and modifications as experimentally

performed by Garcìa-Alles et al (29)

1: Experimental pKd reported by Duffy et al (50).

2: pIC50 as reported by Garcìa-Alles et al (29).
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System Preparation for Molecular Dynamics (MD)

hPKM2 structure and topology files were prepared using VMD’s Psfgen plugin

(https://www.ks.uiuc.edu/Research/vmd/plugins/psfgen/), and the resulting structures were

visually inspected. The systems were simulated for a total time of 1000 ns with TIP3P water

molecules (51) added to the simulation box using the Solvate plugin 1.5

(http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/) to give a 10 Å padding in every

direction. The charge neutrality was achieved by adding Na+/Cl− to the concentration of 0.150

M using the Autoionize plugin 1.3 (http: //www.ks.uiuc. edu/Research/vmd

/plugins/autoionize/). ACEMD was used for both the equilibration and the productive MD

trajectories. The energy of the systems was reduced through 1000 conjugate-gradient

minimization steps to eliminate possible clashes and optimize atomic distances. Equilibration

was reached in isothermal-isobaric conditions (NPT) using the Berendsen barostat (52)

(target pressure 1 atm) and the Langevin thermostat (53) (target temperature 310 K) during a

4 ns long MD simulation (integration time step 2 fs). During the equilibration, a positional

restraint of 1 kcal/ mol Å2 was applied on the alpha carbons of hPKM2 for the first 3 ns, while

ligands’ restraints were kept through the whole equilibration to avoid unwanted

displacements. Positional restraints of 1 kcal/mol Å2 were also applied on protein side chains

for the first 2 ns. Productive trajectories were produced with an integration time step of 4 fs,

using hydrogen mass repartition (54) in the canonical ensemble (NVT), with no positional

restraints. The cut-off distance for electrostatic interactions was set at 9 Å, with a switching

function applied beyond 7.5 Å. Long-range Coulomb interactions were handled using the

particle mesh Ewald summation method (PME) (55) with default ACEMD settings.

MD trajectories analysis

The root mean square deviation (RMSD) and root mean square fluctuation (RMSF) analyses

were computed using VMD and MDTraj (56). Ligand-protein contacts, including hydrogen

bonds, were detected using the GetContacts scripts tool (https://getcontacts.github.io), with a

threshold distance and angle of 3.5 Å and 120°, respectively. Contacts and HB were

expressed as occupancy (% of total MD frames). The Molecular Mechanics

Poisson-Boltzmann Surface Area (MMPBSA) was computed with the MMPBSA.py (57–59)

script (AmberTools20 suite at http://ambermd.org/), converting the CHARMM psf topology

files to Amber prmtop format through ParmEd

(http://parmed.github.io/ParmEd/html/index.html).

Results

Assessing the dynamics of apo hPKM2
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The X-ray diffraction structure of hPKM2 (PDB: 1T5A) reports the tetrameric hPKM2 (Figure

2A) in complex with the inhibitor oxalate (OXL) and the positive allosteric modulator FBP.

hPKM2 forms a tetrameric structure through the C and N domains, while the catalytic site is

situated between the A and B domains (Figure 2B). In the catalytic site of each monomer,

OXL engages T328 and K270 side chains in hydrogen bonds and forms bidentate

coordination with an Mg2+ ion, which in turn coordinates with D296, E272, and a water

molecule (Figure 2C). A potassium ion occupies the inner part of the pocket, coordinating

with the former water molecule and S243, D113, N75, and T114 (backbone). Situated in a

more external site between the A and B domains (20), a phosphate group interacts with

R120 and H78, in correspondence with the site putatively occupied by ADP (Figure 2C).

During a 1μs MD simulation, the extremities of domains N and B exhibited the highest

flexibility (Figure 2D), in line with previous work (60). We assessed the dynamics of the apo

hPKM2 (obtained by removing OXL and FBP) by measuring the RMSD to 1T5A (Figure 2E),

which resulted in 2.8 ± 0.9 Å, in agreement with the nominal resolution (2.8 Å) of 1T5A. The

flexibility displayed by the FBP pocket indicated that this site is stabilised by the allosteric

modulator. The catalytic site residues S243, T114, and D113 oriented their sidechains toward

K270 and remained stable throughout the simulation (Video S1). Intriguingly, the Mg2+ ion

remained interlocked between D296 and E272, in line with its crucial role in coordinating the

substrate binding as well as the catalytic mechanism (20). The catalytic residues are

encompassed between domain A and the mobile domain B which has been reported to close

in the presence of Mg2+, ADP (18), and K+. We did not observe any spontaneous closing of

the B domain onto the A domain, due to the absence of the Mg2+-ADP complex connecting

the two domains (61). However, the residues R73, K270, S240, D113, T114, E272, and

D296, involved in the enzymatic reaction, kept their original orientation during the simulation,

indicating minimal conformational changes.

Taken together, these results indicate that, the stability of the catalytic site is secured by the

tight inter-residue network of contacts and hydrogen bonds and suggest that the catalytic site

could be a template for the structure-based drug design of novel inhibitors, in the absence of

the FBP from the allosteric site. Although the potassium ion may be present in the ground

state hPKM2 (61), it was soon displaced in the absence of the stabilizing substrate, while the

Mg2+ was completely and independently stabilized by the D296 and E272 active site

residues, suggesting that Mg2+ should be considered for drug design purposes.
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Figure 2. Crystal structure of hPKM2 and its active site domains. A) The X-ray

diffraction structure of tetrameric hPKM2 (PDB 1T5A, tan ribbon) with FBP is represented as

a molecular surface in the allosteric pocket. Ions and phosphate are represented as a ball
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and sticks; B) closeup ribbon representation of hPKM2 monomer with domain classification

is shown (62): the N-terminal domain (residues I13-A42 in red), the A domain hosting the

binding site where ions are present (residues R43-K115, K224-A387), the B domain

(G116-E223), and C domain (A388 -P531). C) Single chain closeup ribbon structure of

hPKM2 monomer in complex with OXL. The OXL position is stabilized by the Mg2+ ion which

is suggested to support the phosphoryl transition. A phosphate group is shown as a ball and

stick to indicate where the Mg2+ - ADP should be D) RMSF values plotted on the ribbon

representation of hPKM2 with domains classification: N-terminal domain (residues I13-A42),

the A domain hosting the binding (residues R43-K115, K224-A387), the B domain

(G116-E223), and C domain (A388-P531). E) RMSDs of hPKM2 alpha carbon atoms over

time, which averaged 3.9 ± 0.63 Å, indicating that the monomer remained stable.

Phosphoenolpyruvate binding mode

Although the catalytic mechanism of PKM2 is well known, to the best of our knowledge no

information is available about PEP interactions within the active site, as there are no reported

structural or computational studies addressing the binding mode of PEP before its phosphate

group is transferred to ADP (pre-catalytic state). To tackle this knowledge gap, we docked

PEP to hPKM2 and performed post-docking MD simulation. PEP was overall stable

throughout the MD trajectory (RMSD = 2.31 ± 0.47 Å, Figure S2A, RMSF = 2.09 ± 0.63 Å

Figure S2B) although it completely stabilised in the second half of the simulations thanks to

the coordination of Na+ and Mg2+ ions by the carboxylic and phosphate groups, with the aid

of D178, E272, and D296 to complete the coordination (Video S2). Contacts and hydrogen

bonds analysis between PEP and the hPKM2 active site (Figure 3) highlights the interaction

of the PEP phosphate group with the Mg2+ion corroborating the crucial role of the cation in

coordinating PEP, as previously reported (20) (61). M291 and T328 directly engaged the enol

pyruvate in interatomic contacts, while R73 and K270 formed hydrogen bonds with PEP

carboxyl moiety (Figure 3A, Video S2). The MM-PBSA calculated binding free energy for

compound 2 was -52.98 ± 23.08 kcal/mol, with E272 and D296 being the major contributors

to the stability.

The stability of PEP during the MD simulation suggests that this is the binding mode the

substrate adopts in the pre-catalytic hPKM2. We identified a set of interactions that stabilize

PEP within the catalytic site. A network of hydrogen bonds is formed between the carboxyl

group of PEP and R73 and K270. D178 interacts with the phosphate group through the Na+

ion, while E272 and D296 engaged the phosphate group through the Mg2+ ion, locking the

orientation of the phosphate toward E272 and D296 while orienting the carboxyl group

toward K115 and R120 (Figure 3B).
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Figure 3. PEP Binding Site, RMSD, and Hydrogen Bond Network. A) PEP forms a

hydrogen bond network throughout the simulation mainly with R73 and K270 (ions not

shown) B) Contacts occupancy between PEP and hPKM2 are shown with the chain

identifier, the residue name, and its number. The double vdW interactions for Mg2+ and D296

are due to individual interaction with each oxygen atom of the PEP phosphate group. PEP

engaged with a Na+ ion through the phosphate group. No contact with the ligand’s backbone

was made during the simulation. C) hydrogen bond count during the simulation (2.93 ± 0.88).

HB-LS: hydrogen bond between the ligand and the protein’s sidechain; HB-LB: hydrogen

bonds between the ligand and the protein’s backbone alpha carbon atoms. vdW:

ligand-protein interatomic contacts.

Halogenated PEP-derivatives are Stable in the Catalytic Site

As previously reported by Garcìa-Alles et al (29), the modification of the phosphate or the

carboxylate groups reduces the binding affinity of PEP bio-isosteres toward hPKM2,
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suggesting these moieties as crucial for binding, in accordance with our MD simulation of

PEP. Compounds 2 and 3 (Table 1) bear both the carboxylate and phosphate with the

addition of a halogen atom on the ethylene scaffold to deactivate the substrate thanks to an

electronic effect. hPKM2 possesses Z-stereoselectivity for halogenated PEP-analogue

inhibitors such as the (Z)-phosphoenol-3-fluoropyruvate (compound 2) and

(Z)-phosphoenol-3-chloropyruvate (compound 3) (50,63). While fluorinated PEP derivatives

inhibit the phosphotransferase reaction, the chlorinated counterparts have a modest effect.

As the binding mode of these PEP derivatives s have not been described yet, we

investigated their mechanism of action.

Compounds 2 and 3 Binding Mode

Compounds 2 and 3 molecular docking results showed both the phosphate group and the

scaffold orientation in line with the X-ray structure. (Figures S1B, S1C). In the best binding

pose, the fluorine atom of compound 2 was predicted between E272 and D296, while the

carboxyl group oriented towards residue T238 and the phosphate group towards the position

occupied by the potassium ion in the X-ray structure. Compound 2 established a set of

hydrogen bond interactions with R73, K115, K270, and S362 (Figure 4A). Post-docking MD

simulation displayed stabilizing interactions with residues K73, S362, K115, K270, T328,

R120, T175, and E272 (Figure 4B). During the second half of the MD simulation, compound

2 rearranged within the active site S362 (Video S3) to remain in a stable configuration

(RMSD of 2.8 ± 0.91 Å, RMSF of 2.1 ± 0.41 Å Figure S2A, Figure S2B respectively). The

MM-PBSA computed binding affinity of compound 2 was -53.41 ± 18.6 kcal/mol, with R73

and K270 providing the best interactions.

Compound 3 molecular docking predicted a divergent binding mode compared to compound

2, probably due to the bulkier chlorine atom. The phosphate group engaged R73, K270 and

S362 through a set of hydrogen bonds for the totality of the simulation (Figure 4C), while the

carboxyl group coordinated with the Mg2+ ion along with E272 and D296. During the

simulation, the chlorine atom position varied between A293, M291, and M360 (Video S3)

with the molecule being in a stable position between residues R73, K270, S362, K115, D296,

E272, M291, T328, A293, and A327 (Figure 4D), displaying a similar set of interactions as

PEP (Figure 3B).
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Figure 4. Compound 2 and Compound 3 Binding Analyses. A) Hydrogen bond network

representation of compound 2. Ions are not shown for clarity B) Contact plot of compound 2

C) Compound 2 hydrogen bond formation plot over time shows 3.8 ± 1.03 bonds D)

Hydrogen bond network representation of compound 3. Ions are not shown for clarity. E)
Contact plot of compound 3. F) Compound 3 hydrogen bonds count over simulation (3.2 ±

0.63). HB-LS: hydrogen bond between the ligand and the protein’s sidechain; HB-LB:

hydrogen bonds between the ligand and the protein’s backbone alpha carbon atoms. vdW:

ligand-protein interatomic contacts.
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Despite the relative mobility of compound 3 (average RMSD of 2.51 ± 0.5 Å and average

RMSF of 1.4 ± 0.16 Å, Figure S2A, S2B respectively), the PBSA binding energy was -84.99

± 9.5 kcal/mol, with R73, R120, K270, and K367 contributing the most to the binding affinity.

Compound 3 phosphate engaged with K270, R73, and S362, suggesting the crucial role of

this group in the binding mechanism (Figure 4C). Compound 3 differed from compound 2 by

the stability of the scaffold, locked between R73, K270, M291, E272, and D296. For both

compounds, Mg2+ and Na+ ions interacted with the phosphate group favoring the orientation

of the ligand inside the catalytic site (Video S3).

In summary, the presence of the phosphate and the carboxyl groups is required to achieve

favourable coordination of the ligands inside the active site. PEP and compound 2 engaged

in a similar set of interactions, while compound 3 probably has a different binding mode,

although still effective in inhibiting hPKM2 (Table 1) Overall, the shared scaffold between

compounds 2, compound 3, and PEP favoured a similar stabilizing network of hydrophobic

and hydrogen bond interactions.

A Sulfate Moiety Alters the Binding Mode within hPKM2

Compound 4 activity was the lowest of all the compounds tested (Table 1). The reason for

this is that hPKM2 can still catalyse the sulfonyl transfer from the solfoenolpyruvate

(compound 4) to ADP to yield adenosine 5'-sulfatopyrophosphate, with a 250-600 fold

reduced reaction rate compared to PEP (64). Compound 4 best docking pose was used for

post-docking MD simulation, which highlighted a diverged interaction fingerprint from PEP,

although still comprising residues R73, K270, S362, T328, and D296, E272 through the Mg2+

ion (Figure 5A). In contrast to PEP, compound 4 engaged R73 and K270 through the

carboxyl group for the first 600 ns of the simulation, while the sulfate moiety transitorily

interacted with R73 and S362 (Video S3).
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Figure 5. Compound 4 Binding Mode. A) Contact plot of compound 4 indicates a similar

set of interactions with PEP, especially with R73, K270, and T328 B) Hydrogen bond network

representation of compound 4. C) Compound 4 hydrogen bond count (2.84 ± 0.76)

throughout the simulation. HB-LS: hydrogen bond between the ligand and the protein’s

sidechain; HB-LB: hydrogen bonds between the ligand and the protein’s backbone alpha

carbon atoms. vdW: ligand-protein interatomic contacts.

The subsequent sulfate displacement from the Mg2+ ion briefly produced a rearrangement of

the scaffold orientation as indicated by the RMSD (RMSD = 2.18 ± 0.69 Å, RMSF= 1.83 ±

0.35 Å Figure S2A, S2B). The scaffold reverted to the original position with the sulfate group

oscillating between R73 and S362. Compound 4 established a bidentate hydrogen bond

interaction with R73 with the sulphate and the carboxyl group, which established a hydrogen

bond also with K270. S362 engaged with the sulfate group, while on the other side of the

compound, the carboxyl group coordinated with the Mg 2+ along with E272 and D296 (Figure
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5A). The PBSA binding energy for compound 4 was -37.85 ± 6.3 kcal/mol, in line with its

modest pIC50 (Table 1, Figure S6).

In summary, compound 4 displayed a different binding mode compared to PEP (Video S3)

although engaged in the same set of residues as PEP, as the PEP phosphate interactions

(i.e., the chelation of the Mg2+) were sustained by compound 4 carboxyl group.

Extended Bio Isosteres Expand Residue Engagement in hPKM2 binding site

Our previous simulations highlighted the importance of both the carboxyl and phosphate

groups for hPKM2 binding. The ethylene moiety of the scaffold did not engage significantly

with any residue, suggesting that modifications or extensions on the scaffold could improve

the binding. In addition, the presence of halogen atoms in compounds 2 and 3 negatively

impacted the hepatotoxicity profile of the molecules (65,66), suggesting potential liver injury

and poor clearance (1.865 ml/min/Kg and 1.773 ml/min/Kg). Compound 4 was presented

with a better ADMET profile, sharing, however, a poor estimated clearance rate (1.896

ml/min/Kg). We, therefore, replaced the halogen atom in compounds 2 and 3 with a primary

amide (Compound 5, Table 2) and docked it within the enzyme.

Table 2. Proposed Substitution

Name Molecular Weight (Da) cLogP

Compound 5 207.96 -0.7016
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During a post-docking MD simulation, compound 5 resided in the active site of hPKM2,

resembling PEP interactions and binding mode. The carboxyl group engaged with R73,

S362, K270, K115, T328, E272, and D296 (Figure 6A) locking the scaffold in a favourable

orientation inside the active site. An Mg 2+ cation coordinated both the phosphate and the

carbonyl oxygen of the secondary amide, with D296 and E272, further stabilising the ligand

(Video S4). The secondary amide contributed to the stabilization and orientation of the

scaffold toward T328. This suggests that additional extensions of compound 5 which include

T328 target residue, might be well-tolerated, as indicated by the computed binding energy for

compound 5 of -79.36 ± 6.78 kcal/mol, with numerous sets of residues involved in the

binding interaction such as R73, K115, R120, K207, K270 and K367. Compound 5, (RMSD =

2.96 ± 0.69 Å RMSF = 2.45 ± 0.41 Å) displayed a similar set of hydrogen as PEP (Video S4),

with R73, K115, K270, T328, and S362 (Figure 6B).

Figure 6. Compound 5 Binding Mode. A) Contact plot of compound 5 B) Hydrogen bond

network representation of compound 5. C) Hydrogen bond count (3.76 ± 1.33) over the
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simulation time. HB-LS: hydrogen bond between the ligand and the protein’s sidechain;

HB-LB: hydrogen bonds between the ligand and the protein’s backbone alpha carbon atoms.

vdW: ligand-protein interatomic contacts.

Taken together, these results confirm the necessity of negatively charged groups (i.e.,

carboxylate or phosphate) to participate in the coordination of Mg2+ by E272 and D296. The

presence of the phosphate group with the addition of a secondary amide on the enol

pyruvate scaffold contributed to the stabilization of the ligand in accordance with PEP binding

mode, with the addition of an improved set of hydrogen bonds and hydrophobic interactions.

Furthermore, the ADMET profile of compound 5 indicated no risk of liver injury and an overall

safer toxicology profile including the carcinogenicity output.

Discussion

The impact of aerobic glycolysis in cancer cells remains one of the hallmarks of cancers. The

metabolic shift that sustains the unregulated proliferative capabilities of cancerous cells

suggests the main role of hPKM2 in unregulated ATP production. In concert with HIF-1 α

expression, an increased hPKM2 activity favours a glycolytic state compared to the oxidative

phosphorylation in the cancerous hypoxic TME. The increased glucose uptake with the

biochemical pathway shifts initiates a signalling cascade that gives glycolytic cancer types an

energetic advantage over regular cells as well as increasing chemotherapeutic resistance.

Targeting the overexpressed hPKM2 is a viable, yet scarcely explored therapeutic approach

to impact a large variety of cancers. Disrupting the glycolytic ATP production might result in a

consistent energy depletion for hypoxic ATP-dependant cancerous cells, thus reducing cell

replication rate and possibly causing the activation of the autophagic biochemical pathway.

Furthermore, considering the hPKM2 role in drug resistance, the combined hPKM2 inhibition

in conjunction with a chemotherapic regime might favour tumour regression with a combined

effect derived from ATP depletion, autophagic mechanism, and a reduction in chemotherapy

resistance. Disrupting the final irreversible limiting-step of the glycolytic pathway could trigger

selective damage to the highly glucose-dependant cancerous cells while having a lower

effect on healthy tissues that mainly rely on oxidative phosphorylation.

We provided for the first time insights on the binding mode of PEP within the hPKM2 catalytic

site and rationalised the activity of bio-isosteres compounds. The co-presence of the

phosphate and carboxyl groups plays an essential function in the orientation of the scaffold

by chelating the Mg2+ ion, stabilising the ligand inside the active site. With compound 5, we

aimed to design a PEP isostere by keeping the carboxyl and the phosphate groups, crucial

elements for enzyme-ligand molecular recognition, expanding the set of interactions between
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the compound and the active site. We also built the new molecule with no halogen atoms,

considering their modest inhibitory impact, improving also the predicted toxicological profile

of the molecule. As expected, compound 5 displayed a stable simulated binding mode

against hPKM2. We believe it is possible to design new and more potent inhibitors based on

compound 5, in which the primary amide is substituted to grow in the catalytic site and form

further interactions, besides increasing the drug-likeness of the compounds.

Conclusion

We propose the importance of the bio-isosteric approach to developing new inhibitors to

reduce hPKM2 activity in glycolytic cancer types. Further studies are required to expand on

this current work and explore the chemical space of PEP analogues, as well as experimental

data to validate our hypothesis.

Videos:

https://www.sciencedirect.com/science/article/pii/S0010482523003177?via%3Dihub#appsec

1
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8.2 Hidden GPCR structural transitions addressed by multiple walkers supervised
molecular dynamics (mwSuMD)

Supervised molecular dynamics (SuMD) is a robust method for investigating the

pathways of ligand-receptor binding and unbinding. In this project, I contributed to the

development of the multiple walker SuMD (mwSuMD). mwSuMD allows for the exploration of

a broader spectrum of conformational transitions relevant to drug design. The method has

been first benchmarked to G protein-coupled receptors (GPCRs) for validation. These

GPCRs constitute the most abundant family of membrane receptors in eukaryotes and serve

as both fundamental drug targets and well-established test systems, representing more than

one-third of drugs approved for human use. The new mwSuMD greatly enhances the

sampling capacities of the SuMD method in exploring the binding pathways and the

ligand-target molecular recognition mechanism. mwSuMD supervises the evolution of

different metrics of the system such as the RMSD, distance, number of hydrogen bonds and

contacts between two molecular entities to reveal the binding or unbinding pathway of the

two selections, as well as the conformational changes over time, using

energetically-unbiased MD.

I also introduced significant improvements to the existing SuMD, such as multi-engine

versatility to run independently with NAMD, ACEMD, GROMACS, and OpenMM,

multiprocessing parallelization, code refactorization and algorithm improvement for faster

calculations, as well as remodelling the general architecture for a more user-friendly

application programming interface (API). The code has been deposited on my GitHub

(https://github.com/pipitoludovico) public repository and is freely accessible from my profile.

The work and results of mwSuMD are published as the preprint: “Hidden GPCR structural

transitions addressed by multiple walkers supervised molecular dynamics (mwSuMD)”.

Authors: Giuseppe Deganutti, Ludovico Pipitò, Roxana M. Rujan, Tal Weizmann, Peter

Griffin, Antonella Ciancetta, Stefano Moro, and Christopher A. Reynolds

Abstract

G protein-coupled receptors (GPCRs) are the most abundant membrane proteins and the

target of about 35% of approved drugs. Despite this, the structural basis of GPCR

pharmacology is still a matter of intense study. Molecular dynamics (MD) simulations aim to

expand our knowledge of GPCR dynamics by building upon the recent advances in structural

biology. However, the timescale limitations of classic MD hinder its applicability to numerous

structural processes happening in time scales longer than microseconds (hidden structural

transitions). For this reason, the overall MD impact on the study of GPCRs pharmacology
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and drug design is still limited. To overcome this, we have developed an unbiased adaptive

sampling algorithm, namely multiple walker supervised MD (mwSuMD), and tested it on

different hidden transitions involving GPCRs. By increasing the complexity of the simulated

process, we report the binding and unbinding of the vasopressin peptide, the

inactive-to-active transition of the glucagon-like peptide-1 receptor (GLP-1R), the stimulatory

G protein (Gs) and inhibitory Gi binding to the adrenoreceptor b2 (b2 AR) and the adenosine 1

receptor (A1R) respectively, and the heterodimerization between the adenosine receptor A2

(A2AR) and the dopamine receptor D2 (D2R). We demonstrate that mwSuMD is a helpful tool

for studying at the atomic level GPCR transitions that are challenging to address with classic

MD simulations.

Introduction

Supervised molecular dynamics (1,2) (SuMD) is a powerful technique for studying

ligand-receptor binding and unbinding pathways; here we present a significant enhancement

to the method, namely multiple walker supervised molecular dynamics (mwSuMD) that

permits a wider range of conformational transitions relevant to drug design to be studied. We

validated the method by applying it to G protein-coupled receptors (GPCRs), as these are

both fundamental drug targets and well-validated test systems. GPCRs are the most

abundant family of membrane receptors in eukaryotes (3) and the target for more than

one-third of drugs approved for human use (4). Vertebrate GPCRs are subdivided into five

subfamilies (Rhodopsin or class A, Secretin or class B, Glutamate or class C, Adhesion, and

Frizzled/Taste2) according to function and sequence (5,6). Common features of all GPCRs

are seven transmembrane (TM) helices connected by three extracellular loops (ECLs) and

three intracellular loops (ICLs), while an extended and structured N-terminus extracellular

domains (ECD) is found in all subtypes, but class A. The primary function of GPCRs is

transducing extracellular chemical signals into the cytosol by binding and activating four G

protein families (Gs/olf, Gi/o, G12/13 and Gq/11) responsible for decreasing (Gi/o) or increasing

(Gs/olf) the cyclic adenosine-3’,5’-monophosphate (cAMP), and generating

inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG) to increase Ca2+ intracellular levels

(Gq) (7).

GPCR structures have been solved by X-ray and cryo-electron microscopy (cryo-EM) at an

increasing pace since the first X-ray structures in 2000 (8) and 2007 (9). However, many

aspects of their pharmacology remain elusive. For example, the structural determinants of

the selectivity displayed towards specific G proteins or the ability of certain agonists to drive

a preferred intracellular signaling pathway over the others (i.e. functional selectivity or bias)

(10). What makes GPCRs challenging proteins to characterize with standard techniques is
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their inherent flexibility and the transitory nature of the complexes formed with extracellular

and intracellular effectors. One of the possible approaches to integrate or sometimes

overcome the limits of experimental conditions is performing molecular dynamics (MD)

simulations. MD is a computational methodology that predicts the movement and interactions

of (bio)molecules in systems of variable complexity, at atomic detail, enabling useful working

hypotheses and rationalization of experimental data. However, standard MD sampling is

limited to the microsecond or, in the best conditions, the millisecond time scale (11,12). For

this reason, different algorithms have been designed to speed up the simulation of rare

events such as ligand (un)binding and conformational transitions. Amongst the most popular

and effective ones, there are metadynamics (13), accelerated MD (aMD) (14), and

Gaussian-accelerated MD (GaMD) (15). Such methods, which introduce an energy potential

to overcome the energy barriers preventing the complete exploration of the free energy

surface, thus de facto biasing the simulation, have been used to propose activation

mechanisms of GPCRs (16,17). Energetically unbiased MD protocols, on the other hand,

comprise the weighted ensemble MD (weMD) (18) and SuMD (1,19). SuMD has been

successfully applied to the (un)binding mechanism of both small molecules, peptides, and

small proteins (1,19–23). Since SuMD is optimized only for (un)bindings, we have designed

a new version of the software, namely multiple walker SuMD (mwSuMD), that extends the

applicability of the method to conformational transitions and protein:protein binding.

We tested mwSuMD on a series of increasingly complex hidden structural transitions

involving both class A and class B1 GPCRs. Firstly, we validated the method on the

nonapeptide arginine vasopressin (AVP) by simulating binding (dynamic docking) and

unbinding paths from the vasopressin 2 receptor (V2R). AVP is an endogenous hormone that

mediates antidiuretic effects on the kidney by signaling through three class A GPCR

subtypes: V1a and V1b receptors activate phospholipases via Gq/11 protein, while the V2

receptor (V2R) activates adenylyl cyclase by interacting with Gs protein (24) and is a

therapeutic target for hyponatremia, hypertension, and incontinence (25). Dynamic docking,

although more computationally demanding than standard molecular docking, provides

insights into the binding mode of ligands in a fully hydrated and flexible environment.

Moreover, it informs about binding paths and the complete mechanism of formation leading

to an intermolecular complex, delivering in the context of binding kinetics (26) and

structure-kinetics relationship (SKR) studies (27).

We then show that mwSuMD can be employed to simulate the receptor activation of the

class B1 GPCR glucagon-like peptide-1 receptor (GLP-1R) upon binding of the small

molecule PF06882961. GLP-1R is a validated target in type 2 diabetes and probably the

best-characterized class B1 GPCR from a structural perspective. GLP-1R is the only class

225



B1 receptor with structurally characterized non-peptidic orthosteric agonists, which makes it

a model system for studying the druggability of the entire B1 subfamily.

The further case studies we report are the Gs and Gi proteins binding to the adrenoreceptor

b2 (b2 AR) and the adenosine 1 receptor (A1R), starting from different conditions. GPCRs

preferentially couple to very few G proteins out of 23 possible counterparts (28,29). More

importantly, agonists can modify the receptor selectivity profile by imprinting unique

intracellular conformations from the orthosteric binding site. The mechanism behind these

phenomena is one of the outstanding questions in the GPCR field (28). It is increasingly

accepted that dynamic and transient interactions determine whether the encounter between

a GPCR and a G protein results in productive or unproductive coupling (30). MD simulations

are considered a useful orthogonal tool for providing working hypotheses and rationalizing

existing data on G protein selectivity. However, so far, it has not delivered as expected.

Attempts so far have employed energetically biased simulations or have been confined to the

Ga subunit (16,17).

The last GPCR key process simulated through mwSuMD is the heterodimerization in the

membrane between the adenosine receptor A2 (A2AR) and the dopamine receptor D2 (D2R).

The A2AR:D2R heterodimer (31) is a therapeutic target for neurodegenerative diseases,

Parkinson’s disease, and schizophrenia (32–34) due to the reciprocal antagonistic allosteric

effect between monomers (35). A2AR activation reduces the binding affinity of D2R agonists,

while A2AR antagonists enhance the dopaminergic tone by decreasing the adenosine

negative allosteric modulation on D2R. Heterobivalent ligands able to inhibit A2AR and

activate D2R represent a valuable pharmacological tool (36) and, in principle, therapeutic

options for conditions characterized by reduction of dopaminergic signaling in the central

nervous system. The successive dynamic docking of the heterobivalent ligand compound 26

(37) to the heterodimer suggested by mwSuMD produced a ternary complex stabilized by

lipids.

Results and Discussion

Short mwSuMD time windows improve the AVP dynamic docking prediction

AVP has an amphipathic nature and interacts with both polar and hydrophobic V2R residues

located on both TM helices and ECLs. Although AVP presents an intramolecular C1-C6

disulfide bond that limits the overall conformational flexibility of the backbone, it has a high

number of rotatable bonds, making dynamic docking complicated (38). We assessed the

performance of mwSuMD and the original version of SuMD in reconstructing the

experimental V2R:AVP complex using different settings, simulating a total of 92 binding

events . As a reference, the AVP RMSD during a classic (unsupervised) equilibrium MD
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simulation of the AVP:V2R complex was 3.80 ± 0.52 Å. SuMD (1,19) produced a minimum

root mean square deviation (RMSD) to the cryo-EM complex of 4.28 Å, with most of the

replicas (distribution mode) close to 10 Å (Figure 1a). MwSuMD, with the same settings

(Figure 1b, Table S1) in terms of time window duration (600 ps), metric supervised (the

distance between AVP and V2R), and acceptance method (slope) produced slightly more

precise results (distribution mode RMSD = 7.90 Å) but similar accuracy (minimum RMSD =

4.60). Supervising the AVP RMSD to the experimental complex rather than the distance

(Figure 1c) and using the SMscore (Equation 1) as the acceptance method (Figure 1d)

worsened the prediction. Supervising distance and RMSD at the same time (Figure 1e),

employing the DMscore (Equation 2), recovered accuracy (minimum RMSD = 4.60 Å) but not

precision (distribution mode RMSD = 12.40 Å). Interestingly, decreasing the time window

duration from 600 ps to 100 ps impaired the SuMD ability to predict the experimental

complex (Figure 2a), but enhanced mwSuMD accuracy and precision (Figure 2b-d). The

combination of RMSD as the supervised metric and SMscore produced the best results in

terms of minimum RMSD and distribution mode RMSD, 3.85 Å and 4.40 Å, respectively

(Figure 2d, Video S1), in agreement with the AVP deviations in the equilibrium MD simulation

of the AVP:V2R complex.

These results suggest that short time windows can dramatically improve the dynamic

docking performance of mwSuMD. However, it is necessary to know the final bound state to

employ the RMSD, while the distance as the supervised metric is required to dynamically

dock ligands with unknown bound conformation. Both distance and RMSD-based simulations

delivered insights into the binding path and the residues involved along the recognition route.

For example, mwSuMD suggested V2R residues E184ECL2, P298ECL3, and E303ECL3 as

involved during AVP binding, although not in contact with the ligand in the orthosteric

complex.

Further to binding, a SuMD approach was previously employed to reconstruct the unbinding

path of ligands from several GPCRs (1,2), (39). We assessed mwSuMD capability to

simulate AVP unbinding from V2R. Five mwSuMD and five SuMD replicas were collected

using 100 ps time windows (Table 1). Overall, mwSuMD outperformed SuMD in terms of time

required to complete a dissociation (Video S2), producing dissociation paths almost 10-fold

faster than SuMD. Such rapidity in dissociating inherently produces a limited sampling of

metastable states along the pathway, which can be compensated by seeding classic

(unsupervised) MD simulations from configurations extracted from the unbinding route

(40,41). Here, the set of V2R residues involved during the dissociation was comparable to the

binding, though ECL2 and ECL3 were slightly more involved during the association than the

dissociation, in analogy with other class A and B GPCRs (21,40).
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Figure 1. AVP SuMD and mwSuMD binding simulations to V2R (600 ps time windows).
For each set of settings (a-e), the RMSD of AVP Ca atoms to the cryo-EM structure 7DW9 is

reported during the time course of each SuMD (a) or mwSuMD (b-e) replica alongside the
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RMSD values distribution and the snapshot corresponding to the lowest RMSD values (AVP

from the cryo-EM structure 7DW9 in cyan stick representation, while AVP from simulations in

a tan stick). A complete description of the simulation settings is reported in Table 1 and the

Methods section.

Figure 2. AVP SuMD and mwSuMD binding simulations to V2R (100 ps time windows).
For each set of settings (a-d) the RMSD of AVP Ca atoms to the cryo-EM structure 7DW9 is

reported during the time course of each SuMD (a) or mwSuMD (b-d) replica alongside the
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RMSD values distribution and the snapshot corresponding to the lowest RMSD values (AVP

from the cryo-EM structure 7DW9 in cyan stick representation, while AVP from simulations in

a tan stick). A complete description of the simulation settings is reported in Table 1 and the

Methods section.

PF06882961 binding and GLP-1R activation

The GLP-1R has been captured by cryo-EM in both the inactive apo (ligand-free) and the

active (Gs-bound) conformations, and in complex with either peptides or non-peptide

agonists (42–47). In the inactive apo GLP-1R, residues forming the binding site for the

non-peptide agonist PF06882961 are dislocated and scattered due to the structural

reorganization of the transmembrane domain (TMD) and extracellular domain (ECD) that

occurs on activation. Moreover, GLP-1R in complex with GLP-1 or different agonists present

distinct structural features, even amongst structurally related ligands. This complicates the

scenario and suggests divergent recognition mechanisms amongst different agonists. We

simulated the binding of PF06882961 using multistep supervision on different metrics of the

system (Figure 3) to model the structural hallmark of GLP-1R activation (Video S3, Video

S4).

Several metrics were supervised in a consecutive fashion. Firstly, the distance

between PF06882961 and the TMD as well as the RMSD of the ECD to the active state

(stage 1); secondly, the RMSD of ECD and ECL1 to the active state (stage 2); thirdly, the

RMSD of PF06882961 and ECL3 to the active state (stage 3); lastly, only the RMSD of TM6

(residues I345-F367, Ca atoms) to the active state (stage 4). The combination of these

supervisions produced a conformational transition of GLP-1R towards the active state

(Figure 3, Video S4). Noteworthy, the sequence of these supervisions was arbitrary and does

not necessarily reflect the right order of the steps involved in GLP-1R activation. This kind of

planned multistep approach is feasible when the end-point receptor inactive and active

structures are available, and the inherent flexibility of different domains is known. In class B

GPCRs, the ECD is the most dynamic sub-structure, followed by the ECL1 and ECL3 which

display high plasticity during ligand binding (21,48). For this reason, we first supervised these

elements of GLP-1R, leaving the bottleneck of activation, TM6 outward movement, as the

last step. However, the protocol employed can be tweaked to study how each conformational

transition takes place and influences the receptor domains. Structural elements not directly

supervised, such as TM1 or TM7, displayed an RMSD reduction to the active state because

they were influenced by the movement of supervised helixes or loops. For example, the

supervision of ECL3 (stage 3) and TM6 (stage 4) facilitated the spontaneous rearrangement
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of the ECD to an active-like conformation after the ECD had previously experienced transient

high flexibility during stages 2 and 3 (Figure 3).

During the supervision of ECL3 and PF06882961 (stage 3), we observed a loosening

of the intracellular polar interactions that stabilize GLP-1R TM6 in the inactive state. As a

result, the subsequent supervision of TM6 (residues I345-F367, Ca atoms) rapidly produced

the outward movement towards the active state, in the last step of the mwSuMD simulation

(stage 4). Taken together, these results suggest a concerted conformational transition for

ECD and ECL1 during the binding of PF06882961 and an allosteric effect between ECL3

and the bottom of TM6. Interestingly, while the intracellular polar interactions were

destabilized by the ECL3 transition to an active-like conformation (stages 2 and 3), the

outward movement of TM6 (stage 4) did not favor the closure of ECL3 towards PF06882961,

which appear to be driven by direct interactions between the ligand and R3105.40 or R3807.35.

Since we were interested in reconstructing the binding of PF06882961 to GLP-1R and the

successive receptor structural transitions to prepare the intracellular G protein binding site,

our mwSuMD simulation did not include Gs. Therefore, any allosteric effect triggered by the

binding of the effector could have been overlooked, as well as the complete stabilization of

TM6 in the active conformation, which is known to be achieved only when the intracellular

effector is bound (49).
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Figure 3. MwSuMD simulation of PF06882961 binding to GLP-1R and receptor
activation. Each panel reports the root mean square deviation (RMSD) to a GLP-1R

structural element or the position of the ligand in the active state (top panel), over the time

course (all but ECL3 converging to the active state). ECD: extracellular domain; TM:

transmembrane helix; ECL: extracellular loop. The mwSuMD simulation was performed with

four different settings over 1 microsecond in total.

G proteins ¾ class A GPCR binding simulations

We tested the ability of mwSuMD to simulate the binding between the prototypical class A

receptor, the b2 adrenoreceptor (b2 AR), and the stimulatory G protein (Gs), without energy

input. mwSuMD simulations started from the intermediate, agonist-bound conformation of b2

AR and the inactive Gs to resemble pre-coupling conditions. Three mwSuMD replicas were

performed by supervising the distance between Gs helix 5 (H5) and b2 AR as well as the

RMSD of the intracellular end of TM6 to the fully-active state of the receptor . To monitor the

progression of the simulations, we computed the RMSD of the Ca atoms of the Ga and Gb

subunits to the experimental complex (50) (Video S5, Figure 4ab). During two out of three

replicas, both Ga and Gb reached values close to 5 Å (minimum RMSD = 3.94 Å and 3.96 Å

respectively), in good agreement with the reference (the b2 AR:Gs complex, PDB 3SN6,

Figure 4c). The flexibility of Gsb is backed by both MD and cryo-EM data suggesting G

protein rocking motions around Gsa:receptor interactions (21,51).

According to the model of G protein activation, the binding to the receptor allosterically

stabilizes the orthosteric agonist, adrenaline in our simulations, and destabilizes the

guanosine 5'-diphosphate (GDP) within Ga, resulting in the exchange with the ribonucleoside

guanosine 5'triiphosphate (GTP) upon opening of the G protein alpha-helical domain (AHD).

triggering the subsequent dissociation of Ga from Gbg. In our simulations, adrenaline was

not further stabilized in the timescale of the simulations (Figure 4d), probably because the

simulations sampled intermediate states, therefore, suboptimal b2 AR:Gs interactions that

were unable to allosterically stabilize the agonist. Upon receptor activation by the orthosteric

agonist, TM6 undergoes an outward movement to accommodate the G protein that is

accompanied by an anticlockwise rotation. We did not observe this rotation, which suggests

that mwSuMD did not sample the complete Gs coupling. One of the b2 AR residues

undergoing rotation upon receptor activation is E2686.30, involved in the conserved salt bridge

(named ionic lock) with R1313.50 that stabilizes the inactive state. Interestingly, during

simulations, E2686.30 formed hydrogen bonds with the Gs residues R385H5.17, and R389H5.21,

both conserved across G protein subfamilies Gs, Gi/o, and Gq/11 . We speculate that these

interactions, not observed in any GPCR active state cryo-EM or X-ray structure, stabiles the
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early stage of Gs binding and that the TM6 full rotation occurs at a late stage of the coupling

as a rate-limiting step of the process. GDP, instead, was slightly destabilized by Gs binding to

b2 AR (Figure 4e), although a complete dissociation requires the opening of the AHD, the

first step for GDP release, which requires timescales longer than our simulations (52).

Usually, ICL3 of the GPCR and the G protein loop hgh4 are masked out from deposited

cryo-EM structures due to their high flexibility and therefore low resolution. During our

simulations, these two loops formed polar intermolecular interactions through R239ICL3,

R260ICL3, K235ICL3, and E322hgh4.12, D323hgh4.13. Further transient interactions not visible in the

experiential structures, involved a mix of conserved and unique residues forming hydrogen

bonds : R63ICL1-E392H5.24, K2325.71-D378H5.10, K2355.74- D378H5.10, K235ICL3-D343H4.13,

K2676.29-L394c, R239ICL3-E314hgh4.04, and S1373.56-D381H5.13. None of the interactions reported

in Table S2 is evident from the experimental b2 AR:Gs complex, implying that mwSuMD can

deliver useful working hypotheses for mutagenesis and spectroscopic experiments from

out-of-equilibrium simulations. Results also suggest that the Gs binding is driven by a

combination of conserved and unique transitory interactions with b2 AR, possibly contributing

to G protein selectivity. The conserved interactions would be necessary for the binding

regardless of the receptor:G protein couple involved, while the transitory interactions should

produce an effective engagement of the G protein.
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Figure 4. G protein binding simulations to b2AR and A1R. a) RMSD of Gsa to the

experimental complex (PDB 3NS6) during three mwSuMD replicas; b) RMSD of Gsb to the

experimental complex (PDB 3NS6) during three mwSuMD replicas; c) superposition of the

experimental Gs: b2 AR complex (transparent ribbon) and the MD frame with the lowest Gsa

RMSD (3.94 Å); d) adrenaline MM-GBSA binding energy during three mwSuMD replicas; e)

GDP MM-GBSA binding energy during three mwSuMD replicas; f) RMSD of Gia (residues

243-355) to the experimental complex (PDB 6D9H) during a mwSuMD simulation (red,

magnified in the box) and a 1000-ns long classic MD simulation (black); g) two-view
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superposition of the experimental Gi:A1 R complex (transparent ribbon) and the MD frame

with the lowest Gia RMSD (4.82 Å).

A possible pitfall of the above reported Gs:b2 AR mwSuMD binding simulation is that G

proteins bear potential palmitoylation and myristoylation sites that can anchor the inactive

trimer to the plasma membrane (53,54), de facto restraining possible binding paths to the

receptor. To address this point and test the possible system dependency of mwSuMD, we

prepared a different class A GPCR, the adenosine A1 receptor (A1R), and its principal

effector, the inhibitory G protein (Gi) considering Gia residue C3 and Gg residue C65 as

palmitoylated and geranylgeranylated respectively and hence inserted in the membrane.

Both classic (unsupervised) and mwSuMD simulations were performed on this system

(Video S6, Figure 4f). In about 50 ns of mwSuMD, the Gia subunit engaged its intracellular

binding site on A1R and formed a complex in close agreement with the cryo-EM structure

(PDB 6D9H, RMSD » 5 Å). The membrane anchoring affected the overall Gi binding and the

final complex, which was rotated compared to the experimental structure due to the lipidation

of Gia and Gg (Figure 4g). This suggests that future, more comprehensive studies of G

protein binding and activation should consider several G protein orientations around the

receptor as the starting points for mwSuMD simulations, to evaluate as many binding paths

as possible. For comparison, 1 ms of cMD did not produce a productive engagement as the

Gia remained at RMSD values > 40 Å, suggesting the effectiveness of mwSuMD in sampling

G protein binding rare events without the input of energy.

The heterodimerization between A2A and D2R, and binding simulations of the
heterobivalent ligand compound 26.

The current structural model of the A2AR:D2R heterodimer is that TM4 and TM5 from both the

two receptors contribute to form the primary interface of the dimer, although the involvement

of TM7 is not ruled out (55). Following this interaction model, we first dynamically docked

A2AR and D2R in an explicit 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)

membrane model, then simulated the binding of the heterobivalent compound 26 (37)

(CP26) to the preformed A2AR:D2R heterodimer (Video S7). Since membrane proteins are

characterized by slow lateral diffusion (56), we favored the encounter between A2AR and D2R

by input energy as metadynamics and adiabatic MD, during mwSuMD (hybrid

metadynamics/aMD/mwSuMD), followed by 1.5 ms of classic MD (cMD) to relax the system

and check the stability of the A2AR:D2R interactions.

During the first 200 ns of simulation with energy bias (Figure 5a,c and Figure S7a),

A2AR and D2R rapidly moved close to each other and reached a distance of about 30 Å

(computed between centroids), before stabilizing at around 40 Å (Figure 5a). The computed
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molecular mechanics combined with the Poisson–Boltzmann and surface area continuum

solvation (MM-PBSA) binding energy suggested two energy minima (Figure 5c) at these

distances. The successive cMD simulation did not produce remarkable changes in the

distance between receptors (Figure 4b), although the energy fluctuated before reaching

about -10 kcal/mol, at the end of the simulation (Figure 5d). The sharp energy minima after

25 and 150 ns were due to the high number of direct contacts between A2AR and D2R,

favored by the energy added to the system. When the input of energy bias was stopped

(Figure 5b,d) the POPC residues re-equilibrated at the interface between proteins and

mediated intracellular polar interactions between R1504.40 D2R, Y1464.36 D2 and R1995.60 A2A,

Y1033.51 A2A as well as extracellular polar interactions between the top of TM4D2, TM5D2 and

TM5A2A, TM6A2A (Figure 5f), suggesting that the A2AR:D2R heterodimerization relies on lipids

to mediate short-range interactions between receptors.

The dynamic docking of the herobivalent ligand C26 further stabilized the A2AR:D2R

dimer (Figure 5e), in line with experimental data (37). C26 reached the bound state rapidly

inserting the agonist pharmacophore within the D2R orthosteric site (Video S7), while the

pyrazole-triazole-pyrimidine scaffold remained in metastable complex with A2AR, before

completely binding the orthosteric site at the end of the simulation (Video S7). In the final

state, the long linker between pharmacophores extended over the top of the interface formed

by A2AR and D2R at the level of the receptors’ ECL2 (Figure 5g). A network of polar

interactions between POPC, Y179A2A, and Y192D2 contributed to stabilizing this ternary

complex. Interestingly, the latter residues were pinpointed as important for A2AR:D2R

interactions (55). From a binding energy perspective, C26 reached the most stable

configurations between 80 and 100 ns, before the pyrazole-triazole-pyrimidine component of

the ligand completed the binding to A2AR. This suggests some contribution of the linker to the

overall stability of the ternary complex with A2AR and D2R. Two out of four mwSuMD replicas

produced A2AR:D2R:C26 ternary complexes with C26 engaged both by the orthosteric site of

A2AR and D2R, while in the remaining two replicas the A2AR pharmacophore remained

stacked on the extracellular vestibule of the receptor, although in the proximity of the binding

site.
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Figure 5. A2AR:D2R heterodimerization and formation of the ternary complex with C26.
a) Distance between the centroids of A2AR and D2R during the hybrid

metadynamics/aMD/mwSuMD simulation; b) distance between the centroids of A2AR and

D2R during the successive cMD simulation; c) MM-PBSA binding energy between A2AR and

D2R during the hybrid metadynamics/aMD/mwSuMD simulation; d) MM-PBSA binding

energy between A2AR and D2R during the successive cMD simulation; e) MM-PBSA binding

energy between A2AR and D2R during the mwSUMD binding of C26. f) A2AR:D2R

heterodimer (white ribbon) after 1.5 ms of cMD; POPC residues (green stick) were involved

in polar and hydrophobic interactions; g) extracellular view of the A2AR:D2R:C26 ternary

complex (D2R TM2 and TM3 removed for clarity).

238



Conclusion

Classic MD simulations sample the phase space with an efficiency that depends on the

energy barrier between neighboring minima. Processes like (un)binding and protein

activation require the system to overcome numerous energy barriers, some of which create a

bottleneck that slows the transition down to the millisecond, or second, time scale. To

overcome some of these limits, we have developed an energetically-unbiased adaptive

sampling algorithm, namely multiple walker mwSuMD, which is based on traditional SuMD,

while drawing on parallel multiple replica methods (57,58), and tested it on complex

structural events characterizing GPCRs.

MwSuMD performed similarly to SuMD for the dynamic docking of AVP to V2R when time

windows of 600 ps were employed. Time windows of 100 ps remarkably improved mwSuMD.

Usually, dynamic docking is performed to predict the geometry of complexes or sample the

binding path of an already known intermolecular complex, or both. The RMSD of AVP to the

experimental coordinates as the supervised metric produced the best results. Consequently,

the RMSD should be the metric of choice to study the binding path of well-known

intermolecular complexes. The distance, on the other hand, is necessary when limited

structural information about the binding mode is available. In the absence of structural

information regarding the final bound state, it is possible to sample numerous binding events

employing mwSuMD and evaluate the final bound states rank by applying end-point free

energy binding methods like the molecular mechanics energies combined with the

Poisson–Boltzmann or generalized Born and surface area continuum solvation (MM/PBSA

and MM/GBSA) models. Our simulations suggested a remarkable predictivity of

distance-driven mwSuMD, as demonstrated by the lowest deviation from the experimental

AVP:V2R complex. Remarkably, the dissociation of AVP from V2R was simulated much more

rapidly by mwSuMD than by SuMD, suggesting it is an efficient tool for studying the

dissociation of ligands from GPCRs.

We increased the complexity of binding simulations by considering GLP-1R and the

non-peptide agonist PF06882961. Using mwSuMD, we obtained a binding of the ligand in

good agreement with the cryo-EM structure, followed by an active-like conformational

transition of GLP-1R. The choice of the metrics supervised was driven by structural data

available (45) and extensive preparatory MD simulations, however, alternative binding routes

are possible from either the bulk solvent or the membrane (40,59,60). Future studies on

GLP-1R and other class B1 GPCR should consider different starting points for the ligand and

alternative apo receptor conformations to improve the sampling.

MwSuMD was further tested on the Gs and Gi binding to b2 AR and A1R, respectively.

MwSuMD produced G protein:GPCR complexes in remarkable agreement with experimental
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structural data without the input of energy in a few hundred nanoseconds when starting from

inactive Gs and the intermediate active b2 AR, or a few tens of nanoseconds when

considering the active-state A1R and Gi was anchored to the plasma membrane through the

palmitoylation and the geranylgeranylation of Gag (53,54,61).

The final case study was the dimerization process between A2AR and D2R in a membrane

model. To speed up the encounter between receptors, we introduced an energy bias in the

form of abMD and MetaD. Although mwSuMD is an unbiased adaptive sampling method, it

can be easily coupled to many forms of bias to favor the simulation of energy-requiring

processes. Our results suggest a fundamental contribution of the phospholipids on the

stabilization of the heterodimer, in agreement with experiments (62,63) and in disagreement

with X-ray or protein-protein molecular docking results frequently predicting extended

interfaces between monomers (64). MwSuMD was able to dynamically dock the

heterobivalent ligand CP26, supporting a stabilizing effect on the A2AR:D2R heterodimer. A

complete characterization of the possible interfaces between GPCR monomers, which falls

beyond the goal of the present work, should be achieved by preparing different initial

unbound states characterized by divergent relative orientations between monomers to

dynamically dock in an explicit membrane.

In summary, we showcased the extended applicability domain of mwSuMD to key aspects of

GPCRs structural biology. However, given the generality and simplicity of its implementation,

we anticipate that mwSuMD can be employed to study a wide range of phenomena

characterizing membrane and cytosolic proteins.

Methods

Force field, ligands parameters, and general systems preparation

The CHARMM36 (65,66)/CGenFF 3.0.1 (67–69) force field combination was

employed in this work. Initial ligand force field, topology and parameter files were obtained

from the ParamChem webserver (67). Restrained electrostatic potential (RESP) (70) partial

charges were assigned to all the non-peptidic small molecules but adrenaline and

guanosine-5’-diphosphate (GDP) using Gaussian09 (HF/6-31G* level of theory) and

AmberTools20.

Six systems were prepared for MD . Hydrogen atoms were added using the pdb2pqr (71)

and propka (72) software (considering a simulated pH of 7.0); the protonation of titratable

side chains was checked by visual inspection. The resulting receptors were separately

inserted in a 1-palmitoyl-2-oleyl-sn-glycerol-3-phosphocholine (POPC) bilayer (previously

built by using the VMD Membrane Builder plugin 1.1, Membrane Plugin, Version 1.1. at:
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http://www.ks.uiuc.edu/Research/vmd/plugins/membrane/), through an insertion method (73).

Receptor orientation was obtained by superposing the coordinates on the corresponding

structure retrieved from the OPM database (74). Lipids overlapping the receptor

transmembrane helical bundle were removed and TIP3P water molecules (75) were added

to the simulation box by means of the VMD Solvate plugin 1.5 (Solvate Plugin, Version 1.5.

at <http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/). Finally, overall charge neutrality

was reached by adding Na+/Cl- counter ions up to the final concentration of 0.150 M), using

the VMD Autoionize plugin 1.3 (Autoionize Plugin, Version 1.3. at

<http://www.ks.uiuc.edu/Research/vmd/plugins/autoionize/).

System equilibration and general MD settings

The MD engine ACEMD 3 (76) was employed for both the equilibration and

productive simulations. The equilibration was achieved in isothermal-isobaric conditions

(NPT) using the Berendsen barostat (77) (target pressure 1 atm) and the Langevin

thermostat (78) (target temperature 300 K) with low damping of 1 ps-1. For the equilibration

(integration time step of 2 fs): first, clashes between protein and lipid atoms were reduced

through 1500 conjugate-gradient minimization steps, then a positional constraint of 1 kcal

mol-1 Å-2 on all heavy atoms was gradually released over different time windows: 2 ns for lipid

phosphorus atoms, 60 ns for protein atoms other than alpha carbon atoms, 80 ns for alpha

carbon atoms; a further 20 ns of equilibration was performed without any positional

constraints.

Productive trajectories were computed with an integration time step of 4 fs in the canonical

ensemble (NVT). The target temperature was set at 300 K, using a thermostat damping of

0.1 ps-1; the M-SHAKE algorithm (79,80) was employed to constrain the bond lengths

involving hydrogen atoms. The cut-off distance for electrostatic interactions was set at 9 Å,

with a switching function applied beyond 7.5 Å. Long-range Coulomb interactions were

handled using the particle mesh Ewald summation method (PME) (81) by setting the mesh

spacing to 1.0 Å.

Vasopressin binding simulations

The vasopressin 2 receptor (V2R) in complex with vasopressin (AVP) and the Gs protein (82)

was retrieved from the Protein Data Bank (83) (PDB ID 7DW9). The Gs was removed from
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the system and the missing residues on ECL2 (G185-G189) were modeled from scratch

using Modeller 9.19 (84). AVP was placed away from V2R in the extracellular bulk and the

resulting system was prepared for MD simulations and equilibrated as reported above.

During SuMD simulations, the distance between the centroids of AVP residues C1-Q4 and

V2R residues Q96, Q174, Q291, and L312 (Ca atoms only) was supervised over time

windows of 600 ps or 100 ps . MwSuMD simulations considered the same distance, the

RMSD of AVP residues C1-Q4 to the experimental bound complex or the combination of the

two during time windows of 600 ps (3 walkers) or 100 ps (10 walkers) . Slope, SMscore, or

DMscore (see Methods section MwSuMD protocol) was used in the different mwSuMD

replicas performed . Simulations were stopped after 300 ns (time window duration = 600 ps)

or 50 ns (time window duration = 100 ps) of total SuMD or mwSuMD simulation time.

Vasopressin unbinding simulations

The V2R:AVP complex was prepared for MD simulations and equilibrated as reported above.

During both SuMD and mwSuMD simulations , the distance between the centroids of AVP

residues C1-Q4 and V2R residues Q96, Q174, Q291, and L312 (Ca atoms only) was

supervised over time windows of 100 ps (10 walkers seeded for mwSuMD simulations).

Replicas were stopped when the AVP-V2R distance reached 40 Å.

GLP-1R:PF06882961 binding simulations

The inactive, ligand-free glucagon-like peptide receptor (GLP-1R) was retrieved from the

Protein Data Bank (83) (PDB ID 6LN2) (85). Missing residues in the stalk and ICL2 were

modeled with Modeller 9.29. The PF06882961 initial conformation was extracted from the

complex with the fully active GLP-1R (86) (PDB ID 7LCJ) and placed away from GLP-1R in

the extracellular bulk. The resulting system was prepared for MD simulations and

equilibrated as reported above. CGenFF dihedral force field parameters of PF06882961 with

the highest penalties (dihedrals NG2R51-CG321-CG3C41-CG3C41 (penalty=143.5) and

NG2R51-CG321-CG3C41-OG3C51 (penalty=152.4)) were optimised employing Gaussian09

(geometric optimization and dihedral scan at HF/6-31g (d) level of theory) and the VMD force

field toolkit plugin (87).

Four classic MD replicas, for a total of 8 ms, were performed on the inactive, ligand-free

receptor (prepared for MD simulations and equilibrated as reported above) to assess the

possible binding path to the receptor TMD and therefore decide the initial position of
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PF06882961 in the extracellular bulk of the simulation box. A visual inspection of the

trajectories suggested three major conformational changes that could allow ligand access to

the TMD. Transitory openings of the ECD (distance Q47ECD - S310ECL2), TM6-TM7 (distance

H3636.52 - F3907.45), and TM1-ECL1 (distance E1381.33 and W214ECL1) were observed. Since

the opening of TM1-ECL1 was observed in two replicas out of four, we placed the ligand in a

favorable position for crossing that region of GLP-1R.

MwSuMD simulations were performed stepwise to dock the ligand within GLP-1R first and

then relax the receptor towards the active state. The PF06882961 binding was obtained by

supervising at the same time the distance between the ligand and GLP-1R TM7 residues

L379-F381, which are part of the orthosteric site (Ca atoms only), and the RMSD of the ECD

(residues W33-W120, Ca atoms only) to the active state (PDB ID 7LCJ) until the former

distance reached 4 Å. In the second phase of mwSuMD, the RMSD of the ECD (residues

W33-W120, Ca atoms only) and the ECL1 to the active state (PDB ID 7LCJ) Ca atoms of

residues M204-L224) were supervised until the latter reached less than 4 Å. During the third

phase, the RMSD of PF06882961, as well as the RMSD of ECL3 (residues A368-T378, Ca

atoms), were supervised until the former reached values lower than 3 Å. In the last mwSuMD

step, only the RMSD of TM6 (residues I345-F367, Ca atoms) to the active state (PDB ID

7LCJ) was supervised until less than 5 Å.

Membrane-anchored Gi protein:A1R simulations

Since the full-length structure of the inactive human Gi protein has not been yet resolved by

X-ray or cryo-EM, it was modeled by superimposing the AlphaFold2 (88) models of the Gai

(P63096-F1), Gb (Q9HAV0-F1), and Gg (P50151-F1) subunits to the PDB file 6EG8 (a Gs

heterotrimer). The resulting homotrimer (without GDP) was processed through Charmm-GUI

(89) to palmitoylate residue C3Gai and geranylgeranylate residue C65Gg (53,90). The side

chains of these two lipidated residues were manually inserted into a 120 x 120 Å POPC

membrane and the resulting system was (previously built by using the VMD Membrane

Builder plugin 1.1, Membrane Plugin, Version 1.1. at:

http://www.ks.uiuc.edu/Research/vmd/plugins/membrane/). Lipids overlapping the palmitoyl

and geranylgeranyl groups were removed and TIP3P water molecules (75) were added to

the simulation box by means of the VMD Solvate plugin 1.5 (Solvate Plugin, Version 1.5. at

<http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/). Finally, overall charge neutrality

was reached by adding Na+/Cl- counter ions up to the final concentration of 0.150 M), using

the VMD Autoionize plugin 1.3 (Autoionize Plugin, Version 1.3. at

<http://www.ks.uiuc.edu/Research/vmd/plugins/autoionize/). The first stage of equilibration

was performed as reported above (Methods section System equilibration and general MD
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settings) for 120 ns, followed by a second stage in the NVT ensemble for a further 1 ms

without any restraints to allow the membrane-anchored heterotrimeric Gi protein to stabilize

within the intracellular side of the simulation box. After this two-stage, long equilibration, the

active state A1R in complex with adenosine (PDB 6D9H) was manually inserted into the

equilibrated membrane above the Gi protein using the corresponding structure retrieved from

the OPM database as a reference, and the system further equilibrated for 120 ns as reported

above (Methods section System equilibration and general MD settings). The A1R-Gi

system was then subjected to both a 1 ms-long classic MD simulation and a mwSuMD

simulation . During the mwSuMD simulation, the RMSD of helix 5 (H5) Gas residues 329-354

to the PDB 6D9H was supervised, seeding three walkers of 100 ps each until the productive

simulation time reached 50 ns (total simulation time 150 ns).

A2A:D2R heterodimerization

The inactive state A2AR and D2R were retrieved from the Protein Data Bank (83) (PDB ID

5NM4 and 6LUQ, respectively) (91,92). Antagonists bound to the orthosteric site were

removed and no modeling of the missing IC loops was attempted. A2AR and D2R were

manually placed roughly 40 Å away from each other, on the plane of the membrane,

orienting the two receptors to favor the dimerization through the interface formed by TM5 and

TM6, as suggested by Borroto-Esquela D. O. et al. (55) The resulting system was prepared

for MD simulations and equilibrated as reported above.

The heterodimerization between A2AR and D2R was simulated with mwSuMD, seeding

batches of three walkers with a duration of 100 ps each . During each walker, the distance

between TM5 of A2AR and D2R was supervised. At the same time, the distance between the

centroids of A2AR and D2R was used as a collective variable for adiabatic MD (93) (abMD)

and well-tempered metadynamics (94,95) (wtMetaD) performed with Plumed 2.6 (96). For

abMD, a distance target of 30 Å and a force constant of 10000 kJ*mol-1*Å-1) was used, while

mwMetaD was performed by seeding gaussian functions every 1 ps (sigma=1 Å;

height=0.837 kJ/mol; T=310K) with a bias factor of 30. When the A2AR - D2R distance

reached values lower than 40 Å and the first contacts between proteins were formed, the

abMD was stopped and wtMetaD continued with an harmonic energy wall at 30 Å to avoid

artificial crushing between the receptors due to the added energy bias. When the distance

between A2AR and D2R was stable at about 30 Å, the collective variable biased by wtMetaD

was set as the number of atomic contacts between A2AR and D2R, until reaching 200 ns of

simulation. Finally, to relax the system and challenge the stability of the heterodimer formed

during the biased mwSuMD simulation, a 1.5 ms classic MD simulation was performed.

244



A2AR-D2R heterobitopic ligand binding simulations

The A2AR-D2R heterobivalent ligand compound 26 (37) was parameterized as reported

above and placed in the bulk solvent of the A2AR:D2R complex from the classic MD. Four

mwSuMD replicas were collected supervising at the same time the distance between the A2A

antagonist pyrazole-triazole-pyrimidine scaffold and the centroid of A2AR residues F168,

N253, and A277 (Ca atoms) as well as the distance between the D2 antagonist

4-fluorobenzyl scaffold and the centroids of the Ca of D2R residues C118, F198, and V115

(Ca atoms). Ten walkers of 100 ps were simulated for every mwSuMD batch of replicas.

Gs protein:b2 AR binding simulations

The model of the adrenergic b2 receptor (b2 AR) in an intermediate active state was

downloaded from GPCRdb (https://gpcrdb.org/). The full agonist adrenaline (ALE) was

inserted in the orthosteric site by superposition with the PDB ID 4LDO (fully-active b2 AR)

(97). The structure of the inactive, GDP bound Gs protein (98) was retrieved from the Protein

Data Bank (83) (PDB ID 6EG8) and placed in the intracellular bulk. The resulting system (Gs

> 50 Å away from (b2 AR) was prepared for MD simulations and equilibrated as reported

above. The PDB ID 3SN6 (fully-active b2 AR in complex with Gs (50)) was used as the

reference for RMSD computations. Three mwSuMD replicas were performed supervising at

the same time the distance between the helix 5 (H5) Gas residues R385-L395 and the b2 AR

residues V31-P330 as well as the RMSD of b2 AR TM6 residues C265-I278 (Ca atoms only)

to the fully active state, during 100 ps time windows (5 walkers).

Multiple walker SuMD (mwSuMD) protocol

The supervised MD (SuMD) is an adaptive sampling method (99) for speeding up the

simulation of binding events between small molecules (or peptides (100,101)) and proteins

(1,19) without the introduction of any energetic bias. Briefly, during the SuMD a series of

short unbiased MD simulations are performed, and after each simulation, the distances

between the centers of mass (or the geometrical centers) of the ligand and the predicted

binding site (collected at regular time intervals) are fitted to a linear function. If the resulting
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slope is negative (showing progress towards the target) the next simulation step starts from

the last set of coordinates and velocities produced, otherwise, the simulation is restarted by

randomly assigning the atomic velocities.

In the implementation for AceMD, mwSuMD needs as input the initial coordinates of the

system as a pdb file, the coordinates, and the atomic velocities of the system from the

equilibration stage, the topology file of the system, and all the necessary force filed

parameters. The user can decide to supervise one (X) or two metrics (X’, X’’) of the

simulated system over short simulations seeded in batches, called walkers. In the former

case, either the slope of the linear function interpolating the metric values or a score can be

adopted to decide whether to continue the mwSuMD simulation. When the user decides to

supervise two metrics, then a specific score is used. In the present work, distances between

centroids, RMSDs, or the number of atomic contacts between two selections were

supervised . The choice of the metrics is system and problem dependent, as the RMSD

should be most useful when the final state is known, while the distance is required when the

target state is unknown; details on the scores are given below. The decision to restart or

continue mwSuMD after any short simulation is postponed until all the walkers of a batch are

collected. The best short simulation is selected and extended by seeding the same number

of walkers, with the same duration as the step before.

For each walker, the score for the supervision of a single metric (SMscore) is computed as

the square root of the product between the metric value in the last frame (Xlast frame) and the

average metric value over the short simulation (X̅):

(1)

If the metric is set to decrease (e.g. binding or dimerization) the walker with the lowest

SMscore is continued, otherwise (e.g. unbinding or outwards opening of domains), it is the

walker with the highest score to be extended. Using the SMscore rather than the slope

should give more weight to the final state of each short simulation, as it is the starting point

for the successive batch of simulations. Considering the average of the metric should favor

short simulations consistently evolving in the desired direction along the metric.

If both X’ and X’’ are set to increase during the mwSuMD simulations, the score for the

supervision of two metrics (DMscore) on each walker is computed as follows:
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(2)

Where X’last frame and X’’last frame are the metrics values in the last frame, while X̅’
batch walkers and

X̅’’
batch walkers represent the average value of the two metrics over all the walkers in the batch.

Subtracting the value 1 to the metric ratio ensures that if one of the two metrics from the last

frame (X’last frame or X’’
last frame) is equal to the average (X̅’’

batch walkers or X̅’’
batch walkers) then that

metric addend is null and DMscore depends only on the remaining metric. If any of the two

metrics is set to decrease, then the corresponding component in Equation 2 is multiplied by

-1 to maintain a positive score. Considering the average value of the two metrics over all the

walkers rather than only over the considered walker should be more representative of the

system evolution along the defined metric. In other words, the information about the metric is

taken from all the walkers to better describe the evolution of the system.

The DMScore is designed to preserve some degree of independence between the two

metrics supervised. Indeed, if the variation of one of them slows down and gets close to

zero, the other metric is still able to drive the system's evolution. It should be noted that

DMScore works at its best if the two metrics have similar variations over time, as it is in the

case of distance and RMSD (both of which are distance-based). Notably, when a walker is

extended by seeding a new batch of short simulations and the remaining walkers are

stopped, the atomic velocities are not reassigned. This allows the simulations to be as short

as a few picoseconds if desired without introducing artifacts due to the thermostat latency to

reach the target temperature (usually up to 10-20 ps when a simulation is restarted

reassigning the velocities of the atoms).

The current implementation of mwSuMD is for python3 and exploits MDAnalysis (102) and

MDTRaj (103) modules.

MD Analysis

Interatomic distances were computed through MDAnalysis (102); root mean square

deviations (RMSD) were computed using VMD (104) and MDAnalysis (102).

Interatomic contacts and ligand-protein hydrogen bonds were detected using the

GetContacts scripts tool (https://getcontacts.github.io), setting a hydrogen bond
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donor-acceptor distance of 3.3 Å and an angle value of 120° as geometrical cut-offs.

Contacts and hydrogen bond persistency are quantified as the percentage of frames (over all

the frames obtained by merging the different replicas) in which protein residues formed

contacts or hydrogen bonds with the ligand.

The MMPBSA.py (105) script, from the AmberTools20 suite (The Amber Molecular

Dynamics Package, at http://ambermd.org/), was used to compute molecular mechanics

energies combined with the generalized Born and surface area continuum solvation

(MM/GBSA) method or the molecular mechanics Poisson-Boltzmann surface area

(MM/PBSA) approach, after transforming the CHARMM psf topology files to an Amber

prmtop format using ParmEd (documentation at

<http://parmed.github.io/ParmEd/html/index.html).

Supplementary Videos were produced employing VMD and avconv (at

https://libav.org/avconv.html). Molecular graphics images were produced using the UCSF

Chimera (106) (v1.14).

Numbering system

Throughout the manuscript, the Ballesteros-Weinstein residues numbering system for class

A GPCRs (107) and the Wootten residues numbering system for class B GPCRs (108) are

adopted.

Videos:

https://www.biorxiv.org/content/10.1101/2022.10.26.513870v2.article-info
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9 Concluding Remarks and Future Research Directions

The structural characterisation of both the SARS-CoV-2 RBD and S2 domains is

crucial for SBDD. My studies clarified the role of the heparinoids heparin and heparan

sulphate, highlighting the importance of the sulfonation in the recognition by positively

charged residues (i.e. arginine, lysine, and histidine) on the heparin-binding motifs (HBM) on

the RBD. The HBM-HP interactions at the base of RBD provide a rationale behind the

stabilising role of fully sulphated HP. On the other hand, I determined multiple sites on the

N-terminal domain (NTD) where HS is more likely to interact, compared to HP. My definition

of the respective roles of HP and HS possibly clarified the role of heparinoids in

SARS-CoV-2:ACE2 molecular recognition. These observations inspired a high-throughput

virtual screening (HTVS) using HP’s molecular fingerprint to identify molecular candidates

that could saturate the HBM on RB to interfere with ACE2 binding or RBD opening.

However, the most promising molecular candidates available from the ZINC database

were displaced during longer MD simulations, suggesting docking false positives. The

implementation of generative recurrent neural networks (RNN) for the hunting of HP-inspired

binders will be addressed as the next step for this pipeline and an RNN is under training at

the time of this writing. The conserved region of the SARS-CoV-2 S2 domain (i.e. the stalk of

the spike protein) was identified as a promising target for fragment-based drug design.

Inspired by the criticalities of mutation-prone antibodies and treatment, I identified a highly

conserved region of the stalk against which a set of optimized fragments was tested,

revealing the potential and limits of targeting the flexible section of the SARS-CoV-2 S2

domain. Planarity, a molecular size < 200 Da and a limited steric hindrance were the

stringent requirements for successful fragments to overcome the distribution of glycans along

the stalk and intersect with the flexible chains of the homotrimer. The stalk’s intrinsic

flexibility, paired with the glycan’s sweeping motion restricted the area of the investigation to

a portion right below the S1 domain and the flexible loop closer to the viral membrane. The

results, although preliminary, suggested that an alternative strategy is required to overcome

the structural challenges of targeting the S protein stalk such as the use of a different type of

drugs (peptides, aptamers or antibodies) or specifically targeting the glycans that protect that

region. The importance of MD to validate the stability of a ligand was highlighted during the

different high throughput protocols implemented, to bridge molecular docking to MD and

refine the results for more accurate results.

In the last paper presented for the SARS-2 section (Chapter 6.4), by applying the

SuMD method in collaboration with the Mechanistic and Structural Biology department of

AstraZeneca, the effect of the RBD mutations characterising Delta and Omicron variants’

was putatively revealed to address kinetic and SPR experiments reported in the literature.

259



My work proposed differences in the binding pathway and affinity between the RBD of Alpha,

Delta, and Omicron variants. Specifically, the changes in the electrostatic landscape of the

Omicron variant determined a series of metastable conformations and a sequence of

interactions resulting in a slower optimal positioning for ACE2 binding. This observed

behaviour matched with the description of Omicron’s delayed binding kinetic. On the other

hand, quantitative evaluation of the binding affinity, upon complex formation, indicated

Omicron as the most prominent binder between the variants, in agreement with the

experimental results.

The MD approaches deployed in this led the drug design to prevent the Nef-Nef

dimerization mechanism. HIV’s nonstructural proteins are promising targets for the

development of novel therapeutics, due to the difficulties that highly mutant viruses pose for

the design of effective vaccines. Nef is an important player in viral pathogenesis, and

replication, and participates in the host immune mechanism suppression by altering

macrophages’ kinases. Structural studies revealed that Nef dimers are formed with Fyn

kinase SH3 domain and Hck kinase SH3-SH2 domain, necessary for Nef activation. It

follows that the Nef dimerization mechanism could be a viable target for drug development.

The first work in collaboration with the University of Kolkata revealed possible binding

pockets at the Nef-Nef binding interface. This crucial site was targeted by generative

fragment-based methods through molecular docking and dynamics. The most promising

compounds were then optimized for better access to the lipophylic binding interface and the

extension of the hydrogen bond network.

mwSuMD is an advancement of the existing SuMD method, with applications that

range from protein-ligand to protein-protein binding or unbinding predictions for both

cytosolic and membrane systems. The power of mwSuMD lies in its parallelized architecture,

which allows the simultaneous observation and comparison of multiple states, speeding up

stochastic sampling typical of binding and unbinding events. mwSuMD has been tested on

GPCRs challenging structural transitions such as the activation of the G protein upon binding

and Nef antagonists’ binding pathways within the nanosecond scale, drastically reducing the

computational cost. The implementation of quantitative affinity scores in relation to the

observed binding pathways should be the next milestone addressed by this method, possibly

through a combination of QM/MM approaches.

The recent advancements in the field of artificial intelligence (AI) for discriminative

and generative algorithms are a growing trend in medicinal research. AI is a powerful tool

that finds its natural application in the data-rich field of drug discovery (1) and molecular

representation (2) and aims to improve the predictions of physical-chemical properties of

compounds (3), as well as the identification of binding pockets in proteins (4) or predicting

the efficacy of compounds against a set of biological targets (5). Generative algorithms were
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deployed through this PhD project to expand the exploration of the chemical space beyond

the available databases and to refine the prediction of chemical properties of databases of

compounds compared to computational libraries. Unfortunately, the massive enthusiasm for

AI yet falls short when it comes to drug discovery results (6,7) with much room for

improvement. At this stage, the field of AI research and computational chemistry need to

work together for the development and refinement of more accurate FF parameters (8), the

acceleration of QM calculations (9,10) and the prediction of protein structures (11) and their

function. The advantages of AI’s data analysis and speed, if paired with molecular modelling,

might bring new life to drug discovery by enriching the existing chemical databases with

additional, undiscovered features.

At the time of writing this text (January 2024), I am developing several software

applications and computational tools. These include a long-to-short-term recurrent neural

model (12, 13) that generates novel compounds using the Simplified Molecular Linear

Insertion System (SMILES), a bitvector molecular fingerprint-based database scraper (14), a

molecular dynamics-based pipeline for the search for cryptic antibody epitopes. This pipeline

explores different angles and rotations in the formation of complexes, clustering and

comparing their binding energies for comparative screening. I'm also working on a refined

water-based docking protocol, which uses water occupations to refine Vina scores by

exploring large databases of compounds. In addition, I am developing combinatorial

software that uses molecular fragments to generate novel drugs and constitutional isomers,

as well as many other publicly available tools on https://github.com/pipitoludovico.
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