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Abstract

Alzheimer’s disease, the leading cause of cognitive decline in older individuals, im-

poses a significant burden on healthcare and the economy. Currently, around 47 million

people worldwide are affected by neurocognitive disorders, with a projected triple by

2050. Therefore, a need for cost-effective methods for early diagnosis is vital. AD is a

degenerative neurological condition marked by brain disruptions and cognitive decline.

Furthermore, the electrophysiology of brain cortical activity is shown to change before

physical symptoms occur, suggesting the potential for early detection and intervention.

The electroencephalogram (EEG) is a cost-effective and non-invasive technique used

to examine the electrophysiology of cortical activity and is extensively studied in rela-

tion to neurodegenerative diseases like Alzheimer’s disease. It provides insights into the

functioning and integrity of neural circuits indirectly. Additionally, the EEG can detect

abnormalities in physiological processes that disrupt brain networks at an early stage,

preceding clinical symptoms and visible structural changes in neuroimaging scans like

Magnetic Resonance Imaging (MRI).

Extensive research has revealed the nonlinear nature of brain activity’s electrophysiol-

ogy, with complex temporal interactions among brain regions even during rest. There-

fore, it is essential to consider spatial and temporal nonlinearities in EEG analysis to

assess brain connectivity and dynamic interactions. This thesis examines changes in the

brain cortex of individuals with mild to moderate Alzheimer’s disease. Specifically, it

aims to contribute to Alzheimer’s disease characterisation through novel applications of

nonlinear methods for connectivity and dynamic analysis of cortical interactions using

resting-state EEG.

Using kernel-based nonlinear manifold learning techniques, Isomap and GPLVM

(Isomap-GPLVM), a novel measure of linear and nonlinear connectivity is derived.

This measure helps identify significant changes in nonlinear connectivity between spe-
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cific brain regions in mild to moderate Alzheimer’s disease. Isomap-GPLVM analysis

uncovers significant connectivity differences between occipital bipolar channels and

other regions (parietal, centro-parietal, and fronto-central) in Alzheimer’s disease and

a group of healthy controls. Furthermore, connectivity changes between fronto-parietal

EEG channels and the rest of the channels are found to be crucial for Alzheimer’s dis-

ease diagnosis. These results align with previous studies using functional MRI (fMRI),

resting-state fMRI, and EEG, supporting links to resting-state functional networks in

the brain.

Using Isomap-GPLVM analysis, significant changes in statistical dependencies be-

tween EEG channel pairs are further investigated for directed dynamic nonlinear depen-

dencies using transfer entropy. This novel application of transfer entropy in character-

ising Alzheimer’s disease with resting-state EEG uncovers increased intra-hemispheric

information flow between parietal-occipital and centro-parietal-occipital regions, pre-

dominantly in the left hemisphere. These findings suggest a potential compensatory

mechanism. These findings are consistent with previous studies utilising resting-state

EEG and resting-state fMRI.

Cross-frequency interactions between different frequency ranges enable the integra-

tion of information from various brain regions. Previous studies have identified changes

in cross-frequency interactions within the EEG associated with neurodegenerative dis-

eases like Alzheimer’s disease. The findings from using transfer entropy to examine di-

rected nonlinear dependencies (direction of information flow) between important EEG

channels are used to learn dynamic nonlinear input-output time-series models. These

models are then analysed in the frequency-domain to examine cross-frequency interac-

tions at higher-order nonlinearities. Data-driven modelling and analysis methods from

control systems engineering, system identification and frequency response analysis, are

used for this purpose.
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Chapter 1

Introduction

1.1 Background

Alzheimer’s Disease (AD), the primary cause of cognitive decline in older individu-

als, imposes a considerable burden on both the healthcare system and the economy.

Currently, around 47 million individuals worldwide are affected by neurocognitive dis-

orders, and it is projected that this number will triple by the year 2050 [2]. AD is a

degenerative neurological condition that progresses over time and is marked by the ac-

cumulation of amyloid plaques, neurofibrillary tangles, and widespread disruptions in

brain function [250, 252]. AD is a neurodegenerative disease where patients experience

a gradual decline in memory, executive function, and other cognitive skills, eventually

reaching a point where they are unable to perform daily tasks independently [114].

Unfortunately, the underlying causes of AD remain largely unclear, with around 70%

of the associated risks believed to be genetic, many of which are directly linked to

specific genes [25]. Nevertheless, clear visual indications can be observed in individuals

diagnosed with AD, as their brain size and shape undergo significant changes compared

to healthy brains [2]. Furthermore, the electrophysiology of brain cortical activity is

shown to change before physical symptoms occur [242, 62, 22, 222]. This suggests the

possibility of early detection and initiation of diagnostic procedures to prevent or at

least delay the progression of the brain towards the typical AD stage.

The diagnosis of important neurological disorders such as AD in early stages and

the accurate disease progress characterisation can be vital for the treatment and im-
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CHAPTER 1. INTRODUCTION 2

provement of the patient’s life [75, 128, 30]. However, the current methods of diagnosis

depend mainly on neuro-pathological examinations through mental status and monitor-

ing of neuronal activity using neuroimaging scans [128]. These methods are expensive

[113] and a need for a complementary cost-effective precise diagnosis method is critical

[147]. The Electroencephalogram (EEG) is one such method. The EEG is non-invasive,

and economical and has been previously widely researched in the context of neurode-

generative diseases [242, 62, 20]. Through the EEG, the behaviour and integrity of

the underlying neural circuits can be indirectly studied [195]. Furthermore, EEG has

the ability to detect abnormalities in disordered physiological processes that impact

brain networks at an earlier stage, prior to the emergence of clinical symptoms and

before structural changes become visible in neuroimaging scans such as the Magnetic

Resonance Imaging (MRI) [173, 222]. This is because, the high temporal resolution of

the EEG allows for accurate recording of the dynamically changing oscillations that

form the foundation of brain activity [20, 197]. These oscillations appear to undergo

changes in the early stages of AD [20, 110]. To advance the early diagnosis of AD, it

is crucial to first characterise the disease in terms of brain connectivity (how different

brain regions are connected functionally) and the dynamic changes that take place in

how different brain regions interact [242, 245, 62, 64, 20, 7].

Earliest work related to the dynamical analysis of EEG in AD patients [246, 244],

investigated the nonlinear dynamics of the EEG measures, and showed the nonlinear

indices computed for the global brain electrical activity, exhibiting specific patterns

of dysfunction in dementia. In the case of AD, when analysing the nonlinear dynam-

ics of the EEG measures, researchers have demonstrated a reduction in the nonlinear

complexity [122, 5]. Several comprehensive reviews on connectivity measures and dy-

namical analysis of EEG shed light on the importance of nonlinear techniques for the

characterisation and diagnosis of neurodegenerative diseases [242, 62, 7]. Hence, there

is an increasing interest in nonlinear methods in the analysis of EEG for characterising

AD [23]. Consequently, the research presented in this thesis will focus on examining

changes in the brain cortex of individuals with mild to moderate AD. More specifically,

this work aims to contribute towards the disease characterisation of AD in terms of

novel applications of nonlinear methods for connectivity analysis and dynamic anal-

ysis of the complex interactions between different cortical regions of the brain using

resting-state EEG.
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1.2 Motivation

The nonlinear nature of the electrophysiology of brain activity has been well studied.

Through surrogate testing methods, the initial confirmation of the presence of nonlin-

ear dynamics in the EEG, which was previously debatable, was confirmed [242, 42].

The temporal interactions between brain regions even at rest show a significant level

of complexity [65, 87]. Therefore, it is crucial for methods that assess brain connec-

tivity and dynamical interactions of brain regions to account for spatial and temporal

nonlinearities across the EEG.

Assessing brain connectivity can be achieved by measuring the statistical dependence

between corresponding EEG channels [20] and is characterised by different measures of

(dis)similarity [185, 73, 66, 256, 6, 80, 14, 257, 64, 43]. Some of these measures are capa-

ble of analysing nonlinear structures present both locally and globally within the EEG

data [280, 63, 185, 20, 43, 62] and are frequently used in various approaches for selecting

EEG channels [15]. However, these measures do not have the same interpretation and

can even mean the opposite [63, 185, 43]. Therefore, developing a generic measure of

(dis)similarity, that accounts for spatio-temporal nonlinear interactions between EEG

channels, is important for brain connectivity analysis and channel selection. This is one

of the aims of the research presented in this thesis. This can be achieved by learning

(dis)similarity information within the EEG by using kernel-based nonlinear manifold

learning [249, 150]. The resulting kernel matrix from these methods is used as a novel

measure of linear and nonlinear connectivity (statistical dependencies or functional

connectivity) between EEG channels. Using this methodology, nonlinear connectiv-

ity changes between specific brain regions (EEG channel-pairs) that can distinguish

mild to moderate AD compared to Healthy Control (HC) will be selected and used for

analysing the nonlinear dynamic interactions between these brain regions. Selecting

such important EEG channel-pairs is crucial for reducing computational complexity in

implementing nonlinear dynamic analysis methods.

Conflicting impacts of ageing on brain functions have been documented, where older

individuals exhibit decreased activity in certain brain regions but increased activity

in others [213]. These findings challenge the conventional belief that ageing is solely

associated with a straightforward pattern of cognitive and neural decline. As pointed

out in [243], this contrasts with previous research indicating a general deterioration

of both structural and functional brain integrity in AD. The work presented in this
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thesis aims to explore these compensatory mechanisms in AD by examining the directed

dynamic nonlinear dependencies or information flow between the selected EEG channel-

pairs mentioned above. This analysis will determine the disruption or gain of dynamic

nonlinear dependencies in relation to the direction of information flow between EEG

channel-pairs. To achieve this, transfer entropy [228, 199] from the field of information

theory, will be used. In the context of characterising AD, especially compensatory

mechanisms, using the resting-state EEG, this application of transfer entropy is novel.

The coordination of the underlying spatio-temporal neural activity across different

scales has become a key question in neuroscience [48, 115]. The dynamical interactions

between larger groups of neurons modulating the activity of local neuronal dynamics

have been shown to give rise to Cross-Frequency (CF) interactions [48, 51, 126]. There-

fore, CF interactions have been hypothesised as the main carrier mechanism through

which global and local processes interact enabling the integration of information from

different brain regions [119]. In line with this, CF interactions have been reported in

studies using electrophysiological data such as the EEG [126, 57, 77, 222, 115, 83].

Furthermore, certain changes in CF interactions within the EEG have been previously

reported concerning neurodegenerative diseases such as AD [271, 80, 117].

In the field of control systems, dynamic analysis of linear and nonlinear systems

is carried out in the frequency domain via frequency response analysis methods [32,

Chapter 1]. As such, from the system input-output data, a time-series black box

model is identified. This is known as system identification [32, Chapter 1]. The identi-

fied (learnt) model is then analysed in the frequency domain, using frequency response

analysis methods. Furthermore, it should be emphasised that, given the identifica-

tion process is done appropriately, unlike the black-box time-series models identified,

a model’s frequency response is a unique solution [32, Chapter 6]. Thus, the frequency

response characteristics remain unchanged and unique for all local solutions. There-

fore, using the frequency response analysis methods for dynamical systems, the CF

interactions within the system can be analysed [32, Chapter 6]. System identification

and frequency response analysis have been used to understand the nonlinear dynamics

in complex engineering systems for control and fault diagnosis [32, Chapter 1]. These

techniques have also been successfully applied in neuroscience to study the interac-

tions in different brain regions using electrophysiological data [102, 104, 37, 99]. One

of the main aims of the research presented in this thesis will focus on the novel ap-

plication of the above mentioned control systems approach to characterise AD. As
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previously mentioned, from applying transfer entropy to the selected EEG channel-

pairs, the loss/gain of dynamic nonlinear dependencies with respect to the direction of

information flow is examined on selected EEG channel-pairs. This knowledge will be

used to build time-series models using system identification. The frequency response

analysis of these models would enable the understanding of complex CF interactions

between the selected channel-pairs in an input-output sense. Thus, the dynamic na-

ture of the cortical electrical activity in mild to moderate AD can be characterised in

the frequency domain. Furthermore, this would enable the understanding of the CF

interactions involved with the compensatory mechanisms in AD.

1.3 Aims and Objectives

The main ambition of the research presented here is to apply nonlinear analysis tech-

niques to characterise mild to moderate AD in comparison to HC. This is in relation

to brain connectivity, directed nonlinear dependencies and nonlinear frequency-domain

analysis. This involves the novel application of techniques from manifold learning, in-

formation theory and control systems engineering. Thus, this work would contribute

towards formulating a complete data-driven framework for dynamic analysis of corti-

cal neural activity. This would also contribute towards the early diagnosis and disease

progress characterisation of neurodegenerative diseases such as AD. The wider key

objectives and the novel contributions from this research are broken down as follows;

1. Develop a novel generic measure of (dis)similarity that accounts for spatial and

temporal nonlinearities in EEG data, to identify connectivity changes between

EEG channels specific to AD.

(a) Develop a novel measure of linear and nonlinear connectivity between EEG

channels using kernel-based nonlinear manifold learning.

(b) Characterise mild to moderate AD in terms of brain connectivity.

(c) Identify important EEG channel-pairs that can distinguish well between AD

and HC.

(d) Identify any biophysical links between the results.

2. Investigate compensatory mechanisms in AD by examining dynamic nonlinear

dependencies respective to the direction of information flow between selected
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(from 1. above) EEG channel-pairs.

(a) Identify an appropriate methodology for the application of transfer entropy,

from information theory to EEG data avoiding spurious nonlinear depen-

dencies.

(b) Utilise this methodology to assess disruptions or gains in dynamic nonlinear

dependencies with respect to the direction of information flow.

(c) Characterisation of compensation mechanisms involved in AD using directed

nonlinear dependencies. In this aspect, the application of transfer entropy

to the resting-state EEG is novel.

(d) Identify any biophysical links between the results.

3. Novel application of a control systems approach to characterise CF interactions

involved in the loss/gain of dynamic nonlinear dependencies with respect to the

direction of information flow between the selected channel-pairs (from 1.).

(a) Apply system identification to the selected channel-pairs to build input-

output time-series models based on the knowledge gained from 2. The di-

rection of information flow between the channels is used to determine which

channel is to be the input and the output.

(b) Analyse the frequency response characteristics of the identified models to un-

derstand CF interactions between the selected channel-pairs in the frequency-

domain.

(c) Novel characterisation of AD and the compensatory mechanisms involved

in the frequency-domain.

Overall, the research aims to assess brain connectivity and dynamic nonlinear de-

pendencies, understand compensatory mechanisms and investigate CF interactions in-

volved, to characterise mild to moderate AD using the resting-state EEG data. Thus,

the work aims to contribute towards the development of a complete data-driven frame-

work for the analysis and characterisation of neurodegenerative diseases.

1.4 Thesis overview

The thesis is organised into 6 chapters in the following manner;
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• Chapter 2 overviews different brain connectivity methods while pointing out the

issues and how these issues are mitigated in this thesis to characterise complex

abnormal dynamics in AD. The chapter points out the dynamic nonlinear nature

of the brain electrical activity and highlights the importance of considering meth-

ods that can capture nonlinear interactions between brain regions. Consequently

pointing out what nonlinear methods will be used, and why these methods are

suitable for characterising brain electrical activity in AD.

• Chapter 3 focuses on a novel brain connectivity analysis method that generalises

(dis)similarity while accounting for spatio-temporal nonlinearities. The chap-

ter demonstrates how kernel-based manifold learning can be used as a measure

of spatio-temporal functional connectivity between EEG channels to determine

the important inter-relationships in characterising patients with mild to mod-

erate AD. The methodology presented can determine changes in cortical (EEG

channel) inter-relationships that are crucial in distinguishing AD patients from

HCs. Furthermore, the results reported in this chapter are consistent with other

previous studies while linking connectivity changes to functional networks.

• Chapter 4 presents the novel application of transfer entropy to understand the

compensation mechanisms involved in AD using resting-state EEG. This chapter

explores these compensatory mechanisms by examining the directed dynamic

nonlinear dependencies or information flow between the selected EEG channel-

pairs from Chapter 3. A specific surrogate testing method to mitigate spurious

nonlinear dependencies is used. This analysis will determine the disruption or

gain of dynamic nonlinear dependencies in relation to the direction of information

flow between EEG channel-pairs. The findings from this chapter are comparable

to other studies based on resting-state EEG and rsfMRI.

• Chapter 5 is a novel application of system identification and frequency response

analysis to characterise CF interactions in mild to moderate AD. Building upon

the findings of Chapter 4, data-driven models are constructed to capture the

nonlinear dynamics between pairs of channels. These models are then examined

in the frequency domain to identify noteworthy alterations in CF interactions

between the AD and HC groups. This chapter analyses directed broadband CF

interactions between cortical regions at an EEG sensor level.

• Chapter 6 summarises the findings from this work, and potential future research
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directions based on these findings are emphasised in the concluding remarks.

1.5 Summary of contributions and research

outputs

Novel contributions from the work presented in this thesis for characterising AD using

machine-learning, information theory and methods from controls systems engineering

are listed below. The research undertaken aims to contribute towards the advancement

of a comprehensive data-driven framework for analysing and characterising neurode-

generative diseases.

1. Chapter 3 : This chapter introduces a novel generic measure of (dis)similarity

for brain connectivity analysis and channel selection. This is achieved by learn-

ing the (dis)similarity information within the EEG using kernel-based nonlinear

manifold learning. The focus is on functional connectivity changes and, thereby,

EEG channel selection.

2. Chapter 4: An explanatory analysis using transfer entropy to identify changes

in directed dynamic nonlinear dependencies or changes in information flow in

AD is presented in this chapter. Transfer entropy is applied in a sliding window

fashion to account for the time-varying behaviour of the brain. This type of

analysis in relation to understanding the compensatory mechanisms involved in

AD, using the resting-state EEG is novel.

3. Chapter 5: In this chapter a novel application of system identification and fre-

quency response analysis methods from control systems engineering is presented.

The methods mentioned above are used to characterise the cortical activity in

AD in relation to changes in CF interactions involved in the compensatory mech-

anisms.

Based on the work presented in Chapter 3 on using kernel-based manifold learning

for brain connectivity analysis. A conference paper, ‘Kernel-based Nonlinear Manifold

Learning for EEG Functional Connectivity Analysis with Application to Alzheimer’s

Disease. 2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)’

[93] has been published. Furthermore, a journal paper based on the same Chapter

has been published in the journal Neuroscience [94]; ‘Kernel-based Nonlinear Manifold

Learning for EEG-based Functional Connectivity Analysis and Channel Selection with
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Application to Alzheimer’s Disease’.



Chapter 2

Nonlinear Dynamical Analysis of

the EEG and Neurodegenerative

Diseases

2.1 Introduction

Computerised Tomography (CT) scans [116], MRI [137], and Positron Emission To-

mography (PET) [194] are promising neuro-imaging techniques to aid with the early

diagnosis of AD. These imaging techniques detect structural and functional changes

in the brain [231]. Magnetoencephalography (MEG) and EEG can be used to identify

functional changes in the cerebral cortex [242]. With similar diagnostic sensitivity and

specificity with neuro-imaging techniques [8, 242], MEG and EEG have emerged as

promising tools for the diagnosis of AD.

Certain outer areas of the brain are functionally coupled with the central regions of

the brain (Fig. 2.1) [112, 215, 81, 59]. Thus, the complex processors within the centre

of the brain (sub-cortical layers) interact with the surface layers (cortical layers, Fig.

2.1A). The EEG, recorded at the scalp level, reflects grossly summed currents of the

electrical fields generated by neural activity in cortical neural circuits [195, 218]. The

EEG is widely used to study the functional state of the outer as well as the central

layers of the brain [242, 20, 27]. Therefore, analysing hidden structures within EEG

data, in general, and in the context of AD, is important and has gained considerable

10
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attention [242, 64, 218]. This is achieved using connectivity analysis.

The electrical activity of the brain can be divided into distinct frequency bands that

correspond to various states of neural function. These bands are named delta, theta,

alpha, beta and gamma [21]. These frequency bands, also known as brain waves,

offer significant insight into the operational dynamics of the brain [48, 233]. Several

recent studies have demonstrated the usefulness of EEG biomarkers in diagnosing and

monitoring the progression of AD [85, 158, 22, 125]. Individuals with AD typically

exhibit decreased power in the frequency bands alpha and beta and increased power in

the frequency bands theta and delta in various brain regions [110]. Abnormal changes in

brain connectivity measures have also been observed [64, 85, 176, 158, 22, 135]. [125]

found specific neural biomarkers associated with cognitive function in AD patients,

including changes in the power spectrum of low-frequency oscillations in the occipital

area and altered signal complexity in the parietal and occipital regions. They also

determined that spectral density features and entropy were key EEG biomarkers in

differentiating between HC and patients with AD and mild cognitive impairment.

A B

Cerebral Cortex

Sub-cortical structres

Figure 2.1: Basic anatomy of the brain highlighting the cerebral cortex and the
basal ganglia. A) front cross-section of the brain, showing the cerebral cortex (cortical
layers) in a dark yellow and structures related to the sub-cortical layers highlighted in various
other colours. B) illustrates a side outer view of the brain. The cerebral cortex is shown
in dark yellow (opaqued) and the internal structures of the brain relating to the sub-cortical
layers are shown in various colours.

Brain connectivity analysis has become a crucial aspect of computational neuro-

science research to better understand the brain in terms of its inter-relationships be-

tween brain regions or neuronal groups [26, 202, 7]. Connectivity, in neuroscience,
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refers to the physical, statistical or causal links between different parts of the brain or

neuronal groups [78, 264]. There are three types of connectivity: structural, functional,

and effective. Structural connectivity (SC) pertains to the physical or anatomical con-

nections between brain regions or neuronal populations [60]. Therefore, SC measures

the tangible physical links between the components within the network. Functional

connectivity (FC), essentially, captures the statistical dependence between physiolog-

ical time-series from spatially separated neuronal groups or cortical regions. This

is done either in the time-domain, frequency-domain or the time-frequency domain

[63, 279, 26, 185, 7]. On the other hand, effective connectivity (EFC) looks into the

influence of one brain network entity (neuronal population or cortical region) over an-

other [84]. Unlike FC measurements, which are non-causal, EFC is directional and

sometimes depends on a dynamic model [84].

The above mentioned analysis methods can be conducted at different scales, from

between individual neurons to groups of neurons and between cortical regions [222].

This study focuses on EEG based FC and EFC, to understand the changes in cortical

activity (via FC) and then differences in both linear and nonlinear cortical dynamics

(via EFC) between AD and HC cohorts. EEG based FC/EFC refers to a collection

of measurements that quantify connectivity between different low-level networks at a

higher level. These low-level networks consist of interconnected neurons that span an

area of the cortex that is larger than 1cm2 and can vary in size based on factors such as

the local density of cells, depth of the region, and the direction of current flow within

the region [187, 195].

2.2 Functional connectivity

FC assesses the statistical dependence between brain regions (EEG/MEG channels)

[20] and is characterised by different measures of (dis)similarity [185, 73, 66, 256, 6, 80,

14, 257, 64, 43], such as distance measures, entropy and mutual information [43, 185,

63]. Some of these measures can be used to analyse nonlinear structures present locally

and globally within the EEG data [280, 63, 185, 20, 43, 62] and are often used in many

EEG channel selection approaches [15]. However, regardless of structural connectivity,

brain regions functionally connected under one measure do not necessarily imply the

same with another measure, as they could even be disconnected [63, 185, 43].

Similarity or dissimilarity between two variables (EEG channels), in general, express
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the degree to which the two objects are respectively alike/related or different/distinct

[148, 237]. Local similarities refer to the relatedness or correlation between nearby

data points. This entails that data points closer together in space, time, or any other

relevant dimension tend to have similar values or characteristics. Conversely, global

dissimilarities refer to a lack of correlation or differences between data points that are

far apart from each other. It is important that FC measures account for both local

similarities and global dissimilarities within the EEG [63, 185, 43].

Dauwels et al. [63] showed that various (dis)similarity measures could be correlated

to each other, such as in the application of early diagnosis of AD. These correlated

measures can often be grouped, and a measure from each group is sufficient to analyse

the structures within the data [63]. Therefore, the development of a generic measure of

(dis)similarity is important for analysing brain FC [43]. In this study, a novel EEG FC

analysis method is introduced (Chapter 3), attempting to generalise FC by learning the

spatial and temporal structures within the data and quantifying this information as a

generic measure of (dis)similarity. This can be used to assess linear and nonlinear FC,

between EEG channels. This is achieved using kernel-based nonlinear manifold learning

to determine a subset of important channel inter-relationships that can discriminate

well between AD and HC groups. This sub-set of channels will then be used for

dynamical analysis (EFC) to identify dynamical changes due to neurodegeneration,

e.g. AD, on global and local brain dynamics.

2.3 Effective Connectivity

EFC aims to understand the direction of information flow and how one neuronal

population or cortical region influences another. For this type of analysis, mathematical

models (hypothesis-driven) [84, 42] and statistical techniques for data-driven models

[41, 99] are used to examine the strength and direction of interactions and to infer

underlying neural dynamics. In contrast, the analysis of FC is mostly descriptive [84].

Both hypothesis-driven mathematical models and data-driven models that infer EFC

can be defined within the frameworks of dynamic systems theory–dynamic systems

approach [247, 41, 84, 42].

A systems perspective, also referred to as a systems viewpoint or systems approach,

involves the observation of all the individual procedures, and sub-processes as a unified

entity. This viewpoint considers only the primary inputs and outputs, with a focus
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on the overall system as a whole [134]. A system whose state evolves with time as

a function of a previous state is a dynamical system [216, 217]. Therefore, these

systems possess memory. Thus, a dynamical system is defined by its state in time

and the dynamics which describe the changes of the state over time. The state of

a dynamical system is given by the quantities of all the variables that describe the

system at a particular point in time. The dynamics of the state are described by a

set of differential equations (continuous-time representation of a dynamical system) or

difference equations (also called a mapping function for discrete-time representation

of a dynamical system). The structures of these representations are either determined

using physical laws (hypothesis-driven) that govern the system [216, 217] or can be

identified using data-driven methods [164, 44]. Dynamic systems theory is the study

of long-term behaviour in dynamic systems.

In neuroscience, concerning model-based effective connectivity, hypothesis-driven

modelling techniques are informed using neuro-anatomical connectivity (connectome)

studies to define the structure of the model [247, 84]. Two popular hypothesis-driven

modelling methodologies are dynamic causal modelling (DCM) and structural equation

modelling (SEM) [49]. DCM uses a Bayesian approach to evaluate model efficacy, while

structural equation modelling (SEM) is a generalized linear modelling framework that

combines path modelling with factor analysis [247]. Both DCM and SEM consider the

brain as a deterministic nonlinear or linear system.

In contrast to DCM and SEM, which depend on prior knowledge about connec-

tivity, several data-driven modelling techniques based on Granger causality (Granger

Causality (GC)) [90] have been developed for measuring effective connectivity [232].

A time-series can be predicted using its own past values, GC quantifies the improve-

ment in the quality of prediction of one time-series by incorporating the past values of

another [274, 90]. This helps to determine if the predicted time-series was impacted

by the past of the other time-series used in the prediction, which can uncover the di-

rection and the strength of information flow between the two series being examined

[90, 285, 103]. Furthermore, GC has recently been extended to handle nonlinearities

[285, 103]. Directed Transfer Function (DTF) [132] and Partial Directed Coherence

(PDC) [224] are methods that are based on GC for data-driven Effective Connectiv-

ity (EFC). However, these two methods are purely linear and cannot capture nonlinear

interactions.
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Completely model-free measures for EFC do exist [24] such as transfer entropy

[228, 266] which has gained much interest in the field of neuroscience to infer EFC,

however, most EFC measures are based on hypothesis-driven or data-driven dynamic

models [84, 24, 99]. Nevertheless, the primary benefit of using transfer entropy to infer

EFC is that it doesn’t rely on a specific model for the interaction between the two

systems being studied. This makes it advantageous for exploratory analyses compared

to hypothesis-based or data-driven methods. This is especially useful when trying to

identify unknown non-linear interactions. In essence, the sensitivity of transfer en-

tropy to higher-order correlations (nonlinear interactions) [193] provides an advantage

in these scenarios.

When deciding between model-based and data-driven techniques for a specific prob-

lem, it is important to consider their distinct underlying assumptions. Model-based

approaches, such as DCM, rely on well-defined biophysical models of neuronal dy-

namics. As such, care needs to be taken when selecting the most suitable model or

a combination of models and exploring various parameters to test a predetermined

hypothesis [223]. However, a major drawback of model-based techniques is the un-

certainty involved in predefining these parameters and the potentially vast number of

parameter combinations that need to be considered. Established methodologies can

be helpful in determining the most appropriate model [186]. Nevertheless, it is pos-

sible that no single model is sufficient, and multiple models could be equally suitable

for a given dataset [223]. Conversely, data-driven methods do not assume any spe-

cific spatial or temporal relationships as this information is obtained from the data

itself. Data-driven methods can be employed to assess connectivity even when prior

knowledge about the underlying structure is unavailable, and this is true in the case

of abnormal brain dynamics [67] such as in AD. Therefore, in characterising EFC and

abnormal brain dynamics in AD, model-free and data-driven model-based methods are

more suitable.

Data-driven model-based EFC is strongly linked to system identification–data-driven

dynamic modelling techniques used in control systems theory [227, 99]. Once an appro-

priate model is identified, frequency response analysis can be used to understand the

dynamics of the learnt model in the frequency domain. Through frequency response

analysis the linear frequency profile and the nonlinear frequency interactions (cou-

plings) within the modelled system can be analysed in depth [32, Chapter 6][100, 101].

In general, it is challenging to establish predetermined governing equations for brain
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activity [92], especially in the case of abnormal brain dynamics [67]. Therefore, the

control systems perspective to data-driven dynamic modelling and analysis of EEG sig-

nals has recently attracted significant interest [103, 104, 157, 91, 99]. The application

of system identification and frequency response analysis to understand the changes in

the cortical dynamics in the context of AD is novel and, thus will be one focus of the

research undertaken. As such, novel applications of techniques for Functional Connec-

tivity (FC) analysis, model-free EFC and data-driven EFC will be presented in this

thesis for characterising AD.

In the work presented in this thesis, more specifically, important channels-pairs that

have significant changes in statistical dependencies between HC and AD groups will

be first selected using FC (Chapter 3). Once these channel-pairs are identified, an ex-

ploratory analysis will be conducted using transfer entropy to examine the nonlinear de-

pendencies in directed information flow between each pair of channels (Chapter 4). The

aim is to gain insight into which selected channel-pairs display significant differences in

directed information flow in AD. This prior knowledge regarding the information flow

and its direction will be utilised to construct data-driven dynamic input-output time-

series models through system identification (Chapter 5). Subsequently, the dynamics

of these models will be analysed using frequency response analysis to understand the

cortical nonlinear dynamic changes occurring in AD.

The next section will briefly highlight the developments in the analysis of cortical

dynamics using the EEG in the context of neurodegenerative diseases such as AD,

highlighting the significance of using methods that can capture nonlinearities. This

will be followed by a section reviewing the nature of linear and nonlinear dynamic

systems in the time and frequency domains and how a control systems approach is

suitable for brain dynamic analysis.

2.4 Brain Dynamic Analysis Using the EEG in

Relation to Neurodegenerative Diseases

The EEG is understood as an outcome of nonlinear deterministic dynamics, with

the possibility of being a chaotic process [244, 41]. The EEG is commonly observed

as a continuous spectrum, and the irregularity or the aperiodic nature of EEG signals

[246] can be assumed, using dynamic systems theory [247, 41, 84], to be the result of



CHAPTER 2. DYNAMIC SYSTEMS THEORY, EEG ANALYSIS... 17

a low-dimensional nonlinear deterministic system. As such, it may be inferred that

parsimonious models are to be used for the explanation of EEG complexity [41, 84].

Understanding these dynamics leads to a comprehensive interpretation of the functional

relationship between cortical and sub-cortical neural circuits. A clear change in these

dynamics is observed when analysing patients with neurodegenerative diseases such as

AD [205, 242, 141]. Thus, the significance of comprehensive methodologies to further

analyse the nonlinear dynamics in the brain is clearly apparent [242, 42]. Data-driven

nonlinear dynamic analysis of EEG measures has evolved from nonlinear indices such

as correlation embedding, Lyapunov exponents and entropy to model-based nonlinear

time-series analysis [242]. As such, the development of nonlinear time-series analysis

of EEG measures is a clear direction in the development of EEG analysis [242].

In light of the above discussion and section 2.3, the control systems perspective

on dynamic analysis of EEG signals becomes more apparent. In nonlinear system

identification, usually, the dynamic models that are learnt or identified are nonlinear

auto-regressive time-series models [52]. The link between the nature of these models

and Lyapunov exponents has been well established [181]. Since the Lyapunov exponent

is a significant factor when differentiating the dynamic profiles between healthy indi-

viduals, AD and Parkinson’s Disease (PD) patients [242, 205, 122, 64], the application

of system identification and frequency response analysis takes an interesting viewpoint

in the analysis of cortical dynamics and CF interactions between cortical regions. The

application of this approach to the dynamic analysis of EEG, the early diagnosis of

neurodegenerative diseases such as AD and PD, is novel.

Nonlinear systems, in both the time and frequency domains, exhibit significantly

more complexity compared to linear systems. Consequently, in order to understand this

intricate behaviour and effectively analyse dynamic nonlinear systems in the frequency

domain, the subsequent section will provide an overview of the characteristics of such

systems in both the time and frequency domains.

2.5 The Dynamic Nature of Linear and Nonlinear

Systems

If a system maintains consistent dynamic properties over time, it is referred to as

time-invariant. Systems that adhere to the superposition principle and are time-
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invariant are known as linear time-invariant (Linear time-invariant (LTI)) systems

[163]. Furthermore, if an LTI system is causal, it means that the output at a spe-

cific time is solely determined by the input up to that time. In this case, at time t, the

system can be effectively described as the convolution between the impulse response

h(t) of the system and the input signal u(t).

y(t) =

∫ ∞

τ=0

h(τ)u(t− τ)dτ (2.1)

where y(t) represents the output of the system, and τ represents a time delay index.

The impulse response, h(t), characterises the system’s behaviour in the time domain,

representing its response when stimulated by a unit impulse. Traditional systems the-

ory, based on LTI systems, is a well-established field of study. However, it’s important

to note that the LTI property of a system is typically an approximation, which is often

justifiable.

Nonlinear systems, on the other hand, encompass systems that do not adhere to

the superposition principle, and their behaviour is significantly more intricate. In the

case of LTI systems, the frequency components of the output response mirror those

of the input signal. Conversely, in nonlinear systems, the output response exhibits a

broader range of frequency components compared to the corresponding input signal.

This occurs because nonlinear systems possess the capability to transfer energy be-

tween frequency components, including those that are absent in the input signal [144].

Describing nonlinear systems in the time-domain involves extending the concept of

convolutional integrals used in LTI systems, as represented by eq.(2.1), to a series of

multidimensional convolution integrals referred to as the Volterra series. The Volterra

series explains a category of stable nonlinear systems at the zero equilibrium, within

the vicinity of the equilibrium point, as depicted in eq.(2.2) below.
y(t) =

N∑
n=1

yn(t)

yn(t) =

∫ +∞

−∞
· · ·
∫ −∞

+∞
hn(τ1, · · · , τn)

i=1∏
n

u(t− τ)dτi

(2.2)

where hn(τ1, · · · , τn) refers to the nth order Volterra kernel, which represents the time

domain characteristics of the nonlinearity specific to the nth order. y(t) denotes the
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output of the system, u(t) represents the input to the system, and yn(t) is referred to

as the nth order nonlinear output or the output produced by the nth order nonlinearity

of the system. n = 1, · · · , N , where N represents the highest order of nonlinearity

considered [221].

Equations (2.1) and (2.2) represent linear and nonlinear systems in the time domain.

These representations are useful for examining system dynamics, including transient

response analysis, for both linear and nonlinear systems. While in nonlinear systems,

this includes the study of bifurcations, limit cycles and chaotic regimes [189]. By apply-

ing the Fourier transform to these time-domain representations, the frequency-domain

representations are obtained. In the frequency-domain, the relationships between in-

put frequencies and the output amplitude and phase-shift can be studied for both

linear and nonlinear systems. For nonlinear systems, this enables a comprehensive

study of nonlinear phenomena, such as energy transfer from input frequencies to out-

put frequencies that are not present in the input signal–generation of harmonics and

inter-modulations that result in CF interactions at various orders of nonlinearity. The

following subsections will outline the frequency-domain representations of linear and

nonlinear systems.

2.5.1 Linear systems in the frequency-domain

Frequency domain analysis of linear systems is conducted using the well-established

technique of linear frequency response functions Frequency Response Function (FRF)s.

The linear FRF provides a comprehensive depiction of the steady-state dynamics of a

linear system and is unique regardless of the time-domain model employed to represent

the system [163]. It is the quantitative measure of the output spectra resulting from

an input stimulus. It enables observation of the system dynamics across a range of

frequencies and is represented as a bode plot, showing the relationship between output

magnitude, phase, and input frequency [68]. Essentially, it represents the ratio of

the output spectrum to the input spectrum. In the case of LTI systems, the output

frequency response Y (jω), for all frequencies ω, can be explicitly characterised for any

input signal, given the knowledge of the FRF as

Y (jω) = G(jω)U(jω) (2.3)
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where Y (jω) and U(jω) are the input and output spectra, respectively, and G(jω) is

the FRF which is a nonparametric representation of a linear system in the frequency-

domain.

2.5.2 Frequency-domain representations of nonlinear systems

In linear systems, it is widely known that the output frequency components cor-

respond precisely to the frequency components present in the input signal [163, 68].

However, this relationship does not hold true in the case of nonlinear systems, where

the output frequency response exhibits significantly more intricate behaviour. For ex-

ample, when considering a nonlinear system with a single-frequency input component,

ω1. The resulting output may include not only the original input frequency compo-

nent ω1, but also its super-harmonics, such as 2ω1 and 3ω1, as well as sub-harmonics,

such as ω1

2
and ω1

3
, and so forth. However, when the input comprises multiple frequency

components, such as ω1, ω2, and ω3, the output exhibits a broader range of possible fre-

quency components. These components encompass the original input frequencies ω1,

ω2, and ω3, the super-harmonics, sub-harmonics, and frequencies resulting from the

inter-modulations between the input frequencies. Examples of such inter-modulations

could be ω1−ω2, ω1−ω2+ω3, ω1+ω3, and numerous others. Consequently, nonlinear

systems possess distinct characteristics in comparison to linear counterparts. Specifi-

cally, the output frequency response of nonlinear systems is considerably more diverse,

featuring an abundance of frequency components beyond those present in the input

spectra. This is known as the nonlinear phenomenon, where energy is transferred from

the input frequency modes to other frequency modes [144, 204, 206, 146, 145]. This sub-

section provides an overview of the frequency-domain representations of nonlinear sys-

tems, namely the Generalized Frequency Response Functions (Generalised Frequency

Response Function (GFRF)s) and the Nonlinear Output Frequency Response Func-

tions (Nonlinear Output Frequency Response Function (NOFRF)s). These approaches

extend the concept of linear FRFs, to the nonlinear instance.

2.5.3 Output frequency response of non-linear systems

In subsection 2.5.1, the output frequency response properties of linear systems are

defined by eq.(2.3). However, as mentioned earlier, due to the intricate nature of the

output frequency response in nonlinear systems, eq.(2.3) does not hold in the nonlinear
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context. The time-domain representation of nonlinear systems can be expressed using

the Volterra series, eq.(2.2). Building upon this representation, Lang and Billings

[145] derived an expression to characterise the output frequency response Y (jω) of a

nonlinear system as
Y (jω) =

N∑
n=1

Yn(jω) ∀ω

Yn(jω) =
1/
√
n

(2π)n−1

∫
ω=ω1+···+ωn

Hn (jω1, · · · , jωn)
i=1∏
n

U(jωi) dσnω

(2.4)

where N represents the maximum order of nonlinearity under consideration. Yn(jω)

denotes the frequency characteristics of the nth order nonlinear output (i.e., the output

frequency response of the nth order nonlinearity), while U(jω) represents the frequency

spectrum of the input. The nth order GFRF, denoted as Hn (jω1, · · · , jωn), provides

a description of the dynamic characteristics of the nth order nonlinearity in the fre-

quency domain. dσnω represents an infinitesimally small region within the hyperplane

ω = ω1 + · · · + ωn. Consequently, the GFRFs serve as direct extensions of the linear

Frequency Response Functions (FRFs) to the nonlinear case. Furthermore, the GFRF

remains unique irrespective of the specific time-domain model employed to represent

the corresponding nonlinear system. The expression in eq.(2.4) above represents the

natural extension of eq.(2.3), which characterises the output frequency response of

linear systems, to the nonlinear case.

The generation of the output frequencies of a nonlinear system, as shown by eq.(2.4) is

the sum over the output frequencies contributed by each order of nonlinearity, Yn(jω).

Thus by considering the ‘output frequency range’ fYn (the frequency space) of each

nonlinear order Yn(jω), the ‘frequency range’ fY of the output response, Y (jω), of a

nonlinear system is much greater [146, 145] such that

fY =
N⋃

n=1

fYn . (2.5)

2.5.4 Generalised Frequency Response Functions (GFRFs)

The intricate nature of nonlinear systems, as previously discussed, surpasses the

complexity observed in linear systems. This distinction becomes apparent when exam-
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ining the time-domain representation of nonlinear systems using the Volterra series,

eq.(2.2), in contrast to the linear counterpart in eq.(2.1). In the case of nonlinear sys-

tems, the time-domain dynamics of each order of nonlinearity are described by separate

multidimensional Volterra kernels. The Fourier transform of the time-domain impulse

response of a linear system, eq.(2.1), corresponds to the linear FRF [162]. Similarly,

George introduced the concept of GFRFs in [86]. These GFRFs are defined as the

Fourier transform of the Volterra kernels, represented by the terms hn(τ1, · · · , τn) in

eq.(2.2). Consequently, the GFRF of an nth order nonlinearity can be expressed as

Hn (jω1, · · · , jωn) =

∫ +∞

−∞
· · ·
∫ +∞

−∞
hn(τ1, · · · , τn)× e−(ω1τ1+···+ωnτn)j dτ1, · · · , dτn

(2.6)

Hence, the notion of GFRFs serves as a direct extension of the linear FRF to the non-

linear case. As evident from eq.(2.6), GFRFs are multidimensional frequency functions

that capture the intricate dynamics associated with each order of nonlinearity.

In linear systems, the FRF can be explicitly used to characterise the output fre-

quency response, eq.(2.3). However, this approach does not hold for nonlinear systems

due to the involvement of high-dimensional frequency functions associated with each

order of system nonlinearities [145, 129]. To elucidate the complex relationship between

GFRFs, and the system’s output frequency response, Lang and Billings [145] derived

the expression presented in eq.(2.4). As previously discussed, this expression describes

the output frequency response of nonlinear systems in terms of the GFRFs. It illus-

trates how the dynamics of the nth order nonlinearity (represented by the nth order

GFRF) interact with the input spectrum to generate the output frequency response of

the corresponding nonlinearity, denoted as Yn(jω). Consequently, the summation of all

the output spectra from all nonlinearities yields the actual output frequency response,

Y (jω), of the system.

As mentioned earlier, nonlinear systems exhibit a distinctive characteristic whereby

energy is transferred from the input frequencies to other frequencies that are absent

in the input signal. This phenomenon arises from the interplay between the nth order

nonlinear dynamics and the input spectrum, as discussed above. Thus, the compre-

hensive explanation of this phenomenon extends beyond the capabilities of the GFRFs

[144]. To address this, Lang and Billings introduced the concept of NOFRFs in [144].

These NOFRFs comprehensively capture the energy transfer from the input to differ-
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ent orders of system nonlinearities and, consequently, the generation of new frequency

components. The NOFRFs can be viewed as another extension of the linear FRF to

the nonlinear domain and serve as a complement to the GFRFs.

2.5.5 Non-linear Output Frequency Response Functions

(NOFRFs)

Lang and Billings [144] introduced the concept of NOFRFs to elucidate the energy

transfer phenomenon in nonlinear systems. Additionally, in [144], the authors proposed

another concept that serves as a natural extension of the input spectrum U(jω) to the

nth order nonlinear case, and it is expressed as

Un(jω) =
1/
√
n

(2π)n−1

∫
ω=ω1+···+ωn

i=1∏
n

U(jωi) dσnω (2.7)

where Un(jω) is the nonlinear composition of the input U(jω) to the nth order nonlin-

earity and is related to the Fourier transform, FT { }, of un(t) such that

Un(jω) =
1/
√
n

(2π)n−1 × FT {un(t)} (2.8)

The significance of Un(jω) lies in its role in elucidating the energy transfer phenomena

observed in nonlinear systems and, thus, the definition of the NOFRFs, as shown in

[144], which will be examined in the following discussions.

The second expression in eq.(2.4), the definition for Yn(jω), can be written in terms

of eq.(2.7).

Yn(jω) =

∫
ω=ω1+···+ωn

Hn (jω1, · · · , jωn)
∏i=1

n U(jωi) dσnω∫
ω=ω1+···+ωn

∏i=1
n U(jωi) dσnω

×

(
1/
√
n

(2π)n−1

∫
ω=ω1+···+ωn

i=1∏
n

U(jωi) dσnω

)
(2.9)

where the expression in the parenthesis is Un(jω). Therefore, Yn(jω) can be re-written

as

Yn(jω) = Gn(jω)Un(jω) (2.10)
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where

Gn(jω) =

∫
ω=ω1+···+ωn

Hn (jω1, · · · , jωn)
∏i=1

n U(jωi) dσnω∫
ω=ω1+···+ωn

∏i=1
n U(jωi) dσnω

. (2.11)

In eq.(2.11) above Gn(jω) is defined as the nth order NOFRF and is only valid in the

frequency space ω where

∫
ω=ω1+···+ωn

i=1∏
n

U(jωi) dσnω ̸= 0. (2.12)

Hence, the output frequency response Y (jω) of a nonlinear system, as depicted in

eq.(2.4), can be explicitly represented by using the NOFRFs Gn(jω), where n =

1, · · · , N , by introducing eq.(2.10) into eq.(2.4), yielding:

Y (jω) =
N∑

n=1

Yn(jω) =
N∑

n=1

Gn(jω)Un(jω) (2.13)

whereN represents the maximum order of nonlinearity to be taken into account. There-

fore, eq.(2.13) can be defined as the characterisation of the output frequency response,

Y (jω), of a nonlinear system based on the NOFRFs [144]. It is evident that this rep-

resentation of Y (jω) in nonlinear systems shares similarities with the description of

linear systems in eq.(2.3). The authors of [144] presented three significant properties

regarding the NOFRFs representation of Y (jω), which can be summarised as follows:

1. The NOFRFs can effectively describe Yn(jω) in a manner comparable to how

the linear FRF characterises the output frequency response of linear systems,

as shown in eq.(2.3) in subsection 2.5.1. Thus, the characterisation provided in

eq.(2.13) exhibits a similar nature.

2. The valid frequency range ω of the nth order NOFRF Gn(jω), as given by

eq.(2.12), corresponds to fYn defined in eq.(2.5), representing the possible range

of output frequencies contributed by the nth order nonlinearity.

Lang and Billings [144] evidently described the energy transfer phenomena and the

generation of new frequency components using the concept of NOFRFs. In brief, this

energy transfer mechanism is summarised as follows;

• The nonlinear composition of Un(jω) from U(jω) produces the possible frequency
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components fYn of Yn(jω).

• Within the frequency range fYn , the NOFRFGn(jω) acts upon Un(jω) to produce

the nth order output frequency response Yn(jω) of the system.

• By aggregating the effects of the output frequency responses of all nonlineari-

ties, Yn(jω) for n = 1, · · · , N , the resulting output frequency response Y (jω) is

obtained, eq.(2.13).

• Therefore, Y (jω) encompasses a greater number of frequency components com-

pared to the corresponding input excitation U(jω).

The dependence of the NOFRFs Gn(jω) (for n ≥ 2) on the frequency domain charac-

teristics of the nth order nonlinear dynamics can be observed from eq.(2.6). Specifically,

it relies on the GFRF Hn (jω1, · · · , jωn) and the input spectrum U(jω). This reliance

of Gn(jω) on the input spectrum reflects the fact that the behaviour of nonlinear sys-

tems in the frequency domain is generally influenced by both the system properties

and the corresponding input [146, 145].

Considering the analysis of nonlinear dynamics between EEG channels, the NOFRFs

take an interesting outlook, specifically eq.(2.13). This is because NOFRFs are a set

of one-dimensional frequency functions which are weighted normalised average of the

corresponding hyper-dimensional GFRFs [144]. Furthermore, the NOFRFs can be

accurately determined easily [95] and directly show the energy transference from the

frequencies in one EEG channel to another at different orders of nonlinearities. This

allows an in-depth analysis of the complex CF interactions occurring in the cortical

electrical activity of the brain (at an EEG sensor level). In the context of neurode-

generative diseases, this type of EEG analysis is novel. More specifically, considering

a pair of EEG channels, u(t) and y(t) and the respective spectra, U(jω) and Y (jω).

Through system identification, an input-output model can be learnt. Observing this

nonlinear model of the EEG channel-pairs in the frequency domain, using NOFRFs,

the energy transference from the input channel frequencies, U(jω), to the different

orders of nonlinearities Yn(jω) can be observed [144]. Thus, CF interactions between

the frequencies of the channels U(jω) and Y (jω) can be examined at different orders

of nonlinearity using Yn(jω). System identification and frequency response analysis

techniques can be used for non-stationary systems which are time-varying [118], which

is the case in EEG signals [101, 100, 103].
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2.6 Chapter Summary

This chapter provides an overview of various brain connectivity techniques, FC and

EFC, and addresses the challenges associated, along with the solutions proposed in

this thesis, to effectively analyse complex abnormal dynamics in AD. It emphasises the

dynamic and nonlinear nature of brain electrical activity and underlines the significance

of employing methods capable of capturing nonlinear interactions. Furthermore, it

specifies the specific nonlinear methods that will be utilized and explains why these

methods are well-suited for characterising brain electrical activity in AD.

In relation to FC, the main issue is that the various (dis)similarity measures that

quantify FC have different interpretations. Thus, there is a need for a generic mea-

sure of (dis)similarity in order to identify which EEG channel-pairs are important to

distinguish AD from HC. Furthermore, to characterise AD in regard to the dynamic

interactions or directed information flow, EFC, between cortical brain regions (EEG

channels), the chapter highlights the need to use data-driven methods such as trans-

fer entropy (model-free method) and data-driven model-based methods. Finally, the

chapter overviews the dynamic nature of linear and nonlinear systems in the time

and frequency domains to point out how well-suited a control systems approach (sys-

tem identification and frequency response analysis) is to characterise the complex CF

interactions in AD.



Chapter 3

Kernel-based Nonlinear Manifold

Learning for EEG Functional

Connectivity Analysis with

Application to Alzheimer’s Disease

3.1 Introduction

To diagnose and characterise neurological disorders, dynamical, causal and cross-

frequency coupling analysis using the EEG has gained considerable attention. The

selection of important EEG channels can be crucial to reduce the computational com-

plexity in implementing these methods and improving classification accuracy. In neu-

roscience, measures of (dis)similarity between EEG channels are often used as FC fea-

tures, and important channels are selected via feature selection. Developing a generic

measure of (dis)similarity is important for FC analysis and channel selection. In this

study, learning of (dis)similarity information within the EEG is achieved by using

kernel-based nonlinear manifold learning. The focus is on FC changes and, thereby,

EEG channel selection. Isomap and Gaussian Process Latent Variable Model (Isomap-

GPLVM) are employed for this purpose. The resulting kernel (dis)similarity matrix

is used as a novel measure of linear and nonlinear FC between EEG channels. The

analysis of EEG from HC and patients with mild to moderate AD is presented as a case

27
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study. Classification results were compared with other commonly used FC measures.

Our analysis shows significant differences in FC between bipolar channels of the occip-

ital region and other regions (i.e. parietal, centro-parietal, and fronto-central) between

AD and HC groups. Furthermore, our results indicate that FC changes between EEG

channels along the fronto-parietal region and the rest of the channels are important

in diagnosing AD. Our results and its relation to functional networks are consistent

with those obtained from previous studies using functional MRI (fMRI), resting-state

fMRI (rsfMRI) and EEG.

3.2 Functional Connectivity Analysis and EEG

Channel Selection

In-depth dynamical analysis, such as the analysis of linear and nonlinear dynamic

relationships between EEG channels, causality, and cross-frequency coupling analysis,

has received much interest [218, 242, 120, 102, 99, 104]. However, some of these methods

can often incur high computational complexity. Consequently, in practice, to reduce the

computational complexity, improve classification accuracy and gain prior knowledge on

which underlying cortical regions might be important in AD, the selection of important

EEG channels from high dimensional EEG data is vital [15]. Furthermore, to select

channels to perform nonlinear dynamical analysis, the channel selection method should

be able to account for nonlinear dependencies between channels [218, 242].

For most EEG channel selection techniques, features from the channels are first

extracted, and important channels are selected via feature selection. These feature

selection methods can be categorised into the following three groups [15]. a) Filtering

methods : Independent evaluation criteria, including FC measures, are used for channel

selection. Depending on the criteria, these are often only based on single or pairwise

EEG channel(s). Filtering methods are good at eliminating irrelevant and redundant

features. b) Wrapper methods : Subsets of features are generated based on a method

of choice. Each subset is evaluated using a classification algorithm to select a subset

of channels. These are based on greedy search algorithms aiming to find the best pos-

sible combination of features. c) Embedded Methods : These techniques simultaneously

perform feature selection and classification. For example–LASSO-based feature selec-

tion, logistic regression and decision tree are techniques that come under embedded

methods. Ranking of features can be easily done using embedded methods.
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In this study, learning spatio-temporal linear and nonlinear (dis)similarities within

the data is achieved using kernel-based nonlinear manifold learning (dimensionality

reduction). The focus is on the differences in EEG FC between healthy and patient

groups including the selection of important EEG channels. The motivation behind

using a kernel-based method is, the learnt (dis)similarity information is reflected in

the kernel, as a generic measure of distance [226] (pairwise comparisons between EEG

channels). In this work, the kernel matrix is evaluated using Gaussian Process Latent

Variable Model (GPLVM) [151]. Robust kernel Isomap [56] is used as an initialisa-

tion method, for GPLVM (Isomap-GPLVM). This enables the learning of both local

similarities and global dissimilarities within the EEG data and embedding this in-

formation in the reduced-dimension manifold (latent space) [152]. Furthermore, since

dimensionality reduction is used to reduce the temporal dimension, temporal structures

within the data are taken into account in the latent space. Considering the above, the

kernel matrix evaluated using Isomap-GPLVM can be regarded as a more objective

(dis)similarity measure containing information on both linear and nonlinear spatio-

temporal EEG inter-relationships. It is a generalisation of different functional connec-

tivity measures [226] and can be a better alternative to using various (dis)similarity

measures [63, 185, 43]. Based on this novel FC measure, this chapter introduces an

EEG channel selection method to determine which channel inter-relationships are more

important for in-depth neural dynamical analysis, such as understanding the effect of

neurodegeneration on global and local brain dynamics. This work presents the analysis

of EEG data from a cohort of age-matched healthy controls (HC) and patients with

mild to moderate AD as a case study.

Participant-specific kernel matrices are obtained using Isomap-GPLVM. Linear SVM

classification with Monte-Carlo cross-validation (SVM-MCV) is used to assess, how well

the proposed FC measure can differentiate between HC and AD groups. FC analysis is

presented for both eyes-open (EO) and eyes-closed (EC) conditions. Linear SVM-MCV

is also used to rank the selected pairwise features. Therefore, the proposed channel

selection method is a hybrid form [15] of the aforementioned categories of feature

selection methods. Specifically, the proposed approach is an integration of filtering

and embedded methods. The channel pairs chosen using this approach can be linked

to other EEG studies in the literature considering connectivity analysis in AD. This

chapter aims to introduce and demonstrate the efficacy of the method proposed by

comparing it with other commonly used FC measures.
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This chapter is organised as follows. Specifics about the EEG data, participants

and the pre-processing steps are provided in Section 3.3. Section 3.4 discusses the

manifold learning methodology via Isomap-GPLVM and the use of related kernel-based

(dis)similarity matrix for the classification of EEG data, which are measured from a

group of AD patients and an age-matched healthy control cohort. This section also

presents the linear SVM and Monte-Carlo cross-validation procedures. Section 3.5

presents the results obtained followed by a discussion of the results in Section 3.6.

Limitations of the study and possible improvements to the methodology are discussed

along with the concluding remarks in Section 3.7.

3.3 Data

The research undertaken includes a total of 20 AD cases and 20 age and gender-

matched healthy controls (HC) (less than 70 years of age), which are selected based on

clinical and radiological diagnostic criteria as described in [37]. Task-free EEG record-

ings that require minimal cooperation of AD patients are used; typically, this group

of patients can have difficulty engaging with or following cognitive tasks. The details

of experimental design, diagnosis confirmation, data acquisition and EEG electrode

configuration are provided in [37]. All AD participants were in the mild to moderate

stage of the disease at the time of EEG recordings.

The Sheffield Teaching Hospital memory clinic team, focusing mainly on young-onset

memory disorder, recruited all AD participants. AD participants were diagnosed be-

tween 1 month and 2 years before data collection. The diagnosis was made using a

series of psychological tests, medical history, neuro-radiological examinations and neu-

rological examinations. High-resolution structural magnetic resonance imaging (MRI)

was used to eliminate other causes of dementia in all participants. The age and gender-

matched HC participants were recruited, whose structural MRI scans and neuropsy-

chological tests were normal. This study was approved by the Yorkshire and The

Humber (Leeds West) Research Ethics Committee (reference number 14/YH/1070).

All participants gave their informed written consent.

3.3.1 EEG Data

A modified 10–10 overlapping 10–20 international system of electrode placement

method was used to acquire EEG recordings. All EEG data were recorded using an
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XLTEK 128-channel headbox with Ag/AgCL electrodes placed on the scalp at a sam-

pling frequency of 2 kHz. A common referential montage with linked earlobe reference

was used. During the 30 minutes of EEG recording, participants were encouraged

not to think about anything specific. All participants had their eyes-open (EO) for

2 minutes and then eyes-closed (EC) for 2 minutes, in repeat, during the 30-minute

recording. The EEG data were reviewed by an experienced neurophysiologist on the

XLTEK review station with time-locked video recordings (Optima Medical LTD). Sub-

sequently, from the resting-state EEG recordings, three 12-second artefact-free epochs

under EO and EC conditions were isolated.

From the referential montage, the following 23 bipolar channels are produced for

the analysis: F8–F4, F7–F3, F4–C4, F3–C3, F4–FZ, FZ–CZ, F3–FZ, T4–C4, T3–C3,

C4–CZ, C3–CZ, CZ–PZ, C4–P4, C3–P3, T4–T6, T3–T5, P4–PZ, P3–PZ, T6–O2,

T5–O1, P4–O2, P3–O1 and O2–O1. The bipolar channels are obtained by simply

subtracting the two common referenced signals involved. In summary, three 12-second

epochs of EO EEGs are collected from 20 HC and 20 AD participants and used in this

study.

It should be noted, that a bipolar montage is preferred in several studies [73, 253] due

to evidence of inter-hemispheric disconnection in patients with AD [122]. Furthermore,

Nunez et al. in [195] explains in detail that the EEG bipolar montages, given the bipolar

electrode pairs are sufficiently close (1-3cm), can be effective in improving the spatial

resolution of the EEG due to better estimation of localised electric fields along the

scalp surface. Bipolar channels estimate the instantaneous electric field along the scalp

surface midway between the pair of electrodes [195]. To avoid confusion, from now on

any bipolar channel(s) will be referred to as EEG channel(s), or just channel(s) unless

otherwise specified.

3.3.2 Pre-processing Tasks

In this study, since the high-dimensional temporal structures of the multi-channel

EEG are examined, the use of filters would pose a major issue due to the phase-related

distortions induced [167]. Therefore, firstly, convert the time-series EEG data to the

frequency domain using the Fast Fourier Transform (FFT). Thus, unwanted frequency

components can be easily removed with minimal phase distortions. Thereafter, inverse-

FFT is used to reconstruct the time-domain signals without the unwanted frequency



CHAPTER 3. KERNEL-BASED NONLINEAR MANIFOLD LEARNING... 32

components. The analysis in this work is performed using EEG frequencies between 2

and 100 Hz. Frequencies below 2 Hz, are not used to avoid low-frequency artefacts due

to eye-blinking and slow movements. Furthermore, frequency components around 50Hz

(49.5-50.5Hz) are also removed to avoid any contamination by AC power line noise.

After removing the unwanted frequency components, the reconstructed time-domain

signals are then down-sampled to 200Hz.

3.4 Methods

This chapter introduces a novel measure of FC, a methodology that employs kernel-

based manifold learning to identify important channel inter-relationships (channel

pairs) within the EEG data for the case of AD. Manifold learning is a nonlinear dimen-

sionality reduction technique that learns a lower-dimensional representation from high-

dimensional data [152]. EEG data comprises multi-channel time-series data, which is

high-dimensional spatio-temporal data. Kernel-based manifold learning can reduce the

temporal dimension and learn both linear and nonlinear spatial and temporal struc-

tures within the EEG data. The kernel matrix obtained from such manifold learning

methods will contain this information as a measure of (dis)similarity and will be named

a kernel (dis)similarity matrix. This matrix can be used as a general measure of spatio-

temporal functional connectivity.

Manifold learning techniques that maintain local similarities in the lower-dimensional

space (also called latent space) entail a mapping from the data space to the latent

space [150, 152]. This ensures that data points relatively close in the data space are

positioned close together in the latent space. Kernel principal component analysis

(KPCA), locally linear embedding (LLE), t-SNE, and Isomap are examples of such

techniques. In contrast, techniques that involve a mapping from the latent space to

the data space preserve global dissimilarities; that is, two points that are relatively

distant in the data space are guaranteed to be distant in the latent space [150, 152].

Generative topographic mapping, density networks, and GPLVM are examples of these

techniques. Among these, GPLVM is a kernel-based method that preserves global

dissimilarity. The kernel in kernel-based manifold learning techniques, such as Isomap

and GPLVM, captures the nonlinear structures within the data in a non-parametric

fashion.

The methodology proposed in this study combines the strengths of both local and
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global (dis)similarity preservation by utilising GPLVM and Isomap. Specifically, Isomap

is used as an initialisation method for GPLVM; it is named–Isomap-GPLVM. Further-

more, since manifold learning is performed to reduce the temporal dimension, the

method takes into account the temporal structures present within the EEG data. Con-

sequently, the spatio-temporal local similarities and global dissimilarities within the

EEG data are preserved in the latent space. The resulting kernel matrix from GPLVM

provides a generic measure of (dis)similarity between EEG channels, capturing the

preserved information.

3.4.1 Gaussian Process Latent Variable Model (GPLVM)

As a probabilistic nonlinear manifold learning technique, a GPLVM [151] learns the

mapping of a high-dimensional observed dataset Y ∈ RN×D from the corresponding

low-dimensional latent positions X ∈ RN×Q, Q < D, i.e. a mapping from X → Y,

using a Gaussian process (GP) [229]. Here Y = [y1, · · · ,yN ]
T , yi ∈ RD and X =

[x1, · · · ,xN ]
T , xi ∈ RQ.

In principal component analysis (PCA), the mapping X → Y is governed by the

dominant eigenvectors of the covariance matrix [251]. GPLVM is a probabilistic man-

ifold learning method, which is a nonlinear generalisation of PCA [151], where the

probabilistic mapping X → Y is governed by a kernel matrix K ∈ RN×N [151]. The

marginal log-likelihood of the data Y given the latent positions X [151, 150] is

L = −DN

2
ln(2π)− D

2
ln(|K|)− 1

2
tr
(
K−1YYT

)
, (3.1)

where K (X,X) is a positive semi-definite matrix. The ith row and jth column of

K (X,X) is given by k(xi,xj) where k(·, ·) is the kernel/covariance function with a set

of hyper-parameters θ. The use of a kernel function allows the nonlinear functional

mapping fromX toY and provides a probabilistic nonlinear latent variable model [150].

In GPLVM, maximising L is done with respect to both X and θ, therefore, the optimal

estimates for X and θ are obtained jointly. This is a highly complex optimisation with

the possibility of multiple local minima [151]. As such, an appropriate initialisation of

the latent positions, X, is critical to guide the optimisation of GPLVM [36]. Which

initialisation method to use depends on the specific application [150].

In this chapter, the objective is to learn the spatial and temporal structures within the
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EEG data taking into account both local similarities and global dissimilarities. Since

GPLVM only preserves global dissimilarities [152], initialising X with respect to local

similarities within the data is appropriate [152, 150, 36]. Isomap has previously been

successfully applied in spatio-temporal motion capture data to build latent spaces for

controlling a robotic hand [255]. Furthermore, the use of Isomap to initialise GPLVM

has been reported to have superior performance in motion capture data [36]. Therefore,

Isomap is deemed an appropriate method to determine the initial latent positions.

Section 3.4.2 provides further information about the specific Isomap variant used and

its superiority over other methods that learn local similarities.

Covariance Function in GPLVM

In a GP, the covariance function k(·, ·) determines what type of functions can be

learned [3]. Furthermore, it is the covariance function that defines the regions of

similarity and dissimilarity between the input variables [211]. Therefore, in GPLVM,

k(·, ·) defines the regions of similarity and dissimilarity between the latent positions

xi ∈ X.

In this study, the Radial Basis Function (RBF) (also called the squared exponential

kernel) [211] is used as the covariance function for GPLVM. This is due to its inherent

properties and the ability to clearly interpret its hyper-parameters [3]. The RBF kernel

has the universal approximating property [182] and can be integrated against most

functions to obtain a smooth mapping from X → Y [3, 211]. The RBF covariance

function is given by

k (xi,xj) = σ2 exp

(
−∥xi − xj∥2

2l2

)
, (3.2)

where l and σ are the length-scale and the output-variance hyper-parameters, θ = [l, σ].

Here, the length-scale l determines how quickly the similarity between xi and xj drops

off as the distance between the latent positions increases [3, 211].

3.4.2 Isomap as an initialisation for GPLVM

Isomap [249] aims to preserve the geometry within nonlinear data by using the

geodesic distances (along the surface of the high dimensional data) between the data

points. It approximates the geodesic distances using weighted neighbourhood graphs to

project high-dimensional data to a lower-dimensional representation, preserving shape
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information [249]. This is the reason for choosing Isomap over methods such as KPCA

and t-SNE as the initialisation for GPLVM. The robust kernel Isomap variant [56] is

used in this study.

Robust kernel Isomap approximates the geodesic distance to project the data into

the latent space (i.e. lower-dimensional representation) while preserving topological

stability and providing a method for eliminating critical outliers [56]. The data points

are projected, according to how close the points are, in the data space (i.e. preserving

local similarities). In the analysis of EEG data, robustness to noise is vital as this

could affect the local similarities and the geodesic distance calculations. This is the

main reason for utilising robust kernel Isomap, instead of the competing LLE method

and its variants.

3.4.3 Kernel-Based nonlinear Manifold Learning of

High-dimensional EEG Data Using Isomap-GPLVM

Isomap-GPLVM is applied individually to the EEG data of each AD and HC partic-

ipant by reducing the temporal dimension. Following the definition of the data space

Y ∈ RN×D (in Section 3.4.1), here N = 23 (23 EEG channels, Section 3.3.1 and D

is the temporal dimension to be reduced. The associated latent space of each AD and

HC participant will be X ∈ RN×Q. The resulting kernel matrix, K (X,X) ∈ R23×23

of each participant, quantifies the spatio-temporal (dis)similarity information between

the 23 respective EEG channels as a generic measure of similarity. Fig. 3.1A illustrates

this.

Robust Kernel Isomap is a technique that approximates the geodesic distance be-

tween data points to project them onto a lower-dimensional representation (latent

space), while preserving local similarities (how close data points are) [56, 152]. The

size of the resulting lower-dimensional representation, denoted as Q, is determined by

the user. In the proposed approach, first, apply Robust Kernel Isomap to the high-

dimensional data to obtain an initial estimate of the lower-dimensional representation.

Then use GPLVM to refine the lower-dimensional representation based on the global

dissimilarities between data points (how far apart data points are). This will result in

the final latent-spaceX. The kernel matrix, K (X,X), from GPLVM, governs the map-

ping between the latent space X and the high-dimensional data space Y (see Section

3.4.1). This kernel matrixK will reflect both local similarities and global dissimilarities
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Figure 3.1: The Isomap-GPLVM method for evaluating the kernel (dis)similarity
matrices. A) Isomap-GPLVM: EEG data of each participant is first pre-processed via
FFT filtering, to remove unwanted frequency components and normalise the data (zero mean
and unit variance). Then participant specific kernel (dis)similarity matrices are evaluated
using Isomap-GPLVM. From the EEG data, Y, Isomap-GPLVM learns the spatio-temporal
local similarities and global dissimilarities within the data (see Section 3.4.3). This informa-
tion is embedded in the latent space X and is reflected in the kernel matrix K (see Section
3.4.1). The best set of values for l, σ and Q, from a grid search, are chosen based on
how well the kernel (dis)similarity matrices are distinguishable from HC to AD. B) Linear
SVM-MCV is used to assess this. The set of values for l, σ and Q that produce the best
average AU-ROC from the testing set is chosen. All channel pairwise similarities from the
kernel (dis)similarity matrices are used as features. This study uses EEG data from 20 HC
and 20 AD participants. Three epochs of EEG data from each participant are available (see
Section 3.3.1). From Epoch 1, 10 HC and 10 AD participants are chosen randomly for the
training set, and the remaining 10 HC and 10 AD are used for the testing set. Epochs 2 and 3
are used for the testing set. The feature space has two classes, AD and HC. The classification
is binary – AD is denoted as 1 and HC as 0. A linear SVM classifier is used on the fea-
ture space to determine which channel pairs (inter-relationships) are better at distinguishing
between groups.

that are learnt from the original data and embedded in X, and refer to it as the ker-

nel (dis)similarity matrix. The use of the RBF covariance function allows to quantify

this information in K as a generic measure of similarity. By reducing the temporal

dimension of the data, temporal information is naturally incorporated into the kernel

(dis)similarity matrix.

Given the choice of the latent dimension, Q, the best set of values, from a grid search,

for θ = [l, σ] is chosen based on how well the kernel (dis)similarity matrices are distin-

guishable from HC to AD. Linear SVM with Monte-Carlo cross validation (SVM-MCV)
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is used to assess this (see Section 3.4.4 and Fig. 3.1B). The initial conditions that result

in the highest average area under the receiver operator curve (AU-ROC) are chosen.

The grid search is done using the search ranges l = [2, 100] and σ = [2, 30] for several

latent dimensions, Q = [5, 8].

It was found in this study that fixing the length-scale l of the RBF covariance function

k(·, ·) in eq. (3.2), in the maximising of L in eq. (3.1), produces consistently better

average AU-ROC results from applying SVM-MCV (Fig. 3.1B and Section 3.4.4) across

latent dimensions Q = [5, 8]. Similar behaviour has been reported in [212] when using

GPLVM with a back-constrained [152] likelihood to preserve local similarities. The

appropriate fixed value of l and the initial condition of σ in k(·, ·), in maximising L, is

found using a grid search method. Therefore, in other words, the fixed value for the

length-scale l, as mentioned above, leads the manifold learning method to produce a

kernel matrix where its similarity measure is optimised for the differentiation of HC

and mild to moderate AD EEG data. The complete Isomap-GPLVM methodology is

illustrated in Fig. 3.1.

It should be noted that the pre-processed 23-channel EEG data of each participant

contains 2400 time samples (see Section 3.3.1), Y ∈ R23×2400. This can be nearly

perfectly represented (recovered from X → Y with a 95% confidence) in a latent space

X ∈ R23×Q, with Q ≥ 5 using Isomap-GPLVM. To achieve the same recovery accuracy,

the linear principal component analysis, requires a latent dimension of Q = 20.

3.4.4 Linear SVM and Monte-Carlo cross-validation

(SVM-MCV) procedure

This study comprises of 20 HC and 20 AD participants (see Section 3.3.1). From each

participant, three 12-second epochs of EO EEGs are used. The kernel (dis)similarity

matrices of the EEG data are produced for each AD and HC participant using Isomap-

GPLVM, for all three epochs. The pairwise (dis)similarity measures are used as features

to assess how well it can distinguish between the HC and AD groups.

Due to the relatively small number of participants, linear SVM is preferred, as it

has been shown to be effective with small datasets [184, 166, 281]. Furthermore, it

provides a globally optimum solution and the number of features does not affect the

classification complexity [184, 166, 127]. The use of a Monte-Carlo cross-validation

strategy is preferred because of its better performance with smaller data samples [234]
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and the asymptotically consistent property for linear (classification) models [236]. Ad-

ditionally, some AD participants could easily be detected, while others might not.

This depends on the severity of neurodegeneration of the participants with mild to

moderate AD used in this study. Since such information is not explicitly available, a

randomised cross-validation strategy is used to obtain a fair balance in the linear SVM

weights [236, 276, 277]. Furthermore, this also implies that including features from

more than one epoch of each participant in the training dataset could increase the risk

of participant-specific biases in the classifier. In this chapter, the aim is to find the

group differences in FC between HC and AD and thereby perform channel selection.

Therefore, the use of only one epoch in the training dataset and the rest in the testing

set, ensures the generalising capability of the linear SVM classifier and the weightings

skewed towards the most significant predictors.

Monte Carlo cross-validation is used where, from the first epoch, 10 HC and 10 AD

participants are randomly picked for the training set. The remaining 10 HC and 10

AD participants from the first epoch are used for testing. 1000 such random samples

are taken to generate 1000 different training and testing sets. As discussed previously,

the 2nd and 3rd epochs of all participants will also be included in the testing dataset

(Fig. 3.1B). AU-ROC from the 1000 testing sets is used as a metric to determine

the performance of the linear SVM classification. This procedure of linear SVM-MCV

is illustrated in Fig. 3.1B. The AU-ROC is preferred when considering the cost of

misclassification, especially in medical diagnosis, as it helps to minimise the likelihood

of misdiagnosis [288, 111, 50].

3.4.5 Kernel (dis)similarity matrix analysis

After the initial condition that produces the highest average AU-ROC is determined,

SVM-MCV is used to analyse the associated kernel (dis)similarity matrices and rank

the pairwise channel FC changes between HC and AD. The ranking is done using

the absolute values of the normalised average of the linear SVM weights (normalised

average linear SVM weights) resulting from the 1000 training sets (Section 3.4.4). The

averaged weights are normalised so that the highest absolute weight is 1 (Fig. 3.1B).

Due to the linearity in the classification method used, according to the superposition

principle, the averaging of the linear SVM weights can be easily interpreted. Two

approaches are used when implementing SVM-MCV:
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(A) Global EEG FC analysis. All pairwise (dis)similarities are used, as in Fig.

3.1B. This identifies the best channel pairwise comparisons that can distinguish

between HC and AD considering the global EEG interactions.

(B) Channel-specific EEG FC analysis. Each row of all kernel matrices forms

a channel-specific feature space, as shown in Fig. 3.2. SVM-MCV is applied to

each feature space individually. This ranks channel pairs considering a specific

channel and its connectivity with the rest of the EEG to identify any significant

region-specific FC changes between the HC and AD groups [192, 18, 19].

Feature space 

specific to Channel 1 

HC

AD 1

0

Feature space

specific to

Channel 23 

HC and AD participant

specific kernel matrices 

Figure 3.2: SVM-MCV: Channel-specific EEG FC analysis. All corresponding rows
from HC and AD kernel matrices are grouped into channel-specific feature spaces. Each fea-
ture space has two classes, i.e. AD (1) and HC (0). Individual linear SVM classifiers are
used on each feature space to determine which EEG channels, considering only its connec-
tivity with the rest of the EEG, are better at distinguishing between the groups. The same
SVM-MCV approach (as described in Section 3.4.4 and Fig. 3.1B), is now applied to each
individual channel-specific feature space.

3.4.6 Software packages used

The Isomap-GPLVM methodology is implemented in Python. GPLVM is applied

using the package ‘GPflow’ [175]. Robust kernel Isomap and the various distance

measures (Euclidean, Bray-Curtis, Correlation) are implemented using, the ‘Scikit-

learn’ package [203]. The ‘Dyconnmap’ package [170], is used for the FC measures

PLV, iPLV, PLI and iCoherence. Multiple hypothesis testing (in Results Section 3.5)

is done using the Mann–Whitney U test, using the ‘SciPy’ package [268], and the

Benjamini-Hochberg [29] false discovery rate controlling method, using the ‘MultiPy’

package [209].
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3.5 Results

The Isomap-GPLVM method introduced in Section 3.4 is applied to the EO and EC

EEG data (Section 3.3.1) separately. The best fixed value l and the initial condition

σ for k(·, ·) to maximise L, is determined via a grid search using the three 12-second

epochs according to the procedure explained in Section 3.4.3, using SVM-MCV (see

Section 3.4.4 and Fig. 3.1B).

Table 3.1 illustrates, the selected Q and l values for EO and EC conditions. Given

the choices for l, σ and Q, from the participant-specific kernel (dis)similarity matrices

evaluated (Fig. 3.1 A), the channel inter-relationships (FC) that are able to differen-

tiate well, between AD and HC groups are presented in this section, for both EO and

EC conditions. The FC analysis is done in two approaches: global EEG FC changes

and channel-specific EEG FC changes (see Section 3.4.5).

Table 3.1: Selected latent dimension and fixed length-scale values for EO
and EC conditions

condition
Latent

dimension Q
Fixed

length-scale l
Average
AU-ROC

EO 8 66.5 0.73
EC 8 83.5 0.77

Fig. 3.3 illustrates the bipolar montage EEG channels used in this work (see Sec-

tion 3.3) on a 10–20 international standard electrode placement map. The mid-points

between the 10–20 EEG overlap with certain 10–10 EEG electrode positions [130].

Therefore, the EEG channels used in this work (Fig. 3.3) measure the scalp electrical

activity at those overlapping positions (see Section 3.3). The corresponding underlying

cortical regions of these positions [219] are used as location markers. Table 3.2 shows

the 23 bipolar montage EEG channels used and the respective underlying cortical re-

gions.

It should be noted that the EEG has a low spatial resolution. EEG bipolar channels

measure the propagated electrical activity on the overlying scalp regions (Table 3.2).

Therefore, in this study when results are presented with respect to the cortical region

it does not refer to the explicit activity in the actual brain cerebral cortex.
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Figure 3.3: All the 23 channels, bipolar montage. EEG bipolar montage channels
mapped into a 10–20 international standard arrangement. The bold grey lines connecting any
two EEG electrodes indicate that these two electrodes result in a bipolar channel. Bipolar
channels give an estimate of the instantaneous electric field along the scalp surface midway
between the pair of electrodes.

Table 3.2: List of all 23 channels of the scalp EEG bipolar montage and
the corresponding underlying cortical regions

Channel index and name Corresponding cortical region
0 O1-O2

Occipital (O)

1 P4-O2
2 P3-O1
3 T5-O1
4 T6-O2
5 P3-PZ

Parietal (P)6 P4-PZ
7 T3-T5

Temporal (T)8 T4-T6
9 C3-P3

Centro-Parietal (CP)

10 C4-P4
11 CZ-PZ
12 C3-CZ
13 C4-CZ
14 T3-C3

Centro-Temporal (CT)15 T4-C4
16 F3-C3

Fronto-Central (FC)

17 FZ-CZ
18 F3-FZ
19 F4-FZ
20 F4-C4
21 F7-F3

Frontal (F)22 F8-F4

3.5.1 Comparison of kernel (dis)similarity against commonly

used functional connectivity measures

To demonstrate the efficacy of the proposed FC measure, comparisons with commonly

used FC measures are presented here. Table 3.3 shows the comparison of the AU-ROC
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values for the SVM-MCV global EEG FC analysis for both EO and EC conditions. It is

evident that, when considering all the pairwise kernel (dis)similarity measures (global

EEG FC analysis), the proposed Isomap-GPLVM based FC measure has a considerably

higher AU-ROC than other measures. This is especially true for the EC condition.

Table 3.3: Comparison of SVM-MCV global analysis with AU-ROC values
from the proposed FC measure against commonly used FC measures, under
EO and EC conditions.

FC measure AU-ROC EC condition AU-ROC EO condition
Isomap-GPLVM 0.77 ± 0.07 0.73 ± 0.03
Euclidean 0.61 ± 0.04 0.62 ± 0.04
Bray-Curtis 0.60 ± 0.02 0.61 ± 0.03
Correlation 0.68 ± 0.05 0.67 ± 0.04
PLV 0.74 ± 0.04 0.70 ± 0.04
iPLV 0.59 ± 0.05 0.64 ± 0.05
PLI 0.58 ± 0.06 0.63 ± 0.05
iCoherence 0.62 ± 0.04 0.58 ± 0.04

Fig. 3.4 illustrates the performance of the Isomap-GPLVM based FC measure with

respect to the channel-specific EEG FC analysis (see Section 3.4.5). The distribution

of the averaged AU-ROCs from all channel-specific feature spaces (Fig. 3.2) of the

respective FC measures, is shown as a box-plot in Fig. 3.4. The channel-specific EEG

FC analysis is used to identify the important FC changes, between HC and AD, with

respect to a specific cortical region. In both the EO and the EC conditions, the aver-

age AU-ROC of each channel-specific feature space is directly compared, between the

proposed method and other FC measures. In both conditions, it was observed that half

of the channel-specific feature spaces (Fig. 3.2) from Isomap-GPLVM attained higher

AU-ROC values, than the corresponding feature spaces in other FC measures. From

the remaining half, most feature spaces matched the performance of corresponding

feature spaces in other FC measures, while the rest underperformed. The data for all

the average AU-ROCs of all channel-specific feature spaces for all FC measures used,

in this comparison is not provided here. However, what is mentioned above is reflected

in the box-plots in Fig. 3.4. Therefore, in general, with respect to the channel-specific

EEG FC analysis, the proposed method improves the overall result under both condi-

tions. In the EO condition, Isomap-GPLVM performs significantly better compared to

other FC measures.
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EC

EO

Figure 3.4: Comparison of the proposed Isomap-GPLVM FC measure against
commonly used measures using SVM-MCV channel-specific approach. The distri-
bution of the average AU-ROC across all channel-specific feature spaces in each FC measure
is shown for both EO and EC conditions.

3.5.2 Kernel (dis)similarity matrices of HC and AD groups

The Mann–Whitney U test [169] is used for the element-wise statistical comparison

of the kernel matrices between the HC and AD groups. Due to the multiple statistical

comparisons done here, the p-values need to be approximately corrected [63, 209].

Also, due to the large number of comparisons (i.e. 23 EEG channels correspond to

253 channel combinations), controlling the false discovery rate (i.e. positive results

that could be in fact negative) [29]) is preferred over controlling the family-wise error

rate [63, 209]. Therefore, the Benjamini-Hochberg [29] false discovery rate controlling

(FDR) method is used to obtain the corrected p-values. Pairwise kernel (dis)similarities

(FC measures) that have statistically significant differences between the HC and AD
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groups (p-values < 0.05) are denoted as 1’s in significance matrix S ∈ R23×23, zero

otherwise. The significance matrices for both the EC and EO conditions are illustrated

in Fig. 3.5, where blue elements indicate the statistically significant changes in the

pairwise connectivities between the HC and AD groups.
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Figure 3.5: The significance matrices, S, for both EC (A) and EO (B) conditions.
The figures show, for both EC and EO conditions, the statistical significance of all the elements
of the kernel (dis)similarity matrices between the HC and AD groups (based on all epochs of
all participants). The corresponding channels are provided in Table 3.2. The significant FC
changes are indicated in blue.

From Fig. 3.5, it is evident that there are localised FC changes within certain un-

derlying cortical regions (e.g. within the centro-parietal EEG region) and global EEG

FC changes between regions (e.g. between the centro-parietal and occipital EEG re-

gions). This can be a reflection of the specific patterns of dysfunction that have been

mentioned in the literature, in which AD EEG data exhibits a specific change in FC

compared to HC [242, 63, 64] and connectivity in certain regions of the EEG being

affected [73, 66, 256, 6, 80, 14]. These FC changes could be linked to within-frequency

and cross-frequency coupling between brain regions [20, 222].
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3.5.3 Global functional connectivity changes and channel

pair selections

All pairwise kernel (dis)similarities are used (Fig. 3.1B) to determine, in a global

sense, which spatio-temporal FC differences between cortical regions (EEG channels)

are more important in distinguishing between the HC and AD groups. Table 3.4 and

3.5 shows the top 20 channel pairs that are ranked according to the averaged normalise

linear SVM weights (Section 3.4.5, Fig. 3.1B) for EO and EC conditions, respectively.

EEG channel pairs in these two tables are arranged in a way so that channels related

to the same underlying cortical regions can be grouped.

Table 3.4: EO condition. Ranking of (dis)similarity features of channel-
pairs–only the top 20 are shown

Channel Pairs
(Indexes and names)

Averaged normalise
linear SVM weight

Ranking
Connecting

regions
11 1 CZ-PZ P4-O2 0.84 6

CP - O
13 1 C4-CZ P4-O2 0.78 7
9 1 C3-P3 P4-O2 0.68 12
12 3 C3-CZ T5-O1 0.68 13
13 4 C4-CZ T6-O2 0.60 19
21 3 F7-F3 T5-O1 0.88 3

F - O22 3 F8-F4 T5-O1 0.72 8
22 4 F8-F4 T6-O2 0.59 20
18 9 F3-FZ C3-P3 0.68 11 FC - CP
18 17 F3-FZ FZ-CZ 0.68 14 FC - FC
16 1 F3-C3 P4-O2 1.00 1

FC - O
17 1 FZ-CZ P4-O2 0.88 4
16 4 F3-C3 T6-O2 0.71 10
16 2 F3-C3 P3-O1 0.64 16
20 1 F4-C4 P4-O2 0.63 17
5 3 P3-PZ T5-O1 0.91 2

P - O
5 2 P3-PZ P3-O1 0.86 5
5 1 P3-PZ P4-O2 0.72 9
6 1 P4-PZ P4-O2 0.66 15
6 3 P4-PZ T5-O1 0.62 18

Tables 3.4 and 3.5 show that inter-regional FC between EEG channels from the

occipital region and other regions, i.e. parietal (P–O, Fig. 3.6C), centro-parietal (CP–

O, Fig. 3.6A), and fronto-central (FC–O, Fig. 3.6B), attain a considerable space

among the top 20 rankings. This is observed in both EO and EC conditions. However,

in the EC condition this is specific to the right occipital region (channels P4-O2 and

T6-O2, Table 3.5). In particular to the EO condition, as shown in Table 3.4, FC

between EEG channels from the frontal and occipital regions (F–O, Fig. 3.6D) have

a significant presence within the top 20 weightings. Therefore, this suggests that

connectivity between the occipital region and those regions mentioned above, respective
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to each condition, can be important in identifying people with mild to moderate AD

as shown in Fig 3.6.

Table 3.5: EC condition. Ranking of (dis)similarity features of channel-
pairs–only the top 20 are shown

Channel Pairs
(Indexes and names)

Averaged normalise
linear SVM weight

Ranking
Connecting

regions
9 4 C3-P3 T6-O2 0.99 3

CP - O

11 4 CZ-PZ T6-O2 0.96 4
13 4 C4-CZ T6-O2 0.90 5
10 4 C4-P4 T6-O2 0.90 7
11 1 CZ-PZ P4-O2 0.80 9
12 4 C3-CZ T6-O2 0.77 11
9 1 C3-P3 P4-O2 0.72 14
22 15 F8-F4 T4-C4 0.68 17 F - CT
21 4 F7-F3 T6-O2 0.62 19 F - O
17 4 FZ-CZ T6-O2 1.00 1

FC - O

16 4 F3-C3 T6-O2 1.00 2
16 1 F3-C3 P4-O2 0.80 10
17 1 FZ-CZ P4-O2 0.75 12
18 4 F3-FZ T6-O2 0.70 15
20 4 F4-C4 T6-O2 0.62 20
1 0 P4-O2 O1-O2 0.67 18 O - O
6 4 P4-PZ T6-O2 0.90 6

P - O
5 4 P3-PZ T6-O2 0.86 8
5 1 P3-PZ P4-O2 0.74 13
6 1 P4-PZ P4-O2 0.70 16

A B DC

Figure 3.6: Inter-regional connectivity between EEG channels from the regions
shown can be important in identifying people with mild to moderate AD. A)
CP–O, B) FC–O, C) P–O for both EO and EC conditions while D) F–O only for the EO
condition (Tables 3.4 and 3.5). EEG channels related to the corresponding cortical regions are
shown in different colours. Occipital region (O)–purple, Parietal region (P)–orange, Centro-
parietal region (CP)–green, Fronto-central region (FC)–blue and Frontal region (F)–red. It
shoud be noted that bipolar channels give an estimate of the instantaneous electric field along
the scalp surface midway between the pair of electrodes
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3.5.4 Channel-specific functional connectivity changes and

channel pair selections

In this section, the results of the channel-specific EEG FC analysis (Section 3.4.5,

Fig. 3.2), using kernel (dis)similarity matrices, are presented. This approach deter-

mines, at the EEG sensor level, significant changes in FC specific to the cortical region

between the HC and AD groups. The channel-specific approach provides another layer

of information.

To form a channel-specific feature space, each row of all kernel matrices that cor-

respond to a particular channel is used (Fig. 3.2). SVM-MCV is then applied to

each feature space individually to identify individual EEG channels that exhibit dis-

tinguishable changes in FC with the rest of the EEG data. The average AU-ROC of the

channel-specific feature space is used as an evaluation metric. The normalised average

linear SVM weights (Section 3.4.4) of the channel-specific feature space are used to

rank the importance of FC changes relative to the channel being considered (Section

3.4.5).

Table 3.6: The average AU-ROC values of the channel-specific feature
spaces for the EO condition. Channel-specific feature spaces with average
AU-ROC > 0.7 are only shown

Channel-specific
feature space

Channels with normalised
average weight 0.9-1

Average AU-ROC of
feature space

F3-FZ P4-O2 0.758
FZ-CZ P4-O2, F3-FZ 0.737
F3-C3 P4-O2 0.734
C3-P3 P4-O2, T5-O1 0.733
CZ-PZ P4-O2, F3-FZ 0.719
F4-C4 P4-O2, F3-FZ 0.714
P3-PZ T5-O1 0.713
C4-P4 P4-O2 0.712
T5-O1 T6-O2, F7-F3 0.710
C3-CZ P4-O2, T5-O1 0.706

Tables 3.6 and 3.7 report channel-specific feature spaces with an average AU-ROC

> 0.7 for the EO and EC conditions, respectively. These tables also report the kernel

(dis)similarity features that attain a high rank in the feature space being considered

(i.e. normalised average linear SVM weight 0.9-1). Fig. 3.7 illustrates the channel-

specific feature spaces with an average AU-ROC > 0.7 mapped to the placement of

10–20 international electrodes.

As seen from Fig. 3.7, the EEG channels associated with the channel-specific feature
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Table 3.7: The average AU-ROC values of the channel-specific feature
spaces for the EC condition. Channel-specific feature spaces with average
AU-ROC > 0.7 are only shown

Channel-specific
feature space

Channels with normalised
average weight 0.9-1

Average AU-ROC of
feature space

C3-P3 T6-O2 0.803
CZ-PZ T6-O2 0.799
T6-O2 T5-O1, T3-T5, F7-F3 0.797
C4-P4 T6-O2 0.792
F3-FZ T6-O2 0.790
P3-PZ T6-O2 0.785
FZ-CZ T6-O2 0.772
C3-CZ T6-O2 0.769
F3-C3 T6-O2 0.764
P4-O2 F3-C3, F4-FZ, F8-F4 0.758
F4-C4 T6-O2 0.757
C4-CZ T6-O2 0.746
T4-C4 F8-F4 0.721

BA

Figure 3.7: EC (A) and EO (B) channel-specific feature spaces with average AU-
ROC > 0.7. The channel-specific feature spaces with average AU-ROC > 0.7 are mapped
into the 10–20 international electrode placement. This is illustrated for both EC and EO
conditions. These channels lie mostly within the fronto-parietal regions of the cortex for both
conditions.

spaces with an average AU-ROC > 0.7 lie mostly within the fronto-parietal regions of

the cortex for both conditions. However, in the EC condition (Fig. 3.7A), channel-

specific feature spaces associated with the EEG channels in the right hemisphere appear

to be important (average AU-ROC > 0.7). In the case of mild to moderate AD,

significant FC changes between these EEG channels and the rest of the EEG is observed

from the proposed FC analysis methodology.
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3.6 Discussion

The results presented in the previous section indicate that certain key areas of the

brain are affected by AD (Fig. 3.5, 3.6 and 3.7). In order to identify whether Isomap-

GPLVM FC results are consistent with fMRI results of mild to moderate AD, first, it

is necessary to determine how the bipolar channels used in this study (Section 3.3.1)

relate to the functional connectivity networks [278] of the brain.

Yeo et. al. [278] revealed the existence of seven primary functional networks us-

ing time correlations between the fMRI of 1,075 Regions of Interest (ROI). These

networks are shown to be valid for multiple participants and robust against various

data processing methods. The seven functional networks are visual network (VN),

somatomotor network (SN), dorsal attention network (DAN), ventral attention net-

work (VEN), limbic network (LN), fronto-parietal network (FPN) and default mode

network (DMN). Based on [278], Rojas et. al. [219] used the electrode positions of the

international standard 10–20 EEG and the 10–10 EEG as seed positions to provide a

reproducible model demonstrating the relationship between the 10–20 EEG electrode

positions and the seven functional networks revealed by [278]. This is carried out by

simultaneous acquisition of EEG and resting-state fMRI (rs-fMRI). Rojas et. al. used

the Sørensen–Dice index (F1 score) to quantify the similarities between the positions

of the 10–20 electrode placements and the seven functional networks mentioned above.

The bipolar EEG channels used in this study estimate the electric field midway be-

tween the pair of electrodes that form the said channel [195]. Therefore, to determine

approximate similarities between a bipolar channel (Fig. 3.3) and the functional net-

works, the average of the Sørensen–Dice indices of the two electrodes (Figure 9 and

Supplementary Table 3 in [219]) that form the bipolar channel is used. An example of

this is shown in the appendix (A).

Fig. 3.8 illustrates the relationship between the bipolar EEG channels used in this

study and functional networks FPN, DAN, VAN and DMN. In mild to moderate AD,

the connectivity changes within networks FPN, DAN, VAN and DMN have been pre-

viously reported to be significant [20, 192, 282, 88]. Therefore, the following discussion

will only focus on these networks, as shown in Fig. 3.8.

For the EO condition, changes in FC between the cortical regions (EEG channels)

shown in Fig. 3.6 B and D can be speculated as VAN related [282]. Considering both

EO and EC conditions, changes in the inter-regional FC (as shown in Fig. 3.6 A, B, C
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Figure 3.8: Relationship between the bipolar EEG channels used and the func-
tional networks. The functional networks discussed in relation to this study and the bipolar
channels used is illustrated here. FPN (fronto-parietal network), DAN (dorsal attention net-
work), VAN (ventral attention network) and DMN (default mode network).

and D) can be linked to changes in connectivity within the FPN and DMN networks

[282]. Fig. 3.6 A and C can be linked to DAN [282, 88] while Fig. 3.6 B can be linked

to VAN.

The results in Section 3.5.4 show the channels that have the most significant FC

changes with the rest of the EEG (Fig. 3.7). This can be a reflection of the FC

changes in FPN, DAN, VAN and DMN networks. The EEG channels shown in Fig.

3.7 are mostly related to the fronto-parietal region of the cortex (fronto-central and

centro-parietal regions combined, Table 3.2). This region has been reported to play an

important role in the diagnosis of AD in several studies using fMRI [192] (prodromal

AD), rs-fMRI [282, 88] (mild, moderate and severe AD) and EEG [20] (mild AD).

Neufang et al. [192] pointed out, at the early stages of AD, the volume of regional

grey matter is related to the reduction in the effective connectivity (through dynamic

causal modelling) in the fronto-parietal region. While Babiloni et al. [19] found that

a measure of nonlinear inter-dependence (via the synchronisation likelihood) is signifi-

cantly reduced in the fronto-parietal channels of eyes-closed EEG in mild AD patients.

These studies are consistent with the Isomap-GPLVM FC results in showing that the
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connectivity between the EEG channels in the fronto-parietal region (Fig. 3.7) and the

rest of the brain regions have significantly changed in mild to moderate AD.

3.7 Chapter Summary

A novel FC analysis and channel selection method based on kernel-based nonlinear

manifold learning is presented in this work. The FC measure takes both local and

global spatio-temporal (dis)similarities between EEG channels into account and ranks

the pairwise FC measures that are better at distinguishing HC from patients with

neurodegenerative diseases. It was demonstrated how a kernel-based (dis)similarity

matrix via manifold learning can be used as a measure of spatio-temporal FC between

EEG channels and to determine the important inter-relationships in characterising

patients with mild to moderate AD. The methodology presented can determine changes

in cortical (EEG channel) inter-relationships that are crucial in distinguishing AD

patients from HCs. The chapter also demonstrates its efficacy against other commonly

used FC measures. Furthermore, the results reported in this chapter are consistent

with other previous studies while linking connectivity changes to functional networks.

The findings from this chapter will be used in the following chapters to investigate

the detailed forms of nonlinearity using nonlinear dynamic modelling [32] and nonlinear

causality measures in the time and frequency domains [286, 102, 103]. These in-depth

dynamical analysis methods will be applied to the channel pairs and regions determined

using the Isomap-GPLVM method. Thus, enabling the further study of the underlining

dynamic processes, linear and nonlinear dynamic features, in patients with AD.



Chapter 4

Information Flow at an EEG Sensor

Level Between Specific Brain

Regions that are Significant to

Alzheimer’s Disease

4.1 Introduction

The temporal interactions between brain regions even at rest show a significant level

of complexity [65, 87]. Therefore, evaluating brain connectivity during the resting-

state has become a vital area of research in neuroscience as it provides insight into

the functional organisation of the brain, helping to identify distinct resting-state brain

networks [278] and their interactions. This type of investigation is popular not only

for comprehending the mechanisms underlying the typical resting-state but also for

detecting abnormalities in pathological conditions such as Alzheimer’s, schizophrenia,

and depression [178, 97, 98, 70]. While fMRI is commonly used to estimate connectivity,

there is a growing interest in utilising electrophysiological data obtained from EEG or

MEG due to their higher temporal resolution.

In Chapter 3, the FC of the resting-state EEG was analysed to determine the impor-

tant changes in the pairwise statistical dependency between HC and AD groups. This

Chapter aims to use these subsets of EEG channel-pairs to conduct an exploratory

52
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analysis to investigate the directed connectivity (EFC, see Chapter 2 Section 2.3) or

how the information flow between these channels varies in time between healthy co-

horts and patients with mild to moderate AD. This information will be used as prior

knowledge to build input-output dynamic models to analyse the significant linear and

nonlinear dynamical changes in the cortex of patients with AD.

The measurement of information transfer can be accomplished through various di-

rected information metrics, with transfer entropy being widely recognized and well

researched, especially in neuroscience to investigate the flow of information and in-

teractions between different brain regions or neuronal populations [45, 266, 258]. The

model-free nature of transfer entropy, its ability to capture dynamic dependencies [131]

and its sensitivity to higher order correlations [193], makes it appealing for exploratory

analysis of unknown nonlinear dynamical interactions [272].

4.2 Application of Transfer Entropy in

Neuroscience

Transfer entropy, introduced by Schreiber [228] and Paluš [199], has shown to be a

valuable tool in numerous application scenarios across diverse fields. These fields in-

clude neuroscience [266, 258], physiology [71, 72] and complex systems theory [160, 4].

The extensive range of these application fields indicates that transfer entropy serves

as a valuable and fundamental measure for comprehending complex systems, such as

those that can be described as networks of interacting processes [54, 201]. However, it

should be noted that the relationship between transfer entropy and the connectivity

strength between interacting processes can exhibit non-monotonic behaviour. Addi-

tionally, transfer entropy is responsive to internal changes within the sub-processes.

Therefore, care must be taken when interpreting transfer entropy as a measure of con-

nectivity strength [54]. Despite this, an important aspect of transfer entropy over other

methods such as DCM is that it does not require prior assumptions about data gener-

ation, i.e., it is a model-free inference on EFC. Due to this advantage, transfer entropy

is widely employed in neuroscience to evaluate directed connectivity in EEG/MEG

datasets where no prior assumptions are available [61, 70, 1, 200, 260, 238, 123]. Re-

cently variants of transfer entropy such as phase transfer entropy [165] has been intro-

duced to comprehend information flow between two processes based on phase dynamics.
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Transfer entropy has been used to assess the information flow between neurons

[161, 266, 258]. Despite numerous studies that have used entropy, mutual information

and complexity measures such as Lempel-Ziv complexity on scalp EEG to understand

cognitive deficits [241, 283, 62, 177, 179], the use of transfer entropy on the resting-state

EEG is limited. In particular, at the time of writing, the study conducted by McBride

et al. [178] is the only application of transfer entropy for diagnosing AD based on the

EEG (this is based on a keyword search on Scopus). Consequently, the work presented

in this chapter, which focuses on an exploratory analysis of time-varying EFC between

brain regions that show significant FC changes in mild to moderate AD, using the

EEG, is novel.

4.3 Transfer Entropy: Theory and methods

In comparison to the quality of prediction of future instances of a process Y , when

only the past instances of Y are considered. Causality, as defined by Wiener [274] and

Granger [90] is the improvement in the prediction of Y when incorporating the past

instances of another process U along with the past of Y . If there is an improvement

in the prediction then it is an indication of U impacting Y or information flow from

process U to process Y .

In information theory, Shannon entropy [235, 214] quantifies the reduction in un-

certainty of a random discrete variable when the variable is measured. Causality on

the other hand is the increase of prediction power. Associating uncertainty reduction

with improvement in prediction, causality can be expressed in terms of information-

theoretic concepts [228]. Transfer entropy incorporates the causal principle within the

framework of information theory, utilizing conditional probabilities [228, 199, 266] to

infer EFC from data. Essentially, if signal U influences signal Y , then the probability

of Y given its past will differ when considering the probability of Y given its past and

the past of U . Another way to understand this is that the Shannon entropy of the

current instance of Y decreases when past instances of U is incorporated alongside the

past instances of Y [261].

4.3.1 Definitions of Transfer Entropy

Given two stochastic processes U and Y whose current instances in time are u(t) and

y(t) respectively, where t is a time instance. Defining Unb
t and Yna

t as the respective
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time-dependent state vectors of U and Y where

Yna
t = [y(t− 1) , y(t− 2) , · · · , y(t− na)] . (4.1)

Unb
t = [u(t− 1) , u(t− 2) , · · · , u(t− nb)] (4.2)

nb and na are the dimensions of the delay embedding space (embedding dimensions)

[248], which describes the number of past instances of time used to reconstruct the

phase space of the respective process [133, Chapter 3]. The time difference between

each sample of time, for example between t and t−1, is△t which is the embedding delay

(sampling time). Schreiber [228] proposed a measure of causality within the information

theoretic framework, in which, if the dynamics of Y are completely independent of the

past instances of U or if there is no information flow from U to Y , then

p (y(t) | Yna
t ,Unb

t ) = p (y(t) | Yna
t ) . (4.3)

To identify any deviation from this relationship, i.e. presence of information flow

from U to Y . The expected Kullback-Leibler divergence between the two probability

distributions in eq. (4.3) is taken to define the transfer entropy from U (source) to Y

(target) as

TE (U → Y ) =
∑

y(t), Yna
t , U

nb
t

p (y(t),Yna
t ,Unb

t ) log2

(
p (y(t) | Yna

t ,Unb
t )

p (y(t) | Yna
t )

)
. (4.4)

Transfer entropy can also be derived using Shannon entropy [235]. Let ΩY be the

probability space of the stochastic process Y where p(yω) is its distribution, yω ∈ ΩY

are the possible instances of Y and
∑

yω∈ΩY
p(yω) = 1. The Shannon entropy of the

process Y is then given by

H(Y ) = −
∑

yω∈ΩY

p(yω) log2 p(yω) (4.5)

where the summation over yω is the sum of all possible instances of Y . The conditional

entropy of the process Y given the process U is

H(Y | U) = −
∑

yω∈ΩY

p(yω)
∑

uω∈ΩU

p(yω | uω) log2 p(yω | uω) (4.6)



CHAPTER 4. ANALYSIS OF INFORMATION FLOW... 56

where ΩU is the probability space of the stochastic process U where p(uω) is its distri-

bution. In eq. (4.6) the summation over yω and uω is the sum of all possible instances

of Y and U respectively. Similarly, the joint entropy between the processes Y and U

is given as

H(Y, U) = −
∑

yω∈ΩY

∑
uω∈ΩU

p(yω, uω) log2 p(yω, uω). (4.7)

The relationship between H(Y | U) and H(Y, U) is

H(Y, U) = H(U) +H(Y | U) = H(Y ) +H(U | Y ). (4.8)

Paluš showed that transfer entropy can be defined using conditional mutual information

[199] which finally reduces to

TE (U → Y ) = H(y(t) | Yna
t )−H(y(t) | Yna

t ,Unb
t ). (4.9)

Eq. (4.9) can be re-written in terms of joint entropy using the relationship in eq. (4.8)

as

TE (U → Y ) =

(
H(y(t),Yna

t )−H(Yna
t )

)
−
(
H(y(t),Yna

t ,Unb
t )−H(Yna

t ,Unb
t )

)
.

(4.10)

From the definition given in eq. (4.9), it is clear that transfer entropy measures the de-

crease in uncertainty of the current instance of Y , y(t), when the information about its

past instances, Yna
t , is included alongside the past instances of U , Unb

t . If TE (U → Y )

has a value other than zero, it implies that past instances of U influence the future

instances of Y . Therefore, transfer entropy is an asymmetric measure. This asym-

metry in transfer entropy is an important characteristic for determining the direction

of information flow between Y and U . If there is no information flow from U to Y

then TE (U → Y ) = H(y(t) | Yna
t ). Therefore, following [89, 106] a normalisation of

TE (U → Y ) can be given as

NTE (U → Y ) =
TE (U → Y )

H(y(t) | Yna
t )

. (4.11)

The process of normalisation is beneficial as it allows for the comparison of information

flows without considering the level of dependency between y(t) and its past instances

Yna
t [89]. By doing so, it helps to standardise the measurement in relation to the varying
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complexities of U and Y . For the interested reader to know more about transfer entropy

and the derivations shown here please refer to [228, 199, 273, 39].

4.3.2 Estimation of Transfer Entropy

The estimation of transfer entropy, as seen in the previous subsection, involves the

estimation of joint/conditional entropy or mutual information, which eventually in-

volves the estimation of probability densities. One potential approach to designing an

estimator involves identifying the parameters that most accurately match the sample

probability densities with a recognized distribution. Although this method is computa-

tionally simple, it assumes a particular model for the probability distribution, which can

be challenging to justify without additional limitations. Non-parametric methods like

fixed and adaptive histogram or partition techniques are commonly employed and well-

known [168, 31, 153, 265, 17, 220]. However, alternative non-parametric approaches,

such as Kernel Density Estimator (KDE) or k -nearest-neighbour estimators (KNN),

have demonstrated greater efficiency and accuracy in handling data while avoiding ar-

bitrary decisions associated with binning [228, 131, 267]. Nevertheless, these methods

are computationally expensive [47, 105] and necessitate a substantial volume of neural

data to converge, unless the probability distributions underlying the data are ade-

quately smooth [267, 190]. Consequently, Bullmann et. al. and Heer et. al. [47, 105]

has shown that applying a recursive filter or a Gaussian filter on multivariate histograms

yields good approximations to high-dimensional Probability Density Function (PDF)s

and is comparable to KDE. Furthermore, this technique is computationally efficient

in several orders of magnitude when compared to KDE. Therefore, in this study, the

above mentioned technique for the estimation of PDFs will be used. However, it is

necessary to employ suitable surrogate techniques in order to mitigate the bias and

variance introduced by the approximation technique for estimating transfer entropy

[31, 265].

The nonlinear nature in the electrophysiology of brain activity has been well studied

[242, 42] and the EEG does indeed exhibit nonlinear dynamics such as Cross-Frequency

Coupling (CFC) effects [48, 115, 42]. This study is concerned with the analysis of

cortical nonlinear dynamical changes in AD using the EEG. Therefore, the random

phase surrogate method [208, 142] is employed to statistically assess the significance of

the transfer entropy measure to identify nonlinear dependencies [193]. Random phase

surrogate testing involves the application of the Fourier transform, randomising the
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phase information and then applying the inverse Fourier transform to obtain time-series

with only linear dependencies. This will destroy any higher-order nonlinear correlation

[208, 193, 142] within the data. Several surrogates of the source time-series, Us(i), are

generated where i = 1, · · · ,M and M is the number of surrogates. Then the transfer

entropy measures, TEi(Us(i) → Y ), between these surrogate sources and the target,

Y , are used to make a distribution of the null hypothesis. If the transfer entropy,

TE(U → Y ), from the original source, U , is outside the 5th percentile and the 95th

percentile of the null hypothesis distribution, then TE(U → Y ) is considered to be

significant. Thus, the presence of significant nonlinear dependencies in the information

flow from U to Y . This particular method for statistical significance is used because

the null hypothesis distribution can be non-Gaussian. Therefore, if TE(U → Y )

is significant after accounting for bias and possible spurious nonlinear dependencies

by using the above mentioned procedure, similar to [172, 106], the effective transfer

entropy is given by

ENTE (U → Y ) =
TE (U → Y )−M

(
TEi(Us(i) → Y )

)
H(y(t) | Yna

t )
(4.12)

where M() denotes the median.

4.4 Exploratory analysis of information flow

within the EEG

The aim of this chapter is to understand how the direction of information flow within

the subset of pairwise channels (See Chapter 3, Subsection 3.5.3, Tables 3.4 and 3.5)

that exhibit significant FC changes between HC and AD groups. The FC (statistical

dependencies) between these channels were examined using the full 12 seconds of the

respective EEG epochs (Section 3.3) However, the direction of information flow between

these channels can change with time [196, 107, 263]. Therefore, an exploratory analysis

is conducted where transfer entropy is applied within certain overlapping time windows

to identify any statistically significant differences in the direction of information flow

between HC and AD groups.

The choice of window size is a critical factor that can significantly impact connectiv-

ity estimates. When shorter windows are used, the efficiency of connectivity estimates
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decreases and there is a possibility of magnifying the perceived variability in connectiv-

ity over time [154, 108, 149, 159]. Park et al. [202] showed that there is an improvement

in the consistency of connectivity estimates by employing time-varying models. This

highlights the significance of capturing and modeling the dynamic changes in connec-

tivity over time. Leonardi and Van de Ville propose setting the minimum window

size to be as large as the period of the lowest frequency component in resting state

data [154]. One concern when using longer time windows is, the time-series within

the window can be non-stationary, which can lead to spurious non-linear dependencies

and thus affects the transfer entropy estimations [275, 210]. However, non-stationary

effects could arise due to the physiological phenomena of the actual biophysical system

rather than spurious effects and should not be avoided [153]. Furthermore, there are

certain forms of CFC that are indeed non-stationary [16, 188, 58, 225]. The issues

of spurious non-linear dependencies can be resolved by the random phase surrogate

method that is being used in this study (see Subsection 4.3.2), which is specifically

designed to mitigate this type of issue [193]. Nevertheless, it should be noted, when

it comes to the EEG, there has not yet been a systematic approach to determining

the appropriate window length [263]. As proposed by Van de Steen et al. [263], one

potential strategy is to investigate the relationship between window length and the

amount of information gained, in order to make a well-founded decision.

In the context of mild to moderate AD, many studies have pointed out the impor-

tance of delta, theta, alpha and beta frequency ranges in both spectral and CFC based

analysis [121, 138, 80, 269, 110, 136]. Since this study is using data from mild to mod-

erate AD patients, the transfer entropy estimates for both HC and AD EEG data will

be estimated within the frequency bands 2− 30Hz, which covers the above mentioned

bands [21]. For computational efficiency, the data will be down-sampled to 100Hz,

where the Nyquist frequency is 50Hz.

Let U and Y be a channel-pair being considered. The effective normalised transfer

entropy, ENTEna,nb
w (U → Y ), for a specific combination of delays na and nb within

a time window w is estimated using the methodology outlined in Subsection 4.3.2.

w = 1, · · · ,W in which W is the total number of windows. For example, a 3-second

50% overlapping sliding-window along 12 seconds of EEG data, W = 6. na and nb are

the respective delay embedding dimensions of Y and U , eq. (4.1) and (4.2) respectively.

As previously mentioned, a range of frequencies are affected in mild to moderate
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AD. Therefore, the dynamic interactions between EEG channels can happen along

a broadband of frequencies. Therefore, in order to capture the complex dynamic

nonlinear dependencies between the channel-pair U and Y , specific to the direction

U → Y , the respective delay embedding dimensions na and nb need to be estimated

appropriately. This is done using a grid search where the effective transfer entropy

ENTEna,nb
w (U → Y ) is evaluated for several combinations of na and nb. The com-

bination n′
a and n′

b that results in the maximum effective normalised transfer en-

tropy, ENTE
n′
a,n

′
b

w is chosen. The grid search is done for the ranges na = [1, 10]

and nb = [1, 10]. Effective normalised transfer entropy is evaluated using 50 surrogates

as no difference in the results was seen when more than 50 surrogates were included.

This is done for all time windows and the time window with the highest ENTE
n′
a,n

′
b

w ,

ENTE
n′
a,n

′
b

max is finally selected. ENTE
n′
a,n

′
b

max (U → Y ) will indicate the highest level of

information flow (dynamic nonlinear dependence), within the 12-second EEG, between

the channel-pair U and Y in the direction U → Y . ENTE
n′
a,n

′
b

max for the channel-pair

U and Y is evaluated for both directions U → Y and Y → U . This is because, in

electrophysiological signals, dynamic interactions (information flow) can take place in

different directions [124, 107, 69].

This study uses EEG data from 20 HC and 20 AD participants. From each participant

3 epochs of 12-second EEG data are available (Section 3.3). Considering a specific

direction, ENTE
n′
a,n

′
b

max , for a channel-pair, is evaluated individually for all the epochs of

a participant. The highest ENTE
n′
a,n

′
b

max from all the epochs, ENTE
n′
a,n

′
b

max′ is selected from

each participant for statistical comparison between the AD and HC groups with respect

to the direction of information flow. ENTE
n′
a,n

′
b

max′ (U → Y ) will indicate the highest level

of information flow (dynamic nonlinear dependence) in a participant, with regard to

all 12-second EEG epochs, between the channel-pair U and Y in the direction U → Y .

Essentially, from a dynamic systems perspective, ENTE
n′
a,n

′
b

max′ indicates the highest level

of nonlinear dynamic interaction between a channel-pair, in a specific direction.

For a channel-pair U and Y , ENTE
n′
a,n

′
b

max′ (U → Y ) and ENTE
n′
a,n

′
b

max′ (Y → U) are eval-

uated for all HC and AD EEG data for all three 12-second epochs (Section 3.3). The

Mann–Whitney U test [169] is performed to identify any statistically significant differ-

ences (p-value ≤ 0.05) between HC and AD ENTE
n′
a,n

′
b

max′ metrics with respect to the

direction of information flow U → Y and Y → U . This is done for selected channel-

pairs, in both Eyes-open (EO) and Eyes-close (EC) cases (Chapter 3, Subsection 3.5.3,

Tables 3.4 and 3.5 respectively). The Benjamini-Hochberg [29] false discovery rate
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controlling method is used to account for multiple comparisons.

In summary, the EEG data of selected channel-pairs are filtered between 2 − 30Hz

(using the FFT method, see Section 3.3) and down-sampled to 100Hz. The effective

normalised transfer entropy between the channel-pairs is estimated along a sliding time

window across the 12-second epoch. The highest effective normalised transfer entropy

from all time windows, ENTE
n′
a,n

′
b

max is selected with respect to each direction between

the channel-pairs. ENTE
n′
a,n

′
b

max is evaluated for all HC and AD participant data. The

highest value of this metric across all epochs, ENTE
n′
a,n

′
b

max′ , of each participant is then

used for statistical comparisons between HC and AD groups to identify significant

differences in the information flow with respect to the direction of flow. The next

section will highlight these results followed by a discussion.

4.5 Results and Discussion

In the previous chapter (Chapter 3), a subset of channel pairs that have significant

FC (pairwise statistical dependencies) between HC and AD groups are identified. It

was shown that these channel pairs and its relation to functional networks are con-

sistent with those obtained from previous studies using fMRI, rsfMRI and EEG. In

this chapter, the information flow between these channel-pairs is assessed in different

time windows using transfer entropy. This is an exploratory analysis to investigate the

statistically significant changes in information flow (directed dynamic nonlinear depen-

dencies), between the selected channel-pairs, in mild to moderate AD in comparison

to HC. This information will then be used as prior knowledge in the next chapter to

understand, at an EEG sensor level, the cortical nonlinear dynamical changes between

HC and AD groups. This type of analysis using the resting-state EEG in the context

of AD is novel.

In Section 4.4, the question of what time window to use was discussed. It is rec-

ommended to set the minimum window size to be as large as the period of the lowest

frequency component in resting-state data. The lowest frequency considered in this

study is 2Hz, a period of 0.5 seconds. In this study sliding time windows of lengths 1,

2, 3 and 4 seconds are used. This is to allow a long enough time window to capture

any low-frequency related interactions [110] between the EEG channel-pairs consid-

ered (Chapter 3, Subsection 3.5.3, Tables 3.4 and 3.5). The sliding window with a

50% overlap is considered to reduce computational time. The grid search for the delay
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embedding (eq.(4.1) and (4.2)) is done for the ranges na = [1, 10] and nb = [1, 10].

Effective normalised transfer entropy is evaluated using 50 surrogates as no difference

in the results was seen when more than 50 surrogates were included.

It was found that for the frequency range considered 2 − 30 Hz, only the 4-second

sliding time window produced any significant results considering participants. This is

maybe due to the interactions of the lower frequency bands, i.e. delta (2−4 Hz), theta

(4− 8 Hz) and alpha (8− 13 Hz) [21], taking more precedence in the information flow

in the AD case [121, 138, 80, 269, 110, 136].

Tables 4.1 and 4.2 illustrate the respective results for the EC and EO cases. These

outcomes are obtained using the procedures outlined in Section 4.4 and the methodol-

ogy described in Section 4.3.2 for evaluating effective normalised transfer entropy. From

the subset of channels considered, the tables 4.1 and 4.2 show the statistically signifi-

cant differences in information flow between the HC and AD groups. The ENTE
n′
a,n

′
b

max′

metric, Section 4.4) is used for this purpose. In tables 4.1 and 4.2, ∆ENTE represents

the median differences in ENTE
n′
a,n

′
b

max′ between the HC and AD groups. Thus, a nega-

tive ∆ENTE indicates an increased information flow in the AD group, while a positive

∆ENTE suggests a reduction of information flow in the AD group. The cortical re-

gions indicated in the said tables are in respect to Table 3.2 in Chapter 3, Section 3.5.

These findings will be presented, accompanied by a discussion of comparable results

from other studies.

Table 4.1: EC case, effective transfer entropy

ENTE(U → Y )
(Indexes and names)

∆ENTE
Length of

Time Window
Connecting
regions

4 13 T6-O2 C4-CZ -0.004335 4s
CP - O

13 4 C4-CZ T6-O2 -0.004332 4s

Table 4.2: EO case, effective transfer entropy

ENTE(U → Y )
(Indexes and names)

∆ENTE
Length of

Time Window
Connecting
regions

3 12 T5-O1 C3-CZ -0.004206 4s
CP - O12 3 C3-CZ T5-O1 -0.003354 4s

4 13 T6-O2 C4-CZ -0.004342 4s

3 5 T5-O1 P3-PZ -0.007552 4s
P - O

5 3 P3-PZ T5-O1 -0.007575 4s
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This study reveals, in mild to moderate AD, considering the frequency range 2−30Hz

and a 4-second sliding time window with 50% overlap, the statistically significant

changes in information flow among brain regions (at an EEG sensor level at the resting-

state) occur between the parietal and occipital regions (P–O) and also between the

centro-parietal and occipital regions (CP–O). Interestingly the results obtained in-

dicate, in both EC and EO EEG, intra-hemispheric information flow in CP–O has

increased in the AD group. In the EO case it is both P–O and CP–O. Thus, indicating

that, in mild to moderate AD, intra-hemispheric information flow in both P–O and

CP–O has increased. This alludes to a compensatory mechanism due to the loss of

connectivity in other regions [243].

From the EC EEG (Table 4.1), it is seen that information flow within the right hemi-

sphere of CP–O has increased in the AD group. In the EO case (Table 4.2), however,

indicates an increased information flow within both left and the right hemispheres of

CP–O. Furthermore, in the EO case, the left hemisphere of P–O has increased infor-

mation flow and comparing the ∆ENTE values, this seems more prominent overall.

In [262] the authors demonstrated an augmented neural complexity measure in AD

patients in the delta and theta bands, while the multichannel correlation dimension

was amplified in the beta band. As pointed out by [243], these results contradict a

simplistic notion of decreased complexity in AD as it suggests a pattern of both de-

clines and increases in connectivity across different frequency bands. Another study

further clarified this pattern by revealing a reduction in mainly long-distance left hemi-

sphere connectivity in low alpha and beta bands, and an upsurge in parietal theta and

parietal-occipital beta/gamma connectivities in AD patients relative to HC [245]. The

selective loss of long-distance left hemisphere connectivity is noteworthy, considering

the outcomes of [198] and [198], which also indicate a particular susceptibility of the

left hemisphere. The escalated connectivity in the parietal and occipital regions is

noteworthy and comparable to this study, and it is plausible that these alterations

may indicate a compensatory mechanism [243].

Similar results in the resting-state EEG of mild AD patients were shown by Frantzidis

et al. [82]. The study found that compensatory mechanisms were evident through the

formation of additional hubs (connection points in graph theory) on the left frontal

and parietal regions. In resting-state MRI and fMRI, Behfar et al. [28] using a graph

theoretical method showed that compensatory changes in AD involve an increase of
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degree centrality (potential of influence) in cognition-related brain regions of the middle

frontal gyrus, precentral gyrus, and superior parietal lobe despite local atrophy.

Even though the results in this study are comparable to the other work, a more com-

prehensive analysis using transfer entropy is needed to improve the results presented

here. Shorter overlaps between time windows and consideration of a wider frequency

range, 2− 50 Hz is needed. This will be done in a future study.

4.6 Chapter Summary

In the previous chapter, a subset of EEG channel-pairs that have significant FC

changes between HC and AD were identified. The aim of this chapter is to identify any

statistically significant differences, in mild to moderate AD, concerning the direction

of information flow in the selected channel-pairs. Since the direction of information

flow between channel-pairs can change with time, an exploratory analysis is conducted

using transfer entropy within overlapping time windows. The effective transfer entropy,

between the selected channel-pairs, is estimated for the range of delays using random

phase surrogate testing method to mitigate spurious nonlinear dependencies. The

effective normalised transfer entropy measure is used to compare the changes in the

highest levels of information flow between HC and AD groups, respective to each

direction between the channel-pairs. The results indicate that, in mild to moderate

AD, intra-hemispheric information flow between parietal and occipital and between

centro-parietal and occipital regions has increased within both hemispheres. Overall an

increase in the intra-hemispheric information flow in the left hemisphere of the parieto-

occipital is more prominent. It is plausible that the increase in information flow in

AD, between those mentioned regions, may indicate a compensatory mechanism. The

findings of this chapter are comparable to other studies based on resting-state EEG

and rsfMRI.



Chapter 5

Nonlinear System Identification

and Frequency Response Analysis

for Characterising AD Using the

Resting-State EEG

5.1 Introduction

Global and local processes in the brain are believed to interact through CF inter-

actions, facilitating the integration of information across different brain regions [119].

Moreover, previous studies have reported specific alterations in CF interactions within

the EEG related to neurodegenerative diseases like AD [271, 80, 117]. In this chapter,

the novel application of system identification and frequency response analysis is used

to characterise AD in relation to the changes in CF interactions.

In Chapter 3, the analysis focused on the FC of the resting-state EEG to identify sig-

nificant changes in the pairwise statistical relationship between the HC and AD groups.

Building upon this, Chapter 4 utilised these specific subsets of EEG channel-pairs to

conduct an exploratory analysis, investigating the directed connectivity (EFC) or the

flow of information (directed dynamic nonlinear dependencies) between these channels

in individuals with mild to moderate AD compared to healthy cohorts. The findings

from Chapter 4 revealed that patients with AD exhibited both increases and decreases

65
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in information flow between specific cortical regions (EEG channels) compared to HC,

suggesting the presence of compensatory mechanisms.

In this chapter, the direction of information flow, along with the specific time window

and epoch where the maximum transfer of information occurs between the respective

channel-pairs in each participant, will serve as prior knowledge. This information

will be utilised to construct input-output dynamic models using system identification

techniques. These identified models will then be analysed in the frequency-domain

using frequency response analysis methods (NOFRFs) to examine the changes in CF

interactions involved in the compensatory mechanisms within the cortical layers of

individuals with AD.

System identification focuses on acquiring mathematical representations of dynamic

systems using input-output data collected from the system. The ultimate goal of the

system identification process is to develop mathematical models that can accurately

link the input data to the corresponding output data of the system [32, 163]. Ad-

ditionally, it is important for the model to accurately describe the behaviour of the

underlying system, enabling the analysis of its dynamics [164, 143, 239]. Since the fre-

quency response characteristics of identified models remain unchanged and unique for

all local solutions. Using the frequency response analysis methods, the CF interactions

within the system can be analysed [32, Chapter 6]. These techniques have also been

successfully applied in neuroscience to study the interactions in different brain regions

using electrophysiological data [102, 104, 37, 99]. However, the application of these

methods for characterising AD is novel.

5.2 System Identification Methodology

System identification is a technique that infers and builds black-box time-series mod-

els that describe the dynamic behaviour of linear and nonlinear systems from experi-

mental input-output data. Thus, it involves two main objectives:

• Accurately mapping the input(s) to the output(s) of the system, enabling the

prediction of new and unseen data.

• Capturing the underlying dynamics of the system within the model.

The second objective is particularly crucial in the context of identifying changes in



CHAPTER 5. NONLINEAR SYSTEM IDENTIFICATION... 67

cortical dynamics in AD compared to HC, as neurodegeneration is known to cause sig-

nificant changes in brain network complexity, thus impacting nonlinear dependencies

between EEG channels (ref lit rev, prev chapter). Therefore, the identification proce-

dure must accurately capture the transmissibility dynamics between EEG channels to

effectively infer underlying cortical dynamic changes.

With respect to the aforementioned objectives, system identification is used to de-

termine a specific functional relationship that maps past inputs (input lagged terms),

denoted as

U(t) = [u(t− 1) , u(t− 2) , · · · , u(t− nb)] , (5.1)

and past outputs (output lagged terms), represented as

Y(t) = [y(t− 1) , y(t− 2) , · · · , y(t− na)] , (5.2)

to the present output in time y(t). na and nb are the number of past output and input

time instances considered and relates to the Lyaponov exponents of the actual system

that is being modelled [180]. The said functional mapping is described by the equation:

y(t) = f
(
Y(t),U(t)

)
+ e(t) (5.3)

where y(t) and u(t) refer to the output and input respectively, while e(t) represents the

error between the predicted output f
(
Y(t),U(t)

)
and the actual output y(t) at time

instance t. Throughout the following sections, the notations defined above are carried

through.

5.3 Black-box time-series model structures: ARX

and NARX models

Within the field of system identification, various black-box modelling structures are

available, including the Volterra series, neural networks, fuzzy models, as well as a

range of linear and nonlinear auto-regressive time-series model structures [33, 162, 240,

191], among others. This overview will specifically concentrate on discrete-time black-

box model structures, specifically those based on linear and nonlinear auto-regressive

models with exogenous inputs.
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5.3.1 Linear auto-regressive model with exogenous input:

ARX model structure

One of the most common linear black-box time-series models is the Auto-Regressive

model with eXogenous input (Auto-Regressive with eXogenous input (ARX)). The

ARX model structure is given by

y(t) =
na∑
i=1

aiy(t− i) +

nb∑
j=1

bju(t− j) + e(t) (5.4)

where ai, i = 1, · · · , na, and bj, j = 1, · · · , nj, are the weightings on the past outputs

and inputs, respectively. e(t) are the model residuals. Eq.(5.4) can be written in the

format shown in eq.(5.3) as

y(t) = X(t)× θ + e(t) (5.5)

whereX(t) = [Y(t) ,U(t)] is the vector containing information of the past outputsY(t)

(eq.(5.2)) and inputs U(t) (eq.(5.1)) at a given time instance t. θ is the vector contain-

ing the parameters of the model structure where θ = [θy ,θu]
T . θy = [a1, · · · , ana ]

T

and θu = [b1, · · · , bnb
]T are the weights for Y(t) and U(t) respectively. It can be seen

from eq.(5.4) and (5.5), the ARX model structure models the present output y(t) as a

summation of weighted past inputs and outputs, inferring a linear relationship between

y(t), U(t) and Y(t). Thus, in relation to eq.(5.3), the ARX model structure is a linear

functional mapping.

5.3.2 Nonlinear auto-regressive model with exogenous input:

NARX model structure

When a system displays nonlinear properties (Section 2.5), the model structure

utilised to represent it must also be nonlinear to accurately capture the system dynam-

ics. The Nonlinear Auto-Regressive with eXogenous input (Nonlinear Auto-Regressive

with eXogenous input (NARX)) model [155] is a nonlinear extension to the linear

ARX model and has been extensively applied in research pertaining to model identifi-

cation of complex nonlinear systems, analysis, and control of diverse nonlinear systems

[287, 79, 207, 140, 101, 254, 55, 38, 52]. The NARX model is a nonlinear functional
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mapping between the past outputs Y(t) and inputs U(t) where

y(t) = f
(
X(t)

)
+ e(t). (5.6)

In eq.(5.6) above, f( ) is a nonlinear mapping function which describes the nonlinear

dynamics. X(t) = [Y(t) ,U(t)] and e(t) are the model residuals. Eq.(5.7) below

presents the polynomial NARX model [32], which is the widely used representation of

the NARX model structure.

y(t) = f
(
X(t)

)
+ e(t)

f
(
X(t)

)
=

Np∑
n=0

ϕn

(
X(t)

)
ϕn

(
X(t)

)
=

n∑
p=0

(
na∑

k1=1

na∑
k2=1

· · ·
nb∑

kn=1

(
Cp,q(k1, · · · , kp+q)

p∏
i=1

y(t− ki)

p+q∏
i=p+1

u(t− ki)
))
(5.7)

where n represents the order of the polynomial, where n = 1, · · · , Np, and Np denotes

the maximum polynomial order or the highest degree of polynomial nonlinearity. q =

n− p. The term ϕn

(
X(t)

)
corresponds to the nth order component of the polynomial

NARX model. Cp,q(· · · ) refers to the model parameters associated with the polynomial

terms of degree n. For n = 1, ϕ1

(
X(t)

)
encompasses all linear combinations of past

outputs Y(t) and past inputs U(t). For n ≥ 2, ϕn

(
X(t)

)
incorporates the nonlinear

terms arising from the nth order polynomial combinations involving different instances

of past outputs and inputs inY(t) andU(t). Eq.(5.7) can be written in a more compact

form as 
y(t) =

[
ϕ̄1, · · · , ϕ̄Np

]
× θ̄ + e(t)

θ̄ =
[
θ1, · · · ,θNp

]T (5.8)

where ϕ̄n is a vector containing the nonlinear terms resulting from the nth order polyno-

mial combinations of different past output and input instances, i.e. vector containing

the
∏p

i=1 y(t − ki)
∏p+q

i=p+1 u(t − ki) terms (nonlinear lagged terms) in eq.(5.7). The

row vector θn contains the respective parameters or weights for the elements in ϕ̄n,

associated with Cp,q(k1, · · · , kp+q) in eq.(5.7). The NARX structure has the ability

to provide a concise portrayal of a diverse array of nonlinear complex systems. This
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is accomplished without the need for any prior knowledge of the underlying physics,

which is attributable to the black-box nature of the NARX representation.

5.4 Procedures in system identification

The systematic approach to system identification encompasses the solution of four key

problems [32, 162]. These problems are sometimes solved concurrently or iteratively,

depending on the identification algorithm and strategy employed [32, 162, 118, 76,

96, 74, 156, 34]. The following four steps summarize these problems, which will be

discussed in detail in the subsequent sections:

1. Structure detection. Determining an appropriate structure that effectively

maps the input-output variables (lagged terms) based on the type of system and

the acquired data. In the nonlinear instance, for example, in regard to the poly-

nomial NARX, this also involves determining the highest degree of polynomial

nonlinearity.

2. Parameter estimation. Estimating the parameters that quantify the weight of

each term in the given model structure.

3. Model selection. Selecting the most suitable model that achieves a desirable

trade-off between bias and variance from a set of competing models.

4. Model validation. Validating the selected model using performance criteria

and validation tests to establish confidence in the model based on the intended

purpose of modelling.

The following subsections will discuss these procedures with appropriate methods to

obtain parsimonious models.

5.4.1 Model structure detection

As seen from eq.(5.5) and eq.(5.8), (N)ARX models can be easily represented in

a matrix format. Therefore, given an appropriate model structure, the relevant pa-

rameters can be evaluated using linear regression. However, determining what linear

and nonlinear terms to include in the model structure is significant to obtain parsimo-

nious models, especially in the nonlinear case [32, Chapter 1]. The Forward Regression
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OLS (Forward Regression OLS (FRO)) algorithm [53, 35], based on Orthogonal Least

Squares (Orthogonal Least Squares (OLS)) along with an appropriate term selection

criterion [139, 270, 109], can efficiently choose model terms (regressors) in a forward

selection approach (model terms are selected one at a time sequentially based on a

selection criterion) to achieve a globally optimum parsimonious model. The FRO can

evaluate the impact of each term on the output, independent of the influence of other

terms. This evaluation depends on the criterion used for term selection. This enables

the selection of the appropriate terms to be included in the final model in a sequential

fashion–forward selection.

5.4.2 Orthogonal least squares method

The OLS method is a reliable means of estimating model parameters. This is par-

ticularly true when compared to traditional ordinary least squares, which may prove

unreliable due to the need to compute the inverse of an information matrix that is

frequently ill-conditioned. Given a linear regression model

y = Φθ + ϵ, (5.9)

where Φ ∈ RL×M is the information matrix (regression matrix). y ∈ RL×1 is a vector

contain observations of the dependent variable. θ ∈ RM×1 is the vector of model

parameters or weights for the respective terms in Φ. ϵ ∈ RL×1 is the vector containing

the model residuals. An orthogonal decomposition of the regression matrix in eq.(5.9)

is carried out where

y = ΦA−1Aθ + ϵ, (5.10)

y = Wg + ϵ, (5.11)

W = ΦA−1, where W = [w1, · · · ,wM ] ∈ RL×M in which wi is the ith auxiliary

orthogonal regressor corresponding to the ith regressor (model term) in Φ, where

i = 1, · · · ,M . A ∈ RM×M is an upper triangular matrix. g = [g1, · · · , gM ]T is the as-

sociated parameter vector where g = Aθ. The orthogonal decomposition of Φ = WA
is typically obtained by employing the modified Gram-Schmidt algorithm [53].

The columns in W are orthogonal with respect to each other, therefore, the corre-

sponding parameters or weights in g are uncoupled. This enables the assessment of the

individual contribution of each regressor (associated model term) in W towards reduc-
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ing the error between the observed outputs y and the predicted outputs Φθ = Wg.

5.4.3 The Forward Regression OLS

The FRO algorithm [53, 35] is a method used for model term selection in linear

regression. It aims to identify the most relevant model terms that contribute to the

prediction or explanation of the dependent variable according to a term selection cri-

terion. The FRO algorithm achieves this using the OLS method along with the term

selection criterion to assess the contribution of each term independently and sequen-

tially. The FRO procedure for model structure detection [53, 35] is summarised as

follows:

1. Initially, evaluate the assessment metric, of the term selection criterion used, for

all the individual regressors. Then identify the best model term to add according

to the criterion.

2. Orthogonalise the rest of the regressors with respect to the selected regressor(s).

Then evaluate the assessment metric for the remaining regressors and select the

next best term to add according to the criterion.

3. Repeat step 2 until a stopping criterion is satisfied.

5.4.4 Model term selection criteria for the Forward

Regression OLS algorithm

This sub-section will highlight the term selection criteria, ERR and PRESS, that are

commonly used with the FRO algorithm.

The Error Reduction Ratio (ERR)

The ERR gives a measure of how each regressor (model term), in an orthogonal

sense, contributes to the variance of the observed output [32, Chapter 3]. Thus, when

using the ERR, the aim is to maximise the explained variance of the model based on

the contribution of each regressor to the observed output variance [139]. The ERR

value (assessment metric) for each orthogonal regressor was evaluated. The regressor

that is associated with the highest ERR is added to the model in step 2 of the FRO

procedure shown in the previous sub-section.
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The Prediction Sum of Squares (PRESS) statistic

Formulating a model construction algorithm that directly optimises the model’s gen-

eralisation ability, without requiring a distinct validation dataset, is a desirable goal.

One solution is the use of the PRESS-statistic, which offers the necessary capabil-

ity to achieve the said objectives with leave-one-out cross-validation [270, 109]. [109]

demonstrated the computation of the PRESS is simplified through the use of the or-

thogonalisation procedure inherent in FRO and can be easily incorporated into the

algorithm for term selection purposes. Essentially, using the PRESS-statistic (assess-

ment metric), the regressor that reduces the predicted leave-one-out cross-validation

error is selected each time in step 2 of the FRO procedure. Thus a fully automated

procedure without resorting to any other validation data set for model evaluation using

the FRO can be achieved.

In comparison, the ERR aims to maximise the predicted explained variance while the

PRESS aims to reduce the predicted leave-one-out cross-validation error. Therefore, in

this work, due to the added benefit of cross-validation, the PRESS-statistic criterion

is used for term selection in the iterative FRO (iFRO) algorithm. Therefore, model

validation in relation to cross-validation is incorporated into the structure detection

algorithm.

5.4.5 The iterative Forward Regression OLS (iFRO)

The original FRO procedure presented above follows a specific orthogonalisation path

[96], which is determined by the initial term chosen in step 1. As mentioned in [96],

the selection of subsequent terms may vary depending on the initial term, leading to a

global solution space of potential models based on the chosen orthogonalisation path

(based on the initial term that is selected). Consequently, the classical FRO approach

may not always yield an optimal solution across the entire solution space of possible

models. To address this limitation, the iterative-FRO (iFRO) algorithm proposed

in [96] seeks the optimal solution within the global solution space while preserving

the benefits of simplicity and computational efficiency. The effectiveness of the new

algorithm is supported by both theoretical analysis and simulations [96].

The iFRO algorithm has the ability to generate multiple competing models by fol-

lowing different orthogonalisation paths [96]. This is achieved by forcing various initial

terms in step 1 of the FRO procedure, generating several competing models. Among
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these models, the best-performing one can be selected [96] based on a model selection

criterion. The generation of competing models is efficient, and the iFRO algorithm

has a higher likelihood of achieving a global optimum solution in terms of minimising

predicted errors compared to the original FRO algorithm. For more detailed informa-

tion on the iFRO algorithm, readers are encouraged to refer to [96]. In this study,

the iFRO algorithm will be utilised for determining the model structure, with the

PRESS-statistic serving as the assessment metric for term selection.

5.4.6 Model selection

Model selection and structure detection are two distinct processes. Structure detec-

tion involves selecting the appropriate regressors (terms) that should be included in

the model. It often yields multiple competing models to choose from. On the other

hand, model selection is the methodology used to choose the most suitable model from

a set of candidate models. The selected model should be capable of predicting unseen

data effectively while achieving a good balance between bias and variance.

The presence of bias and variance in model predictions arises from different sources

of error in the modelling process. Bias reflects how well the model fits a specific

dataset, while variance relates to the model’s flexibility in capturing various aspects

of a system, such as different operating conditions [162]. Increasing the complexity

of a model, typically achieved by adding more terms in parametric models, enhances

flexibility and reduces the error between predicted and observed values. However,

excessive complexity can lead to overfitting, where the model captures noise in the data

and increases variance. Conversely, reducing the number of model terms decreases the

fit and increases bias but lowers variance.

When a new dataset is obtained under the same operating conditions as the iden-

tification (training) dataset, both overly complex and overly simple models perform

poorly. An overly simple model fails to capture the true underlying dynamics of the

system, while an overly complex model fits random noise sequences [32, Chapter 1][162].

Therefore, selecting an appropriate model structure involves a compromise, depending

on the intended purpose of the model [162].
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Model selection criteria

Akaike’s Information Criteria (Akaike’s Information Criteria (AIC)) [13], Final Pre-

diction Error (Final Prediction Error (FPE)) [12], and Bayesian Information Criterion

(Bayesian Information Criteria (BIC)) [230] are commonly used criteria for model se-

lection. These criteria assess models based on the error between the model’s predicted

output and the observed output, as well as the model’s complexity. They assign a score

to each model, with a penalty applied for higher model complexity. The model with

the lowest score is selected as the preferred choice. BIC, in particular, applies a higher

penalty for increased model complexity compared to AIC and FPE [40]. Consequently,

models that minimise the BIC score tend to have lower complexity compared to models

obtained by minimising the AIC and FPE scores.

5.5 Application of System Identification and

Frequency Response Analysis in Neuroscience

The first system identification based nonlinear GC analysis was first introduced by

[286, 285]. An initial study with this type of causality analysis was done on EEG data

of AD and healthy individuals by [37]. The ERR-causality test [284] was used to anal-

yse the EEG data of both resting states, eyes open (EO) and eyes closed (EC). The

study pointed out the significance of using this method as a non-invasive and econom-

ical diagnostic aid. The ERR-causality enabled for time-domain linear and nonlinear

interactions between EEG channels to be analysed individually even under coloured

noise. The NARX based causality tests were extended to the nonlinear frequency re-

sponse by [102, 103]. In which, the GFRFs from an identified NARX model were used

for the causality analysis, essentially generalising the spectral Granger causality [54] to

the nonlinear instance.

The OLS-based (N)ARX modelling methods have some interesting advantages in the

application of EEG analysis. As such; model structure selection under non-stationary

conditions and in the presence of coloured noise [101], are the most significant features.

This is because EEG signals have both these circumstances. Furthermore, as mentioned

in Chapter 2 Subsection 2.5.5, the use of the NOFRFs instead of the GFRFs is novel and

has an interesting outlook in relation to EEG analysis. This is because the identified

model can be decomposed to the respective orders of nonlinearities in the frequency-
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domain. This enables the observation of CF interactions between the input-ouptut

EEG channels considered at higher-order nonlinearities (nonlinearities higher than an

order of 2). This type of dynamical analysis has not yet been done in neuroscience.

5.6 Characterising Alzheimer’s Disease Using

System Identification and Frequency Response

Analysis

As discussed in Subsection 2.5.3 and shown by eq.(2.4), the composition of the out-

put spectrum, Y (jω) (output frequency response), in dynamic nonlinear systems is

complex. In such systems, the properties of the nonlinear dynamics are described by

the GFRFs, Hn (· · · ), eq.(2.6). As shown in eq.(2.4), Y (jω) is dependent on both

Hn (· · · ) and how the input spectrum U(jω) operates on Hn (· · · ) to produce Yn(jω)

for n = 1, · · · , N , where N is the maximum nonlinearity considered. Yn(jω) is the

output of the nth order nonlinearity (nth order output frequency response) such that

Y (jω) =
∑

n Yn(jω). Therefore, to understand the CF interactions between the fre-

quency components in the input and the output of a nonlinear dynamic system, the

system needs to be probed appropriately.

As shown in eq.(2.10) and discussed in Subsection 2.5.5, in nonlinear systems, the

composition of the output spectrum, Y (jω), for input with a spectrum U(jω) is de-

scribed by the NOFRFs in a much more trivial manner than in eq.(2.4). Therefore,

the NOFRFs can be used to easily decompose Y (jω) into Yn(jω) for n = 1, · · · , N to

observe the nonlinearities involved in specific CF interactions.

The aim of this chapter is to characterise AD in relation to the changes in CF

interactions in comparison to HC. The findings from Chapter 4 are used to achieve

this. The channel-pairs that exhibit significant changes in information flow (directed

dynamic nonlinear dependencies), from tables 4.1 and 4.2, are used to build NARX

models through system identification using the iFRO method (Subsection 5.4.5). The

PRESS-statistic (Subsection 5.4.4) is used in iFRO for model term selection. The

NARX models identified are specific to the EEG channel-pairs and the direction of

information flow between the channels.

Cortical regions of the brain are interconnected, and this is reflected in the EEG.
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Thus, when building input-output models between EEG channel-pairs, care has to be

taken so that the bi-variate (between two channels) models do not overly fit the data,

as the respective EEG channels will contain information related to other underlying

cortical regions. Therefore, to be conservative in a bias-variance sense, the BIC [230]

criterion is used to select an appropriate model from the several competing models

produced using the iFRO algorithm (Subsection 5.4.5).

The identified NARXmodels are analysed in the freqeuncy-domain using the NOFRFs

to decompose the model into the respective orders of nonlinearities to produce the nth

order output frequency response, Yn(jω) in eq.(2.13). More specifically, the identified

model is probed within a specific frequency range. The resulting nth order output

frequency responses, Yn(jω) where n = 1, · · · , N , is observed to understand the CF

interactions between the probing input frequency range and the output frequencies

produced by the model. The nth order output frequency responses produced by the

respective models of EEG channel-pairs will enable to characterise the changes in CF

interactions that occur in patients with mild to moderate AD in comparison to HC.

The method to evaluate the NOFRFs Gn(jω) (eq.(2.11)) and the subsequent Yn(jω)

for n = 1, · · · , N (eq.(2.13)) is achieved using the procedures as outlined in [95]. The

specifics of the probing inputs used to evaluate the respective NOFRFs and the nth

order output frequency responses are given in the following subsection.

5.6.1 Probing inputs to analyse the identified input-output

models

Brain electrical activity can be segmented into frequency bands; delta (δ), theta (θ),

alpha (α), beta (β), and gamma (γ). These frequency bands provide valuable insights

into the operational dynamics of the brain [48, 233]. Therefore, to understand the

CF interactions between these bands, the identified NARX model between two EEG

channels needs to be probed with several appropriate inputs. Each probing input will be

specific to the frequency bands mentioned earlier. The corresponding output spectrum

of the NARX model to each probing input is used to observe the CF interactions

between the input frequencies and the output frequencies. It should be noted in this

chapter only up to the β frequency range is considered.

In Hz, the frequency ranges fb ∈ [f1, f2], where b ∈ {δ, θ, α, β}, of the bands

mentioned above are as follows [21]; fδ ∈ [2, 4], fθ ∈ [4, 8], fα ∈ [8, 13] and fβ ∈ [14, 30].
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The frequency spectrum of the probing input U b(jω), specific to the frequency range

fb is such that

U b(jω) =

U b(jω) when |ω| = fb

0 otherwise.
(5.12)

The time-domain representation of U b(jω) [145, 146, 144], denoted as ub(t) is

ub(t) = A
1

2π
× sin (f2 × t)− sin (f1 × t)

t
(5.13)

where A is the amplitude. Figure 5.1 below illustrates the magnitude spectra,
∣∣U b(jω)

∣∣,
of the probing inputs, ub(t), specific to the frequency bands mentioned previously.

Figure 5.1: Magnitude spectra of the probing inputs within the respective
frequency ranges. The magnitude profile of the probing inputs,

∣∣U b(jω)
∣∣ where b ∈

{δ, θ, α, β}, against frequency (in Hz) is shown. The magnitude profile of these probing
inputs follows the relationship shown in eq.(5.12).

5.6.2 Analysis of CF interactions from identified NARX

models using output frequency responses from each

order of nonlinearity

Let X and Z be two EEG channels where x(t) and z(t) are the respective time-series

of the channels. Considering the direction of information flow (dynamic nonlinear

dependencies) from X → Z, a NARX model MX→Z is identified using the iFRO

method (Subsection 5.4.5). In this instance, channel X is considered as the input and

Z as the output.
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To identify the NARX model that is able to reconstruct the dynamics from X → Z,

the number of past instances of x(t) and z(t), nb and na respectively (Section 5.2,

eq.(5.1) and (5.2)), that are used in the iFRO algorithm (Subsection 5.4.5) has to be

appropriately specified [10, 11, 9, 181]. This information is taken from Chapter 4,

where the delay embedding dimensions n′
a and n′

b that results in ENTE
n′
a,n

′
b

max′ (X → Z)

(Chapter 4, Section 4.4) is used. Therefore, n′
a will be the number of past instances

of z(t) (output) and n′
b will be the number of past instances of x(t) (input) that will

be considered in the iFRO algorithm to identify the NARX model MX→Z . This is

specific to each participant EEG.

The identified model MX→Z is used to study the CF interactions between the chan-

nels X and Z respective to the direction X → Z. This is achieved by stimulating

the model MX→Z with the probing inputs ub(t) to produce the outputs yb(t) where

b ∈ {δ, θ, α, β, γ}. ub(t) has a spectrum U b(jω) and the corresponding output yb(t)

will have a spectrum Y b(jω). The NOFRF (Subsection 2.5.5) method as outlined

in [95] is used to decompose the model output Y b(jω) into the nth order output fre-

quency responses Y b
n (jω), in which n = 1, · · · , N where N is the maximum order of

nonlinearity considered.

The magnitude profile of Y b
n (jω),

∣∣Y b
n (jω)

∣∣, is used to observe the CF interactions

between the frequencies of the input spectrum U b(jω), fb ∈ [f1, f2] (Figure 5.1), and

the output Y b(jω) at different orders of nonlinearity. More specifically, the normalised

magnitude profile of
∣∣Y b

n (jω)
∣∣,

∣∣∣Y b
n (jω)

∣∣∣ = ∣∣Y b
n (jω)

∣∣
|Y b(jω)|

(5.14)

is used for this purpose. The normalised nth order output frequency response, |Y b
n (jω)|,

in eq.(5.14) above shows the percentage contribution of each nth order nonlinearity to

the output Y b(jω) at the frequency ω. Specific to the direction X → Z, in |Y b
n (jω)|,

for ω = fb shows the level of CF interactions between the channels X and Z within

the frequency range fb at different orders of nonliterary. Similarly, for all ω outside the

range fb, |Y b
n (jω)| shows the level of CF interactions between the frequencies fb and

other frequency ranges outside fb.

NARX models, capturing the channel dynamics X → Z, are identified from all par-

ticipant EEGs, AD and HC. The respective normalised nth order output frequency
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responses, |Y b
n (jω)|, from all AD and HC participants are statistically compared to

identify significant changes in CF interactions, specific to fb, at different orders of non-

linearity n = 1, · · · , N . It was observed that the |Y b
n (jω)| in the AD group showed a

considerable amount of variations (within a broader distribution) than the HC group.

Therefore, the non-parametric two-sample Kolmogorov-Smirnov test [174, 183, 171] is

used to identify any statistical difference between the variations in the CF interactions

between AD and HC groups. The Benjamini-Hochberg [29] false discovery rate con-

trolling method is used to account for multiple comparisons. The statistical test is

applied for all HC and AD |Y b
n (jω)| to identify any significant changes between the

groups the at each ω.

5.7 Results and Discussion

In Chapter 3, a subset of channel pairs that have significant FC (pairwise statisti-

cal dependencies) between HC and AD groups are identified. In the previous chapter

(Chapter 5), the information flow between these channel-pairs was assessed in different

time windows using transfer entropy. This was an exploratory analysis to investigate

the statistically significant changes in information flow (directed dynamic nonlinear

dependencies), between the selected channel-pairs, in mild to moderate AD in compar-

ison to HC. This information is used as prior knowledge in this chapter to understand,

at an EEG sensor level, the cortical nonlinear dynamics in regard to changes in CF

interactions between HC and AD groups. This type of analysis where system identifi-

cation and frequency response analysis are applied to analyse CF interaction using the

resting-state EEG in the context of AD is novel.

From the findings presented in Chapter 4, tables 4.1 and 4.2, the channel-pairs that

have significant changes in information flow are analysed using system identification

and frequency response analysis according to the methodology presented in Section 5.6.

The statistically significant results from the frequency response analysis are reported

in tables 5.1 and 5.2 for the EC and EO cases respectively. In a general sense, the

significant changes in CF interactions between AD and HC groups are summarised

below.

In the EC case, within the right hemisphere changes in the CF interactions between

the centro-parietal (CP) and occipital regions (O) are as follows. Oδ → CPθ inter-

actions have increased while Oδ → CPδ interactions have reduced. Oθ → CPδ has
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T6-O2 → C4-CZ, EC, Probing Input at Delta

Figure 5.2: Frequency response analysis of NARX model T6-O2 → C4-CZ for the
EC case, probed in the delta frequency range. Indicated by red is the mean |Y δ

n (jω)|
for the AD group and blue for the HC group. The frequencies at which there is a significant
statistical difference between the groups are indicated by the markers on the mean |Y δ

n (jω)|
plots for both HC and AD. No significant changes are observed in linear CF interactions.
In the 2nd order nonlinearity, |Y δ

2 (jω)|, considerable differences in CF interactions between
δ and the higher θ frequencies are seen where the mean |Y δ

2 (jω)| shows an average increase
in the AD group. In the 3rd order nonlinearity, |Y δ

3 (jω)|, considerable differences in CF
interactions within the δ range is seen where AD shows a decrease. While CF interactions
between the δ range and the higher edge of the θ band show an average increase in the AD
group. Furthermore, CF interactions between the delta band and certain frequencies in the
α band indicate significant differences with an average increase in the AD group. The CF
interactions concerning the δ band, between the channels in the direction T6-O2 → C4-CZ
for EC case, is averagely exactly opposite to the EO case.
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T6-O2 → C4-CZ, EO, Probing Input at Delta

Figure 5.3: Frequency response analysis of NARX model T6-O2 → C4-CZ for
the EO case, probed in the delta frequency range. Indicated by red is mean |Y δ

n (jω)|
for the AD group and blue for the HC group. The frequencies at which there is a significant
statistical difference between the groups are indicated by the markers on mean |Y δ

n (jω)| plots
for both HC and AD. Statistically significant changes are observed in linear CF interactions
within the delta band. In the 2nd order nonlinearity, |Y δ

2 (jω)|, considerable differences in
CF interactions between δ and the higher θ frequencies and certain lower θ frequencies are
seen. Where the mean |Y δ

2 (jω)| shows an average increase in the AD group in the lower
θ frequencies and the opposite in the higher θ frequencies. In the 3rd order nonlinearity,
|Y δ

3 (jω)|, significant differences in CF interactions within the δ range is seen where AD
shows an increase. While CF interactions between the δ range and the lower θ frequencies
show an average decrease in the AD group the opposite is seen in the higher θ frequencies.
Furthermore, CF interactions between the δ band and several frequencies in the lower α band
indicate significant differences with an average decrease in the AD group. The CF interactions
concerning the δ band, between the channels in the direction T6-O2 → C4-CZ for EO case,
is averagely exactly opposite to the EC case.
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Table 5.1: EC case, statistically significant changes in CF interactions

MU→Y

(Indexes and names)

Significant
Frequencies in
|Y b

n (jω)| – (b, n)

Average Change of
|Y b

n (jω)| in AD
Connecting
regions

4 13 T6-O2 C4-CZ (δ, 2): 6.4–8.0 Hz Increased

CP - O

(δ, 3): 2.0–4.2 Hz Decreased
(δ, 3): 7.5–9.6 Hz Increased
(θ, 1): 4.0–6.1 Hz Decreased
(θ, 1): 6.8–8.0 Hz Increased
(θ, 2): 8.0–9.3 Hz Increased
(θ, 3): 10.3–10.6 Hz Increased
(θ, 3): 15.2–15.7 Hz Decreased

Table 5.2: EO case, statistically significant changes in CF interactions

MU→Y

(Indexes and names)

Significant
Frequencies in
|Y b

n (jω)| – (b, n)

Average Change of
|Y b

n (jω)| in AD
Connecting
regions

12 3 C3-CZ T5-O1 (δ, 1): 2.0–3.0 Hz Decreased

CP - O

(δ, 1): 3.3–4.0 Hz Increased
(δ, 2): 6.2–6.9 Hz Increased

4 13 T6-O2 C4-CZ (δ, 1): 2.0–2.6 Hz Increased
(δ, 1): 2.7–4.0 Hz Decreased
(δ, 2): 4.1–4.5 Hz Increased
(δ, 2): 6.3–8.0 Hz Decreased
(δ, 3): 2.0–6.7 Hz Increased
(δ, 3): 6.8–10.2 Hz Decreased

reduced while Oθ → CPθ has increased. Oθ → CPβ interactions had decreased within

a narrow band around 15Hz.

In the EO case. Changes in CF interactions between AD and HC are seen in both the

left and the right hemisphere in the CP–O. Within the left hemisphere, CPδ → Oδ has

both increased and decreased while CPδ → Oθ has increased within a narrow band of

6−7Hz. Within the right hemisphere, Oδ → CPδ interactions have both increased and

decreased while Oδ → CPδ in higher orders have increased in interactions throughout

the δ band. Oδ → CPθ interactions more prominently have reduced. This is the exact

opposite of the EC case as seen in Figures 5.2 and 5.3.
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The use of system identification and frequency response analysis in identifying signifi-

cant changes in directed CF interactions have been demonstrated with more prominent

changes in higher-order nonlinearities. Thus, indicating that in mild to moderate AD

directed CF interactions have complex changes. These changes are both increases

and decreases in CF interactions further alluding to the compensation mechanisms

involved in AD. This chapter analyses directed broadband CF interactions between

cortical regions at an EEG sensor level. However, most of the channel-pairs that showed

significant changes in information flow from Chapter 4 did not show up on these results.

5.8 Chapter Summary

In this chapter, a novel application of system identification and frequency response

analysis methods from control systems engineering is presented. Building upon the

findings of Chapter 4, data-driven models are constructed to capture the nonlinear

dynamics between pairs of channels. These models are then examined in the frequency

domain to identify noteworthy alterations in CF interactions between the AD and HC

groups. This chapter analyses directed broadband CF interactions between cortical

regions at an EEG sensor level. It was observed that significant changes in directed

CF interactions with more prominent changes in higher-order nonlinearities. Intra-

hemispheric directed CF interactions are statistically significant in both hemispheres

in opposite directions in the EO case while in the EC case only within the right hemi-

sphere was observed. This is preliminary work in applying system identification and

frequency response analysis to examine directed broadband CF interactions. Further

improvements are required which depend upon the improvement of the work presented

in Chapter 4.



Chapter 6

Conclusions and Future Work

The primary objective of the research presented in this thesis is to utilise nonlinear

analysis methods to characterise mild to moderate AD in comparison to HC (healthy

controls). Specifically, the focus is on novel applications and developing data-driven

techniques for examining FC, EFC and CF interactions for understanding neurode-

generative diseases using the EEG. To achieve this methods from manifold learn-

ing, information theory, and control systems engineering are employed. Consequently,

this research aims to contribute towards a comprehensive data-driven framework for

analysing nonlinear dynamics in cortical neural activity using the EEG. Furthermore,

the research work undertaken seeks to contribute to early diagnosis and characterisa-

tion of disease progression in neurodegenerative conditions like AD.

A novel FC measure that generalises (dis)similarity using Kernel-based manifold

learning was introduced to mitigate issues in using and interpreting various (dis)similarity

measures used for FC. This was used to identify EEG channel-pairs that showed signif-

icant differences in FC between mild to moderate AD and HC groups. An exploratory

analysis on the above mentioned EEG channel-pairs was conducted using transfer en-

tropy to identify significant changes in the level of information flow (directed dynamic

nonlinear dependencies) between these channel-pairs. This type of analysis of the

resting-state EEG in the context of AD using transfer entropy is novel. The findings

from the exploratory analysis were then used to produce data-driven dynamic nonlin-

ear models using system identification. The data-driven models were then analysed in

the frequency-domain using frequency response analysis for the novel characterisation

85
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of broadband CF interactions in mild to moderate AD.

Chapter 3 of this thesis introduces a new method for analysing FC and selecting

channels based on kernel-based nonlinear manifold learning. Considering local and

global spatio-temporal similarities and dissimilarities between EEG channels, the FC

measure ranks pairwise measures that distinguish patients with neurodegenerative dis-

eases from healthy controls. The presented methodology can identify changes in cor-

tical inter-relationships that are important in characterising patients with AD, and

the results are consistent with previous studies while linking connectivity changes to

functional networks. The main purpose of Chapter 3 is to introduce this novel FC

analysis and channel selection methodology and its computational procedure. The

chapter also demonstrates its efficacy against other commonly used FC measures. The

robustness of the method presented against volume conduction effects in the EEG

could be further assessed [43]. The Isomap-GPLVM method can be made to explicitly

control the compromise between local similarity and global dissimilarity information

being learnt. This can be achieved by including appropriate prior probabilities of the

latent positions, in the GPLVM log-likelihood [259, 46]. This development can be used

to improve the classification performance further. With the above considerations, the

proposed methodology in Chapter 3 can be developed into a diagnostic tool not only

for detecting neurodegenerative diseases but also for determining the important FC

changes related to the disease.

From Chapter 3, the subset of channel-pairs that are identified as having signifi-

cant changes in FC in mild to moderate AD was used in Chapter 4 to ascertain any

statistically significant variations in the direction of information flow within the se-

lected channel-pairs in mild to moderate AD. An exploratory analysis utilising transfer

entropy in overlapping time windows is conducted since the direction of information

flow between channel-pairs may vary over time. To reduce spurious non-linear depen-

dencies, a random phase surrogate testing method is used to estimate the effective

transfer entropy between the chosen channel-pairs for a range of delays. The effective

transfer entropy measurements for the range of delays are then combined to create

a metric that will be employed to compare the changes in information flow between

AD groups with respect to each time window and direction between the channel-pairs.

The findings suggest that in individuals with mild to moderate AD, there is an en-

hanced intra-hemispheric information flow between parietal and occipital regions, as

well as between centro-parietal and occipital regions, in both hemispheres. Particu-
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larly, there is a more noticeable increase in intra-hemispheric information flow in the

left hemisphere in the parieto-occipital region. This increase in information flow be-

tween these specific regions in AD may potentially signify a compensatory mechanism.

The results obtained in this chapter align with other studies that utilize resting-state

EEG and rsfMRI. To further improve the results presented in this chapter, a broader

range of frequencies should be considered and transfer entropy should be applied at

longer delays to accommodate interactions between lower and higher frequency bands.

Furthermore, sliding windows with more overlaps should also be considered.

Chapter 5 is a novel application of system identification and frequency response anal-

ysis for the characterisation of broadband CF interactions in mild to moderate AD.

Findings from Chapter 4 are used to produce data-driven models that capture the non-

linear dynamics between channel-pairs. These models are analysed in the frequency-

domain to identify significant changes in broadband CF interactions between AD and

HC groups. It was observed that these changes are both increase and decrease CF

interactions, more prominent in higher order nonlinearities, further alluding to the

compensation mechanisms involved in AD. The work represented is an initial ex-

ploration of applying system identification and frequency response analysis to study

directed broadband CF interactions. Further enhancements depend on improving the

work presented in Chapter 4.

With the improvements to the work presented in Chapter 4 which would improve the

analysis in Chapter 5, future work should focus on formulating a formal data-driven

framework for cortical brain activity and the characterisation of neurodegenerative dis-

eases based on the methods used in this thesis. Subsequently investigating the potential

development of EEG biomarkers using such a framework, employing larger sample sizes.

Additionally, further research should explore whether the identified EEG biomarkers

exhibit longitudinal changes over relatively short time frames at the individual level.
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functional connectivity through phase coupling of neuronal oscillations: A per-

spective from magnetoencephalography. Frontiers in Neuroscience, 13, 2019.

[174] F. J. Massey. The kolmogorov-smirnov test for goodness of fit. Journal of the

American Statistical Association, 46(253):68–78, 1951.

[175] A. G. d. G. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A. Boukouvalas,
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Lawrence. Topologically-constrained latent variable models. In Proceedings

of the 25th International Conference on Machine Learning, ICML ’08, page

1080–1087, New York, NY, USA, 2008. Association for Computing Machinery.

ISBN 9781605582054.

[260] V. Vakorin, B. Misic, O. Krakovska, and A. McIntosh. Empirical and theoreti-

cal aspects of generation and transfer of information in a neuromagnetic source

network. Frontiers in Systems Neuroscience, 5, 2011.

[261] V. A. Vakorin, O. A. Krakovska, and A. R. McIntosh. Confounding effects of

indirect connections on causality estimation. Journal of Neuroscience Methods,

184(1):152–160, 2009.

[262] A.-M. van Cappellen van Walsum, Y. Pijnenburg, H. Berendse, B. van Dijk,

D. Knol, P. Scheltens, and C. Stam. A neural complexity measure applied to

meg data in alzheimer’s disease. Clinical Neurophysiology, 114(6):1034–1040,

2003.

[263] F. Van de Steen, H. Almgren, A. Razi, K. Friston, and D. Marinazzo. Dynamic

causal modelling of fluctuating connectivity in resting-state eeg. NeuroImage,

189:476–484, 2019.

[264] M. P. van den Heuvel and O. Sporns. A cross-disorder connectome landscape of

brain dysconnectivity. Nature Reviews Neuroscience, 20(7):435–446, Jul 2019.

[265] R. Vicente and M. Wibral. Efficient Estimation of Information Transfer, pages

37–58. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. ISBN 978-3-642-

54474-3.



BIBLIOGRAPHY 115

[266] R. Vicente, M. Wibral, M. Lindner, and G. Pipa. Transfer entropy—a model-free

measure of effective connectivity for the neurosciences. Journal of Computational

Neuroscience, 30(1):45–67, Feb 2011.

[267] J. D. Victor. Binless strategies for estimation of information from neural data.

Phys. Rev. E, 66:051903, Nov 2002.

[268] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-

napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,

M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones,
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