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Abstract 

The generation maintenance scheduling deals with a time sequence of preventive maintenance outages for a given set of 
generation units in an electricity market subject to power system restrictions. Incorporating a leader-follower structure in 
generation maintenance scheduling models is essential because of the inherent conflict between the interests of an 
independent system operator (ISO) and generation companies (GENCOs). The present paper proposes a new preventive 
maintenance scheduling model for generation companies facing the risk of involving generation units’ disruption and 
demand variations while ensuring the reliability of the power system. Each GENCO proposes the maintenance schedule 
of its generation units to the ISO in a non-cooperative manner intending to maximize its net profit. Then ISO reacts to the 
aggregated schedule according to the power system’s reliability index. Thus, a new formula is developed to consider all 
the interactions between the power system’s stakeholders. In this regard, a stochastic multi-leader one-follower approach 
is applied. The GENCOs are considered independent leaders at the upper-level and the ISO is considered a follower at 
the lower-level. Then an equivalent single-level counterpart model is presented for each leader. So, the whole problem is 
converted into multiple individual stochastic single-level models, and then the Nash Equilibrium concept is used to 
determine GENCO equilibrium strategies. The proposed methodology is evaluated using some modified IEEE reliability 
test systems. The numerical analysis confirms that the proposed model is more effective in cases with higher 
uncertainties. Moreover, the performed analysis demonstrated the importance of applying a bi-level approach to the 
problem. Finally, the superiority of the proposed approach compared to the existing one is confirmed. 
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Generation maintenance scheduling; non-cooperative game; multi-leader one-follower approach; power system’s 
reliability; stochastic programming.  

1. Introduction 

An effective preventive maintenance scheduling allows the system to operate more reliable and achieve considerable 
savings (Zhu, 2021). Researchers have become increasingly interested in maintenance scheduling problems, and it has 
become one of the major research topics over the last decades (Bittar, Carpentier, Chancelier, & Lonchampt, 2022). 
Electricity is one of the most vital energies globally, and preventive maintenance plays a fundamental role in power 
system operations due to the ability to reduce the probability of failures. The generation maintenance scheduling (GMS) 
problem addresses an arrangement to take preventive maintenance actions on a set of generation units in an electricity 
market subject to power system restrictions (Charest & Ferland, 1993). Moreover, electricity consumption has grown 
over the years. For example, overall electricity sales in the United States in 2018 reached a peak of more than 4003000 
GWh (Alves, 2021). Additionally, all types of electricity consumers expect electricity to be available at all times. Thus, 
the vast majority of electricity must be produced instantly as needed. Maintaining high reliability in generation units is 
essential to secure a long-term electricity supply. Therefore, determining optimal maintenance schedules can extend the 
lifetime of the equipment and avoid probable capital expenditures. 
In a deregulated power system, a GMS problem relates to a conflict between two levels of stakeholders, generation 
companies (GENCOs) and an independent system operator (ISO). Each GENCO aims to maximize its profit, and the ISO 
strives to maintain the reliability of the power system. Two main indices almost measure the reliability of the power 
system; loss of load expectation (LOLE), and expected energy not supplied (EENS). LOLE represents the number of 
days per year, while EENS indicates the energy per year that is statistically expected to not meet demand. In this regard, a 
lower value of LOLE or EENS is more preferred. According to (Kim, Chang, Kim, & Kim, 2020), the Korean 
government has targeted the LOLE index to be 0.3 days/year. It implied that a three-day disruption might happen in the 
electricity supply for a ten years period. However, two main factors threaten the reliability of the power system. The first 
factor refers to the demand sides’ uncertainty. In this regard, the reserve or standby capacities are employed to cope with 
the random deviations from the expected demand. Reports compiled by the Ministry of Trade, Industry, and Energy 
(MTIE) of Korea in 2017 state that the Korean government has made a long-term electricity supply plan and set the 
reservation target at 22% of the annual peak load, which is significantly higher than the typical reservation level of other 
countries that range between 12% and 15% (Kim et al., 2020). The available capacity shortage is the second factor that 
causes unreliability in the power system. In this case, the electricity shortage can occur even if the demand does not 



exceed the installed capacity but exceeds the available capacity level due to a disruption in the generation units. 
Scheduled maintenances and forced outages directly affect the available capacity level. For instance, a forced outage rate 
of 4–5% is reported by the North American Electric Reliability Corporation (NERC) (Kim et al., 2020). Thereby, the 
reliability of the power system can be threatened by a positive fluctuation on the demand side or some forced capacity 
outages. Positive fluctuations in the demand level and the risk of generation unit disruption, which could cause unreliable 
situations, are considered in this paper. Figure 1 illustrates how both uncertain situations need to be considered when 
solving a GMS problem. In this example, 300 MW is considered the annual peak load, and the installed capacity is 350 
MW. 
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Figure 1: Example of unreliable situations due to the uncertainties in a. available capacity and b. demand side 

 
 
Following the above remarks, three important issues are investigated in the present paper:  

(1) How to design a suitable model for the GMS problem under disruptions of the generation units and variation in 
the demand? 

(2) How to simultaneously ensure the power system's reliability and profitability of GENCOs?  
(3) What are the significant impacts of ignoring the hierarchical structure in the power system? 
 

Hence, a novel stochastic integrated GMS problem based on a multi-leader one-follower approach is presented to 
determine the best preventive maintenance schedules for generation units considering the ISO restrictions. In this regard, 
each GENCO proposes its maintenance schedule to the ISO in a non-cooperative manner at the upper level. Then ISO in 
the lower level decides about operational decisions and rescheduling signals to react to the GENCOs’ schedules based on 
the power system reliability level. The conceptual framework of the proposed approach is shown in Figure 2. It is 
assumed that there are G number of GENCOs in the electricity market and each GENCO has predefined generation units 
(Ξ(g)). In the Figure 2, it is observed that |Ξ(1)| = 2,  |Ξ(2)| = 1, and |Ξ(G)| = 2. 
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Figure 2: Overview of the leader-follower structure of the proposed GMS problem 
 
Following is a breakdown of the content of this paper. The literature review is presented in Section 2. The stochastic bi-
level GMS model definition and formulation are developed in Section 3. In Section 4, the solution methodology is 
discussed and in Section 5, the computational results are analyzed. Finally, conclusions and suggestions for the future 
research are presented in Section 6. 
 

2. Literature review  

Various aspects of the GMS problem and its stakeholder interactions have been investigated in recent years. (Yamayee, 
1982), (Kralj & Petrović, 1988), (Dahal, 2004), (Khalid & Ioannis, 2012), and (Froger, Gendreau, Mendoza, Pinson, & 
Rousseau, 2016) published a literature review on the GMS studies from three main perspectives: mathematical modeling, 
power system features, and advanced solution methods. The latest review on the GMS problem provided a 
comprehensive overview of the GMS studies up to 2014 (Froger et al., 2016). Related research is clustered according to 
power system structure, objective function, solution methodology, uncertainty consideration, and other essential features. 
Moreover, they introduced some aspects of GMS that need to be further explored, such as the interaction between 
GENCOs and ISO and more uncertain parameters (Mazidi, Tohidi, Ramos, & Sanz-Bobi, 2018). However, game theory-
based tools are needed when considering different stakeholder interactions. One of the most successful contributions of 
game theory in deregulated power systems is the application of optimization techniques to solve maintenance scheduling 
problems in a competitive environment. We review the literature on GMS problems in two subsections to cover recent 
studies. Section 2.1 provides a brief review of GMS problems in uncertain environments, while Section 2.2, overviews 
GMS problems using game theory-based approaches. 
 
 



2.1. Uncertainty in GMS problems 

Uncertainty in critical parameters of the GMS problem may lead to the infeasibility of solutions, sub-optimality, or both. 
Increasingly competitive, transparent, and agile electricity markets require generation unit maintenance managers to take 
into account uncertain parameters in the GMS problem. In the most recent GMS studies, an uncertain environment is 
considered and demand is the most common uncertain parameter ((Manshadi & Khodayar, 2018), (Kamali, Khazaei, 
Banizamani, & Saadatian, 2018), (Mazidi et al., 2018), (Bao, Gui, & Guo, 2018), (Ge, Xia, & Su, 2018), (Zhong, 
Pantelous, Goh, & Zhou, 2019), (Bagheri & Amjady, 2019), (Bozorgi, Pedram, & Yousefi, 2016), and (Yildirim, 
Gebraeel, & Sun, 2019)). However, uncertainty in energy sources ((Ji, Wu, & Zhang, 2016), (Kamali et al., 2018), (Ge et 
al., 2018), and (C. Wang, Wang, Zhou, & Ma, 2018)), energy price ((Kamali et al., 2018), (Shabanzadeh & Fattahi, 
2015), (Ji et al., 2016), (Ge et al., 2018), (C. Wang et al., 2018), and (Sadeghian, Mohammadpour, & Mohammadi-
ivatloo, 2019)), and the availability of generation units ((Bao et al., 2018), (Y. Wang et al., 2016), (Basçiftci, Ahmed, 
Gebraeel, & Yildirim, 2017), (Hassanpour & Roghanian, 2021), (Roghanian & Hassanpour, 2020), and (Bagheri & 
Amjady, 2018)) are considered as some of the other critical uncertainty sources in the related research. Different 
approaches including interval programming ((Manshadi & Khodayar, 2018)), stochastic programming ((Mazidi, Tohidi, 
Ramos & Sanz-Bobi, 2018), (Sadeghian et al., 2019), (Hassanpour & Roghanian, 2021), and (Roghanian & Hassanpour, 
2020)), robust optimization ((Mazidi et al., 2018), (Ji et al., 2016), (Bagheri & Amjady, 2019), (Shabanzadeh & Fattahi, 
2015)), and fuzzy programming ((Bao et al., 2018), (Ge et al., 2018)) are adopted to cope with uncertainties according to 
the problem characteristics. Hence, due to the inherent nature of strategic and operational decisions in GMS problems, 
scenario-based two-stage stochastic programming with known scenario occurrence probabilities is employed in the most 
relevant studies ((Mazidi et al., 2018), (Sadeghian et al., 2019), (Basçiftci et al., 2017; Manshadi & Khodayar, 2018), 
(Hassanpour & Roghanian, 2021), and (Roghanian & Hassanpour, 2020)). (Mazidi et al., 2018) proposed a bi-level 
stochastic programming GMS model under demand uncertainty. At the first stage, each GENCO makes the preventive 
maintenance decision to maximize its profit. Once the maintenance decisions have been set, and stochastic demand has 
been realized, ISO decides the total generated power and the clearing price for the market. (Sadeghian et al., 2019) 
developed a risk-based stochastic GMS model for a particular GENCO under uncertainty of the competitors' energy price 
and maintenance strategies. In this regard, maintenance decisions were considered the first-stage decisions, while total 
generated power was the second-stage decision. (Basçiftci et al., 2017) proposed a stochastic GMS model considering 
unexpected failure scenarios in the generation units. The failure scenarios were derived from the remaining lifetime 
distributions of the generation units and a chance constraint to ensure a reliable maintenance plan. They handled a large 
number of failure scenarios by the sample average approximation (SAA) method. (Hassanpour & Roghanian, 2021) 
developed a non-cooperative two-stage stochastic GMS model based on the risk of generation unit disruption. At first, 
GENCOs made their maintenance decisions in an uncooperative manner, and then ISO determined the total generated 
power after failure scenarios were realized. (Roghanian & Hassanpour, 2020) presented a stochastic GMS problem 
considering backup coverage for unexpected disruption in generation units. During the first stage, maintenance decisions 
and generation amounts were proposed, followed by backup generation unit selection in the second stage. As a result, 
uncertainty in critical parameters has become an integral part of the GMS formulation. This paper presents a bi-level two-
stage stochastic GMS problem with variations in demands and risks of generation units’ disruption.      

2.2. Game theory approach in GMS problems  

Over the past few decades, electricity markets in both developed and developing countries have been restructured and 
privatized. Therefore, the GMS problem has shifted from a centralized approach, which is used in regulated power 
systems with a single decision-maker, to a decentralized, multi-agent approach in deregulated power systems. In this 
regard, game theory approaches have increasingly gained attention due to the competition between electricity market 
stakeholders in deregulated power systems. Generally, GENCOs and ISO are the two main stakeholders with conflicts of 
interest in electricity markets. Each GENCO seeks to maximize its profit individually, while the ISO tends to ensure the 
desired level of the power system’s reliability. Since GENCOs make their maintenance decisions in a non-cooperative 
manner, Nash equilibrium is practical to find an equilibrium strategy for all GENCOs ((Fotouhi Ghazvini & Moghaddas-
Tafreshi, 2009), (Bozorgi et al., 2016), (Min, Kim, Park, & Yoon, 2013), (Mazidi et al., 2018) , (Sadeghian et al., 2019) , 
(Hassanpour & Roghanian, 2021), and (Moghbeli, Sharifi, Abdollahi, & Rashidinejad, 2020)). 
A multi-leader one-follower approach is suggested to consider all interactions between GENCOs and GENCOs with ISO. 
A bi-level programming can be used to mathematically formulate a multi-leader one-follower configuration. In this 
approach, GENCOs are considered the leaders, while the ISO, an organization that makes decisions based on the 
GENCOs' strategies, is considered the follower. The decisions are taken independently and sequentially. Few studies 
applied a bi-level programming approach to formulate the GMS model ((Pandzic, Conejo, Kuzle, & Caro, 2012), 
(Pandzic, Conejo, & Kuzle, 2013), (A. Naebi Toutounchi, Seyed Shenava, Taheri, & Shayeghi, 2016), (Mazidi et al., 
2018), (Rokhforoz, Gjorgiev, Sansavini, & Fink, 2021), and (Amir Naebi Toutounchi et al., 2019)). In all existing bi-
level GMS studies, GENCOs are considered as the leaders and determine the maintenance of their generation units, 
individually. At the lower level, the ISO determines total generated power and market clearing prices. The strategic 



behavior of GENCOs in a non-cooperative manner makes the GMS problem a multi-individual bi-level stochastic 
programming problem. In this regard, the Nash Equilibrium concept is used to obtain a solution for the proposed model. 
In all relevant studies, once the Nash Equilibrium has been established for the multi bi-level models, ISO evaluates a 
reliability index such as EENS or LOLE to prepare appropriate penalties/incentives as rescheduling signals. Then, 
penalties are issued to GENCOs to change their maintenance decisions. The problem is solved in an iterative algorithm 
until desired reliability level for ISO is obtained. In contrast, the current study proposes a novel multi-leader one-follower 
two-stage stochastic approach for the GMS problem that omits the iterative procedure for ensuring the desired reliability 
by examining the rescheduling signals as a constraint in the lower-level model. This study addresses one of the important 
weaknesses of previous maintenance scheduling studies. A summary of the recent relevant studies on the GMS problem 
as well as the proposed model position compared to previous studies is presented in Table 1. Also, Figure 3 shows an 
overview of the GMS problem studies applying game theory to formulate interactions between GENCOs, and the 
interaction among GENCOs and ISO.   



 
 

Table 1: A summary of recent related studies on the GMS problem 

Reference Schedule 
horizon 

Schedule feature  Uncertainty  Bi-level programming 
Rescheduling 

signal 

Solution method 

GENCO 
NCM FOC Reliability 

index  Parameter approach  leader follower Nash 
equilibrium 

KKT 
conditions 

Iterative procedure 
for reliability 

(Mazidi et al., 2018) MT   ENS & 
OC  Demand TSSP  GENCOs ISO Penalty/ 

Incentive    

(Sadeghian et al., 
2019) ST & LT   Reserve 

level  
Energy price 

& rival 
behavior 

TSSP    Adjusted 
reserve level    

(Basçiftci et al., 2017) MT   Demand 
respond  Supply TSSP        

(Hassanpour & 
Roghanian, 2021) MT   EENS  Supply TSSP    Penalty/ 

Incentive    

(Roghanian & 
Hassanpour, 2020) MT   EENS  Supply TSSP    Penalty/ 

Incentive    

(Min et al., 2013) MT   Reserve 
level       Penalty/ 

Incentive    

(Moghbeli et al., 
2020) MT   Reserve 

level       Penalty/ 
Incentive    

(Pandzic et al., 2013) MT   Reserve 
level     GENCOs ISO     

(Rokhforoz et al., 
2021) MT   Demand 

respond  Failure 
behavior stochastic  GENCOs TSO Incentive    

(Amir Naebi 
Toutounchi et al., 

2019) 
MT   Reserve 

level     GENCOs ISO     

This study MT   EENS  Demand & 
Supply TSSP  GENCOs ISO Penalty/ 

Incentive    

Items: NCM (Non-Cooperative Manner), FOC (Forced Outage Consideration), LT (Long-Term), MT (Mid-Term), ST (Short-Term), OC (Operational Cost), TSSP (Two-Stage Stochastic Programming), TSO 
(Transmission System Operator), ENS (Energy Not Supplied) 



 
 

The review of previous relevant studies confirms that most studies have taken into account only one uncertainty source 
(as summarized in Table 1). Moreover, most researchers have used a single-level structure to formulate the GMS 
problem. So, in the current study, above mentioned gap is covered. Mentioned research gap is depicted in Figure 3, which 
illustrates how the proposed approach covers them. Therefore, the main characteristics of the proposed approach which 
have been considered in the current study can be summarized as follows:  

- Static behavior of GENCOs in a non-cooperative manner. 
- Market stakeholders’ role through a bi-level programming approach.  
- Generation units’ disruption and demand variations as main sources of uncertainty. 
- Adopting some modified IEEE reliability test systems to evaluate the effectiveness of the proposed model. 

Developing a two-stage integrated model considering demand variations and generation units disruption as well as an 
efficient new solution algorithm are unique contributions of this study. As illustrated in Figure 3, three components in the 
GMS literature are the bi-level approach, static game of players, and uncertainty sources. The contribution of this study 
has been highlighted among those three components.  
 
Addressing a multi-individual bi-level two-stage stochastic problem and obtaining Nash Equilibrium as the final solution 
without applying iterative procedure.  
 
 

 
Figure 3: The overview of previous GMS studies with a competition structure 

 
3. Problem description and model formulation 

3.1. Problem description 

ISO and GENCOs are the main actors with conflicting interests in deregulated power systems. Considering all the 
interactions between stakeholders becomes one of the most important issues for electricity market administrators and 
practitioners. In this study, we present a novel approach to stochastic GMS problems to determine which sequence of 
preventive maintenance outages is effective for a given set of generation units subject to ISO regulations. Thereupon, a 
multi-leader one-follower configuration is applied based on a bi-level programming approach to formulate the 



hierarchical structure of the GMS model. As independent leaders, GENCOs schedule the maintenance of the generation 
units at the upper level. At the same time, as a follower, the ISO decides about the system operation and rescheduling of 
signals in the lower level. A penalty/incentive mechanism is applied as the ISO signal to ensure the desired system 
reliability level, which is considered a constraint in the lower-level model to eliminate the iterative process between ISO 
and GENCOs. The following assumptions have been considered to formulate the problem. 

- Demand can be met from multiple generation units 
- An infinitive capacity dummy generation unit is considered to cover not supplied power hypothetically. This 

prevents the infeasibility of the mathematical model. Any usage of the dummy generation unit incurs a penalty, 
which can be interpreted as outsourcing cost or loss.  

- Market clearing price is a parameter in the upper-level model that is obtained from the balance between 
generated power and electricity demand in the ISO model. 

- Transmission and failure of the transmission lines and their influence on the GMS model are ignored in this 
study.  

 

3.2. Mathematical formulation 

In this section, a stochastic GMS problem is formulated using a bi-level two-stage stochastic programming approach. The 
model notations are provided in Table 2.  

Table 2: Notations of the proposed model 

Sets and Indices 
𝓡𝓡 Set of available generation units, ℛ = {1, 2, …𝑅𝑅} 
𝓚𝓚 Set of disrupted generation units, 𝒦𝒦 = {1, 2, …𝐾𝐾} 
𝒓𝒓 Index for available generation units (𝑟𝑟 ∈ ℛ) 
𝒌𝒌 Index for disrupted generation units (𝑘𝑘 ∈ 𝒦𝒦) 

I  Set of generation units (𝐼𝐼 = ℛ ∪𝒦𝒦) 
𝒊𝒊, 𝒋𝒋 Indices for generation units (𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼) 
𝓖𝓖 Set of GENCOs, 𝒢𝒢 = {1, 2, …𝐺𝐺}  
𝒈𝒈 Index for GENCOs (𝑔𝑔 ∈ 𝒢𝒢)  
𝚵𝚵(𝒈𝒈) Set of generation units owned by 𝑔𝑔 
𝓣𝓣 Set of time period, 𝒯𝒯 = {1, 2, …𝑇𝑇}  
𝒕𝒕 Index for time period (week), (𝑡𝑡 ∈ 𝒯𝒯) 
𝓦𝓦 Set of disruption scenario, 𝒲𝒲 = {1, 2, …Ω} 
𝝎𝝎, 𝝎́𝝎 Indices for disruption scenario (𝜔𝜔, 𝜔́𝜔 ∈ 𝒲𝒲) 
𝓢𝓢 Set of demand variation scenario, 𝒮𝒮 = {1, 2, … 𝑆𝑆} 
𝒔𝒔 Index for demand variation scenario (𝑠𝑠 ∈ 𝒮𝒮) 

Parameters: 
𝑵𝑵𝒈𝒈 Maximum simultaneous maintenance actions for GENCO 𝑔𝑔 
𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝒕𝒕𝒔𝒔 Electricity demand at time period 𝑡𝑡 under scenario 𝑠𝑠 (MW) 
𝒅𝒅𝒊𝒊 Required maintenance time for generation unit 𝑖𝑖 which the maintenance must be performed within the 

considered time horizon (weeks) 
𝒇𝒇𝒊𝒊 Fuel cost of generation unit 𝑖𝑖 ($/MBTU) 
𝝉𝝉𝒊𝒊 Incremental term of fuel usage (Heat rate) of generation unit 𝑖𝑖 (MBTU/ MW) 
𝑶𝑶𝒊𝒊 Operational costs of generation unit 𝑖𝑖 ($/MW) 
𝑴𝑴𝒊𝒊 Maintenance costs of generation unit 𝑖𝑖 ($/MW) 
𝒒𝒒𝒊𝒊𝒎𝒎𝒎𝒎𝒎𝒎 Maximum capacity of the generation unit 𝑖𝑖 (MW) 
𝒒𝒒𝒊𝒊𝒎𝒎𝒎𝒎𝒎𝒎 Minimum capacity of the generation unit 𝑖𝑖 (MW) 
𝒒𝒒𝒊𝒊𝒊𝒊𝒎𝒎𝒎𝒎𝒎𝒎 Maximum capacity of the generation unit 𝑖𝑖 under scenario 𝜔𝜔 (MW) 
𝒒𝒒𝒊𝒊𝒊𝒊𝒎𝒎𝒎𝒎𝒎𝒎 Minimum capacity of the generation unit 𝑖𝑖 under scenario 𝜔𝜔 (MW) 
𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 Forced outage rate for the generation unit 𝑖𝑖 
𝑲𝑲 A penalty of using dummy generation unit ($/MW) 



𝝅𝝅 Penalty/Incentive amount for each reliability deviation ($/MWh) 
𝜶𝜶 ISO coefficient to determine a reasonable reliability level 
𝒖𝒖𝒖𝒖𝒊𝒊 Upward ramp of generation unit 𝑖𝑖 (MW/h) 
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒊𝒊 Downward ramp of generation unit 𝑖𝑖 (MW/h) 
𝒑𝒑𝒔𝒔 The probability of scenario 𝑠𝑠 occurrence  
𝒑𝒑𝝎𝝎 The probability of scenario 𝜔𝜔 occurrence 
𝑬𝑬𝑬𝑬𝒕𝒕 Desired reliability level for ISO at time period 𝑡𝑡 
𝑴𝑴 Large enough number 
H Operational hours per week  
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒔𝒔 Peak load of scenario 𝑠𝑠 (MW) 
𝑿𝑿𝟎𝟎 Fixed maintenance plans for other GENCOs 

Decision variables: 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒈𝒈 Payoff of GENCO 𝑔𝑔 
𝚿𝚿 Objective function of ISO  
𝑿𝑿𝒊𝒊𝒊𝒊 Maintenance status of generation unit 𝑖𝑖 at time period 𝑡𝑡, 1 if the generation unit is on maintenance, 0 otherwise 
𝒒𝒒𝒊𝒊𝒊𝒊𝒔𝒔𝒔𝒔 Average generated power of generation unit 𝑖𝑖 at time period 𝑡𝑡 under scenarios 𝑠𝑠 and 𝜔𝜔  
𝑸𝑸𝒕𝒕
𝒔𝒔𝒔𝒔 Average generated power of dummy generation unit at time period 𝑡𝑡 under scenarios 𝑠𝑠 and 𝜔𝜔 

𝝁𝝁𝒕𝒕𝒔𝒔𝒔𝒔 Energy price at time period 𝑡𝑡 under scenarios 𝑠𝑠 and 𝜔𝜔 
𝑪𝑪𝒊𝒊𝒊𝒊 Contribution of generation unit 𝑖𝑖 at time period 𝑡𝑡 in reliability index deviation from the desired level 
𝝀𝝀𝒕𝒕𝒔𝒔𝒔𝒔 Dual variable of Eq. 9 
𝜸𝜸𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝟏𝟏 ,𝜸𝜸𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝟐𝟐  
𝜸𝜸𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝟑𝟑 ,𝜸𝜸𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝟒𝟒  
𝜸𝜸𝒊𝒊𝒊𝒊𝟓𝟓 ,𝜸𝜸𝒕𝒕𝒕𝒕𝒕𝒕𝟔𝟔  

Dual variable of Eq. 10, 11, 12, 13, 14, and 16, respectively 

 
In terms of the notation, as mentioned earlier, the proposed bi-level integrated GMS (BLIGMS) model under the risk of 
generation units’ disruption and demands variation is presented as follows:  
 
 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀   𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔[𝑋𝑋𝑖𝑖𝑖𝑖, 𝑞𝑞�𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠, 𝐶̂𝐶𝑖𝑖𝑖𝑖] = 

� 𝑝𝑝𝑠𝑠𝑝𝑝𝜔𝜔(𝜇𝜇𝑡𝑡𝑠𝑠𝑠𝑠 − 𝑂𝑂𝑖𝑖 − 𝜏𝜏𝑖𝑖𝑓𝑓𝑖𝑖)𝑞𝑞�𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

𝑖𝑖∈Ξ(𝑔𝑔),𝑡𝑡,𝑠𝑠.𝜔𝜔

− � 𝑀𝑀𝑖𝑖𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑋𝑋𝑖𝑖𝑖𝑖
𝑖𝑖∈Ξ(𝑔𝑔),𝑡𝑡

− � 𝜋𝜋𝐶̂𝐶𝑖𝑖𝑖𝑖
𝑖𝑖∈Ξ(𝑔𝑔),𝑡𝑡

𝑋𝑋𝑖𝑖𝑖𝑖 (1) 

𝜇𝜇𝑡𝑡𝑠𝑠𝑠𝑠 =
𝜆𝜆𝑡𝑡𝑠𝑠𝑠𝑠

𝑝𝑝𝑠𝑠𝑝𝑝𝜔𝜔 ∀𝑡𝑡, 𝑠𝑠,𝜔𝜔 (2) 

�𝑋𝑋𝑖𝑖𝑖𝑖
𝑡𝑡

= 𝑑𝑑𝑖𝑖  ∀𝑖𝑖 ∈ Ξ(𝑔𝑔) (3) 

𝑋𝑋𝑖𝑖𝑖𝑖+1 − 𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑖𝑖+𝑑𝑑𝑖𝑖 ≤ 0 ∀𝑖𝑖 ∈ Ξ(𝑔𝑔), 𝑡𝑡 ≤ 𝑇𝑇 − 𝑑𝑑𝑖𝑖 (4) 

� 𝑋𝑋𝑖𝑖𝑖𝑖
𝑖𝑖∈Ξ(𝑔𝑔)

≤ 𝑁𝑁𝑔𝑔 ∀𝑡𝑡 (5) 

𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑋𝑋0 ∀𝑖𝑖 ∉ Ξ(𝑔𝑔), 𝑡𝑡 (6) 

𝑋𝑋𝑖𝑖𝑖𝑖 ∈ {0,1} ∀𝑖𝑖 ∈ Ξ(𝑔𝑔), 𝑡𝑡 (7) 

𝜓𝜓(𝑋𝑋�𝑖𝑖𝑖𝑖, 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 ,𝐶𝐶𝑖𝑖𝑖𝑖) = 𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑝𝑝𝑠𝑠𝑝𝑝𝜔𝜔(𝑂𝑂𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑓𝑓𝑖𝑖)𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠
𝑖𝑖,𝑡𝑡,𝑠𝑠.𝜔𝜔

+ � 𝑝𝑝𝑠𝑠𝑝𝑝𝜔𝜔𝐾𝐾𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠
𝑡𝑡,𝑠𝑠,𝜔𝜔

 (8) 

�𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠
𝑖𝑖

+ 𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑠𝑠 ∀𝑡𝑡, 𝑠𝑠,𝜔𝜔   ∶  𝜆𝜆𝑡𝑡𝑠𝑠𝑠𝑠 (9) 

𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 ≤ (1 − 𝑋𝑋�𝑖𝑖𝑖𝑖)𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 ∶  𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1  (10) 

(1 − 𝑋𝑋�𝑖𝑖𝑖𝑖)𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 ∶  𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2  (11) 

(𝑞𝑞𝑖𝑖𝑖𝑖+1𝑠𝑠𝑠𝑠 − 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠)/𝐻𝐻 ≤ 𝑢𝑢𝑢𝑢𝑖𝑖 ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 ∶  𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3  (12) 

(𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 − 𝑞𝑞𝑖𝑖𝑖𝑖+1𝑠𝑠𝑠𝑠 )/𝐻𝐻 ≤ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖  ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 ∶  𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖4  (13) 

𝐶𝐶𝑖𝑖𝑖𝑖 =
∑ 𝑝𝑝𝜔𝜔𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑋𝑋�𝑖𝑖𝑖𝑖𝜔𝜔

∑ 𝑝𝑝𝜔𝜔𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑋𝑋�𝑖𝑖𝑖𝑖𝑖𝑖,𝜔𝜔
(�𝐻𝐻𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠
𝑠𝑠,𝜔𝜔

− 𝐸𝐸𝐸𝐸𝑡𝑡) ∀𝑖𝑖, 𝑡𝑡     ∶  𝛾𝛾𝑖𝑖𝑖𝑖5  (14) 



𝐶𝐶𝑖𝑖𝑖𝑖:𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∀𝑖𝑖, 𝑡𝑡          (15) 

𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠 ≥ 0 ∀𝑡𝑡, 𝑠𝑠,𝜔𝜔  ∶  𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡6  (16) 
 
Eqs. (1)-(7) represent each GENCO model. Eq. (1) represents the payoff for the gth GENCO. This equation displays the 
GENCO payoff, subtracting the cost from income values. The first term represents electric income; the second represents 
operation costs; the third refers to fuel costs; the fourth refers to maintenance costs, and the last represents an appropriate 
penalty/incentive based on the contribution generated by each generation unit in deviation from expected reliability index 
levels. Eq. (2) represents the marginal electricity price. The duration of maintenance for the generation unit is outlined in 
constraint (3). Constraint (4) ensures the continuity of the maintenance actions after maintenance starts and Constraint (5) 
limits the maximum generation units that can be on maintenance simultaneously. Also, in Eq. (6) the decisions of other 
GENCOs are considered fixed. Finally, constraint (7) expresses the maintenance decision as a binary variable. In the 
lower-level, the power system costs, i.e., operational, fuel, and shortage penalty costs are minimized according to Eq. (8). 
Constraint (9) describes the balance between generation amount and electricity demand. Constraints (10) and (11) restrict 
the upper and lower bounds of the generated power of each generation unit. Constraints (12) and (13) define the upward 
and downward ramping limits of each generation unit. Eq. (14) determines the contribution of each generation unit to the 
deviation of the reliability index from the desired level. In this equation, if GENCO 𝑖𝑖 goes on maintenance (𝑋𝑋�𝑖𝑖𝑖𝑖 = 1) 
and the reliability criteria are violated (∑ 𝐻𝐻𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠,𝜔𝜔 − 𝐸𝐸𝐸𝐸𝑡𝑡 > 0), the contribution of the ith generation unit in the 
violation (MWh) is proportional to the potential maximum capacity outage to the sum of weighted maximum capacity 
outages. It is worth mentioning that ∑ 𝐻𝐻𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠,𝜔𝜔  represents the expected energy not supplied in week 𝑡𝑡 (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡), 
and coefficient H is used to convert the obtained value to MWh. In this study, each week is considered 168 hours. Finally, 
lower-level variable types are declared in constraints (15) and (16).  

3.3.  Equivalent single-level GMS model for each GENCO 

 
(Moore & Bard, 1990) proved that mixed-integer bi-level programming models are Np-hard due to the hierarchical 
structure. Here, Karush-Kuhn-Tucker (KKT) conditions are adopted to handle the proposed model by transforming the 
developed bi-level model into a single-level one. In this regard, KKT conditions of the lower-level model are obtained as 
follows: 

𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠(𝑂𝑂𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑓𝑓𝑖𝑖) − 𝜆𝜆𝑡𝑡𝑠𝑠𝑠𝑠 + 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝜔𝜔2 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3 + 𝛾𝛾𝑖𝑖𝑖𝑖−1𝑠𝑠𝑠𝑠3 + 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖4 − 𝛾𝛾𝑖𝑖𝑖𝑖−1𝑠𝑠𝑠𝑠4 = 0 ∀𝑖𝑖, 𝑠𝑠,𝜔𝜔, 𝑡𝑡 ∈ (1,𝑇𝑇) (17) 

𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠(𝑂𝑂𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑓𝑓𝑖𝑖) − 𝜆𝜆𝑡𝑡𝑠𝑠𝑠𝑠 + 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3 + 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖4 = 0 ∀𝑖𝑖, 𝑠𝑠,𝜔𝜔, 𝑡𝑡 = 1 (18) 

𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠(𝑂𝑂𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑓𝑓𝑖𝑖) − 𝜆𝜆𝑡𝑡𝑠𝑠𝑠𝑠 + 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 + 𝛾𝛾𝑖𝑖𝑖𝑖−1𝑠𝑠𝑠𝑠3 − 𝛾𝛾𝑖𝑖𝑖𝑖−1𝑠𝑠𝑠𝑠4 = 0 ∀𝑖𝑖, 𝑠𝑠,𝜔𝜔, 𝑡𝑡 = 𝑇𝑇 (19) 

𝛾𝛾𝑖𝑖𝑖𝑖5 (�𝑝𝑝𝜔𝜔𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖,𝜔𝜔

𝑋𝑋𝑖𝑖𝑖𝑖) = 0 ∀𝑖𝑖, 𝑡𝑡 (20) 

𝐾𝐾𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠 − 𝜆𝜆𝑡𝑡𝑠𝑠𝑠𝑠 − 𝐻𝐻𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠 ��𝑋𝑋𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑖𝑖5 𝑝𝑝𝜔́𝜔𝑞𝑞𝑖𝑖𝜔́𝜔𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖,𝜔́𝜔

� − 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡6 = 0 ∀𝑡𝑡, 𝑠𝑠,𝜔𝜔 (21) 

[(1 − 𝑋𝑋𝑖𝑖𝑖𝑖)𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠]𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 = 0 ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (22) 

�𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 − (1 − 𝑋𝑋𝑖𝑖𝑖𝑖)𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 = 0 ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (23) 

[𝑢𝑢𝑢𝑢𝑖𝑖 − 𝑞𝑞𝑖𝑖𝑖𝑖+1𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠]𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3 = 0 ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (24) 

[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 − 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑖𝑖𝑖𝑖+1𝑠𝑠𝑠𝑠 ]𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖4 = 0 ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (25) 

𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡6 = 0 ∀𝑡𝑡, 𝑠𝑠,𝜔𝜔 (26) 

(9)-(16)   

𝜆𝜆𝑡𝑡𝑠𝑠𝑠𝑠, 𝛾𝛾𝑖𝑖𝑖𝑖5 :𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (27) 



𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 , 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 , 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3 , 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖4 , 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡6 ≥ 0 ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (28) 

 
Eqs. (17)-(21) represent stationary conditions which are gradients of the Lagrangian function for the lower-level 
variables. Complementary slackness conditions are described in Eqs. (22)-(28). Eqs. (9)-(15) shows the primal 
constraints of the lower-level model. Finally, constraints (27) and (28) declare dual variable types. The single-level 
counterpart is obtained by adding the above constraints to the upper-level model. By transforming the bi-level model to 
the single-level counterpart, some nonlinearity terms have appeared. The model linearization steps are presented in 
Appendix. Nonlinear terms are replaced by some linear constraints to convert the obtained mixed-integer nonlinear 
programming (MINLP) model to a mixed-integer problem (MIP). Thus, the final integrated GMS model can be rewritten 
using predefined linearization constraints as follows:  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀   𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔 = � [𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 − 𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖,𝑡𝑡,𝑠𝑠.𝜔𝜔

+ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3 𝑢𝑢𝑢𝑢𝑖𝑖 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖4 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖] 

(29) 
− � 𝑀𝑀𝑖𝑖𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑋𝑋𝑖𝑖𝑖𝑖

𝑖𝑖∈Ξ(𝑔𝑔),𝑡𝑡

−�𝜋𝜋𝑍𝑍𝑖𝑖𝑖𝑖
𝑖𝑖,𝑡𝑡

 

(2)-(7)   

(9)-(13)   

�𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝜔𝜔
𝜔𝜔,𝑗𝑗

𝑞𝑞𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐻𝐻�𝑝𝑝𝜔𝜔
𝜔𝜔

𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑠𝑠,𝜔𝜔

−�𝑝𝑝𝜔𝜔𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
𝜔𝜔

𝑋𝑋𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸𝑡𝑡 ∀𝑖𝑖 ∈ Ξ(𝑔𝑔), 𝑡𝑡 (30) 

(15), (16), (17)-(19), (27), (28)   

𝐾𝐾𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠 + 𝜆𝜆𝑡𝑡𝑠𝑠𝑠𝑠 − 𝐻𝐻𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠 ��𝑃𝑃𝑖𝑖𝑖𝑖𝑝𝑝𝜔́𝜔𝑞𝑞𝑖𝑖𝜔́𝜔𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖,𝜔́𝜔

� − 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡6 = 0 ∀𝑡𝑡, 𝑠𝑠,𝜔𝜔 (31) 

(A1)-(A13), (A16)-(A25), (A27)-(A37)   

𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0, 𝑍𝑍𝑖𝑖𝑖𝑖,𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑃𝑃𝑖𝑖𝑖𝑖:𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖6 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖4 ,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡5 ∈ {0,1} ∀𝑖𝑖 ∈ Ξ(𝑔𝑔), 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (32) 

 

3.4. Scenario reduction  

Maintaining the reliability of power systems is one of the main concerns of ISO. As illustrated in Figure 1, the reliability 
of the power system can be threatened by positive shifts in demand or shortages of available capacities. Therefore, in this 
paper, we focus on two types of uncertainty that can make unreliable situations: Fluctuations in demand and the 
disruption in the generation units. 
To cope with demand uncertainty, some scenarios are generated. Fluctuations rarely occur at all demand points, so 
demand patterns with positive fluctuation on them which can lead to losing reliability, are recognized. Therefore, a 
demand scenario is considered as an event in which a positive change in demand occurs. Here, the number of scenarios 
(S) is related to the demand pattern and peak point features. Also, to consider uncertainty in available capacity, some 
failure scenarios are generated. Thus, a failure scenario is defined as an event in which some of the generation units go 
down due to disruption, while other generation units are accessible to provide service. Disruption of the generation unit 𝑘𝑘 
leads to a reduction of generation unit capacity to zero (𝑞𝑞𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 0). Generation unit failures are characterized by 
a Bernoulli distribution. The Bernoulli distribution is a discrete probability distribution of a random variable that takes 
the value “1” as a success with probability 𝑝𝑝 and the value “0” as a failure with probability 𝑞𝑞 = 1 − 𝑝𝑝 (Pishro-Nik, 
2014). Therefore, the probability of the scenario 𝜔𝜔 is 𝑝𝑝𝜔𝜔 = ∏ 𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘𝐾𝐾

𝑘𝑘=1 ∏ (1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟)𝑅𝑅
𝑟𝑟=1 , where 𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘 is the forced 

outage rate for the disrupted generation unit 𝑘𝑘 and 𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟 is the forced outage rate of the available generation unit 𝑟𝑟. 
Suppose 𝑁𝑁 denotes the number of the generation units (𝑁𝑁 = |𝐼𝐼| = 𝑅𝑅 + 𝐾𝐾), then the total number of the possible failure 
scenarios is ∑ �𝑁𝑁𝜄𝜄 �

𝑁𝑁
𝜄𝜄=0 = 2𝑁𝑁, which grows exponentially with increasing 𝑁𝑁. Thus, if a power system has 20 generation 

units, the number of failure scenarios will be 1048576. In comparison, the number of generation units in the United 
States exceeds 22000 units.  
Thus, considering both scenarios lead to having S×2𝑁𝑁 number of scenarios in the proposed GMS model. A large number 
of scenarios render the underlying optimization problem intractable, especially in the presence of integer variables. 
Therefore, considering all the scenarios make the GMS model solve is complicated even for small power systems. In 
order to regain tractability, we need to trim down the number of scenarios while deteriorating the accuracy of the 
approximation as little as possible. In this paper, a new procedure based on the fuzzy clustering approach, which is 



named SRFC is introduced. One of the most widely used fuzzy clustering algorithms which is called Fuzzy C-means 
clustering (FCM) is applied to find a new scenario set with a fewer number of scenarios that can keep the solution close 
to that generated by the original scenario set. Fuzzy clustering is a class of algorithm for cluster analysis in which data 
elements allocate to classes or clusters. Here, attempts have been made to improve the weaknesses of the algorithm in 
determining the optimal number of clusters and the high randomness of the initial points to start the algorithm. These 
improvements can lead to increased robustness and improved clustering results. For this purpose, a two-objective 
mathematical model based on the p-median problem and the Elbow method is introduced to obtain a suitable C initial 
clusters’ center. In this regard, the maximum amount of expected energy not supplied for each demand and failure 
scenarios are considered as objects (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡

𝑠𝑠,𝜔𝜔 = 𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠 − ∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚)𝑖𝑖 ) which are defined just in situation𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠 >
∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 . Figure 4 shows a schematic view of the production of scenario objects in an example. In this example, 800 MW 
is considered as the annual peak load, and the installed capacity is 1000 MW. 
 

1 1 1 1
0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

...

0 0 0 0

i=1 i=2 i=3 i=4

i: Power Unit

S
ce

na
ri

o 
nu

m
be

rs
= 

16

Unit 
status 

0;   failed

1; available

ω: Scenario No

ω=1

ω=2

ω=3

ω=4

ω=5

ω=16

S
ce

na
ri

o 
nu

m
be

rs
= 

5

+4σ 

+3σ 

+2σ 

+σ 

0

Demand Variation Failure scenarios Objects structure

O
bj

ec
ts

 n
um

be
rs

=8
0

1 1 1 1 +4σ 

1 1 1 1 +3σ 

1 1 1 1 +2σ 

...

0 0 0 0

0 0 0 0 0

+σ 

Objects 

2.57

5.16

7.73

0.0018

0.002

 
Figure 4: Schematic view of scenarios objects 

Suppose 𝑎𝑎 is an index that represents a scenario object and 𝑏𝑏 is an index of the potential cluster center. Also, 𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎  
represents the Euclidean distance between objects 𝑎𝑎 and 𝑏𝑏, 𝜏𝜏𝑎𝑎𝑎𝑎  represents a binary variable that takes “1” when object 𝑎𝑎 
is assigned to the cluster center 𝑏𝑏, and 𝜑𝜑𝑏𝑏 points to another binary variable to show if 𝑏𝑏 is a cluster center. According to 
the aforementioned notations, the bi-objective initial clustering (BOIC) model for determining a suitable cluster number 
and initial points is represented as follow:  

𝑀𝑀𝑀𝑀𝑀𝑀 �𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝜏𝜏𝑎𝑎𝑎𝑎
𝑎𝑎,𝑏𝑏

 (33) 

𝑀𝑀𝑀𝑀𝑀𝑀 �𝜑𝜑𝑏𝑏
𝑏𝑏

 (34) 

�𝜏𝜏𝑎𝑎𝑎𝑎
𝑏𝑏

= 1 (35) 

𝜏𝜏𝑎𝑎𝑎𝑎 ≤ 𝜑𝜑𝑏𝑏 (36) 

𝜏𝜏𝑎𝑎𝑎𝑎 ,𝜑𝜑𝑏𝑏 ∈ {0,1} (37) 

 
The bi-objective model presented above can be transformed into a single-objective model using the co-called ɛ-constraint 
method. The ɛ-constraint method is one of the most popular multi-objective optimization programming methods which 
was proposed by Haimes et al. (1971) for generating Pareto optimal solutions. In this method, all objectives except for 
one are converted into constraints and an upper bound limit is set for each of them. The method works by predefining a 
virtual grid in the objective space and solving different single-objective problems constrained to each grid cell. Thus, all 
Pareto-optimal solutions can be obtained if this grid is fine enough such that at most one Pareto-optimal solution is 
contained in each cell. This technique is used in several multi-objective studies ((Chamandoust et al. 2020), (Mazidi et al. 
2014)).   

Here, to obtain single-objective initial clustering (SOIC) model, we keep the first objective function (Eq. (33)) as the 
primary objective function and transform the second objective function (Eq. (34)) into a constraint ∑ 𝜑𝜑𝑏𝑏𝑏𝑏 ≤ 𝐶𝐶 with an 
upper bound C. In this regard, the initial solution and the reasonable number of clusters can be determined by defining an 
acceptable difference between the obtained objective function for C and C-1 clusters. Then, the final clusters will be 
obtained using the FCM algorithm. Figure 5 presents the pseudocode of the proposed scenario reduction procedure.  

https://www.sciencedirect.com/science/article/abs/pii/S2352152X19311491#!


Algorithm for reducing the number of scenarios by proposed SRFC approach 
1. Input: FCM iteration (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), object (𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎), cluster number range (𝐶𝐶 ∈ Ω) 
2. Set objective function (𝑂𝑂𝑂𝑂𝑂𝑂(𝐶𝐶) = ∞), cluster center (𝑐𝑐𝑗𝑗(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 𝜙𝜙), membership values (𝑈𝑈𝑎𝑎𝑎𝑎(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 𝜙𝜙), acceptable 

difference (𝛼𝛼) 
3. Initialization Step 
4. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 
5. For (𝐶𝐶 ∈ Ω ) Do 
6.       Optimize the SOIC model 
7.       Determine 𝑂𝑂𝑂𝑂𝑂𝑂(𝐶𝐶) 
8.       If (𝑂𝑂𝑂𝑂𝑂𝑂(𝐶𝐶 − 1) − 𝑂𝑂𝑂𝑂𝑂𝑂(𝐶𝐶) ≤ 𝛼𝛼) Then 
9.       Break For 
10.       End If 
11. End For 
12. Results 𝐶𝐶,  𝜏𝜏𝑎𝑎𝑎𝑎, and 𝜑𝜑𝑏𝑏 
13. 𝑏𝑏 = 1 
14. For (𝑗𝑗 = 1:𝐶𝐶) Do 
15.         If (𝜑𝜑𝑏𝑏 = 1) Then 
16.             𝑐𝑐𝑗𝑗(0) = 𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏 
17.             For (𝑎𝑎) Do 
18.                 𝑈𝑈𝑎𝑎𝑎𝑎(0) =  𝜏𝜏𝑎𝑎𝑎𝑎 
19.             End For 
20.         End If 
21.         𝑏𝑏 = 𝑏𝑏 + 1 
22. End For  
23. Assignment Step   
24. For (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1:∞) Do 
25.      For (𝑗𝑗 = 1:𝐶𝐶) Do 
26.            While (�𝑐𝑐𝑗𝑗(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 1) − 𝑐𝑐𝑗𝑗(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)� ≤ 𝜀𝜀 ) Do 

27.                      Determine 𝑈𝑈𝑎𝑎𝑎𝑎(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 1

∑ �
𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

�
2

𝑘𝑘

   ∀𝑎𝑎, ∀𝑗𝑗, 𝑘𝑘 ∈ 𝐽𝐽  

28.                     Update Step 

29.                     Determine 𝑐𝑐𝑗𝑗(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =
∑ 𝑈𝑈𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎

∑ 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎
 

30.            End While 
31.      End For 
32. End For 
33. Results 𝑐𝑐𝑗𝑗 ,𝑈𝑈𝑎𝑎𝑎𝑎  

Figure 5: The pseudocode of the scenario reduction procedure using proposed modified FCM clustering 

4. Solution methodology 

GENCOs are supposed to propose their own maintenance schedules to the ISO, individually. Thus, due to the 
independent and simultaneous decision-making of GENCOs, we are facing a multi-individual single-level GMS model. 
In this regard, Nash Equilibrium (NE) concept is used to capture the solution of the proposed multi-leader one-follower 
game. A NE is defined as a set of GENCOs’ maintenance strategies in which none of the GENCOs can increase its payoff 
individually by changing its maintenance strategy when the other GENCOs preserve their strategies. If  𝜃𝜃∗ =
{𝜃𝜃1∗,𝜃𝜃2∗, … , 𝜃𝜃𝐺𝐺∗} indicates the NE strategy vector, the NE solution needs to satisfy Eq. (38). 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔�𝜃𝜃𝑔𝑔∗�𝜃𝜃−𝑔𝑔∗ � ≥ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔�𝜃𝜃𝑔𝑔�𝜃𝜃−𝑔𝑔∗ � ∀𝑔𝑔 (38) 

An iterative procedure is introduced to obtain the NE solution mathematically. This heuristic algorithm is used in many 
previous papers to capture NE in static games ((Porter, Nudelman, & Shoham, 2008), (Pandzic et al., 2013), (A. Naebi 
Toutounchi et al., 2016), (Mazidi et al., 2018)). In this regard, each single-level GMS model is solved sequentially until 
none of the GENCOs can reach more payoffs by deviating from its strategy. Suppose that Γ1, Γ2, … , Γ𝐺𝐺 are the 
single-level GMS models and 𝜃𝜃1 = {𝜃𝜃11,𝜃𝜃21, … , 𝜃𝜃𝐺𝐺1} are the initial feasible strategies for each GENCO. Each GENCO 
solves the profit-maximization problem by fixing the other GENCOs’ strategies and saving its maintenance decisions. It 
is worth mentioning that one of the GENCOs is chosen randomly in each iteration. In this context, we suppose that the 
algorithm starts with the first GENCO. In this regard, Γ1 is solved by fixing the decisions of the other GENCOs 
(𝜃𝜃21,𝜃𝜃31, … ,𝜃𝜃𝐺𝐺1), and the obtained maintenance decisions are considered as the first GECNO’s new strategy (𝜃𝜃12). Then 
Γ2 is solved considering fixed decisions of the others (𝜃𝜃11,𝜃𝜃31, … ,𝜃𝜃𝐺𝐺1) and maintenance decisions (𝜃𝜃22 ) are saved, and so 
on. Once all G problems have been solved, the current iteration is finished. All maintenance decisions are compared with 
starting points (or past maintenance decisions). If the maintenance decisions are the same as the past iteration strategy, 
the NE solution is obtained. Otherwise, an equilibrium point has not yet been acquired, and at least a GENCO could find 



a way to improve its objective function by changing its strategy. So, the maintenance decisions are saved as the next 
iteration strategy, and the iterative procedure continues. This iterative procedure will be repeated until the maintenance 
strategies become stable. In this approach, multiple NE points may exist while we considered the first found NE point. To 
find the other NEs, if there are any, the iterative procedure can be repeated by removing previously found NE and starting 
from a different initial point or a different GENCO. So, finding a NE strongly depends on a starting point. In this case, it 
is possible that iterations occur in a loop and NE could not be found. In this situation, we repeat the algorithm with 
another starting point. Figure 6 illustrates the Pseudocode of the aforementioned procedure. 
  
Algorithm for finding the optimal solution of the proposed bi-level GMS model 
1. Input: Parameters of the leader-follower GMS model, Iteration (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 
2. Set  𝑋𝑋𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 0 
3. Rewrite the single level counterpart using SLGMS model 
4. Phase 1: Initial maintenance strategy for each GENCO 
5. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 
6. For (𝑔𝑔 ∈ 𝒢𝒢) Do 
7.       Fix 𝑋𝑋�𝑖𝑖∉Ξ(𝑔𝑔),𝑡𝑡(0) = 0 
8.       Optimize the SLGMS model and determine 𝑋𝑋𝑖𝑖∈Ξ(𝑔𝑔)𝑡𝑡(0)  
9.       Save 𝑋𝑋𝑖𝑖∈Ξ(𝑔𝑔),𝑡𝑡(0) 
10. End For 
11. Phase 2: Nash equilibrium  
12. For (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1:∞) Do 
13.       For (𝑔𝑔 ∈ 𝒢𝒢) D 
14.              Solve the GMS model and determine the optimal 𝑋𝑋𝑖𝑖∈Ξ(𝑔𝑔),𝑡𝑡(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) by fixing 𝑋𝑋�𝑖𝑖∉Ξ(𝑔𝑔),𝑡𝑡(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 1) 
15.              Save 𝑋𝑋𝑖𝑖∈Ξ(𝑔𝑔),𝑡𝑡(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 
16.       End For 
17.                    If (𝑋𝑋𝑖𝑖∈Ξ(𝑔𝑔),𝑡𝑡(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑋𝑋𝑖𝑖∈Ξ(𝑔𝑔),𝑡𝑡(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 1)) Then  
18.                           𝑋𝑋𝑖𝑖∈Ξ(𝑔𝑔),𝑡𝑡(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) is the Nash equilibrium 
19.                        Break For 
20.                     End If 
21. End For 
22. Result: 𝑋𝑋𝑖𝑖,𝑡𝑡(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

Figure 6: The pseudocode of the proposed solution methodology for finding NE 

Due to the complexity and MIP features of the investigated GMS model, commercial solvers cannot even handle small-
size instances in a reasonable time. Previous related studies confirmed the high computational challenges of solving bi-
level GMS models. For example, Mazidi et al. (2018) solved a bi-level GMS model with only six generation units. 
However, we face a more complicated GMS model in the current study due to penalty/incentive constraint consideration 
at the lower level. To cope with the complexity of the proposed model, some valid inequalities are introduced as follows. 
These inequalities can reduce the solution time of the GMS problem by adding some additional cuts in the proposed 
model feasibility space.  

1) Number of maintenance weeks for all GENCOs 

This constraint shows the total number of maintenance weeks for all GENCOs. In other words, the number of 𝑋𝑋𝑖𝑖𝑖𝑖s that 
will take 1 in the proposed model is equal to the total length of the maintenance durations of all GENCOs. 

�𝑋𝑋𝑖𝑖𝑖𝑖 = �𝑑𝑑𝑖𝑖
𝑖𝑖𝑖𝑖,𝑡𝑡

  (39) 

2) Limitation of the last possibility to start, and the first possibility to finish maintenance 

For each generation unit, the starting point of the maintenance should happen between the first week and (𝑇𝑇 − 𝑑𝑑𝑖𝑖)th 
week. And also, one of the maintenance variables between (𝑑𝑑𝑖𝑖)th week and the last week in the scheduling horizon 
should be 1 as the last week of the maintenance. 

� 𝑋𝑋𝑖𝑖𝑖𝑖 ≥ 1        
𝑇𝑇−𝑑𝑑𝑖𝑖

𝑡𝑡=1

 ∀𝑖𝑖 (40) 

�𝑋𝑋𝑖𝑖𝑖𝑖 ≥ 1                  
𝑇𝑇

𝑡𝑡=𝑑𝑑𝑖𝑖

 ∀𝑖𝑖 (41) 



3) Maintenance sequence 

Eq. (42) is defined to prepare all possible modes of the maintenance sequence requirement for each GENCO.  

� 𝑋𝑋𝑖𝑖(𝑡𝑡+𝑚𝑚) ≤ 𝑑𝑑𝑖𝑖              
𝑑𝑑𝑖𝑖

𝑚𝑚=0

 ∀𝑖𝑖, 𝑡𝑡 < 𝑇𝑇   (42) 

 

4) Maintenance window selection 

As mentioned above, Eq. (42) defines all possible modes of maintenance, while just one of these possibilities will occur. 
In this regard, we define a new binary variable (Υ𝑖𝑖𝑖𝑖) to formulate this limitation. 

� 𝑋𝑋𝑖𝑖(𝑡𝑡+𝑚𝑚) ≥ 𝑑𝑑𝑖𝑖Υ𝑖𝑖𝑖𝑖                           
𝑑𝑑𝑖𝑖

𝑚𝑚=0

 ∀𝑖𝑖, 𝑡𝑡 < 𝑇𝑇   (43) 

� Υ𝑖𝑖𝑖𝑖 = 1                         
𝑇𝑇−𝑑𝑑𝑖𝑖+1

𝑡𝑡=1

 ∀𝑖𝑖 (44) 

   
5) Maximum generation per week 

According to constraints (9) and (10), the maximum amount of generation per week will be equal to the left of the limit 
(45), which is greater than the amount of demand in that week. 

�(1 − 𝑋𝑋𝑖𝑖𝑖𝑖)𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖

+ 𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠 ≥ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑠𝑠          ∀𝑡𝑡, 𝑠𝑠,𝜔𝜔   (45) 

 

5. Simulation results 

The developed GMS model efficiency is assessed on three modified reliability test systems. The first reliability test was 
extracted from the study (Hassanpour & Roghanian, 2021) with a 1023 MW installed capacity and 720 MW annual peak 
load. The second test system is extracted from (Mazidi et al., 2018) for a power system with 505 MW installed capacity 
and almost 440 MW peak load, and the third test which is presented by (Pandzic et al., 2013) was used in this analysis 
with 700 MW installed capacity and almost 610 MW peak load. For this purpose, the CPLEX solver on GAMS 23.5 is 
used on a computer with a 2.40 GHz core (TM) i5 CPU and 4.00 GB RAM. The data of the reliability test systems are 
presented in Table 3.  

Table 3: Data for generation units in each IEEE reliability test system 
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𝑢𝑢𝑢𝑢𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 

1 
1 1 Fossil steam Coal 15.2 76 3 0.0100 0.0053 1.2 0.071 38 38 0.02 

2 Fossil steam Oil#6 68.9 197 4 0.0050 0.0042 2.3 0.057 98 98 0.05 

2 3 Fossil steam Coal 140.0 350 5 0.0044 0.0042 1.2 0.056 175 175 0.08 
4 Nuclear steam LWR 100.0 400 6 0.0050 0.0018 0.6 0.059 200 200 0.12 

2 

1 
1 Fossil steam Coal 0.0 85 1 10.0000 1.0000 1.0 0.100 75 75 0.02 
2 Fossil steam Coal 0.0 85 4 25.0000 7.0000 7.0 0.700 75 75 0.02 
3 Fossil steam Coal 0.0 85 5 30.0000 9.0000 9.0 0.900 75 75 0.02 

2 
4 Fossil steam Coal 0.0 85 2 15.0000 3.0000 3.0 0.300 75 75 0.02 
5 Fossil steam Coal 0.0 85 3 20.0000 5.0000 5.0 0.500 75 75 0.02 
6 Wind turbine Wind 0.0 80 3 10.0000 9.0000 0.0 0.000 80 80 0.08 

3 1 
1-2 Fossil steam Oil#6 2.4 12 2 0.0100 0.0300 2.3 0.071 12 12 0.02 
3 Fossil steam Oil#2 4.0 20 2 0.0003 0.0300 3.0 0.086 20 20 0.10 
4 Fossil steam Oil#6 25.0 100 3 0.0085 0.0050 2.3 0.059 50 50 0.04 



2 

5 Fossil steam Oil#6 2.4 12 2 0.0100 0.0300 2.3 0.071 12 12 0.02 
6-7 Fossil steam Coal 15.2 76 3 0.0100 0.0050 1.2 0.071 38 38 0.02 
8 Fossil steam Oil#2 4.0 20 2 0.0003 0.0300 3.0 0.086 20 20 0.10 
9 Fossil steam Oil#6 25.0 100 3 0.0085 0.0050 2.3 0.059 50 50 0.04 

3 
10 Fossil steam Oil#2 4.0 20 2 0.0003 0.0300 3.0 0.086 20 20 0.10 

11-12 Fossil steam Coal 15.2 76 3 0.0100 0.0050 1.2 0.071 38 38 0.02 
13 Fossil steam Oil#6 25.0 100 3 0.0085 0.0050 2.3 0.059 50 50 0.04 

All instances are considered a mid-term maintenance scheduling which is equivalent to 52 weeks. Also, in these cases, 
ISO parameters are considered as 𝛼𝛼 = 2 and 𝜋𝜋 = 25000. It is worth mentioning that all of the reliability tests applied the 
same demand pattern that is published by (Shahidehpour & Mk, 2000). Also, in this study, the demand variation range is 
considered from 0 to +4 standard deviations through five load levels (𝑆𝑆 = 5) (Mazidi et al., 2018). 

5.1. Scenario reduction analysis  

In this section, the performance of the proposed SRFC method is evaluated in comparison with absolute enumeration, the 
solution of the BOIC model, and traditional FCM in payoff value, solution time, number of clusters, and the Davies-
Bouldin Index. Davies-Bouldin Index is one of the well-known cluster evaluation metrics which can feature the intra-
cluster distance and inter-cluster distance. The results of implementing four pre-mentioned methods on the first reliability 
test system are reported in Table 4.  

Table 4: Evaluating the performance of the proposed SRFC method  
Metric Absolute Enumeration BOIC FCM SRFC 

Payoff 
GENCO 1 -1125843.9 -8533078.2 -9203681.7 -9996350.7 

GENCO 2 -235711393.6 -208771365.9 -209691452.1 -215099524.4 

solution time 02:39:07 0:13:09 0:21:31 0:15:12 

Number of clusters 80 6 7 7 

Davies-Bouldin Index 0.00 0.63 0.28 0.07 
 
The suitable scenario reduction method keeps the final solution close to the solution which is obtained by the original 
scenario set. Table 4 shows the advantages and superiority of the SRFC method. It emphasizes that the proposed SRFC 
method could achieve a suitable scenario reduction in a reasonable solution time and accuracy. Applying the proposed 
scenario reduction method leads to reducing the second and third reliability test system scenarios to 12 and 38.  
 

5.2. Valid inequalities performance 

The performance of the proposed valid inequalities is examined among predefined reliability test systems. The results in 
terms of GENCOs’ payoff and solution time are considered. The analysis is performed two times with different initial 
solutions, while the second run is done by the Nash Equilibrium point as the initial solution. This is done to properly 
analyze the effect of valid inequalities. For each reliability test system, to have a fair comparison regarding the accuracy 
and solution time of each added valid inequality set, the initial point and the order of solving GENCOs' models will be 
the same among runs between the valid inequality sets.  
 

Table 5: Investigation computational time of the proposed valid inequalities effect  

Te
st

 N
o.

 

None First set  
[Eq. (39)] 

Second set  
[VIs. (40) & (41)] 

Third set  
[VI. (42)] 

Fourth set  
[VIs. (43) & (44)] 

Fifth set  
[VI. (45)] 

All sets except 
fourth 

1 
0:15:12 0:12:03 0:13:37 0:13:46 0:18:12 0:14:51 0:12:17 

0:00:08 0:00:05 0:00:05 0:00:09 0:00:11 0:00:08 0:00:06 

2 
4:59:13 4:17:36 4:29:07 4:41:18 5:22:38 4:47:25 4:31:56 

0:08:05 0:07:13 0:07:30 0:07:52 0:08:53 0:07:16 0:07:13 

3 
9:17:04 8:22:34 8:27:43 8:46:12 8:59:47 11:06:19 8:28:55 

0:19:25 0:17:33 0:18:11 0:18:27 0:18:09 0:27:31 0:18:06 
VI (Valid Inequality) 

According to the reported results, GENCOs’ profits are not changed among each set of inequalities, so it confirms the 



validity of the defined inequalities. Also, as reported in Table 5, it is confirmed that considering the first valid inequality 
set can almost improve the solution time, especially in large-size instances. Thus, the first set is recommended to be 
added to the GMS model.  

 

5.3. Desired reliability level for ISO  

Desired reliability level is a parameter that the ISO defines to compare with the obtained reliability index. In real cases, 
assuming no need for predicted maintenance, some not supplied energy might be happened due to the failures. Therefore, 
ISO cannot set the desired reliability level (𝐸𝐸𝐸𝐸𝑡𝑡) less than the inherent EENS of the electricity market. In this section, the 
EENS without considering preventive maintenance as the desired reliability level threshold (𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡_𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) is 
obtained according to Eq. (46). Coefficient H is used to convert the obtained value from MW to MWh. In this study, each 
week is considered 168 hours. 

𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡_𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = � 𝐻𝐻𝐻𝐻𝜔𝜔𝑝𝑝𝑠𝑠(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑠𝑠 −�𝑞𝑞𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖
)

𝑠𝑠,𝜔𝜔,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑠𝑠>∑ 𝑞𝑞𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖 

        ∀𝑡𝑡 (46) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡_𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 for each reliability test system is presented in Table 6. 

Table 6: EENS threshold for the reliability test systems   
Week No. 1 5 10 15 20 25 30 35 40 45 50 52 

𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡_𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 
RTS 1 (MWh) 

878.6 1109.7 565.5 529.4 1109.7 1351.4 1109.7 540.7 536.2 1185.2 2748.6 2403.2 

𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡_𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 
RTS 2 (MWh) 

82.5 97.5 4.6 4.1 97.5 110.7 97.5 4.3 4.2 101.6 290.9 162.5 

𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡_𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 
RTS 3 (MWh) 

47.6 72.9 3.2 2.3 72.9 95.9 72.9 2.5 2.4 80.1 285.1 213.7 

RTS (Reliability Test System) 

Desired reliability level for ISO should never be less than the desired reliability level threshold obtained in Table 6. 
Therefore, the desired reliability levels for each week (𝐸𝐸𝐸𝐸𝑡𝑡) are determined as follows: 

𝐸𝐸𝐸𝐸𝑡𝑡 = 𝛼𝛼[𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡_𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜]         ∀𝛼𝛼 ≥ 1, 𝑡𝑡 (47) 

 

5.4.  Critical parameters sensitivity analyses 

In this section, some sensitivity analyses among key parameters are explored to validate the proposed model and evaluate 
its performance. In this regard, the bi-level GMS model in deterministic and stochastic features are evaluated in terms of 
GENCOs’ payoff, incentive participation, penalty participation, annual shortage, EENS, and energy price by changing 
parameters π, and α. Here, the reliability index “EENS” is obtained according to Eq. (48) and Eq. (49).  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 = �𝐻𝐻𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠
𝜔𝜔,𝑠𝑠

 ∀𝑡𝑡 (48) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �
1
𝑇𝑇

𝑡𝑡

(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡)        (49) 

 
The results of the deviation of each term with reference value are reported in Table 7. Reference values are obtained for 
π=25000 and α=2. It should be noted that since in this section validation of the proposed model is investigated, all the 
analyses are applied just on the first reliability test system.  
 
 
 
 
 
 
 



 
Table 7: Proposed bi-level GMS model sensitivity analyses by changing of π and α  

   Network performance measures’ change due to deviation of π and α from their initial values 

Model π α GENCO1 
payoff ($) 

Incentive 
GENCO1 

(MW) 

Penalty 
GENCO1 

(MW) 

GENCO2 
payoff ($) 

Incentive 
GENCO2 

 (MW) 

Penalty 
GENCO2 

(MW) 

Shortage 
(MW) 

EENS 
(MWh) 

D
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25000 2 644164577.8 25657.3 0.0 532166115.1 21136.5 0.0 14.4 46.5 

50000 

1 -60919664.4 -5668.6 0.0 52543226.5 1261.5 0.0 -4.9 -15.9 
2 77759804.2 1424.3 0.0 159786213.3 9514.7 0.0 60.8 196.4 
3 167038983.9 6268.0 0.0 380575608.8 14673.6 0.0 112.0 361.8 
5 1047661756.3.0 9236.2 0.0 1891775526 27307.3 0.0 251.7 813.2 

10 1721607224.5 33464.1 0.0 5349200395.6 44392.7 0.0 409.2 1322.0 

25000 

1 -120211908.3 -7094.4 0.0 -59773446.9 -1448.1 0.0 -10.7 -34.6 
3 14715311.0 479.5 0.0 250841792.0 9862.8 0.2 67.0 216.4 
5 337215451.9 13270.3 0.0 1173977807.2 46649.1 0.0 86.8 280.4 

10 1300452070.8 51690.5 0.0 3422692199.5 136457.7 0.0 188.6 609.3 

10000 

1 -533766067.1 -16083.5 0.0 -404411133.5 -6310.0 0.0 -12.8 -41.4 
2 -489822287.7 -10496.1 0.0 -338897036.9 -2159.8 0.0 -0.4 -1.3 
3 -329970189.4 -6290.6 0.0 -283604913.8 5101.6 0.0 31.8 102.7 
5 -72357313.8 2505.9 0.0 156304141.0 31845.4 0.0 68.9 222.6 

10 59583976.1 23569.2 0.0 331451216.5 62579.7 0.0 150.5 486.2 

St
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25000 2 -9996350.7 448.5 967.2 -215099524.4 0.0 8942.9 683.4 2207.9 

50000 

1 -92341751.7 -448.5 2794.4 -357876003.0 0.0 6.3 0.8 2.5 
2 105120261.8 -34.1 1243.2 216136990.7 119.6 -6464.1 18.9 61.0 
3 93894655.4 1417.7 116.9 654809263.9 1491.4 -7672.6 66.6 215.2 
5 117807965.9 2199.3 -364.6 300483034.6 2335.5 -7470.1 148.7 480.4 

10 662818361.3 12414.6 -967.2 1284112089.7 21119.6 -8942.9 230.6 745.0 

25000 

1 -16876862.9 -448.5 582.9 -61053474.3 0.0 2508.3 -44.1 -142.5 
3 44940476.1 883.3 -610.7 248941317.8 472.8 -6656.1 80.4 259.7 
5 55807581.9 2489.7 -812.4 530743709.6 2182.1 -7839.0 145.8 471.0 

10 332466960.6 12058.3 -967.2 756301042.5 15034.4 -8942.9 229.5 741.4 

10000 

1 -13339834.0 -448.5 8283.6 108761962.6 0.0 44533.0 19.0 61.3 
2 3457917.9 -448.5 4371.0 133783109.9 0.0 8568.5 69.1 223.2 
3 -2062728.2 489.6 636.3 207016337.1 97.7 -4223.6 112.5 363.4 
5 42846468.4 5991.7 -455.1 366889940.5 2161.6 -8237.5 112.8 364.4 

10 50723366.6 18983.9 -967.2 440046974.2 16144.7 -8942.9 117.9 380.9 
 
According to Eq. (14), by increasing α and consequently increasing 𝐸𝐸𝐸𝐸𝑡𝑡, ISO lets a higher EENS happen. Thus, in this 
situation, GENCOs tend to increase dummy generation unit usage up to  𝐸𝐸𝐸𝐸𝑡𝑡 to gain more incentives and payoffs. 
Therefore, they set their predictive maintenances in weeks, leading to higher dummy generation unit usage. According to 
the results, since installed capacity is always greater than loads in deterministic situations, GENCOs can set their 
maintenance decisions so that there is no EENS. Thus, they set maintenance weeks in peak loads to obtain more 
incentives. While in stochastic situations, smaller α can lead to a negative payoff for GENCOs because they cannot 
provide an EENS lower than 𝐸𝐸𝐸𝐸𝑡𝑡. Hence, in this situation, lower π will lead to more profitability. But as α increases, 
incentive amounts and, consequently the profitability increase. Thus, ISO should determine a suitable α and π because 
they impose completely different strategies on the GENCOs. This case is more important when facing some operational 
level parameters uncertainties. Figure 7 shows each GENCO’s incentive and penalty participation in different α in both 
deterministic and stochastic situations. As mentioned above, in a deterministic situation, EENS can be 0. GENCOs set 
EENS in [0, 𝐸𝐸𝐸𝐸𝑡𝑡] to obtain more profit. Thus, the penalty never happens, and the incentive increases by increasing α. In a 
stochastic situation, a penalty may occur in a small α value, and by increasing the value of α, penalties will decrease 
while incentives are increasing.  



  

Figure 7: Incentive and penalty changes among different α  

In economic theory, capacity constraints play a key role, and the price depends on the amount of available capacity. In 
maintenance scheduling problems, any reduction in available capacity leads to a reduction in the reservation level and 
will increase the electricity price. In the basic economic context, the essential drivers of price function are demand and 
supply, which in the electricity market concept refer to electricity load and the available capacity, respectively. In this 
regard, an increase in electricity load or a decrease in available capacity leads to an increase in the electricity price. 
Therefore, applying an appropriate electricity price function plays a fundamental role in GMS problems. In this study, 
due to the inherent features of the proposed GMS model, the dual variable of supply and demand balance constraint can 
be considered as the electricity price (Mazidi et al., 2018). The relation between electricity load, available capacity, and 
price for the deterministic GMS model is shown in Figure 8.  

 

Figure 8: Electricity prices and maintenance schedules for deterministic model  

According to the results, electricity price is affected due to the changes in available capacity and demand. As shown in 
Figure 8, available capacity decreases in maintenance weeks 23 to 26, 32 to 37, and 45 to 52, leading to increased 
electricity prices. Also, the highest electricity prices are observed in weeks 47 and 49, with a high risk of energy shortage.  
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Figure 9: Electricity prices and maintenance schedules in the case of the 4th generation unit’s failure 

The stochastic situation, shown in Figure 9, also shows a decline in available capacity due to the failure of units or 
preventive maintenance. In the case of the failure of the 4th generation, the unit decreases the available capacity from 
1023 MW to 623 MW. Thus, in weeks with demands more than available capacity, price increases to the highest amount 
of “price cap”. Also, in maintenance weeks 12 to 16 and 39 to 42, and 43 to 45, electricity prices are increased due to the 
available capacity reduction. It is worth mentioning that, maintenance weeks of the 4th generation unit do not affect 
electricity price in the scenarios in which it is failed. 

According to the results, energy price increases in the maintenance weeks due to the reduction of available capacity. 
Therefore, ISO especially in the real world, where the number of generation units is much more than the reliability test 
system under consideration should make sure that the schedules are not such that there is collusion between generation 
units to increase energy prices. The price reaches its maximum when generation units suggest their maintenance in 
specific weeks with higher demand. Therefore, the ISO must be very careful in determining α and π, because these are 
the only tools of the ISO that prevent these events by imposing completely different strategies on the GENCOs. Figure 
10 shows how GENCOs’ maintenance strategies are changed by changing ISO policies in various values of parameter α 
in the uncertain environment. 
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Figure 10: Maintenance scheduling of generation units in an uncertain environment 

In the peak weeks of the year, electricity prices are expected to be higher. Also, decreasing the available capacity leads 
the electricity price reaches to its maximum. As shown in Figure 10, since increasing α allows more EENS, more 
incentives, and fewer penalties, the increase in α lead to a change in GENCOs’ maintenance strategies from off-peak 
weeks to the mid-peak and peak weeks. 

Figure 11 shows GENCOs’ maintenance strategies in different π with α=2 and α=10. Results show that in smaller α, 
increasing the value of π leads to change in maintenance strategies to the off-peak weeks. However, in big α, increasing π 
leads to shifting maintenance strategies to the peak weeks due to the possibility of increasing EENS and increasing the 
incentive.  

 



1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 52

Winter Spring Summer Fall Winter

Maintenance window

i=1

i=2

i=3

i=4

GENCO(1)

GENCO(2)

α=2
π=10000

i=1

i=2

i=3

i=4

GENCO(1)

GENCO(2)

α=2
π=25000

i=1

i=2

i=3

i=4

GENCO(1)

GENCO(2)

α=2
π=50000

Peak Peak Peak

i=1

i=2

i=3

i=4

GENCO(1)

GENCO(2)

α=10
π=10000

i=1

i=2

i=3

i=4

GENCO(1)

GENCO(2)

α=10
π=25000

i=1

i=2

i=3

i=4

GENCO(1)

GENCO(2)

α=10
π=25000

Off-Peak Off-Peak 

 
Figure 11: Maintenance scheduling of generation units under different π and α in stochastic situation  

5.5. Stochastic measure of the GMS model 

To consider the first pre-mentioned issue in Section 1, the necessity of applying uncertainties in the proposed GMS 
model is investigated by comparing the model results in both deterministic and stochastic environments. Table 8 shows a 
comparison between the deterministic and stochastic features in terms of reliability and profitability indices to investigate 
the impact of ignoring the risk of disruption in generation units and demand variations. To better illustrate the effects of 
ignoring uncertainties, ISO objective function and reliability index are also investigated when obtained maintenance 
decisions from the deterministic model are fixed in its model considering all possible scenarios.  

Table 8: Effect of ignoring uncertain parameters in the proposed bi-level GMS model 

α Uncertainty 
approach 

Objective function  Reliability 

GENCO1 GENCO2 ISO  
ISO (Det)/ 
ISO (St) 

 
 Respond 

demand (%) EENS  EENS (Det)/ 
EENS (St) 

1 
Deterministic 523952669.5 472392668.2 4072108.1 

1.30 
 99.9 2643.7 

1.28 
Stochastic -26873213.6 -276152998.7 3109241.6  97.9 2065.4 

2 
Deterministic 644164577.8 532166115.1 4300070.7 

1.27 
 99.9 2777.4 

1.26 
Stochastic -9996350.7 -215099524.4 3380859.4  97.8 2207.9 

3 
Deterministic 658879888.8 783007907.1 4408582.6 

1.25 
 99.7 3109.5 

1.26 
Stochastic 34944125.4 33841793.4 3507225.6  97.8 2467.6 

5 
Deterministic 981380029.7 1706143922.3 4898934.7 

1.25 
 99.3 3371.0 

1.25 
Stochastic 45811231.2 315644185.2 3916731.6  97.5 2678.9 

10 
Deterministic 1944616648.6 3954858314.6 5710375.3 

1.23 
 99.2 3688.6 

1.25 Stochastic 322470609.9 541201518.1 4640889.8  97.4 2949.3 
             St (Stochastic), Det (Deterministic) 
              
Considering the possibility of disruption to generation units and demand variations in the GMS model results in higher 



payoff for GENCOs and a better reliability index, but increases ISO objective function "network operational cost" and 
reliability index "EENS" if one of the scenarios happens. In fact, important information for the ISO that leads to 
rescheduling signals is missed. Generally, the solutions obtained from solving a deterministic model are always better 
than solving the stochastic model counterpart because in two-stage stochastic models, the worst-case scenario is 
considered, and the model is feasible even for the worst-case scenario. The deterministic solution in the proposed GMS 
model would be infeasible in some scenarios if the dummy generation unit was not taken into account. Here, non-
considering possible uncertainties lead to an increase in blackouts and a decrease in the level of network reliability. Thus, 
a greater demand fluctuation or a greater generation units’ failure probability, especially for high-capacity generation 
units, leads to increasing blackouts probability. Figure 12 shows the network operational costs and EENS changes 
through different α in stochastic and deterministic situations when a scenario happens.  
 

  
Figure 12: Network operational costs and EENS changes in deterministic and stochastic situation 

To examine the potential benefit of considering the stochastic feature of the proposed GMS model over the deterministic 
counterpart, we evaluate two well-known concepts named value of the stochastic solution (VSS) and expected value of 
perfect information (EVPI). The VSS index is used to evaluate the difference between the objective function value of the 
stochastic solution and the expected of expected value (EEV). The EEV approach is applied as one of the simple 
stochastic approaches to determine the stochastic measures of the models. In this approach, first, each stochastic 
parameter is replaced by its corresponding expected value. Then the deterministic model is solved and evaluated for all 
scenarios. In the proposed model, the expected values of the available capacity and demand are determined by Eq. (50) 
and Eq. (51), respectively. 
 
𝐸𝐸[𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚] = 𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 × (1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖) + 0 × (𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖) = 𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖)     
𝐸𝐸�𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 × (1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖) + 0 × (𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖) = 𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖)     ∀𝑖𝑖 (50) 

𝐸𝐸[𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑠𝑠] = �𝑝𝑝𝑠𝑠(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑠𝑠)
𝑠𝑠

 ∀𝑡𝑡 (51) 

If 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔�𝐸𝐸[𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚],𝐸𝐸�𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�,𝐸𝐸[𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑠𝑠]� presents the optimal decision in the first stage of the deterministic model, the 
EEV becomes, 𝐸𝐸𝜔𝜔,𝑠𝑠 �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔�𝐸𝐸[𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚],𝐸𝐸�𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�,𝐸𝐸[𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑠𝑠]��. Since this approach applies only an average of each 
uncertain parameter, the dummy generation unit’s usage and consequently increasing the EENS is very probable. Perfect 
information (PI) value, called wait-and-see value, is obtained to determine the amount of reasonable investment in 
stochastic parameter prediction. The PI value is the expected value of all optimal values, which can evaluate the expected 
performance of complete information. In the wait-and-see approach, prior information on the generation unit's reliability 
status and demand amount is known. The EVPI is used to evaluate the difference between stochastic and perfect 
information solutions. This parameter measures how much is reasonable to pay to obtain perfect information about the 
future. As a result, this is an upper limit of the reasonable payment in return for complete information about the future. 
The performance analysis results of the stochastic programming solution (SP) using EEV and PI are reported in Table 9.  

 

 

Table 9: Comparing of results achieved by the expected value, stochastic programming, and perfect information approaches  
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Uncertainty RTS. 
No. 

GENCO. 
No. 

Payoff (Million) VSS= 
(SP-EEV) 
(Million) 

VSS/|EEV| 
EVPI= 
(PI -SP) 
(Million) 

EVPI/|SP| 
EEV SP PI 

Generation 
units’ 

disruption 
& demand  

1 1 -46.5 -10 -0.7 36.4 78% 9.3 92% 
2 -12476.6 -215.1 -134.1 122261.5 980% 81 37% 

2 1 -12797.2 1.8 2 12798.9 100% 0.2 11% 
2 -3016.2 8.8 9.2 3025.1 100% 0.4 5% 

3 
1 -0.02 0.07 0.1 0.1 462% 0.01 14% 
2 -0.01 0.1 0.01 0.1 890% 0.04 38% 
3 -0.03 0.03 0.05 0.1 197% 0.02 48% 

Demand  

1 1 14.5 38.6 38.9 24.1 166% 0.3 1% 
2 18.4 25.4 27 6.9 37% 1.7 6% 

2 1 35.5 41 41.3 5.5 15% 0.3 1% 
2 13.3 30.8 31.8 17.5 131% 1.01 3% 

3 
1 288.2 288.7 289.1 0.5 0% 0.37 0% 
2 472.5 473.6 482.5 1.07 0% 8.9 2% 
3 181.3 609.7 614 428.5 236% 4.3 1% 

Generation 
units’ 

disruption 

1 1 -27.7 -1.6 -0.1 26.1 95% 1.8 95% 
2 -11710.1 -531.1 -45.9 11178.9 95% 485.2 91% 

2 1 -0.01 11.2 11.2 11.2 87311% 0.07 1% 
2 -0.3 9.4 9.6 9.7 3230% 0.15 2% 

3 
1 0 0.2 0.2 0.2 2305% 0.01 7% 
2 0 0.3 0.3 0.3 12296% 0 1% 
3 -0.01 0.1 0.1 0.1 745% 0.01 19% 

We investigated the VSS and EVPI measures in three stochastic situations. 1- Under both the risk of disruption in 
generation unit and demands variation, 2- Just under demands variation, and 3- Under the risk of disruption in generation 
unit. 

Based on the results obtained in Table 9, VSS and EVPI parameters in the GMS model under uncertain parameters are 
higher than just considering one of the stochastic parameters. Figure 13 shows the EEV, SP, and PI objective function of 
unit 1 from GENCO 1 under the different stochastic situations.  

 
 

Figure 13: Payoff and its VSS changes under different stochastic situation 

Also, comparing the VSS and EVPI parameters under different stochastic scenarios according to Table 9 is presented in 
Figure 14.  
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Figure 14: Comparison between VSS and EVPI under different stochastic scenarios  

While VSS measures the value of using a stochastic model, EVPI measures the value of knowing more. So, for large 
EVPI, it is important to learn more. As reported in Table 9, VSS/|EEV| contains large values which indicate the 
usefulness and necessity of considering the stochastic model. Moreover, as illustrated in Figure 14, because of large 
values of VSS, it also confirms the usability of stochastic programming, however, the small values of EVPI confirm that 
having perfect information will not make a significant change in the decision compared with the stochastic programming 
model. Thus, the deterministic expected value of the second stage stochastic value is not enough to contain all the 
scenarios. Also, EVPI has taken a small value compared to VSS. Therefore, obtaining more information could not 
improve the objective value significantly.   

5.6. Necessity of applying bi-level programming 

In order to answer the second pre-mentioned issue in Section 1, the necessity of applying a leader-follower approach in 
the GMS problem is considered by comparing the results of the proposed BLIGMS model both with a GMS model 
without using a leader-follower structure which its formulation is introduced in (Hassanpour & Roghanian, 2021).  
In order to achieve the necessity of applying the bi-level approach, the GMS model in the two mentioned formulations is 
evaluated in terms of “GENCOs payoff”, “reliability index”, and “solution time”. The obtained results are presented in 
Table 10.  

Table 10: Comparing the proposed BLIGMS model and a GMS model without the bi-level structure 
GMS model type RTS. 

No α Payoff (Million $) EENS 
(MWh) Time Number of 

the iteration GENCO1 GENCO2 GENCO3 

The proposed 
BLIGMS model 

1 
2 -10 -215.1 - 2207.9 0:15:12 1 
5 45.8 315.6 - 2678.9 0:13:46 1 

10 322.5 541.2 - 2949.3 0:12:23 1 

2 
2 1.8 8.8 - 1109.7 4:59:13 1 
5 3.9 10.1 - 1453.4 4:37:06 1 

10 5.4 12.3 - 1657.1 4:12:55 1 

3 
2 0.07 0.1 0.04 875.6 9:17:04 1 
5 0.1 0.2 0.05 1081.1 8:48:12 1 

10 0.2 0.3 0.07 1238.5 8:17:30 1 

A GMS model 
without a 

leader-follower 
structure 

1 
2 -9.1 -194.4 - 2054.2 6:27:16 7 
5 37.2 243.2 - 2547.7 3:51:04 4 

10 299.5 496.4 - 2873.5 1:19:48 3 

2 
2 1.6 8.4 - 1052.8 10:19:05 11 
5 3.3 9.6 - 1336.1 7:33:51 7 

10 5.3 11.9 - 1492.3 5:42:12 5 

3 
2 0.07 0.09 0.03 823.6 16:28:31 16 
5 0.1 0.2 0.05 917.4 10:06:48 9 

10 0.2 0.3 0.07 1158.8 8:13:10 9 
 
In the case of ignoring the bi-level structure, the total generated GENCOs determine power and maintenance decisions. 
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Thus, in this case, the Nash Equilibrium strategy includes a significant number of decision variables, and achieving 
equilibrium and convergence of decisions is very time-consuming and difficult. Also, the Lack of integration in players' 
decisions, ignoring the ISO decisions in the GENCOs model, and determining the amounts of incentives and penalties 
based on GENCO’s previous iteration decisions lead to achieving local Nash Equilibrium and increasing the solution 
time. It is worth mentioning that incentives and penalties just force GENCOs to change their maintenance decisions in 
the next iteration with the hope of improving the reliability index. But actually, they make GENCOs change their 
strategy, not steer them to choose a strategy that leads to a better reliability level. The impact of not considering 
rescheduling decisions in an integrated model is discussed in the next section. Figure 15 illustrates a Solution time 
comparison between the proposed BLIGMS model and a GMS model without a leader-follower structure. 

 
Figure 15: Solution time comparison between proposed BLIGMS model and ignoring bi-level structure  

 

5.7. Superiority of the proposed mathematical model  

In all related past bi-level GMS models, once the Nash Equilibrium strategy of the GENCOs is obtained, ISO evaluates a 
reliability index to prepare appropriate rescheduling signals such as incentives and penalties. In this regard, final 
maintenance schedules are obtained in an iterative procedure due to the consideration of the rescheduling signals. Signals 
forced GENCOs to change their maintenance decisions to improve the reliability index. In contrast, the current study 
proposes a novel leader-follower GMS model in that reliability signals instead of rescheduling signals are considered as 
the ISO decision variables and are determined in the lower-level model. Thus, each GENCO sets its maintenance 
schedule subject to the ISO decisions in just one iteration, and the GMS solution is obtained in an integrated decision-
making approach. This will ensure achieving the global Nash Equilibrium strategy. Table 11 represents a comparison 
between the proposed BLIGMS model and a bi-level GMS model based on (Mazidi et al., 2018) study that reaches to 
desire reliability level by considering an iterative procedure for the ISO.   

Table 11: Comparing the proposed BLIGMS model with a traditional iterative approach 

GMS model type RTS. 
No α 

Payoff (Million $) EENS 
(MWh) Time 

Number of 
the 

iteration GENCO1 GENCO2 GENCO3 

The proposed BLIGMS 
model 

1 
2 -10 -215.1 - 2207.9 00:15:12 1 
5 45.8 315.6 - 2678.9 00:13:46 1 

10 322.5 541.2 - 2949.3 00:12:23 1 

2 
2 1.8 8.8 - 1109.7 04:59:13 1 
5 3.9 10.1 - 1453.4 04:37:06 1 

10 5.4 12.3 - 1657.1 04:12:55 1 

3 
2 0.07 0.1 0.04 875.6 09:17:04 1 
5 0.1 0.2 0.05 1081.1 08:48:12 1 

10 0.2 0.3 0.07 1238.5 08:17:30 1 

Traditional iterative approach 

1 
2 -9.3 -201.3 - 2178.2 02:52:38 5 
5 41.8 279.3 - 2413.1 01:14:43 3 

10 315.5 526.8 - 2910.7 00:43:57 3 

2 
2 1.7 8.7 - 1085.4 06:39:19 7 
5 3.7 9.9 - 1319.1 05:57:24 4 

10 5.4 12.3 - 1601.7 05:18:06 3 
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3 
2 0.07 0.1 0.03 847.4 12:41:27 9 
5 0.1 0.2 0.05 984.3 10:33:12 6 

10 0.2 0.3 0.07 1077.5 09:48:32 4 

From Table 11, it is observed that integration can have substantial effects on the solution time and quality of equilibrium 
strategies in the proposed GMS problem. The following reasons can be provided for improving the solution time and 
GENCOs’ payoff of the proposed BLIGMS model in comparison with the traditional iterative approach counterparts: 

- Low intelligence in iterative procedure in both GMS models with ignoring bi-level structure and traditional 
iterative approach in moving the maintenance strategies to the weeks which leads to higher reliability levels. 

- Lack of effective communication between GENCOs and ISO in changing the maintenance strategies. In both 
GMS models with ignoring bi-level structure and traditional iterative approach, in each iteration, the Nash 
strategy is just affected by the incentives and penalties of the previous iteration decisions.  

- Considering total generated power decisions with maintenance decisions as to the strategy of each GENCO in 
the GMS model with ignoring bi-level structure.    

- Low accuracy in solving GMS model by ignoring bi-level structure due to guessing the total generation strategy 
of rival GENCOs in solving each GENCO model.  

- In both GMS models with ignoring bi-level structure and traditional iterative approach, incentives and penalties 
of the last iteration are considered in the final solution instead of the final incentives and penalties.  

Figure 16 illustrates the priority of the integrated GMS model compared to the other well-known models in the case of 
unit 1 of the first GENCO.   

   
RTS1 RTS2 RTS3 

Figure 16: Payoff comparison between the BLIGMS model with ignoring bi-level structure and traditional iterative approach 
 
As shown in Figure 16, the obtained Nash equilibriums in the GMS models ignoring bi-level structure and traditional 
iterative approach are local optimum most of the time. As a result, in the proposed mathematical framework GENCOs 
can gain more payoff while maintaining power system reliability.  
 

5.8. Managerial insights 

According to the findings of this study, there are remarkable suggestions for administrators and practitioners in the 
electricity market. In this sector, stakeholders perpetually compete in various aspects. Considering all the interactions 
between the main stakeholders has a significant impact on effective strategic and operational decisions. Therefore, a 
novel integrated GMS model based on the game theory concepts is developed in this study. The following managerial 
insights can be extracted from this study:    
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• Our results indicate that ISO should behave strictly in cases with high importance of system reliability while a 
lack of power generation may lead to high and irreparable costs. Therefore, ISO should consider a lower value 
for α and a higher value for π to ensure a high-reliability level of the power system.  

• ISO should determine α and π precisely. A big value of α can cause GENCOs’ high tendency to schedule their 
maintenance strategies in the mid-peak and peak weeks. Also, increasing π in a low value of α leads to having 
maintenance in the off-peak weeks, and increasing π in a high value of α leads to shifting maintenance strategies 
to the peak weeks. 

• Considering an integrated GMS model ensures achieving the global optimum solution. Therefore, it is highly 
recommended to electricity market administrators use the proposed integrated approach instead of the traditional 
iterative procedure to ensure the GENCOs’ payoff, power system’s reliability level, and intelligent incentives 
and penalties while the maintenance scheduling time reduces significantly.  

 

6. Conclusions and future insights 

In this paper, we have formulated a novel integrated bi-level two-stage maintenance scheduling model for generation 
units in an electricity market under the risk of generation unit disruption and demand variations. This study explicitly 
strives to fill the gap in the relevant literature by: 

- Introducing a novel integrated GMS model and omitting iterative procedure for solving the model while 
providing a global optimum solution in a reasonable time.  

- Considering both reasons that threaten the power system reliability as uncertain parameters in the mathematical 
model and investigating the GMS problem under both deterministic and stochastic features. 

- Employing a modified fuzzy clustering to reduce the number of scenarios and provide the ability to solve the 
model for large-size scales with appropriate solution accuracy.    

Generation maintenance scheduling problems deal with a time sequence of maintenance for a given set of generation 
units in an electricity market considering the power system restrictions. Here, a non-cooperative manner between the 
GENCOs in offering the maintenance schedules to the ISO and also, ISO reaction to the aggregated schedule according 
to the power system’s reliability are considered in an integrated non-cooperative bi-level model. In this regard, a 
multileader one-follower two-stage stochastic model is applied. The GENCOs are considered as independent leaders in 
the upper level and the ISO is considered as a follower in the lower level. Presenting an efficient mathematical 
framework for the GMS problem is extremely challenging. Because the formulation not only determines the solution in 
much less time but also leads to a more accurate equilibrium strategy.  
The proposed methodology has been evaluated using some modified IEEE reliability test systems. The numerical 
analysis confirms that the proposed model is more effective in cases with higher uncertainties. And also, the necessity of 
applying the bi-level approach in the GMS problem and the superiority of the mathematical model in ignoring the 
iterative procedure compared to existing studies have been demonstrated in the performed analysis. Interesting directions 
for future research are investigating more realistic disruption scenarios and designing an intelligent algorithm to provide 
good scenarios. For example, preventive maintenance should lead to a lower forced outage rate for the related generation 
unit in periods after maintenance action. Thus, the failure rates could be considered different over the time horizon. Also, 
considering the startup/shutdown variable in the mathematical model to indicate On/Off modes is recommended. This 
variable is practical when the load is small and some generation units could stay Off. Another direction for future work is 
suggested to present more efficient algorithms based on metaheuristic algorithms to solve large-scale models. 
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Appendix: The model linearization  

In order to linearize complementary slackness constraints, new additional binary variables (𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖4 , 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡5 ) 
are defined for Eqs. (22)-(26), respectively (Fortuny-Amat & McCarl, 1981). In this regard, Eq. (22) is replaced by 
constraints (A1) and (A2), Eq. (23) is replaced by constraints (A3) and (A4), Eq. (24) is displaced by constraints (A5) 
and (A6), Eq. (25) is changed by constraints (A7) and (A8), and finally, Eq. (26) is replaced by constraints (A9) and 
(A10).  
 

𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 ≤ 𝑀𝑀𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1  ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A1) 

(1 − 𝑋𝑋𝑖𝑖𝑖𝑖)𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 ≤ 𝑀𝑀(1 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 ) ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A2) 

𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 ≤ 𝑀𝑀𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2  ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A3) 

𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 − (1 − 𝑋𝑋𝑖𝑖𝑖𝑖)𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑀𝑀(1 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 ) ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A4) 

𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3 ≤ 𝑀𝑀𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3  ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A5) 

𝑢𝑢𝑢𝑢𝑖𝑖 − 𝑞𝑞𝑖𝑖𝑖𝑖+1𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 ≤ 𝑀𝑀(1 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3 ) ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A6) 

𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖4 ≤ 𝑀𝑀𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖4  ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A7) 



𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 − 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑖𝑖𝑖𝑖+1𝑠𝑠𝑠𝑠 ≤ 𝑀𝑀(1 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖4 ) ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A8) 

𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡6 ≤ 𝑀𝑀𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡5  ∀𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A9) 

𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠 ≤ 𝑀𝑀(1 − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡5 ) ∀𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A10) 

 
And also, for linearize Eq. (20) binary variable 𝑦𝑦𝑖𝑖𝑖𝑖6  and constraints (A11) -(A13) are defined as below:  

𝛾𝛾𝑖𝑖𝑖𝑖5 ≤ 𝑀𝑀𝑦𝑦𝑖𝑖𝑖𝑖6  ∀𝑖𝑖, 𝑡𝑡 (A11) 

𝛾𝛾𝑖𝑖𝑖𝑖5 ≥ −𝑀𝑀𝑦𝑦𝑖𝑖𝑖𝑖6  ∀𝑖𝑖, 𝑡𝑡 (A12) 

�𝑝𝑝𝜔𝜔𝑞𝑞𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗,𝜔𝜔

𝑋𝑋𝑗𝑗𝑗𝑗 ≤ 𝑀𝑀(1 − 𝑦𝑦𝑖𝑖𝑖𝑖6 ) ∀𝑖𝑖, 𝑡𝑡 (A13) 

 
To linearize term ∑ 𝑝𝑝𝑠𝑠𝑝𝑝𝜔𝜔𝜇𝜇𝑡𝑡𝑠𝑠𝑠𝑠𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖∈Ξ(𝑔𝑔),𝑡𝑡,𝑠𝑠.𝜔𝜔  in the objective function, the stationarity conditions (17)-(19) are multiplied 
by 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 and are summed for each defined interval. The result is presented in Eq. (A14).  
 

� 𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠[
𝜆𝜆𝑡𝑡𝑠𝑠𝑠𝑠

𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠 −
(𝑂𝑂𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑓𝑓𝑖𝑖)]𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

𝑖𝑖,𝑡𝑡,𝑠𝑠,𝜔𝜔

= � [𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 + 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖4 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 + 𝛾𝛾𝑖𝑖𝑖𝑖−1𝑠𝑠𝑠𝑠3 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠
𝑖𝑖,𝑠𝑠,𝜔𝜔,𝑡𝑡∈(1,𝑇𝑇)

 

−𝛾𝛾𝑖𝑖𝑖𝑖−1𝑠𝑠𝑠𝑠4 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠] + �[𝛾𝛾𝑖𝑖1𝑠𝑠𝑠𝑠1 𝑞𝑞𝑖𝑖1𝑠𝑠𝑠𝑠 − 𝛾𝛾𝑖𝑖1𝑠𝑠𝑠𝑠2 𝑞𝑞𝑖𝑖1𝑠𝑠𝑠𝑠 − 𝛾𝛾𝑖𝑖1𝑠𝑠𝑠𝑠3 𝑞𝑞𝑖𝑖1𝑠𝑠𝑠𝑠 + 𝛾𝛾𝑖𝑖1𝑠𝑠𝑠𝑠4 𝑞𝑞𝑖𝑖1𝑠𝑠𝑠𝑠 + 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 − 𝛾𝛾𝑖𝑖𝑖𝑖−1𝑠𝑠𝑠𝑠4 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠
𝑖𝑖,𝑠𝑠,𝜔𝜔

 

+𝛾𝛾𝑖𝑖𝑖𝑖−1𝑠𝑠𝑠𝑠3 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠] 
 

(A14) 

The right-hand side of the above equation is a part of the objective function. So left side can be replaced in the final 
model objective function. Although new nonlinearities appear on the left side, they can be handled through the 
complementarity slackness conditions (22)-(25). Finally, Eq. (A15) re-written as follow: 
 

� 𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠[
𝜆𝜆𝑡𝑡𝑠𝑠𝑠𝑠

𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠 −
(𝑂𝑂𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑓𝑓𝑖𝑖)]𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠

𝑖𝑖,𝑡𝑡,𝑠𝑠,𝜔𝜔

= � [(1 − 𝑋𝑋𝑖𝑖𝑖𝑖)𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 (1 − 𝑋𝑋𝑖𝑖𝑖𝑖)𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3 𝑢𝑢𝑢𝑢𝑖𝑖
𝑖𝑖,𝑠𝑠,𝜔𝜔,𝑡𝑡

 

+𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖4 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖] 
(A15) 

 
Two nonlinear term remains in the first and second statements of the left side. In order to linearize 𝑋𝑋𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 , new 
additional variable (𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 ) and constraints (A16) -(A18) are defined. And to linearize 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 𝑋𝑋𝑖𝑖𝑖𝑖 new variable 
(𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 𝑋𝑋𝑖𝑖𝑖𝑖) and constraints (A19) -(A21) are added to the model.  
 
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1  ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A16) 

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A17) 

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 − 𝑀𝑀(1 − 𝑋𝑋𝑖𝑖𝑖𝑖) ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A18) 

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2  ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A19) 

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A20) 

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 −𝑀𝑀(1 − 𝑋𝑋𝑖𝑖𝑖𝑖) ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A21) 

 
To cope with another nonlinear term ∑ 𝜋𝜋𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡 𝑋𝑋𝑖𝑖𝑖𝑖 in the objective function, new variable (𝑍𝑍𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖) and constraints 
(A22)-(A25) are prepared. 
𝑍𝑍𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖 + 𝑀𝑀(1 − 𝑋𝑋𝑖𝑖𝑖𝑖) ∀𝑖𝑖, 𝑡𝑡 (A22) 

𝑍𝑍𝑖𝑖𝑖𝑖 ≤ 𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑡𝑡 (A23) 

𝑍𝑍𝑖𝑖𝑖𝑖 ≥ 𝐶𝐶𝑖𝑖𝑖𝑖 − 𝑀𝑀(1 − 𝑋𝑋𝑖𝑖𝑖𝑖) ∀𝑖𝑖, 𝑡𝑡 (A24) 



𝑍𝑍𝑖𝑖𝑖𝑖 ≥ −𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑡𝑡 (A25) 

  In order to cope with nonlinearity terms of the Eq. (14), it is transformed to the Eq. (A26). 
𝐶𝐶𝑖𝑖𝑖𝑖�𝑝𝑝𝜔𝜔𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑋𝑋𝑖𝑖𝑖𝑖

𝑖𝑖,𝜔𝜔

= �𝑝𝑝𝜔𝜔𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑋𝑋𝑖𝑖𝑖𝑖
𝜔𝜔

(�𝐻𝐻𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠
𝑠𝑠,𝜔𝜔

− 𝐸𝐸𝐸𝐸𝑡𝑡) ∀𝑖𝑖, 𝑡𝑡       (A26) 

To linearize term 𝐶𝐶𝑖𝑖𝑖𝑖 ∑ 𝑝𝑝𝜔𝜔𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖,𝜔𝜔 , new variable (𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑋𝑋𝑗𝑗𝑗𝑗) and constraints (A27)-(A30) are defined.  

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖 + 𝑀𝑀(1 − 𝑋𝑋𝑗𝑗𝑗𝑗) ∀𝑖𝑖, 𝑗𝑗, 𝑡𝑡 (A27) 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑀𝑀𝑋𝑋𝑗𝑗𝑗𝑗  ∀𝑖𝑖, 𝑗𝑗, 𝑡𝑡 (A28) 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝐶𝐶𝑖𝑖𝑖𝑖 − 𝑀𝑀(1 − 𝑋𝑋𝑗𝑗𝑗𝑗) ∀𝑖𝑖, 𝑗𝑗, 𝑡𝑡 (A29) 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 ≥ −𝑀𝑀𝑋𝑋𝑗𝑗𝑗𝑗  ∀𝑖𝑖, 𝑗𝑗, 𝑡𝑡 (A30) 

And also, to linearize term 𝐻𝐻𝑋𝑋𝑖𝑖𝑖𝑖 ∑ 𝑝𝑝𝜔𝜔𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝜔𝜔 ∑ 𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠,𝜔𝜔 , new variable (𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠) and constraints (A31)-
(A33) are provided. 

𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠 ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A31) 

𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A32) 

𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑝𝑝𝜔𝜔𝑝𝑝𝑠𝑠𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠 −𝑀𝑀(1 − 𝑋𝑋𝑖𝑖𝑖𝑖) ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝜔𝜔 (A33) 

Finally, to linearize constraint (21) new variable (𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑖𝑖5 ) and constraints (A34)-(A37) are added to the model.  
𝑃𝑃𝑖𝑖𝑖𝑖 ≤ 𝛾𝛾𝑖𝑖𝑖𝑖5 + 𝑀𝑀(1 − 𝑋𝑋𝑖𝑖𝑖𝑖) ∀𝑖𝑖, 𝑡𝑡 (A34) 

𝑃𝑃𝑖𝑖𝑖𝑖 ≤ 𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑡𝑡 (A35) 

𝑃𝑃𝑖𝑖𝑖𝑖 ≥ 𝛾𝛾𝑖𝑖𝑖𝑖5 − 𝑀𝑀(1 − 𝑋𝑋𝑖𝑖𝑖𝑖) ∀𝑖𝑖, 𝑡𝑡 (A36) 

𝑃𝑃𝑖𝑖𝑖𝑖 ≥ −𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑡𝑡 (A37) 
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