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Highlight

• A novel hybrid approach is proposed for modelling a catalyst monolith.

• The model combines individual channels with a porous region downstream.

• Predictions retain accuracy of individual channels model.

• Computational demand is reduced compared to individual channels.

• The model provides a good compromise between the two approaches.
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Hybrid Flow Modelling Approach Applied to Automotive Catalysts

Sophie Porter∗, Jonathan Saul, Svetlana Aleksandrova, Humberto Medina, Stephen Benjamin

Faculty of Engineering and Computing, Coventry University, UK

Abstract

Catalytic converters are employed in automotive emissions aftertreatment for the reduction of pol-

lutants. Flow behaviour in a catalyst system may be modelled using computational fluid dynamics.

This study concerns a planar catalytic converter system with a wide-angled planar diffuser under

steady flow conditions, in which the flow is approximately two-dimensional. The catalyst monolith is

modelled using a novel hybrid approach. Individual channels at the entrance to the substrate provide

an accurate description of flow upon entrance to the monolith. A porous region then applies the

macroscopic pressure drop on the fully developed flow. Flow predictions are compared with exper-

imental data in the diffuser and downstream of the monolith. Overall, the hybrid model improves

upon the separate use of the two approaches. The variance of downstream velocity predictions from

experimental data is decreased by up to 50% compared to the porous medium model, whilst the com-

putational demand is reduced by approximately one order of magnitude compared to the individual

channels model.

Keywords: automotive catalyst, modelling, oblique entry

1. Introduction

Catalytic converters are employed in the automotive industry for compliance with emissions regu-

lations. The catalyst is commonly a monolith comprised of many parallel channels of small hydraulic

diameter (∼1 mm). A washcoat applied to the channel walls is deposited with precious metals, creat-

ing a large surface area for the reaction of exhaust gases. A wide-angled diffuser connects the exhaust

pipe to the front face of the catalyst, resulting in flow separation in the diffuser and non-uniformly

distributed flow in the catalyst, as shown in Figure 1.

Non-uniform flow entering the catalyst affects its conversion efficiency [1–3], degradation rate [2]

and light-off performance [4]. The level of flow maldistribution is a key factor in the design process of

catalytic converters and is commonly used in the automotive industry. A relatively simple measure
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(a) Flow field in diffuser and typical velocity pro-

file inside monolith

(b) Recirculation bubbles formed at channel walls

Figure 1: Example of flow behaviour in a catalytic converter system

of conversion efficiency can then be obtained for post light-off conditions where reactions are mass-

transfer limited [3, 5, 6]. Conversion efficiency η as a function of flow velocity can then be described

by Eq. 1 [5]:

η = 1− exp

(−4Lkc
ucdh

)
(1)

where L is the length of the monolith channel, uc is the channel velocity, dh is the channel hydraulic

diameter, and kc is the mass transfer coefficient which may be determined theoretically [7]. Such an

expression may then be readily integrated across the predicted velocity profile to obtain an estimation

of overall conversion efficiency. An example of this is found in the work of Karvounis and Assanis [3],

who considered the global mass transfer through the monolith and were thereby able to analyse the

effect of non-uniformly distributed flow on the conversion efficiency of a catalytic converter.

As may be seen in Figure 1(a), flow separates at the diffuser inlet and a confined jet traverses

the diffuser. High axial resistance causes the flow to spread radially at the monolith face, with some

flow entering the channels. Away from the centre, flow enters the channels obliquely or feeds into

recirculation regions between the jet and the diffuser wall. Oblique flow at the monolith face results

in separation at the channel entry, as presented in Figure 1(b). There is a build-up of pressure in

the region where the diffuser wall connects to the monolith, and flow is forced into the outermost

channels. This results in the secondary maxima of the characteristic saddle-shaped velocity profile,

illustrated in Figure 1(a).

Computational fluid dynamics (CFD) provides an alternative to measurement techniques for the
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assessment of flow maldistribution and initial evaluation of designs prior to reaction modelling. Re-

solving the entire fluid domain incurs high computational demand [8], however this may be overcome

by considering the macroscopic effect of the monolith on the flow field by representing the monolith

as an equivalent continuum, as described in detail in [9]. The associated axial pressure drop is often

derived from theoretical formulations, e.g. [4, 10], or defined from empirical results, assuming one-

directional flow. However, this assumption is an over-simplification [11] and additional pressure losses

due to oblique entry have been found to be non-negligible [12, 13]. The effect of oblique entry on

pressure loss may be approximated by the expression derived by Küchemann and Weber [14]:

∆Pobl =
ρv2

2
(2)

where v is the transverse velocity at the monolith face.

Benjamin et al. [15] found that accounting for pressure losses due to oblique entry using Eq.

2 increased the predicted flow non-uniformity, improving maximum velocity predictions but over-

predicting the magnitude of secondary peaks. This may be due to an overcompensation of pressure

losses at areas of high angle of attack. Quadri et al. [12] therefore proposed an expression for pressure

drop dependent on a critical angle, where oblique pressure losses are assumed constant for flow at a

specified entry angle and above. Indeed, Porter et al. [8] found that a critical angle of 69° resulted in

the most consistent level of agreement with experimental data across the range of cases considered. It

is precisely this complex dynamic of flow entering the monolith and its effect on the profile downstream

that promotes modelling the monolith channels individually.

Porter et al. [8] modelled the monolith as individual channels and found overall improvement in

the agreement of flow maldistribution predictions with experimental data compared to the porous

medium model, particularly for the longer monolith case which presents higher overall resistance.

The mesh is refined in the channels and is thus able to capture flow behaviour upon entrance into

the monolith. Recirculation bubbles are apparent at the channel walls and the developing boundary

layer along each channel is well-defined. Comparing velocity profiles in the diffuser, it is surmised that

the method for modelling the channels has little influence upstream, except for the flow immediately

upstream of the monolith face [8].

The current study aims to combine the porous medium and individual channels methods for mod-

elling the monolith in order to develop an accurate but computationally practical model. Individual

channels at the front of the monolith resolve the effect of obliqueness on the flow and a porous region

is employed for fully developed flow downstream. It is hypothesised that the model will economise on

the individual channels model whilst retaining accuracy.
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2. Methodology

This study presents the application of CFD to modelling flow in a catalytic converter system with

a planar diffuser. Two monoliths with identical cell geometry are used, with lengths 27 mm and 100

mm. Test case parameters are listed in Table 1.

Reynolds numbers (Re) are based on the uniform inlet velocity and hydraulic diameter of the

nozzle and were chosen to be representative of typical passenger sized vehicles. For example, Re =

2.2 × 104 corresponds to the engine speed at which peak torque occurs for a typical 2 L 4-cylinder

internal combustion engine. Also given in Table 1 are the values of space velocity (GHSV ), a measure

denoting the ratio of the hourly volumetric feed-gas flow rate to the reactor (catalyst bed) volume.

Table 1: Test cases

Re L (mm) GHSV (h-1)

2.2 × 104 27 3.6 × 105

2.2 × 104 100 9.7 × 104

3.0 × 104 27 5.4 × 105

3.0 × 104 100 1.5 × 105

4.2 × 104 27 7.2 × 105

4.2 × 104 100 1.9 × 105

2.1. Experimental Data Collection

Flow measurements were taken on a two-dimensional isothermal flow rig with a planar diffuser.

A schematic diagram is given in Figure 2; the set-up is presented by Mat Yamin et al. [16] and is

summarised here.

Air is supplied via a viscous flow meter (1) to a plenum (2) with flow straightener (3) and axisym-

metric nozzle (4). Steady state measurements for the current study were obtained by fixing the rotor

of the pulse generator (5) in a fully open position. Air flows through a flow straightener (6) and past a

resonator box (7), installed to shape pulses during pulsating flow studies. A particle generator (9) sup-

plies seeding to a second plenum (8) with a flow straightener (10) to minimise any swirl components.

A two-dimensional nozzle (11) provides uniform flow to the planar diffuser (12). The diffuser has inlet

dimensions 24 × 96 mm, outlet dimensions 78 × 96 mm, length 48 mm and total included angle of

approximately 60°. The diffuser is made of crown glass for optimal optical conditions for PIV. The

diffuser outlet attaches to an unwashcoated cordierite monolith (13) with channel hydraulic diameter

1.12 mm, a nominal cell density of 62 cells/cm2 and porosity 0.77. An outlet sleeve (14) 50 mm long

minimised any influence from air outside the rig. Two sleeves were used: A fitted sleeve of dimensions
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Figure 2: Schematic of flow rig

78 × 96 mm for downstream hot-wire anemometry (HWA) measurements and an expanded sleeve of

dimensions 125 × 96 mm during particle image velocimetry (PIV) data collection in the diffuser.

Flow within the diffuser was measured using a TSI PIV system. A six-jet atomiser at 25 psi

produced olive oil droplets of approximately 0.6 µm diameter. A cylindrical lens of -25 mm focal

length was combined with a spherical lens of 500 mm to transform the circular beam from a 120 mJ

solid-state Nd:YAG laser into an approximately 1 mm thick light sheet at a stand-off distance of 0.5 m

to illuminate the seeded flow. A 4-megapixel CCD camera with 2048 × 2048 pixel (1 pixel = 7.4 µm)

resolution was used to capture the flow field. The camera, coupled with a 105 mm lens, was placed

0.8 m from the measurement plane to cover an 80 × 60 mm field of view, resulting in a magnification

factor of 0.155. An f-number of 11 enabled a particle image diameter above 2 pixels, avoiding pixel

locking. INSIGHT-3G software, using the recursive Nyquist method with a 64 × 64 initial grid and a

final grid of 32 × 32 pixels, yielded 95% valid vectors in each field and a vector resolution of 0.76 mm.

Axial velocity profiles at the nozzle exit and 40 mm downstream of the monolith were obtained

using a TSI IFA 300 HWA system. 5 µm platinum-plated tungsten wires (Dantec 55 P11) were

calibrated on an automatic TSI 1129 calibration rig. A 1 MHz 4 channel 12 bit A/D converter

converted the IFA output voltage (within ±5 V) to a digital signal to be processed by ThermalPro

software. HWA measurement is subject to an uncertainty of ±1% [17].

2.2. Numerical Model

Flow predictions were obtained using the commercial CFD solver STAR-CCM+. Flow in the

system has been found to be two-dimensional and symmetrical [16]. It is therefore sufficient for the

flow domain to consist of half-widths of the diffuser, monolith and outlet sleeve. Figure 3 shows the
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Figure 3: Geometry schematic

(a) Section of monolith modelled as

channels
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(b) Dimensions of channels

Figure 4: Schematic showing (a) derivation and (b) geometry of channels section

geometry of the modelled flow domain, with the monolith modelled as a combination of channels of

length 13 mm and a porous medium of length 1 mm.

Individual channels at the entrance to the monolith are able to accurately capture the effects of

the flow behaviour immediately upstream of the monolith face. Flow in the channels is assumed to

be symmetric about the channel half-height (z direction). For symmetry, the first cell lies on the

centre-line and thus only half its width (y direction) is included. Full cell widths are then included

for full coverage of the diffuser outlet and individual channels are located between solid walls. Figure

4(a) shows the channels geometry (marked by --) as a portion of the monolith cross-section. The

channels have hydraulic diameter 1.12 mm and a nominal cell density of 62 cells/cm2. A portion of

the cross-sectional geometry of the channels is shown in Figure 4(b).

As shown in Figure 3, the individual channels have length 13 mm, sufficient to capture the effects

of oblique entry. A 1 mm porous section downstream of the channels implements the overall pressure

drop of the fully-developed flow, that is, the 1 mm section represents 14 mm and 87 mm respectively
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Figure 5: Computational model schematic of one channel end section

for the 27 mm and 100 mm monoliths. Figure 5 shows the downstream portion of the monolith at

the interface with the outlet sleeve. Porous sections have slip walls, i.e. shear stress τ = µ∂u/∂y = 0,

where u and y denote the velocity of the fluid along the boundary and the distance from the boundary

respectively.

The axial resistance coefficient for the porous section is derived using the Hagen-Poiseuille equation

for fully-developed laminar channel flow, ∆P ∗ = (fRec)(4X
+), giving a linear relationship between

the pressure drop per unit length and channel velocity:

∆P

L
=

2(fRec)µ

d2h
uc (3)

where fRec = 14.227 for a square cross-section. Eq. 3 is implemented in the model as the axial

component of the porous source term fP in the momentum equations, where

fP = −(Pv + Pi|v|) · v (4)

and Pv and Pi denote the viscous and inertial resistance tensors respectively [18]. Since the Hagen-

Poiseuille equation assumes fully-developed flow, the viscous effects of the flow dominate and Pi has

zero magnitude.

Reynolds averaged Navier-Stokes (RANS) equations are combined with the v2f turbulence model.

As well as solving transport equations for turbulent kinetic energy and dissipation rate, the normal

stress function (v2) and the elliptic function (f) are resolved, improving accuracy for near-wall tur-

bulence effects and thus flow separation compared to other eddy viscosity models [19]. The level of

separation in the diffuser and in the entrance of monolith channels (Figure 1) makes the v2f model a

suitable approach to the system considered in this work.

Near-wall turbulence modelling in Star-CCM+ is derived from equilibrium turbulent boundary

layer theory for y+ > 30, however the viscous sublayer is assumed resolved for lower values of y+ and

wall laws are not incorporated [18].
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Flow in the downstream region of the monolith channels is laminar. Since these regions are

modelled as a porous medium in the simulation, turbulent velocity fluctuations are not considered

and it is therefore justifiable to apply the same turbulence modelling equations across the entire model.

Velocity and turbulence properties are uniform at the diffuser inlet and the values of turbulence

intensity, 0.01, and viscosity ratio, 10, are specified at the inlet. The model is meshed on a regular

hexahedral grid with refinement at the channels. Prism layers are included at all wall boundaries to

capture the developing boundary layer and y+ ≤ 1 was obtained.

Computational demand may be demonstrated by the number of cells, N , required for a mesh-

independent model. Table 2 compares the computational resources used in [8] and in the current

study. Compared to the individual channels model, the current hybrid model greatly reduces the

number of cells required and has the benefit of being independent of monolith length.

Table 2: Number of cells used for each model

Model
N

L = 27 mm L = 100 mm

porous medium 2.8 × 104 4.7 × 104

individual channels 4.0 × 106 8.8 × 106

hybrid 9.1 × 105 9.1 × 105

3. Results & Analysis

Figure 6 shows normalised velocity contours on the symmetry plane of the model for the case of a 27

mm monolith with Re = 4.2 × 104. At the expansion of the diffuser, flow separates and a jet traverses

the diffuser. The resistance presented by the channels forces the flow to spread radially immediately

upstream of the monolith face. Flow enters the channels obliquely away from the diffuser centre,

causing recirculation bubbles to form at the channel walls, as can be seen in the enlargement of the

entrance into a channel shown in Figure 6. As the flow progresses along the channel, a boundary layer

develops and the velocity profile becomes increasingly parabolic. The high axial viscous resistance of

the porous region opposes the channel flow. The profile is flattened, however jets exiting the monolith

remain distinguishable in the sleeve. Jets are less visible as more spreading occurs downstream,

resulting in a relatively smooth velocity profile at the outlet.

Flow distribution in the catalyst is largely dependent on the interaction between the flow and

the monolith face. Accurate model predictions in this critical region are therefore highly important.

Figure 7 compares predicted velocities in the diffuser with PIV measurements for the case with inlet

Re = 4.2 × 104, L = 27 mm. Figure 7(a) shows profiles taken at a cross-section 2.5 mm upstream

9
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Figure 6: Axial velocity contours for L =27 mm, Re = 4.2 × 104

of the monolith, the closest measurement obtained [17]. Velocity predictions from the hybrid model

are compared with predictions for the identical case from the porous medium and individual channels

models presented in [8]. The porous medium model simulates the pressure drop across the monolith

by representing the entire length as a porous region with porous resistance tensors derived from

experimental measurements, and an entrance effect defined by Eq. 2. The individual channels model

resolves the entire flow field in the x and y directions, assuming periodicity in the z direction.

At such close proximity to the monolith, the method of modelling the monolith resistance affects

the upstream velocity. Predictions from the hybrid model fall between those from the two separate

approaches. Axial velocities show a slight over-prediction of the central jet width and tangential

velocities show over-predicted obliqueness outside of the central region, corresponding to a high level

of shear at the edge of the spreading core, as seen in Figure 7(b).

Figure 8 presents axial velocity profiles 40 mm downstream of the monolith. CFD predictions from

the study are compared with experimental HWA measurements and the porous medium and individ-

ual channels CFD approaches presented in [8], with velocities normalised by the mean downstream

velocity.

HWA measurements were taken across the full width of the outlet sleeve. The velocity profiles

denoted by ‘HWA 1’ and ‘HWA 2’ in Figure 8 show measurements either side of the symmetry plane of

the system, and variability between the two measurements is observable. Similar variability of around

±5% was observed by Mat Yamin [17].

As found in [15], the application of a porous medium model with an oblique entry effect predicts

10
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(a) Velocity profiles 2.5 mm upstream of monolith,

comparison with [8] (b) Axial velocity contours in diffuser

Figure 7: Velocity in diffuser for L =27 mm, Re = 4.2 ×104

much higher flow maldistribution than measured experimentally. At areas of high angle of attack,

Eq. 2 produces a high pressure drop, resulting in low velocities at these locations downstream in the

monolith and a more maldistributed flow profile. Velocity profiles from the individual channels model

are more uniform than experimental results, but show more consistent agreement across monolith

lengths compared to the porous medium model.

Velocity profiles predicted by the hybrid model are highly similar to those from the individual

channels model, demonstrating the importance of accurately capturing flow behaviour at the entry

to the monolith. The effect of combining this model with a porous section is most visible near

to the sleeve wall. Flow maldistribution is increased compared to the individual channels model.

Particularly present for the short monolith higher Re case shown in Figure 8(c), maxima at the

centre and near the wall are higher and velocity at the trough is lower, showing improved agreement

with experimental data. Profile predictions for the longer monolith are fairly uniform, with the

hybrid model showing improvement compared to the individual channels model near to the wall.

This may be attributed to the differences in flow behaviour upstream (Figure 7(a)) which in turn

arise from the difference in pressure losses across the monolith. Improvement may also be linked

to the turbulence modelling approach applied in the region of fully-developed flow in the monolith.

Profiles are noticeably unsmooth, with the jet from each channel remaining identifiable downstream,

particularly for the high Re case shown in Figure 8(f).

The level of agreement between CFD predictions and experimental measurements may be defined
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(a) L = 27 mm, Re = 2.2 × 104

(b) L = 27 mm, Re = 3.0 × 104

(c) L = 27 mm, Re =4.2 × 104

(d) L = 100 mm, Re = 2.2 × 104

(e) L = 100 mm, Re = 3.0 × 104

(f) L = 100 mm, Re = 4.2 × 104

Figure 8: Axial velocity profiles 40 mm downstream of the monolith
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Figure 9: Variance

by the variance of model predictions from HWA data points, as presented in Figure 9. For each CFD

approach, the predicted velocity profile is interpolated to the spatial coordinates of the experimental

data and the mean difference in velocity, normalised by the HWA velocity, is calculated:

V =
1

n

n∑

i=1

|ûi − ui|
ui

(5)

where ui denotes the velocites measured by HWA, ûi denotes the interpolated velocity values for each

model, an n is the total number of HWA data points.

Comparing the mean variance across velocity profiles, Figure 9 shows the hybrid model to provide

limited improvement on the individual channels model. The higher Reynolds number, short monolith

case shown in Figure 8(c) sees the greatest reduction in variance, ∼10%.

Figure 10 compares the non-uniformity index ψ from the model predictions and the experimental

data. The non-uniformity index is defined as

ψ =
σ

U
(6)

and is calculated using the mass flow weighted velocity over the monolith face. σ is defined as

σ =
1

ṁ

∫

A

|ui − U | δṁ (7)

which is equivalent to

σ =
1

n

n∑

i=1

|ui − U |ui (8)
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Figure 10: Non-uniformity index

for a velocity profile of discrete data, where ui and U respectively denote the local axial velocity and

the mean axial velocity. Non-uniformity values of experimental data are approximately equidistant

to the predicted values from CFD for the shorter monolith. However for the longer monolith case,

the porous medium model performs markedly worse in the prediction of flow maldistribution than

the other models. Figure 10 shows simulations exhibiting the same trend as experiment, with the

maldistribution index increasing with Re and as monolith resistance is reduced. This is consistent

with studies for axisymmetric assemblies, e.g. [11]. For the important case where maldistribution is

greatest, Re = 4.2×104 and 27 mm monolith, it is encouraging to note that hybrid model predictions

are within 10% of experiment.

Discrepancies between hybrid model predictions and experimental data may be due to assumptions

in the model. The geometry for the channels is derived from the manufacturer’s specifications, however

this assumes uniformity throughout the monolith. In reality, channel inlets at the monolith face are not

identical and channel lengths are not perfectly straight. Roughness of the channel walls is neglected,

possibly affecting the accuracy of boundary layer prediction within the channels.

4. Conclusion

A CFD model combining individual channels and a porous medium to simulate flow behaviour in

an automotive catalyst system has been developed and compared with experimental measurements

upstream and downstream of the monolith. Predictions from the hybrid method show good agree-

ment with experimental data, with predictions within 10% for the longer monolith case, providing a
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compromise between the computational efficiency of the porous medium model and the geometrical

accuracy of individual channels. Compared to individual channels, the hybrid model retains consis-

tent agreement across the Reynolds number range and the two lengths of monolith, with improved

agreement at secondary maxima locations. Computational demand is reduced by approximately one

order of magnitude for the quasi-two-dimensional case, signifying the potential for high efficiency of

computational cost in similar systems modelled in three dimensions. By considering the predicted ve-

locity profile at the monolith front face and associated mass transfer, the model may also be extended

to chemically reacting flows for post light-off conditions.
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Notation

∆P axial pressure drop

∆P ∗ non-dimensional axial pressure drop, ∆P/ 1
2ρu

2
c

∆Pobl axial pressure drop due to oblique flow

η channel conversion efficiency

µ dynamic viscosity

ν kinematic viscosity, µ/ρ

ψ non-uniformity index

ρ density

d nozzle hydraulic diameter

dh channel hydraulic diameter

f Fanning friction factor

GHSV gas hourly space velocity

kc mass transfer coefficient

L length of monolith

ṁ mass flow rate

N number of mesh elements

Pi porous inertial resistance tensor

Pv porous viscous resistance tensor

Re inlet Reynolds number, ρUind/µ

Rec channel Reynolds number, ρucdh/µ

U mean axial velocity downstream of monolith

u axial velocity

u∗ reference velocity, computed from wall law

uc channel velocity

Uin inlet velocity

V variance of prediction from experimental data

v transverse velocity

X+ non-dimensional distance along channel, L/dhRec

y distance from wall

y+ non-dimensional distance from wall, yu∗/ν
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