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Abstract  

Crack propagation deviation tendency in specimens containing an interface between wrought alloy 

substrate and Wire + Arc Additive Manufacture (WAAM) built Ti-6Al-4V is investigated from the 

viewpoints of microstructure, residual stress and bi-material system. It is found that a crack initiated at 

the interface tends to grow into the substrate that has equiaxed microstructure and lower resistance to 

fatigue crack propagation. Experimental observations are interpreted by finite element modelling of the 

effects of residual stress and mechanical property mismatch between the WAAM and wrought alloy. 

Residual stresses retained in the compact tension specimens are evaluated based on measured residual 

stress in the initial WAAM built wall. Cracks perpendicular to the interface kept a straight path owing to 

the symmetrical residual stress distribution. In this case the tangential stress in bi-material model is also 

symmetric and has the maximum value at the initial crack plane. In contrast, cracks parallel to the 

interface is inclined to grow towards the substrate due to the mode II (or sliding mode) stress intensity 

factor caused by the asymmetric residual stress field. Asymmetric tangential stress in the bi-material 

model also contributes to the observed crack deviation trend according to the maximum tangential stress 

criterion. 

Keywords: additive manufacturing, titanium alloy, crack path selection, microstructure, residual stress, 

bi-material, finite element model 

1. Introduction  

Due to their excellent mechanical properties and corrosion resistance, high strength titanium alloys are 

extensively used as a key structural material in the aerospace industry. At present, titanium parts are 

mostly fabricated by the conventional wrought based processes such as machining from solid billets 

and therefore have a very high buy-to-fly ratio [1]. The new additive manufacturing (AM) technology 

has proved a highly effective method to reduce the production time and cost comparing with the 

traditional manufacturing process. The Wire + Arc Additive Manufacture (WAAM) process [2,3], 

which feeds a wire at a controlled rate into an electric or plasma arc to melt the wire onto a substrate or 

the previously deposited layer, is a developing AM technology that has found applications in the 

aerospace and other industrial sectors. Compared to the powder-based AM processes, WAAM has a 

much higher material deposition rate, lower process cost and no powder handling requirement [4]. 

However a higher amount of post process machining is required due to the lower dimensional accuracy 
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and surface roughness. WAAM is very promising for fabricating large components in high strength 

titanium alloys. 

One of the main challenges to the widespread use of AM technologies to produce safety critical 

structural components has been widely recognised as the issues of material properties and repeatability 

[5, 6]. So far a number of studies have been conducted in this area for AM Ti-6Al-4V (referred to as 

Ti-6-4 in the text). These include the static strength, ductility, high cycle fatigue and fracture toughness 

properties of wire based AM [6-10], powder bed selective laser melting (SLM) [11-14] and powder 

bed electron beam melting (EBM) [15]. Fatigue crack growth behavior has also been studied in SLM 

and EBM Ti-6-4 [11, 14, 15]. However, there is no published work yet on fatigue crack growth rates in 

the wire based AM metals. Furthermore, AM metal may be required to be built on to a substrate in 

practice; hence the need to study crack growth behaviour at the interface of two different alloys in 

order to apply the AM alloys in realistic structural assemblies or repairs. Since the damage tolerance 

design requirement requires not only the fatigue crack growth properties but also modelling and 

predictive tools, it is very important to study the influence of microstructure and residual stress that are 

identified as the key factors for WAAM built Ti-6-4 [16]. 

The conventional α+β forging processes are widely used to for the high strength Ti-alloy to obtain a 

typical equiaxed or bi-modal microstructure with excellent mechanical properties [17]. Many studies 

have been conducted to investigate the microstructure and mechanical properties of AM deposited 

titanium alloys. Previous studies [3, 4] have shown that the β grain of WAAM Ti-6-4 is similar to those 

in powder bed AM alloys deposited by SLM [18] or EBM [19, 20]. The microstructure of WAAM 

Ti-6-4 consists of fine Widmanstätten α in the upper deposited layers and a banded coarsened 

Widmanstätten lamella α in the lower layers [9], which is quite different from the equiaxed or bi-modal 

microstructure of the high strength Ti-6-4 in wrought condition. The coarse lamellar microstructure is 

also observed for other AM process produced titanium alloys [8, 9, 20] and is found to retard the crack 

growth rate [17, 21]. The difference in the microstructure results in different mechanical properties. 

WAAM Ti-6-4 has slightly lower yield and ultimate tensile strengths than those of forged bar, the 

ductility is comparable but the high cycle fatigue life is significantly higher [9, 22]. Furthermore, the 

as-deposited WAAM Ti-6-4 exhibits direction dependent mechanical properties. In the literature, the 

welding torch movement direction is defined as the longitudinal direction (L) and the layer building 

direction is the transverse (T), see Fig.1. The average yield and ultimate tensile strengths are higher in 

the longitudinal direction than that in the transverse direction [7]. Fatigue crack growth rate is also 

slightly greater in the longitudinal than the transverse direction [23]. For the SLM [14] and EBM 

Ti-6-4 [15], no noticeable difference was observed in the crack growth rate in the Paris law region 

between the two directions.  

Differences in the microstructure and mechanical properties in the wrought and WAAM conditions 

raise another issue for the designers. WAAM deposited on to a wrought substrate makes a bi-material 

system with an interface region. Crack path selection and the interface fracture property in bi-material 

systems has previously been studied [24]. The crack trajectory in a bi-material system depends on the 

local properties and local stress and strain field. For example, in a laser beam welded aluminum alloy 

sheet, it is observed that crack extends towards the softer fusion zone that has much lower yield 

strength than the base metal [25]. The bi-material interface regions are found to be the weakest 

location for material failure due to the microstructure and mechanical property heterogeneity [26]. 

Therefore, understanding the crack growth behavior at the bi-material interface is very important to 
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improve the structural integrity design of WAAM deposited components. 

Residual stress caused by the thermal contraction of the melting materials [27] is another key factor 

that can impact the crack growth behavior. Residual stress can be either beneficial or detrimental 

depending on its sign, magnitude, distribution and interaction with the service load induced stress field. 

Attempts have been made to quantify residual stress in AM parts [27-29]. For example, the neutron 

diffraction method was used to probe parts produced by the LENS method (a powder based AM 

process) and found significant compressive residual stress within a built component [28], which were 

observed to increase the fatigue life as the compressive stress caused crack tip closure; hence retarding 

the crack growth rate. Another study [29] showed that the peak residual stress shifted as weld beads 

were added to previous welds and can have the beneficial effect of lowering the peak stress, 

particularly in the weld toe area, which is a common site of in-service cracking. It should be pointed 

out that cracking occurs perpendicular to the deposited layers in [28, 29]. The influence of residual 

stress on cracks running parallel to the deposited layers is not found in the open literature.  

Experimental tests have been conducted to study the fatigue crack growth behaviour of WAAM 

deposited Ti-6-4 by our research group [30-32]. A recent paper [33] reported the effects of 

microstructure and residual stress on the growth behavior of crack perpendicular to the 

WAAM-substrate interface. This paper aims to understand the path selection of a crack at the interface 

either perpendicular or parallel to the interface. Firstly, fatigue crack growth test of compact tension 

specimens from previous tests is introduced. Subsequently, finite element models are presented for 

calculating residual stresses retained in the test specimens and resultant stress intensity factors, and 

investigating the crack path selection in the bi-material system (substrate and WAAM alloys). Finally, 

crack path selection issues are discussed from the viewpoints of microstructure, residual stress and 

bi-material system, respectively.  

2. Experimental 

2.1 Manufacturing process and experimental setup  

Fatigue tests of compact tension, C(T), specimens were conducted at Cranfield University [30-32] to 

investigate crack growth behavior at the WAAM-substrate interface. The specimens were machined 

from a “wall” (Fig. 1) fabricated by the Welding Engineering and Laser Processing Centre at Cranfield 

University using the WAAM technology using process parameters given in Table 1 [30]. A total of four 

walls were manufactured for this project. One of them was used for residual stress measurement; the 

other three were used to produce the test specimens shown in Fig. 1. Five C(T) specimens were 

machined from each wall to fatigue test standard. Fig. 2 shows the geometry and the dimension of the 

C(T) specimens complying with the ASTM standard [34]. The nominal thickness is 6 mm. 

Five different crack scenarios (Fig. 1) were investigated on the fatigue crack growth pattern at the 

WAAM-substrate interface, which are potentially important for design considerations. Fatigue tests 

were conducted using an Instron Model 8031 servo-hydraulic test machine in the following two steps: 

(1) pre-crack of 3 mm was prepared to eliminate the effect of the machined notch root. At the load ratio 

0.1, the maximum load was kept at 6 kN for pre-cracking to 2.5 mm length and then reduced to 5 kN for 

a further 0.5 mm crack growth. (2) Crack growth tests were conducted under the maximum load of 5 

kN and load ratio 0.1. A travelling microscope of X7 magnification factor was used to monitor the 

crack tip location. The loading frequency was 10 Hz for both the pre-cracking and fatigue crack 
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growth tests. Three specimens were tested for each geometry type.  

2.2 Fatigue crack trajectory  

Figure 3 presents the crack growth trajectory observed on polished specimen surfaces. The photos are 

presented in two categories by the applied load direction versus the WAAM-substrate interface. 

(1) Applied load parallel to the WAAM-substrate interface: specimen Type A (crack initiates from the 

substrate and propagates into the WAAM alloy) and Type C (crack initiates from the WAAM alloy and 

propagates into the substrate). The crack was found to maintain a straight line perpendicular to the 

interface for both specimens as shown in Figs. 3a and 3c. This is attributed to both the geometry and 

load symmetry. As shown in the previous work [33], residual stresses and microstructure only affected 

the crack growth rate, but not the crack propagation trajectory.  

(2) Applied load perpendicular to WAAM-substrate interface: Type B (initial crack at the interface), 

Type D (initial crack in the WAAM alloy, 3 mm above the interface) and Type E (initial crack about 3 

mm below the interface, in the heat affected zone (HAZ) on the substrate side). Figs. 3b, d and e show 

that the cracks in these specimens all propagated into the substrate even if it is 3 mm away from the 

interface. Although the applied load is symmetric, the microstructure and material properties are 

different on either side of the crack, which may have affected the crack path selection. Process induced 

residual stress is another factor that can influence the crack path selection by altering the crack tip 

stress distribution.  

2.3 Measurement of the residual stress  

To validate the residual stress prediction model presented in [33], residual stresses retained in Type B 

specimen were measured by the contour method [35]. The contour method involves cutting the 

component of interest into two parts, measuring the relaxed deformation profile of the cut surfaces and 

applying this profile as boundary conditions in an elastic finite element (FE) analysis to back-calculate 

the original out-of-plane residual stress field at the cut face.  

The cutting process was conducted using an Agie Charmilles wire EDM machine (FI-440CS) with a 

100    brass wire diameter. The specimen was „finger‟ clamped on the wire EDM bed to avoid any 

free movement during the cutting operation. Once the cutting process was completed, the distorted cut 

faces were measured using a Zeiss Eclipse co-ordinate measuring machine (CMM), fitted with a 

Micro-Epsilon laser probe and a 4 mm diameter ruby-tipped Renishaw PH10M touch trigger probe. 

The measurement spacing adopted was on a 0.1 mm square grid. 

Noise in the measured surface contour is unavoidable due to the nature of the EDM cut surfaces and 

uncertainty in CMM measurements. Because the stress calculation magnifies the noise in the data, it is 

important to smooth the surface deformation data. In the present work data smoothing was conducted 

using cubic spline fitting. For this purpose, several „knot spacings‟ (1x1, 2x2, 3x3, 5x5 and 7x7 mm
2
) 

were examined. The uncertainty in the calculated stresses at any given node on the cut surface was 

estimated by taking the standard deviation of the new stress and the stress from the previous, coarser 

fit [36]. The minimum average stress uncertainty was 6.4 MPa which corresponded to an optimum 

knot spacing of 3x3 mm
2
 in this case. 

A 3D linear elastic FE analysis was performed using the ABAQUS code to calculate the residual stress 

from the applied deformation at the cut surface. The 3D FE model of the specimen was generated 
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using the perimeter of the cut face measured by the CMM. The elastic properties (Young‟s modulus 

and Poisson‟s ratio) of the test specimen were defined and residual stresses back-calculated by 

applying the opposite of the smoothed deformation contour to the cut plane as boundary conditions. 

Measured stress profile is compared with FE prediction and presented in Section 3.1.  

3. Finite element analysis 

3.1 Residual stress effect on crack path selection 

3.1.1. Residual stress in C(T) specimens 

An elastic FE model was developed to simulate cutting of C(T) specimen from the WAAM wall in our 

previous paper [33]. The specimen cutting process can be regarded as a stress relief process due to 

material removal [37]. An element removal model is available in ABAQUS [38] that can be used to 

remove parts from an initially built model to simulate the machining process.  

Residual stresses retained in the Type A and C specimens, i.e. crack perpendicular to the interface, are 

reported in [33]. Before removing any material, the measured residual stress field in the wall (Fig. 4) is 

put into the FE model as the initial stress condition using a user defined subroutine (designated as 

SIGINI in ABAQUS). To model the residual stress in type B specimen (crack parallel to the interface), 

C(T) specimen model and refined mesh with singularity elements around the crack tip are illustrated in 

Fig. 5. The modelling procedure is the same as in [33]. To validate the FE model, Fig. 6 compares the FE 

calculated and test measured residual stresses retained in the B specimen prior to the fatigue crack 

propagation test. Prediction is in good agreement with the test. 

Bearing in mind that the aim of this paper is to understand the crack path selection near the 

WAAM-substrate interface, a longer crack length was used in the FE model, i.e. 30 mm for Type A and C 

so that the crack tip is located at the interface. For the Type B, D and E specimens, a 17 mm crack length 

was used in the FE models (representing 14 mm notch plus 3 mm pre-crack). Calculated residual stress 

distributions near the crack tip are shown in Figs. 7 and 8. Calculated residual stress intensity factors 

(Kres) are extracted from the contour (J)-integral and given in Table 2. From these results, following 

observations can be drawn: 

(1) For the Type A and C specimens, the residual stress distribution (Fig. 7) is symmetric when the crack 

initiates and propagates perpendicular to the WAAM-Substrate interface. The resultant mode I stress 

intensity factors (KI,res) are 1.50  MPa m for Type A specimen and 10.183  MPa m for Type C when 

a = 30 mm (crack tip at the WAAM-substrate interface). The mode II residual stress intensity factor 

(KII,res) is zero for both specimens as shown in Table 2, indicating that the influence of residual stress is 

limited to increasing the total mode I stress intensity factor and subsequently increasing the crack 

growth rate, but not changing the crack trajectory (pure mode I crack propagation). This explains the 

straight crack path on the Type A and C specimens (Figs. 3a and c).  

(2) For the Type B, D and E specimens, residual stress distribution and induced deformation (Fig. 8) are 

apparently asymmetric. Calculated values of residual stress induced stress intensity factor (Kres) in 

Table 2 indicate that Kres is considerable for both the mode I and mode II crack growth. Consequently the 

crack propagated under the mixed mode, i.e., the crack path deviated from the expected path (Fig. 3b, d, 

e) due to the asymmetric residual stress distribution. The deviation angle depends on the proportion of 

the applied load to the residual stress magnitude. 
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3.1.2. Maximum tangential stress criterion (elastic stress field) 

The influence of residual stress distribution on crack deviation angle is determined by the maximum 

tangential stress criterion (elastic) that is available in ABAQUS [39] 

  cos 1
3   

2     
4    

2   
2

  
2 9   

2
                                                         (1) 

where, crack deviation angle     is measured counterclockwise with respect to the initial crack plane, 

i.e.     represents crack propagation in the “straight-ahead” direction when      , whereas     

if       or     if      . Values of    and     depend on the proportion of applied maximum load 

to the residual stress magnitude that is calculated by FE model in Section 3.1.1. Calculated crack 

deviation angles are presented in Section 4.3.  

3.2 Crack path selection in the bi-material system 

Mechanical properties of WAAM and wrought Ti-6-4 are given in Table 3. The WAAM alloy has a 

higher Young's modulus but lower yield and ultimate tensile strength in both the longitudinal and 

transverse directions. When a crack is adjacent to the WAAM-substrate interface, it could be regarded as 

propagating in a bi-material system having different mechanical properties between the two process 

conditions. Consequently, a complex stress field is found around the crack tip owing to the elastic and 

plastic mismatch [40]. An elastic-plastic FE model is developed in this paper to predict the crack path 

selection due to the elastic (Young's modulus) and plastic (yield strength) mismatch. 

3.2.1 Elastic-plastic FE model of bi-material system  

Figure 9a shows the C(T) specimen model by the plane strain element (8-node second order 

isoparametric element designated as CPE8 in ABAQUS; 15170 elements in total). A refined mesh is 

used at the crack tip and the quarter-node elements are used at the crack tip to capture the high stress 

gradient (Fig. 9b). The loading pin is simulated as a rigid body due to the relatively small deformation 

compared with the C(T) specimen. Interaction between the loading pin and C(T) specimen is simulated 

by the surface-to-surface contact pairs. Fig. 9 also shows the material property definition in the 

bi-material system. The isotropic hardening rule was used to specify the plastic behavior. The 

relationship between yield stress and plastic strain was defined in ABAQUS to model the stress-strain 

curve given in Ref [23]. Taking the type B as an example, the specimen is modelled by two material 

zones divided by the WAAM-substrate interface. The upper and lower zones are modelled by the 

WAAM and wrought Ti-6-4 properties, respectively.  

3.2.2 Maximum tangential stress criterion in the elastic-plastic stress field 

Since there is no criterion currently available in ABAQUS for predicting crack growth direction in an 

elastic-plastic material, in this paper, the Maximum Tangential Stress (elastic-plastic) criterion, named 

as the MTSP [41], was applied to estimate the crack trajectory at the WAAM-substrate interface. 

According to this criterion, the crack will propagate along the direction where the tangential stress is the 

greatest. Hence, the crack deviation angle (θ) can be determined by the following equation 

 T,max max
θ

          eval 
                                                          (2) 

where  eval is the radial distance from the crack tip to the point where the crack deviation angle is 
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evaluated,  T θ  is the normal stress in the tangential direction that is obtained from the elastic-plastic 

FE model. Evaluation of crack deviation angle (θ) is performed by the following steps.  

(1) Calculated stress components ( x,  y, τxy) are transformed from the global Cartesian coordinate (x-y) 

to the local cylindrical coordinate (R-T) system, as shown in the Figs. 10a and b.  

(2) The tangential stress,      , at a given radius  eval was recorded, where   ranges from -180° to 

180°, shown in Fig. 10c. At the evaluation point, distance to the crack tip  eval must be smaller than the 

radius of the theoretical plastic zone [39], which is 0.104 mm by  rwin‟s plastic zone model [42] for Type 

B specimen. In this study, the tangential stress was evaluated at two points, i.e.  eval equals 0.005 and 

0.02 mm, as shown in Fig. 10c.  

(3) The angle where the tangential stress is the highest is the crack growth direction, according to the 

MTSP criterion. It can be seen from Fig. 10c that the crack deviation angle is about -6.5° for the Type B 

specimen, i.e., crack tends to enter the substrate when it is initiated at the WAAM-Substrate interface. 

4. Results and discussions  

4.1 Crack path selection at the interface  

Experimental test results in Section 2 have indicated that fatigue crack growth path around the 

interface is dependent on the initial crack orientation (i.e. either perpendicular or parallel to the 

interface). Crack maintains a straight path when it is perpendicular to the interface, whereas crack 

tends to grow into the wrought substrate when it is parallel to the interface. Influences of 

microstructure, residual stress and bi-material system on crack deviation tendency are analysed and 

discussed in the following sections.  

4.2 Influence of microstructure and fatigue crack growth rate   

Figure 11 shows the difference in the microstructure and crack growth rate [33] between the wrought and 

WAAM Ti-6-4. The fatigue crack growth rate of WAAM alloy in the T-L direction is also reported in Fig. 

11c. Microstructure of the wrought alloy is the α β equiaxed structure (Fig. 11a) that is the same as most 

high strength Ti-6-4 used in the airframes. The WAAM alloy has the Widmanstätten lamellar structure 

(Fig. 11b) that is also reported for WAAM [7] and other AM process deposited titanium alloys [10, 11].  

Differences in the microstructure can cause different resistance to fatigue crack propagation. In the 

substrate, cracks propagate smoothly in the fine α β equiaxed structure and consequently have a higher 

growth rate (Fig. 11a and c). In the WAAM alloy, a crack takes a tortuous route owing to the lamellar 

structure which results in a slower growth rate (Fig. 11b and c). Fig. 11c shows that the WAAM Ti-6-4 

exhibits a lower crack growth rate in both the longitudinal and transverse directions than that in the 

wrought alloy (isotropic) in the Paris law region (Region II). This is also reported by Edwards et al [14] 

for the electron beam melted Ti-6-4. 

The relationship of the crack growth rate and stress intensity factor range characterizes the resistance to 

crack propagation under fatigue load. Comparisons shown in Fig. 11c indicate that WAAM Ti-6-4 has 

higher resistance to crack propagation than the wrought alloy used in the substrate. Cracks tend to 

propagate towards the material that has lower resistance to propagation when the crack is initiated at the 

WAAM-substrate interface and is parallel to the interface, i.e., cracks will grow into the substrate for the 

Type B, D and E specimens.  

4.3 Influence of residual stress  
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FE models in Section 3.1 show that residual stress distribution is symmetric for the Type A and C 

specimens but asymmetric for the Type B, D and E. According to the maximum tangential stress 

criterion (eq. 1, elastic condition), the crack deviation angle induced by residual stress depends on the 

proportion of the applied maximum load to the residual stress. Table 4 provides the total stress intensity 

factor   tot  owing to the applied maximum load and residual stress, crack propagation angle     that 

is estimated by eq. 1 based on the calculated   , tot and    ,tot. 

As can be seen from Table 4, for the Type A and C specimens, the mode II stress intensity factor is zero 

    ,tot   ) under the combined residual stress and applied load, hence the crack deviation angle is also 

zero, indicating that the crack keeps a straight propagation path in the Type A and C specimens (Figs. 3a 

and c). However, for the Type B, D and E specimens, residual stress results in considerable mode II 

stress intensity factor with positive values (   , tot    ); consequently this results in negative crack 

deviation angle      , meaning that the cracks tend to propagate into the substrate alloy, as shown in 

Figs. 3 b, d and e. Furthermore, the prediction results show that Type E specimen has the maximum 

deviation angle, and Type D has the minimum angle value, which is in agreement with the experimental 

observations shown in Fig. 3.  

4.4 Influence of mechanical property mismatch  

The mismatch of mechanical properties of WAAM and substrate Ti-6Al-4V is another factor which may 

cause the crack deviation at the interface. Crack path selection in the bi-material system of tested 

samples was investigated using the elastic-plastic FE model described in Section 3.2. Calculated results 

are presented in two groups according to the crack growth direction with respect to the WAAM- 

Substrate interface. 

For the Type A and C specimens (cracks propagate perpendicular to WAAM-Substrate interface), Fig. 

12a shows the tangential stress distribution near the crack tip ( eval   . 2 mm) at the interface (a = 30 

mm), i.e., the crack tip at the interface exactly. It should be noted that the crack tip plastic zone is located 

in the WAAM alloy zone for the Type A specimen but in the substrate zone for the Type C. Although 

Type A and C specimens give different tangential stress distribution due to the difference in mechanical 

properties, the tangential stress reaches its maximum value when θ = 0° for both specimens, indicating 

that cracks will follow a straight growth path when  propagating perpendicular to WAAM-Substrate 

interface.  

For the Type B, D and E specimens (cracks grow parallel to the interface), Fig. 12b shows the tangential 

stress distribution around the crack tip ( eval   . 2 mm) when a=17 mm, i.e. at the beginning of the 

fatigue crack growth test. Unlike the case of symmetric residual stress distribution for Type A and C 

specimens, an asymmetric stress distribution is caused by the mismatch in mechanical properties 

between the WAAM and substrate alloys. The tangential stress reached its maximum value at θ = -6.5, -2 

and -2° for Type B, D and E, respectively. According to the MTSP criterion presented in Section 3.2, 

cracks will tend to deviate into the substrate. 

It should be pointed that this paper aims to explain the crack propagation tendency at the WAAM- 

Substrate surface. Although the FE models (containing residual stress and bi-material properties) 

provide the same deviation tendency as the experimental results, the calculated deviation angle only 

represents the tendency of initial deviation. Since the deviation angle is a function of stress intensity 

factors (  ,tot and    ,tot), it is strongly related to the growing crack length. Crack deviation continues 
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during the subsequent crack propagation process, therefore as the crack gets longer, it will in turn impact 

the residual stress redistribution and the stress intensity factor values; hence the deviation angle. A more 

complex model needs to be developed to predict the continuing change in the crack deviation angle and 

crack growth path, which is beyond the scope of this paper and will be the subject of future work. 

5. Conclusions  

Crack propagation deviation tendency in specimens containing an interface between wrought substrate 

and WAAM Ti-6Al-4V is investigated from the microstructure, residual stress and bi-material points of 

view. FEA has been performed to explain the effects of residual stress and bi-material properties. The 

following conclusions can be drawn.  

(1) Since the lamellar structured WAAM alloy has lower crack growth rate than that in the equiaxed 

wrought condition, cracks have a tendency to grow towards the wrought substrate when they are 

initiated at and in parallel with the WAAM-substrate interface.  

(2) Residual stress distribution is symmetric in the Type A and C but asymmetric for the Type B, D and E 

specimens. Cracks keep a straight propagation path in the Type A and C specimens, since the mode II 

stress intensity factors induced by residual stress are zero. For the Type B, D and E specimens, residual 

stress results in a considerable mode II stress intensity factor that leads to crack path deviation into the 

substrate. 

(3) The mismatch of the material elastic and plastic mechanical properties between the WAAM and 

wrought alloys also has an influence on the crack path selection. The bi-material FE model shows that 

when cracks propagate perpendicular to the WAAM-substrate interface, the tangential stress is 

symmetric and reached a maximum value at θ = 0. Asymmetric tangential stress is found when cracks 

grow parallel to WAAM-substrate interface. According to the maximum tangential stress criterion, crack 

will deviate into the substrate. 

In summary, all three influential factors (microstructure, residual stress and bi-material properties) 

support the experimentally observed crack deviation trend, i.e., crack deviates into the substrate when it 

initiates at and in parallel with the WAAM-substrate interface.  
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Table 1 Build parameters used for the production of the WAAM-Substrate wall [30] 

Layers 1-3 4-6 7-9 >9 

Current(A) 160 155 150 145 

Arc voltage(V) 20.4 

Wire feed speed (mm/s) 33.33 

Travel speed (mm/s) 4.5 

Plasma gas flow rate 

(l/min) 

0.8 

Torch shielding gas rate 

(l/min) 

8 

Wire diameter (mm) 1.20 

Layer height (mm) 1.25 
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Table 2 Residual stress induced stress intensity factor (Kres) for the C(T) specimen   

Type of Specimen  A B C D E 

Crack length, a (mm) 30 17 30 17 17 

Kres of mode Ⅰ, KI,res (MPa m) 1.502 5.850 10.183  4.743 7.242  

Kres of mode Ⅱ, KII,res (MPa m) 0.000  2.704  0.000  1.771  3.731  
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Table 3 Mechanical properties of WAAM and substrate Ti-6Al-4V [7, 23] 

Material Direction 
Young's modulus 

(GPa) 

Yield strength  

(MPa) 

Ultimate tension strength 

(MPa) 

WAAM 
Longitudinal  123.5 840 923 

Transversal  126.5 810 906 

Substrate Isotropic 110 950 1033 
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Table 4 Calculated total stress intensity factor   tot  and the crack deviation angle     

under maximum applied load (Pmax=5kN) and residual stress  

Type of Specimen  A B C D E 

Crack length, a (mm) 30 17 30 17 17 

KI induced by applied maximum load, KI, app 

(MPa m) 
24.756 15.216 24.756 15.216 15.216 

KII induced by applied maximum load, KII, app 

(MPa m) 
0 

   tot   KI, app+ KI, res  (MPa m) 26.258  21.060  34.939  19.953  22.452  

    tot   KII, app+ KII, res (MPa m)) 0.000  2.704  0.000  1.771  3.731  

Crack deviation angle, θ (°) 0.000  -14.185  0.000  -9.990  -17.945  
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Fig. 1 Layout of test specimens on a WAAM-substrate wall showing the WAAM-substrate interface 

location on each type of C(T) specimen (unit: mm)  
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Fig. 2 Geometry and dimension of WAAM build C(T) specimen (unit: mm) 

  

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

19 
 

 

 

  

 

 

 

Fig. 3 Macroscopic photographs showing fatigue crack trajectory in the interface of WAAM-substrate 

C(T) specimens.  
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(a) 2D normal stress map in the cutting plane A-A 
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(b) 1D normal stress profile along the line of mid-thickness 

 

Fig. 4 Measured residual stress in the wall 
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Fig. 5 Finite element model for calculating residual stress retained in C(T) specimen 
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Fig. 6 Residual normal stress retained in the Type B specimen (with notch, no crack) 
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Fig. 7 Residual stress ( 22) in the crack tip of C(T) specimens, (a) Type A, (b) Type C  

(Refined singularity mesh region around the crack tip: 6 mm × 4 mm) 
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Fig. 8 Residual stress ( 22) in the in the crack tip of C(T) specimens, (a) Type B, (b) Type D (c) Type E 

(Refined singularity mesh region around the crack tip: 6 mm × 4 mm) 
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Fig. 9 Elastic-plastic finite element model of crack extension in bi-material system (Type B): (a) FE 

model of the C(T) specimen; (b) Detail mesh around the notch and crack tip area 
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Fig.10 Calculated tangential stress distribution around the crack tip in (a) global coordinate (x-y) and (b) 

local cylindrical coordinate (R-T), (c) tangential stress       at  eval=0.005 and 0.02mm  
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Fig. 11 Optical micrographs showing the crack growth pattern in the wrought substrate (a), WAAM (b), 

and comparison of fatigue crack growth rate da/dN vs. stress intensity factor range K (c) 
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(a) Type A and C (a = 30 mm) 
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(b) Type B, D and E (a =17 mm) 

Fig. 12 Calculated tangential stress around the crack tip (distance to tip  eval  . 2mm) 

  

-10 -8 -6 -4 -2 0 2 4 6 8 10
1560

1580

1600

1620

1640

 Type B

 Type D

 Type E


max

 

-10 -8 -6 -4 -2 0 2 4 6 8 10
2000

2100

2200

2300

2400



(M

P
a
)

(°)

 Type A

 Type C


max  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

29 
 

Graphical abstract 
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Highlights 

 

Crack growth path is examined near the interface between wrought and WAAM deposited Ti-6Al-4V. 

Cracks perpendicular to the interface keep straight growth, whereas cracks in parallel to the interface 

tend to deviate into the substrate. 

Wrought substrate with equiaxed microstructure has lower resistance to fatigue crack growth than the 

lamellar structured WAAM alloy. 

Effects of residual stress and mechanical property mismatch on crack path are studied by two finite 

element models. 


