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Abstract 

An adaptive stochastic multi-scale method is developed for cohesive fracture modelling of quasi-

brittle heterogeneous materials under uniaxial tension. In this method, a macro-domain is first 

discretised into a number of non-overlapping meso-scale elements (MeEs) each of which containing 

detailed micro-scale finite element meshes. Potential discrete cracks in the MeEs are modelled by 

pre-inserted cohesive interface elements (CIEs). Nonlinear simulations are conducted for the MeEs 

to obtain the crack patterns under different boundary conditions. The macro-domain with the same 

number of overlapped, adaptively size-increasing MeEs are then simulated, until the potential cracks 

seamlessly cross the boundaries of adjacent MeEs. The resultant cracks, after being filtered by a new 

Bayesian inference algorithm to remove spurious cracks wherever necessary, are then integrated as 

CIEs into a final anisotropic macro-model for global mechanical responses. A two-dimensional 

example of carbon fibre reinforced polymers was modelled under two types of uniaxial tension 

boundaries. The developed method predicted crack patterns and load-displacement curves in 

excellent agreement with those from a full micro-scale simulation, but consuming considerably less 

computation time of the latter.  

 

Keywords: multi-scale stochastic fracture mechanics; scale coupling; cohesive crack model; 

overlapping elements; fibre reinforced plastics. 
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1. INTRODUCTION 

Due to the random distribution of multiple phases from nano-, micro-, meso- to macro-scales, 

multiphase quasi-brittle materials, such as concrete and fibre-reinforced polymers (FRP) have 

intrinsically stochastic, heterogeneous and nonlinear physical and mechanical properties across the 

multi-length scales. As the finer-scale properties directly determine the performance and reliability 

of structures and systems at coarser-scales, better understanding of these properties and their inter-

scale relationships or scale-transferability by multi-scale computational modelling, has become a 

critical problem (de Borst, 2008; Kassner et al., 2005; Oden et al., 2003; Kanouté et al., 2009; 

Nguyen et al., 2012a). This is particularly true for fracture problems, as fracture always starts from 

micro-cracks at strain localization sites, which then propagate, widen and coalesce into meso-cracks 

and finally discrete macro-cracks. This phenomenon spans a few length scales, demanding a multi-

scale modelling approach. 

In general, there exist two categories of multi-scale modelling approaches (Belytschko, 2007): (1) 

concurrent ones, where multiple scales of computing are performed simultaneously; (2) hierarchical 

or sequential ones, where fine-scale problems are solved in sub-domains and the homogenised results 

are up-scaled separately in coarse-scale computing.  

In modelling fracture problems, the concurrent approaches naturally discretise the regions with strain 

localisation by fine meshes and the other by coarse meshes to save computational cost. It is 

particularly useful for problems with a few cracks or weak interfaces known a priori, where the 

crack-tip and the interfacial regions are modelled in detail for accurate understanding of the fracture 

mechanism at fine scales (e.g., (Ghosh and Paquet, 2013; Ghosh et al., 2007; Canal et al., 2012; 

González and Llorca, 2006; Trias et al., 2006a; Trias et al., 2006b; Trias et al., 2006c; Li et al., 

2013)). However, for problems with many distributed cracks or unknown cracks, very dense meshes 

may have to be used in the whole domain to simulate potential cracks, making the concurrent 

approaches computationally costly. 

In the hierarchical approaches, a representative volume element (RVE) or unit cell, based on the 

classical homogenization theory (Hill, 1963; Hashin, 1965), is assumed to exist at medium scales. 

Once the existence and size of the RVE is determined by detailed numerical analyses in fine scales, 

the domain at coarse scales is assumed homogeneous and modelled by a number of RVEs. In doing 

so, a full analysis of the domain with fine-scale details is avoided. However, recent studies (Phu 

Nguyen et al., 2010; Gitman et al., 2008; Gitman et al., 2007) find that the RVE exists only in linear-

elastic and hardening regimes; once softening occurs as in fracture and damage, the material loses 

the “representative” properties and the RVE cannot be found, because the material in softening 

shows localization leading to the loss of statistical homogeneity. If the RVE does not exist, special 

measures must be taken for multi-scale modelling to maintain the objectivity with respect to the size 

of the sample cells. Various multi-scale models have been recently developed to solve this dilemma, 

e.g., the coupled-volume multi-scale model (Gitman et al., 2008), the multi-scale aggregating 

discontinuities model (Belytschko et al., 2008; Loehnert and Belytschko, 2007), the multi-grid 

method (Miehe and Bayreuther, 2007; Kaczmarczyk et al., 2010), the homogenization-localization 

methods (Bosco et al., 2015; Coenen et al., 2012), the enhanced continuous-discontinuous model 

(Nguyen et al., 2012b; Nguyen et al., 2011), the reduced integration order model (Fish, 2011; Fish 
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and Shek, 1999), the two-scale homogenization model (Greco et al., 2013; Cusatis and Cedolin, 2007; 

Desmorat and Lemaitre, 2001), the multi-fractal approach (Carpinteri et al., 2002; Carpinteri and 

Chiaia, 1997; Xu et al., 2013), and the variational and localized Lagrange multiplier method 

(Hautefeuille et al., 2012; Markovic and Ibrahimbegovic, 2004). 

It can be noted that most of the existing multi-scale models, either concurrent or hierarchical, have 

tackled fracture problems with single, a few cracks or pre-defined bi-material interfaces. The fine-

scale multiphase structures are mostly assumed and the numerical results are difficult to be 

accurately validated. The latest advances in high-resolution image-based models (Dirrenberger et al., 

2014; Ren et al., 2015; Huang et al., 2015) appear very promising for direct validation of the 

numerical models but they are so far not used in multi-scale modelling and validation. In addition, 

multi-scale models considering the effects and inter-scale transfer of stochastic information are still 

largely limited to the prediction of homogenised elastic properties (Xu and Graham-Brady, 2005; Xu 

and Chen, 2009) rather than complicated fracture evolution. 3D multi-scale modelling of fracture in 

composite materials has rarely been reported, probably due to the very large number of degrees of 

freedom in the fine-scale models that are beyond the power of conventional computers. Therefore, 

much research is still needed to develop more robust multi-scale methods for complicated fracture 

modelling, as also pointed out by a relatively recent report of USA National Committee on 

Theoretical and Applied Mechanics (Belytschko, 2007). 

As an effort towards overcoming the above deficiencies, a new efficient multi-scale method is 

developed in this study for modelling complicated fracture behaviour in heterogeneous quasi-brittle 

materials. In this method, a macro-domain is first discretised into a number of meso-scale elements 

(MeEs) with detailed micro-scale finite element meshes generated from images obtained by a 

microscope. The initiation and propagation of multiple cracks is modelled discretely by pre-inserted 

cohesive interface elements (CIEs) with tension and shear softening laws (Yang et al., 2009; Su et al., 

2010). The number and the size of the MeEs required are determined by a size effect study with 

respective to crack paths and strength. A nonlinear simulation is then conducted separately for each 

MeE in parallel to obtain the crack patterns under two types of uniaxial tensile boundary conditions. 

The same number of overlapped, adaptively size-increasing MeEs are then simulated, until the 

cracks seamlessly cross the boundaries of adjacent MeEs. This can be achieved because the shared 

microstructures within the neighbouring overlapped elements minimise the potential crack bias and 

the boundary deformation incompatibility across boundaries. After being filtered by the Bayesian 

inference algorithm to remove spurious cracks wherever necessary, the resultant cracks are 

integrated as CIEs (with softening laws mapped from the adaptive meso-scale study) into a final 

anisotropic macro-model to compute the global responses. The crack patterns and load-displacement 

curves computed from the developed method are compared with those from a full micro-scale 

simulation as a means of numerical validation.  

It should be noted that the overlapping strategy used herein is similar to the oversampling strategy 

used in the so-called generalised multi-scale finite element method (GMsFEM) for flow problems in 

heterogeneous porous media (Hou and Wu, 1997; Chen et al., 2003; Aarnes et al., 2006; Efendiev et 

al., 2004; Efendiev et al., 2014; Calo et al., 2014). In the GMsFEM, the scale-coupling is realised 

using multi-scale basis functions containing the deformation information of fine-scale elements. The 

oversampling strategy uses larger regions than the fine-scale elements to construct more accurate 
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local basis functions, making the GMsFEM converge faster with fewer degrees of freedom. 

Although the GMsFEM with oversampling has recently been applied to linear elastic stress analyses 

(Chung et al., 2014) and seismic wave propagation (Gao et al., 2014), its extension to complicated 

nonlinear fracture problems is not yet reported. Such an extension is very challenging due to the 

strain localisation and associated nonlinear material softening, which may presumably make it 

impossible to form the rigorous analytical derivation of the GMsFEM to ensure deformation 

compatibility between the fine-scale elements for general external boundary conditions.  

As the first attempt to use the overlapping strategy for multi-scale cohesive fracture modelling in 

quasi-brittle materials, this study will investigate problems with randomly and evenly distributed 

inclusions and predominantly mode-I fracture, so that all the meso-scale elements are assumed under 

uniaxial tension and can be modelled independently. The overlapping grids with common areas are 

used to enhance the deformation compatibility. The scale transfer is realised by the energy 

conservation principle through mapping the traction-displacement softening curves in CIEs from the 

MeEs to the MaEs. The effects of inclusion-matrix interfacial fracture properties and two types of 

boundary conditions on the crack path and strength are also investigated. A two-dimensional 

example of FRP plates is modelled as a case study. 

2. METHODOLOGY  

2.1. Framework 

Figure 1 shows the framework of the developed method with the key modules highlighted.  It starts 

with acquiring a high-resolution image of the global domain by micro-tests using advanced 

techniques such as high-resolution cameras, microscopes and X-ray Computer Tomography (XCT). 

The image is then processed and segmented into different phases. If the crack paths and load-

carrying capacities are not available from the micro-tests, a full micro-scale FE modelling of the 

global domain is carried out to validate the multi-scale modelling. In this case, the global-domain 

image is first transformed into FE meshes of solid elements. Cohesive interface elements with 

softening traction-displacement constitutive laws in normal and shear directions are then inserted 

into the matrix mesh and between the matrix-inclusion interfaces, to model potential cracks. This 

method has proved to be very effective in modelling complicated 2D and 3D meso-scale fracture 

processes in concrete, using the random field theories (Yang et al., 2009; Su et al., 2010), direct 

generation and packing of aggregates (Wang et al., 2015; Caballero et al., 2008), and XCT image-

based models (Ren et al., 2015). Other approaches, such as dynamically inserting CIEs only when a 

certain criterion is reached (Yu et al., 2008; Ruiz et al., 2001; López et al., 2007), can also be used to 

improve the computational efficiency. 
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Figure 1: A two-scale coupling scheme for stochastic fracture mechanics. 

The global domain is then divided into a grid with a number of non-overlapped rectangular meso-

elements (MeEs), illustrated in Figure 3(a) as an example. For each MeE, its micro-structure is 

meshed with CIEs inserted and a nonlinear FE analyse is conducted under the same boundary 

condition. Size effect studies on the strength are carried out to determine a proper number and size of 

the MeEs. Two boundary conditions as illustrated on the first row in Figure 2, noted as B1 and B2 

are necessary for the MeEs and scale transfer. The B1 is the uniaxial tensile condition and B2 is the 

shear condition necessary for the nonlinear integration of tractions for the global CIEs. At the global 

scale, two types of external uniaxial boundary conditions G1 and G2 are modelled, as illustrated in 

Figure 2(c) and 2(d), respectively. The popular G1 condition tends to result in the pure mode-I 

fracture mode, while the G2 allows core rotations and may lead to two main cracks. The G2 

condition has also been increasingly used (Park and Paulino, 2012; Wang et al., 2015; Ren et al., 

2015). In this paper, this was not implemented as a boundary condition for the scale transfer.  
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Figure 2: Boundary conditions for meso-scale modelling and for the global multi-scale models. 

Figure 3(b) shows the crack paths from 16 independent nonlinear simulations of MeEs under the B1-

X condition (X means horizontal and Y vertical direction). 

 

Figure 3: (a) A global domain discretised into 16 non-overlapped MeEs and (b) the modelled crack 

paths for each MeEs independently under B1-X boundary condition. 

From Figure 3(b) it can be seen that not all the cracks across the MeEs’ boundaries are continuous, 

indicating that deformation compatibility does not hold. This usually occurs when the non-

overlapping grid is used. To improve the situation, an overlapping grid (Figure 4(a)) with the same 

(a) non-overlapping grid (b) crack paths using B1-X 
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number but larger size MeEs is then designed. All the MeEs are again modelled independently. The 

resulting crack paths are shown in Figure 4(b). It can be seen that most of the crack paths now cross 

the MeEs’ boundaries continuously, indicating improvement of the overlapping grid over the non-

overlapping grid (Figure 3(b)). Subsequent overlapping grids with larger MeEs can be further 

designed and modelled if necessary. Figure 4(c) shows the final crack paths which nearly seamlessly 

cross all the MeEs’ boundaries. This algorithm of using adaptively size-increasing overlapping grids 

works because the larger the overlapping regions become, the better deformation compatible support 

is provided.   

 

Figure 4: Overlapping MeEs and crack paths under B1-X boundary. 

2.2. Bayesian inference model for overlapping MeEs with non-matching crack paths 

Because the MeEs are separately modelled and the deformation compatibility cannot be rigorously 

ensured, some non-physically overlapped crack paths may be predicted, as seen in Fig. 4. To 

improve this situation, the Bayesian inference model is applied to filter the crack paths and preserve 

the most critical cracks only for subsequent scale transfer.  

The well-known Bayesian inference method is 

( )
( ) ( )

( ) ( )
m m

m

P E C
P C E P C

P E C P C
= ⋅
∑

 
Equation 1 

Assume that the fracture process generates independent crack events E under similar boundary 

conditions but with unknown probability distribution. Equation 1 updates the degree of matching of a 

kernel crack path with m number of neighbouring cracks Cm (see Fig. 5). For each non-boundary 

kernel MeE, for example, there are 8 adjacent MeE each with a crack path so m=1~8. Assume that 

the denominator in Equation 1 can be represented by equally distributed probabilities P(Cm) with 

known values for all adjacent half-overlapping and quarterly-overlapping MeEs with

8

( ) 1m

m

P C
=

=∑ .The probability P(E|Cm) (m=1~8) remain fixed over the cluster Cm. It can be seen that 

Equation 1 updates the prior probability P(E|C) to posterior probability P(C|E) given a target 

probability P(C). The P(E|C)  can be then used as a threshold to filter the cracks. 

(b) crack paths  

     (short overlapping) 

(c) final crack paths 

     (long overlapping) 

(a) 16 overlapping MeEs 
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In the present paper the probabilities P(E|C) and P(C) are calculated as a surface/path integral, which 

can be reduced to a discrete number of key points at known locations as 

( ) ( )
k k

C
P C f H dH= ∫  Equation 2 

where the crack path is parameterised by a function f(Hk) where Hk are key points on the crack path 

C. Alternatively Equation 2 can be calculated using the pixels forming the crack path in the images.  

Fig. 5(a) illustrates two types of grid-free cracks: overlapping domain cracks and non-overlapping 

domain cracks when short overlapping is used. If the overlapping length is equal to or larger than 

half the MeE grid distance, the grid-free non-overlapping cracks merge into grid-free overlapping 

cracks. This becomes valid for all the non-boundary MeE due to full overlapping length. If the 

overlapping length exceeds half of the MeE grid distance, double overlapping regions appear. Due to 

the complexity in multiscale transfer, this study only deals with single overlapping grids of full-

length, which bounds the long overlapping criteria to half the length of MeE size. 

 

Figure 5: Illustration of crack sampling cases for the overlapping windows concept used with 

Bayesian criterion in Equation 1. The dark-shaded elements represent four half overlapping elements 

and soft-shaded elements represent four quarterly overlapping elements. 
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To quantify the matching degree with less computational effort, only two key points are initially used, 

i.e, the points of a crack path intersecting the non-overlapping grid. These points are suitable for any 

overlapping MeE sizes but may be unsuitable when multiple boundary conditions are simultaneously 

used. Therefore, the general case is implemented using matrices based on pixel metrics. Fig. 6 shows 

the implemented procedure and the results on an MeE using the half overlapping criteria. 

 

  

Figure 6: Bayesian filtering procedure and threshold probability on a typical  

non-boundary MeE 

Fig. 7 shows the crack paths after using the Bayesian filtering method for two cases using the short 

and long overlapping grids. 

  

Figure 7: Filtered overlapping MeE crack path data after using the Bayesian inference model 

corresponding to Figure 4(b) & (c). 

(a) short overlapping (b) long overlapping 
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2.3. Construction of macro-scale elements (MaEs) 

In general, short and long overlapping can be used as illustrated in Figure 8. This depends on the size 

establishment as for the MeE overlapping grid and are limited to single overlapping regions in this 

paper. This means that the size of an overlapping MeE cannot be larger than twice the MeE non-

overlapping grid size (see Figure 3 (a) & Figure 4 (a)). In this paper, it is found that for defective 

materials, the short to long overlapping method may be used. For less defective materials, non-

overlapping as for elastic studies or short overlapping discretisation in fracture mechanics may be 

used. 

 

Figure 8: Illustration of (a) short to (b) long overlapping criteria. The colour intensities represent 

distinct MeE windows that are overlapped. The average fracture properties from corresponding crack 

path lengths denoted with Li, where i is the corresponding overlapped crack path, are integrated 

piecewisely and transferred to the macro-scale by inserting cohesive elements. 

After the optimised crack paths are found, macro-elements (MaEs) are constructed. The final meso-

scale crack paths and non-overlapping grids are naturally used as guidelines to discretise the domain 

into a macro-mesh with a number of MaEs. In the macro-mesh, the crack paths are also modelled by 

CIEs whose softening constitutive laws are piecewisely mapped from the meso-CIEs, so that energy 

conservation is ensured in the scale transfer (see Figure 9).  

The macro-scale mesh discretisation includes the intersection nodes, the assembly of the MaE model 

and the insertion of macro-cohesive interface elements. Figure 9 sketches two possible mesh models. 

The crack paths are identified based on the scalar degradation parameter d and the energy dissipation 

rate per unit volume of damage. In the case of short overlapping MeEs, the MaE nodes are at the 

intersections of the crack paths that cross cut the non-overlapping grids. The example illustrated in 

Figure 9 uses the B1-X boundary conditions. Two operations are used in the construction of the 

macro-meshes: merging and splitting (see Figure 9 (a) & (b)). These operations are generally used to 

reduce the integration order of the macro-model. However, they also become necessary when the 

crack path is very close or intersecting the non-overlapping grid. Their implications on the energy 

mapping rules are discussed in next section. 
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Figure 9: Illustration of two possible macro-scale meshes. The crack paths are used as boundary 

constraints during the MaE mesh generation. The cracks are also represented by cohesive interface 

elements (CIE) in the global model. 

In fact, many other mesh models can be created at global length scale once the most critical crack 

paths available from the detailed simulations. For example, it is possible to build reduced integration 

meshes, either by using triangular or non-structured quads or by keeping details of the heterogeneous 

meso-scale mesh with coarser macro-elements and only inserting cohesive elements or enrichment 

nodes where necessary. However, there are some sources of uncertainty associated with the above 

strategy, for example: 

� the centreline of the deformed cohesive crack MaEs may not be the same as the initial zero-

thickness crack path which is used to build the MaE elements; this is due to the reversing of 

damage process for crack identification paths which were obtained using prescribed boundary 

conditions based on the stochastic element cluster assumption.   

� the superposed straight edges of MaE elements in reduced order strategies may not be in line 

with the true integration crack paths which have a certain tortuosity; however, it is a 

reasonable assumption when using invariant crack paths to MeE boundary effects. This 

strategy can be used to reduce the global model size considerably.  

� using more complicated mixed-mode boundary conditions (BCs) and highly non-

homogeneous distributions of defects, two dominant crack failure modes can appear which 

may be tackled with a rotational centre. This imposes geometrical non-linearity in the macro-

cohesive model which was not tested in this paper. 

  

(a) short overlapping MeEs are  

merged into less MaEs 
(b)  long overlapping MeEs are  

       split into multiple MaEs 
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2.4. Energy mapping rules 

After the macro-mesh is constructed, the traction-displacement softening curves of macro-CIEs need 

to be mapped from the meso-CIEs at the same position to ensure energy conservation.  

The conversion of stress displacement curves in fracture energy is done according to the assumption 

in (Hillerborg et al., 1976) which defines the fracture energy required to open a unit area of crack by: 

0
,

, ( )

fu

f f u
u

f u

G du

u

σ

σ σ

=

=

∫
 

Equation 3 

where 
fσ  and 

0u are the ultimate strength and displacement at the onset of fracture. 

 

Figure 10: Illustration of the stress-displacement curve for the macro-scale bulk material properties.  

σ  is the stress due to no damage, d  is the scalar degradation variable and L is the characteristic 

length (Simulia/Abaqus). 

For accurate integration across the scale transfer, L in Figure 8 can be represented by the actual crack 

length. This is feasible when appropriate scale discretisation and mesh order reduction strategy is 

considered. To prove the suitability of the new multi-scale concept, ABAQUS/Explicit is used in 

Section 3. In general, the estimated fracture energy from the collection of detailed MeE integration 

domains is consumed at macro-scale by the opening of macro cohesive elements. The method can be 

implemented by using both non-overlapping and overlapping adaptive strategy as discussed above. 

However, because the strategy uses fixed or enlarged computational areas but multiple parallel 

windows, this particular concept can be used to capture localized fracture behaviour with lower 

single simulation computational effort compared with large full-size detailed models. Two other 

advantages of the overlapping approach in this paper are: the capability of coupling weak to 

relatively strong interface models and its fully anisotropic formulation for analyses of complicated 

materials. This means that larger MeE windows can be adaptively employed for modelling materials 

with various degrees of flaws and fully anisotropic properties at any length scale. A case study for 

CFRP materials is presented in Section 3.   

σ 
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Different energy mapping rules are derived for merging and splitting operation respectively, 

considering both short and long overlapping. 

2.4.1. Merging & splitting approach (MSA) 

MSA is an edge oriented multi-scale cohesive crack model. The neighbour cluster of stochastic 

MeEs is either merged into larger size MaEs or split into several smaller size MaEs. The fracture 

energy dissipated is derived accordingly for the general cases based on average weighting factors of 

the overlapping regions as given in Equation 4 & Equation 5 for short and long overlapping 

respectively. Therefore, it should be noted that before using these two mapping rules, the existence 

of Li factors contributing towards the macro-CIE should be first checked (see Figure 8).  

( )
0 0 0 0

, , 1 , 2 , 3 , 4

1

2

f f f fu u u u

f short f L f L f L f L
u u u u

G du du du duσ σ σ σ= + + +∫ ∫ ∫ ∫  Equation 4 

( )
0 0 0 0

, , 1 , 2 , 3 , 4

1

4

f f f fu u u u

f long f L f L f L f L
u u u u

G du du du duσ σ σ σ= + + +∫ ∫ ∫ ∫  
Equation 5 

  

The crack evolution at macro-scale can be also defined by means of a scalar degradation variable d 

which ranges between 0 and 1 (see explanation in Figure 10). The linear formulation of d can be 

expressed as: 

f

u
d

u
=  

Equation 6 

  

Combining the Equation 4 & Equation 5 with Equation 6, the linear degradation variables become: 

31 2 4

1 1 2 2 3 3 4 4

,, , ,

, , , , , , , ,

2 21

3

f Lf L f L f L

short

f L f L f L f L f L f L f L f L

GG G G
d

u u u uσ σ σ σ

 
= + + +  

 

 Equation 7 

31 2 4

1 1 2 2 3 3 4 4

,, , ,

, , , , , , , ,

22 2 21

4

f Lf L f L f L

long

f L f L f L f L f L f L f L f L

GG G G
d

u u u uσ σ σ σ

 
= + + +  

 
 Equation 8 

The degradation rates d  can be also expressed exponentially. To ensure that the total energy 

dissipation on softening equals the total fracture energy Gf, the following expressions are derived: 

1 2 3 41 / 3 1 / 6 ( ) 1 / 3
sh o rt

d d d d d= + + +  Equation 9 

1 2 3 41 / 4( )longd d d d d= + + +  Equation 10 

where 
id  are the individual contributions of MeEs to the degradation of the macro-cohesive element 

as illustrated in Figure 8 and given by: 

( )
0

, , ,1 exp
fu

i f u Li f Li
u

d du Gσ= − −∫  Equation 11 

This ensures that the fracture energy is gradually consumed during each displacement increment 
Li

u . 
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2.4.2. Crack path decomposition approach (CDA) 

The CDA is an explicit meta-model, in the sense that cohesive elements are inserted only where 

necessary, while the homogenized continuum elements MaEs are integrated correspondingly so as to 

preserve the individual phases or composite elasticity. The material properties of cohesive elements 

for the overlapped mesh can be avoided if similar crack paths are repeating. Therefore, the general 

energy mapping rule involving non-overlapping single cracks or single-split cracks that overlap such 

as in Figure 9 (b) reduces to:  

0
, , ,

f

i

u

f L f u Li
u

G duσ= ∫  Equation 12 

where the linear degradation variables are: 

,

, , ,

2
i

i i

f L

i

f L f u L

G
d

u σ
=  Equation 13 

and the exponential degradation variables are: 

( )
0

, , ,1 exp
fu

i f u Li f Li
u

d du Gσ= − −∫  Equation 14 

in which i corresponds to the crack site which is replaced by a 4-noded cohesive element. L refers to 

the actual crack length which is replaced by macro-scale edges. Alternatively, an exact stress strain 

evolution can be used giving tabular inputs (Simulia/Abaqus).  

2.5. Computer implementation and procedure 

The above methodology is implemented in a number of computer programs which are integrated in a 

batch file for automatic simulations. The meshing and the extraction of traction-displacement curves 

of CIEs are done by Python scripts. Pre-inserting CIEs, the construction of MaEs and energy 

mapping are implemented in MATLAB codes.  

The MeE overlapping series were computed on parallel CPUs. The CPU time on a desktop PC i7 – 

2600 @3.40GHz with 8 cores was about 5 to 6 hours per simulation, while when using 48 cores per 

simulation on the CSF facility at University of Manchester, the average time was 45 min. The large 

validation models MeE size 100µm were also simulated using 48 cores and lasted about 14 hours 

each. 
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3. CASE STUDY 

This section presents the results of a case study applying the proposed multi-scale method to a three 

phase material (fibre, matrix and interface) made of carbon fibre reinforced polymer (CFRP). 

3.1. Geometrical surveying of a CFRP ply 

A geometrical survey was carried out first within the thickness of a ply to investigate the volume 

fraction variations (see Figure 11). The searching approach is similar to the one originally used for 

aluminum alloys (Graham and Yang, 2002) .  

 

Figure 11: +45⁰ ply in front of a notch tip (the numbers indicating positions of the centres of the 

imaging windows). 

Figure 11 shows a micrograph extracted from a multi-layered CFRP beam with a V-notch. The 

images were acquired by image stitching from a laser confocal microscope. The micrograph covered 

the full thickness of a single layer of about 220µm. For this particular example, the fibres were 

elliptical shape of approximately 5µm of the shorter diameter because the ply ran at an inclined angle 

of +45 degrees. Three concentric square windows of different sizes were used to acquire the 

geometrical data. Figure 12 shows the typical acquisition windows at the mid position in Figure 11.  

Figure 13 summarises the surveying results. 
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Figure 12: Surveying window sizes at position 2 in Figure 11. 

Figure 13 also shows that within the ply thickness, the selection of the MeE window is 

morphologically important. The volume fraction statistics were found to be both position and size 

dependent. Apparently, the volume fractions converged when the window size was approximately 

50µm2, and the variation was more evident for small window sizes (10, 20 and 30µm2) than larger 

sizes. 

  

 

Figure 13: Variations of volume fractions of fibre (Vf) and matrix (Vm) with increasing MeE window 

size at different imaging positions for a carbon/epoxy ply +45⁰. 
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3.2. Material properties 

Table 1 gives the main material parameters and the volume fractions used in the simulations. For 

simplification, it was assumed that the shear strength and fracture energy of each individual phase 

were equal to their normal ones respectively (Cid Alfaro et al., 2010; Vaughan and McCarthy, 2011; 

González and Llorca, 2007; Yang et al., 2009). Four types of fibre-matrix interfaces with different 

strength and fracture energy, namely, poor, weak, strong and perfect, were modelled here. 

 

Table 1: Material properties and main modelling parameters. 

  Carbon fibre Epoxy resin Interface 

Elastic modulus  E (GPa) 85 3.35 3.35 

Poisson’s ratio ν 0.22 0.35 0.35 

Traction strength tn=ts (MPa) 200 50 15 (poor), 25 (weak),  

40 (strong), 50 (perfect) 

Fracture energy Gfn=Gfs (N/mm) 200E-03 50E-03 15E-03 (poor), 25E-03 (weak),  

40E-03 (strong), 50E-03 (perfect) 

Volume fraction (%) 30-60 70-40 - 

Density (kg/m
3
)                           1500 

 

 

Table 2: Image based MeE simulations with modelling parameters. 

Reference 

Changing Parameters 
Number of 

simulations per 

series 

Interface 
Boundary conditions 

tn=ts (MPa) Gfn=Gfs (N/mm) 

MeE_10_100_W 25 25E-03 G1-X, G1-Y, G2-X, G2-Y 40 

MeE_10_100_S 40 40E-03 G1-X, G1-Y, G2-X, G2-Y 40 

MeE_16x25_P 15 15E-03 B1-X, B1-Y, B2-X, B2-Y 64 

MeE_16x25_W 25 25E-03 B1-X, B1-Y, B2-X, B2-Y 64 

MeE_16x25_S 40 40E-03 B1-X, B1-Y, B2-X, B2-Y 64 

MeE_16x25_I 50 50E-03 B1-X, B1-Y, B2-X, B2-Y 64 

MeE_16x35_W 25 25E-03 B1-X, B1-Y, B2-X, B2-Y 64 

MeE_16x35_S 40 40E-03 B1-X, B1-Y, B2-X, B2-Y 64 

MeE_16x50_W 25 25E-03 B1-X, B1-Y, B2-X, B2-Y 64 

MeE_16x50_S 40 40E-03 B1-X, B1-Y, B2-X, B2-Y 64 

Note: The first number of all series is the number of MeE windows. The second number in the MeE_10_100 

series is the largest computed window in increments of size 10µm. The second number in the MeE_16x series is 

the overlapping grid size based on a non-overlapping grid base of size of 25µm. 
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3.3. Finite element modelling 

The heterogeneous discretisation was performed using an in-house MATLAB code based on the pre-

inserting cohesive element method in (Yang et al., 2009). At meso-scale, the finite element meshes 

consisted of triangular CPS3 solid elements and 4-noded cohesive interface elements COH2D4 in 

ABAQUS with linear traction-separation laws. The explicit dynamic solver with displacement 

control was used with adequate loading time for quasi-static loading condition. 

Table 2 summaries the image-based simulations carried out with the boundary conditions and 

interface properties. All the other material properties used are shown in Table 1. 

3.4. Validation of meso-scale modelling 

Validation of the meso-scale modelling was conducted by comparison with results in (Cid Alfaro et 

al., 2010). An artificially created meso-scale window of S-glass fibre (30%) and epoxy resin was 

modelled. A good agreement was found in terms of stress contour plots and crack propagation 

patterns. Figure 14 shows the comparable fracture behaviour. The cracks are represented by the 

cohesive interface elements with damage index D≥0.9. 

 

Figure 14: Comparison of stress contour plots on window size 125 µm and fibre volume fraction 

30% at three different load steps:  (a) results in (Cid Alfaro et al., 2010), (b) the present study. 

To further demonstrate the importance of the interface material strength, a MeE of size 50µm2 was 

simulated using the four interfacial types in Table 1. Figure 15 shows that the interface properties 

can greatly influence the meso- cracking mechanism which has important crack propagation effects 

on the macro-scale fracture. This is because local stress concentrations may potentially divert crack 

propagation for certain global boundary conditions. Experiments are thus necessary to examine the 

interface properties between fibres and the matrix and their mechanical effects.  

(a) 

(b) 
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Figure 15: Stress contours at three load steps from MeE number 3 of size 50µm2 using (a) poor, (b) 

weak, (c) strong and (d) perfect interface properties. 

Boundary effects also influence crack initiation and propagation and therefore the overall dissipated 

energy. Figure 16 shows a two-crack dominant failure in the MeE size 100µm
2
 image-based model 

using the G2-X type boundary conditions from Figure 2. In general, such effects were not observed 

on the other boundary types; thus only B1 type that is identical to G1 boundaries was further used in 

the scale coupling.  

(c) 

(d) 

(a) 
  1.50µm   1.74µm           2.10µm 

(b) 
  1.50µm   1.74µm           2.10µm  

  1.50µm   1.74µm              2.10µm 

  1.50µm   1.74µm                   2.10µm 
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Figure 16: Stress contours at three loading steps using G2-X boundaries and weak interfacial 

properties showing a two dominant cracks failure in MeE size 100µm2. 

 

  

(a) 
   0.9µm   2.52µm           3.06µm 

(b) 
0.9µm       2.52µm          3.06µm 
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3.5. MeE size effects 

Simulations for different MeE sizes, in increments of 10µm
2 
up to 100µm

2
, with centre at position 2 

in Figure 11, were carried out to investigate size effects on crack paths and load-displacement 

curves. To avoid problems of localisation and mesh interface disclosure for zoom-out resolution, 

surface partitions were conducted so that the same mesh in smaller MeE is contained in larger ones 

(see Figure 17).  

 

Figure 17: Image-based MeEs of size 10µm
2
 and 20µm

2
 illustrating the concept of partitioned 

concentric windows by preserving mesh topology. 

The boundary conditions are given in Table 2. It is interesting to see that from one size to another, 

dissimilar crack paths appear when using G1-X loading conditions (see Figure 18 and Figure 19). 

This is expected since image based models have random inclusions and defects. Also the window 

sizes are often not sufficiently large to achieve a more uniform failure mode. A typical set of stress-

displacement curves and the equivalent stress-strain curves are shown in Figure 20(a) & (b) 

respectively. 

Figure 20(b) shows that a more sudden failure occurs as the MeE size increases. A strong size effect 

of the peak stress was found especially when weak interface properties were simulated. For all types 

of interfaces, the size effect of the strength decreases when the window size is larger than 20 - 30µm 

which was set as a minimum size of the MeE required for the scale transfer (see Figure 21). This is 

consistent with the statistical analysis of volume fractions in Figure 13.   

 



  

22 

 

 

Figure 18: G1-X crack paths in different MeE sizes in µm for weak interface properties (the interface 

cohesive layer illustrated in red). 

 

Figure 19: G1-X crack paths in different MeE sizes µm for strong interface properties (the interface 

cohesive layer illustrated in red). 
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Figure 20: Stress-displacement and stress-strain curves for G2-X boundary conditions on MeE step 

10µm
2
 to 100µm

2
  by using weak interface properties. 

 

Figure 21: Size-strength results for MeE step 10µm
2
 to 100µm

2
 using (a) weak and (b) strong 

interface properties. 

3.6. Stochastic MeE simulations 

To investigate the effects of crack path bias and local orientation diversions in scale transfer, non-

overlapping meso scale windows such as shown in Figure 3(a) were used in simulations first. The 

square MeE windows were simulated using the full set of boundary conditions in Table 2. The 

adaptive short to long-overlapping MeE grid discretisation was then used to tackle the problem of 

neighbouring crack paths bias. The idea is to share an overlapped support as to solve deformation 

compatibility. The concept may be also understood as an inverted overlapping limit. The upper 

bound corresponds to 2x computation of the same core MeE windows. This means that for long 

overlapping the integration must be limited by the distance between two neighbouring mass centres 

to avoid complicated double overlapping areas. This is useful particularly when strength and fracture 

energy variances are relatively small which holds in most composites with random distribution of 

features. Obviously, the short or narrow overlapping criteria will bring further computation savings 

as the computational areas are closer to the non-overlapping model. However, for both cases the 

main advantage is that the simulation of global large models can be parallelized to achieve high 

computational efficiency.  

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7

S
tr

es
s 

(M
P

a)

Displacement (µm)

MeE 10

MeE 20

MeE 30

MeE 40

MeE 50

MeE 60

MeE 70

MeE 80

MeE 90

MeE 100

tn,s=25 MPa 

G11,22=25 N/mm

(a)
0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

S
tr

es
s 

(M
P

a)

Strain E-06

MeE 10

MeE 20

MeE 30

MeE 40

MeE 50

MeE 60

MeE 70

MeE 80

MeE 90

MeE 100

tn,s=25 MPa

G11,22=25 N/mm

(b)

30

35

40

45

0 20 40 60 80 100 120 140

S
tr

en
g
th

 (
M

P
a)

Size (µm)

G1-X G1-Y

G2-X G2-Y

min MeE size

(a)

40

45

50

55

0 20 40 60 80 100 120 140

S
tr

en
g
th

 (
M

P
a)

Size (µm)

G1-X G1-Y

G2-X G2-Y

min MeE size

(b)



  

24 

 

In Figure 22, the results for two main scenarios are presented as follows: (a,b,c) show  weak interface 

crack paths and (d,e,f) show strong interface crack paths which were obtained using B1 boundaries 

on the orthotropic directions X and Y. Thus, given the random distribution of fibres, the interface 

layer between the fibres and matrix can be considered an intrinsic defect entity in this study. It can be 

seen that, when the non-overlapping method was used (a,d), the fracture paths rarely matched 

between the neighbouring MeE elements. When overlapping MeE windows were used, the matching 

rates were better in the case of weak interface properties (see Figure 22). In addition, there was a 

clear enhancement in crack site prediction compared with the non-overlapping results for cracks near 

edges (see and compare Figure 22 (a,b,c) & (d,e,f)). Figure 23 shows the variation of the predicted 

ultimate strengths with varying overlapping areas for different MeEs. Smaller strength variance with 

larger prediction errors were obtained for the strong interface models (see Figure 23 (b) MeE 12 & 

MeE 14).   

 

Figure 22: Crack paths for the adaptive size increasing non-overlapping MeE 16x25 (a,d) to short 

overlapping MeE16x35 (b,e) and long overlapping MeE16x50 (e,f). The two sets are from using 

weak interface properties (a,b,c) and strong interface properties (d,e,f). 

 

 (a)        (b)            (c) 

 (d)        (e)            (f) 

Weak interface properties 

Strong interface properties 



  

25 

 

 

Figure 23: Variation of MeE strengths with different overlapping areas: (a) weak and (b) strong 

interface properties. 

It should also be mentioned that for the scale transfer the B2-X and B2-Y boundary conditions in 

Figure 2 are necessary. The confidence domain for the softening part in such a case was limited to 

small sliding. This domain is equal to about 0.2µm which is approximately the size of one finite 

element used in the MeE simulations. A mesh example is shown in Figure 17. 

In the following, the validation of the proposed multi-scale modelling method is established by 

comparing the detailed crack propagation results and energy dissipation mechanisms on both scales. 

3.7. Comparison of meso and macro-crack propagation 

This section elucidates the most convenient averaging approach to solving the scale transfer problem. 

The effective stiffness for each individual MeE was evaluated based on the results in Section 3.6. 

ABAQUS offers an orthotropic elasticity model which can be defined by a stiffness matrix. This 

matrix incorporates the effects of individual fracture modes on X and Y directions and the 

analytically combined effect of both (Simulia/Abaqus). A local coordinates system was also defined 

for the orthonormal directions X and Y.  

Figure 24 & Figure 25 compare all the crack paths of uncoupled overlapping MeEs using B1 

boundaries (shown in coloured lines) against the corresponding fully detailed MeE100 simulations 

(shown in black lines) using G1 and G2 cases on X and Y respectively. 

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B1-X

S
tr

en
g

th
 (
M

P
a
)

MeE window

no overlapping MeE16x25

overlapped MeE16x35

overlapped MeE16x50

(a)

40

45

50

55

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B1-X

S
tr

en
g
th

 (
M

P
a)

MeE window

no overlapping MeE16x25

overlapped MeE16x35

overlapped MeE16x50

(b)



  

26 

 

 

Figure 24: Comparison of separate crack paths between overlapping series MeE16x50 (shown in 

coloured lines) using B1 boundaries against full size MeE100 (shown in black lines): (a) G1-X; (b) 

G1-Y; (c) G2-X and (d) G2-Y for weak interface properties. 

 

(c) G2-X 

(a) G1-X (b) G1-Y 

(d) G2-Y 

Weak interface properties 
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Figure 25: Comparison of separate crack paths between overlapping series MeE16x50 (shown in 

coloured lines) using B1 boundaries against full size MeE100 (shown in black lines): (a) G1-X; (b) 

G1-Y; (c) G2-X and (d) G2-Y for strong interface properties. 

Figure 26 & Figure 27 compare the stress-displacement relationships of multi-scale models using 

overlapping series MeE16x50 and detailed MeE100 for weak and strong interface properties 

respectively. These models use reduced meshes and integrate material properties according to the 

methodology in Sections 2.3 & 2.4. The corresponding crack paths of both meso- and macro-

simulations are also shown. It can be seen that the agreement was good when a single dominant 

crack path was modelled. If there are two distant crack paths, the matching locations could be 

established only in the case of weak interface properties (see the G2-X results in Figure 26 & Figure 

27).    

 

(c) G2-X 

(a) G1-X (b) G1-Y 

(d) G2-Y 

Strong interface properties 
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Figure 26: Nonlinear multi-scale results for weak interface properties using the overlapping concept 

vs fully detailed simulations (solid curve: detailed MeE100, dashed curve: using MeE 16x50 

assembly). 

 

 

Figure 27: Nonlinear multi-scale results for strong interface properties using the overlapping concept 

vs fully detailed simulations (solid curve: detailed MeE100; dashed curve: using MeE16x50 

assembly). 

3.8. Application of the Bayesian inference 

The Bayesian inference model in section 2.2 is then used to filter the non-matching crack paths in 

Fig. 24 and Fig. 25. The results are presented in Figure 28 & Figure 29, which show that highly 

nonlinear situations at global scale could be captured effectively by inserting macro-CIEs only where 
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necessary. The results are much improved with a good agreement especially for the two dominant 

crack paths situation in Figure 28 and Figure 29 using G2-X and G2-Y boundaries respectively. 

 

Figure 28: Comparison of simulation results using the multi-scale stochastic coupling strategy for 

weak interface properties. The solid curves represent the detailed geometry models (i.e. MeE size 

100µm2) and dashed curves are the Bayesian multi-scale models. 

 

 

Figure 29: Comparison of simulation results using the multi-scale stochastic coupling strategy for 

strong interface properties. The solid curves represent the detailed geometry models (i.e. MeE size 

100µm2) and the dashed curves are the Bayesian multi-scale models. 
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4. CONCLUSIONS 

This study has presented the development and validation, through a numerical case study, of a new 

multi-scale stochastic fracture mechanics framework (MsSFrM) for modelling cohesive fracture in 

heterogeneous materials. The following conclusions may be drawn: 

(1) The selection of the meso-scale window sizes is highly related to the distribution of volume 

fractions. For accurate multi-scale couplings, the morphological continuity should be ensured by 

accurate mapping of the individual MeEs.  

(2) Increasing the MeE size does not necessarily stabilise the fracture behaviour, thus invalidating 

the classical RVE approach. However, by choosing the appropriate MeE window size and 

resolving the boundary deformation compatibility via the overlapped windows concept, the crack 

bias effects can be minimized and therefore the scale transfer could be captured effectively.  

(3) Energy mapping rules have been proposed for solving the scale coupling problem for different 

interface properties when the crack matching criteria is met. For defective materials, the short to 

long overlapping method may be used. For less defective materials, non-overlapping as for 

elastic studies or short overlapping can be used. 

(4) The Bayesian inference model can be used to reduce the uncertainty of bias crack paths in the 

multi-scale transfer owing to its ability to update the state of belief using element cluster 

searches.  

(5) The new multi-scale stochastic modelling method offers a more accurate modelling framework 

for multiphasic heterogeneous materials with various levels of defects. Heterogeneity features 

such as material defects, inclusions and voids can be incorporated at both scales. 

(6) It should be noted that in the present method, all the MeEs are modelled independently under the 

same set of tensile and shear boundary conditions. This is not strictly valid even for the case 

studies under uniaxial tension in this paper. The results in terms of both final crack paths and 

load-displacement curves, however, are very good, probably due to the use of adaptively-

increasing overlapping grids which may have ensured the deformation compatibility between 

adjacent MeEs to some extent. Research is much needed to integrate accurate algorithms for 

solving compatible boundary conditions of individual MeEs, such as those discussed by Oden et 

al (1999), so that the developed method can be applied to general situations.  

 

Acknowledgements 

This study is funded by a US Air Force EOARD grant (No. FA8655-12-1-2100) and an EPSRC 

grant (No. EP/J019763/1). We would like to thank Prof Costas Soutis at the Northwest Composite 

Centre in Manchester for providing CFRP materials, Dr William Bodel at Nuclear Graduate 

Research Group (NGRG) and C-Net for helping with acquisition of images and in-situ microscopy. 

 

References 

Aarnes, J. E., Krogstad, S. & Lie, K.-A. (2006) A Hierarchical Multiscale Method for Two-Phase 

Flow Based upon Mixed Finite Elements and Nonuniform Coarse Grids. Multiscale Modeling 

& Simulation, 5(2), 337-363. 



  

31 

 

Belytschko, T. (2007) Research directions in computational and composite mechanics. A Report of 

the United States National Committee on Theoretical and Applied Mechanics. 

Belytschko, T., Loehnert, S. & Song, J.-H. (2008) Multiscale aggregating discontinuities: A method 
for circumventing loss of material stability. International Journal for Numerical Methods in 

Engineering, 73(6), 869-894. 

Bosco, E., Kouznetsova, V. G. & Geers, M. G. D. (2015) Multi-scale computational 

homogenization-localization for propagating discontinuities using X-FEM. International 

Journal for Numerical Methods in Engineering, 102(3-4), 496-527. 

Caballero, A., Willam, K. J. & Carol, I. (2008) Consistent tangent formulation for 3D interface 

modeling of cracking/fracture in quasi-brittle materials. Computer Methods in Applied 

Mechanics and Engineering, 197(33-40), 2804-2822. 

Calo, V. M., Efendiev, Y., Galvis, J. & Ghommem, M. (2014) Multiscale empirical interpolation for 

solving nonlinear PDEs. Journal of Computational Physics, 278, 204-220. 

Canal, L. P., González, C., Segurado, J. & Llorca, J. (2012) Intraply fracture of fiber-reinforced 

composites: Microscopic mechanisms and modeling. Composites Science and Technology, 

72(11), 1223-1232. 

Carpinteri, A. & Chiaia, B. (1997) Multifractal Scaling Laws in the Breaking Disordered Materials. 

Carpinteri, A., Chiaia, B. & Cornetti, P. (2002) A scale-invariant cohesive crack model for quasi-

brittle materials. Engineering Fracture Mechanics, 69(2), 207-217. 

Chen, Y., Durlofsky, L. J., Gerritsen, M. & Wen, X. H. (2003) A coupled local–global upscaling 

approach for simulating flow in highly heterogeneous formations. Advances in Water 

Resources, 26(10), 1041-1060. 

Chung, E. T., Efendiev, Y. & Fu, S. (2014) Generalized Multiscale Finite Element Method for 
Elasticity Equations. ArXiv e-prints, (1408.5929). 

Cid Alfaro, M. V., Suiker, A. S. J. & de Borst, R. (2010) Transverse Failure Behavior of Fibre-epoxy 

Systems. Journal of Composite Materials. 

Coenen, E. W. C., Kouznetsova, V. G., Bosco, E. & Geers, M. G. D. (2012) A multi-scale approach 

to bridge microscale damage and macroscale failure: a nested computational homogenization-

localization framework. International Journal of Fracture, 178(1-2), 157-178. 

Cusatis, G. & Cedolin, L. (2007) Two-scale study of concrete fracturing behavior. Engineering 

Fracture Mechanics, 74(1-2), 3-17. 

de Borst, R. (2008) Challenges in computational materials science: Multiple scales, multi-physics 

and evolving discontinuities. Computational Materials Science, 43(1), 1-15. 

Desmorat, R. & Lemaitre, J. (2001) A Two-Scale Model for Quasi-Brittle and Fatigue Damage. In: 

Jean, L. (ed.) Handbook of Materials Behavior Models. Burlington: Academic Press. 

Dirrenberger, J., Forest, S. & Jeulin, D. (2014) Towards gigantic RVE sizes for 3D stochastic fibrous 

networks. International Journal of Solids and Structures, 51(2), 359-376. 

Efendiev, Y., Galvis, J., Li, G. & Presho, M. (2014) Generalized multiscale finite element methods: 

Oversampling strategies. 12(6), 465-484. 

Efendiev, Y., Hou, T. Y. & Ginting, V. (2004) Multiscale Finite Element Methods for Nonlinear 

Problems and Their Applications. 553-589. 



  

32 

 

Fish, J. (2011) Multiscale Modeling and Simulation of Composite Materials and Structures 

Multiscale Methods in Computational Mechanics. In: de Borst, R. & Ramm, E. (eds.). Springer 

Berlin / Heidelberg. 

Fish, J. & Shek, K. (1999) Finite deformation plasticity for composite structures: Computational 

models and adaptive strategies. Computer Methods in Applied Mechanics and Engineering, 

172(1–4), 145-174. 

Gao, K., Fu, S., Gibson Jr, R. L., Chung, E. T. & Efendiev, Y. (2014) Generalized Multiscale Finite-

Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic 

media. 

Ghosh, S., Bai, J. & Raghavan, P. (2007) Concurrent multi-level model for damage evolution in 

microstructurally debonding composites. Mechanics of Materials, 39(3), 241-266. 

Ghosh, S. & Paquet, D. (2013) Adaptive concurrent multi-level model for multi-scale analysis of 

ductile fracture in heterogeneous aluminum alloys. Mechanics of Materials, 65(0), 12-34. 

Gitman, I. M., Askes, H. & Sluys, L. J. (2007) Representative volume: Existence and size 

determination. Engineering Fracture Mechanics, 74(16), 2518-2534. 

Gitman, I. M., Askes, H. & Sluys, L. J. (2008) Coupled-volume multi-scale modelling of quasi-

brittle material. European Journal of Mechanics - A/Solids, 27(3), 302-327. 

González, C. & Llorca, J. (2006) Multiscale modeling of fracture in fiber-reinforced composites. 

Acta Materialia, 54(16), 4171-4181. 

González, C. & Llorca, J. (2007) Mechanical behavior of unidirectional fiber-reinforced polymers 

under transverse compression: Microscopic mechanisms and modeling. Composites Science 

and Technology, 67(13), 2795-2806. 

Graham, S. & Yang, N. (2002) Representative volumes of materials based on microstructural 

statistics. 

Greco, F., Leonetti, L. & Lonetti, P. (2013) A two-scale failure analysis of composite materials in 

presence of fiber/matrix crack initiation and propagation. Composite Structures, 95(0), 582-

597. 

Hashin, Z. (1965) On elastic behaviour of fibre reinforced materials of arbitrary transverse phase 

geometry. Journal of the Mechanics and Physics of Solids, 13(3), 119-134. 

Hautefeuille, M., Colliat, J. B., Ibrahimbegovic, A., Matthies, H. G. & Villon, P. (2012) A multi-

scale approach to model localized failure with softening. Computers & Structures, 94-95, 83-

95. 

Hill, R. (1963) Elastic properties of reinforced solids: Some theoretical principles. Journal of the 

Mechanics and Physics of Solids, 11(5), 357-372. 

Hillerborg, A., Modéer, M. & Petersson, P. E. (1976) Analysis of crack formation and crack growth 

in concrete by means of fracture mechanics and finite elements. Cement and Concrete 

Research, 6(6), 773-781. 

Hou, T. Y. & Wu, X.-H. (1997) A Multiscale Finite Element Method for Elliptic Problems in 

Composite Materials and Porous Media. Journal of Computational Physics, 134(1), 169-189. 

Huang, Y., Yang, Z., Ren, W., Liu, G. & Zhang, C. (2015) 3D meso-scale fracture modelling and 

validation of concrete based on in-situ X-ray Computed Tomography images using damage 
plasticity model. International Journal of Solids and Structures, 67–68, 340-352. 



  

33 

 

Kaczmarczyk, Ł., Pearce, C. J., Bićanić, N. & de Souza Neto, E. (2010) Numerical multiscale 

solution strategy for fracturing heterogeneous materials. Computer Methods in Applied 

Mechanics and Engineering, 199(17–20), 1100-1113. 

Kanouté, P., Boso, D., Chaboche, J. & Schrefler, B. (2009) Multiscale Methods for Composites: A 

Review. Archives of Computational Methods in Engineering, 16(1), 31-75. 

Kassner, M. E., Nemat-Nasser, S., Suo, Z., Bao, G., Barbour, J. C., Brinson, L. C., Espinosa, H., 

Gao, H., Granick, S., Gumbsch, P., Kim, K.-S., Knauss, W., Kubin, L., Langer, J., Larson, B. 
C., Mahadevan, L., Majumdar, A., Torquato, S. & van Swol, F. (2005) New directions in 

mechanics. Mechanics of Materials, 37(2–3), 231-259. 

Li, Y., McDowell, D. L. & Zhou, M. (2013) Computational prediction of fracture toughness of 

polycrystalline metals. 13th International Conference on Fracture, Beijing, China, (June 16–

21, 2013). 

Loehnert, S. & Belytschko, T. (2007) A multiscale projection method for macro/microcrack 
simulations. International Journal for Numerical Methods in Engineering, 71(12), 1466-

1482. 

López, C. M., Carol, I. & Aguado, A. (2007) Meso-structural study of concrete fracture using 

interface elements. II: compression, biaxial and Brazilian test. Materials and Structures, 
41(3), 601-620. 

Markovic, D. & Ibrahimbegovic, A. (2004) On micro–macro interface conditions for micro scale 

based FEM for inelastic behavior of heterogeneous materials. Computer Methods in Applied 

Mechanics and Engineering, 193(48–51), 5503-5523. 

Miehe, C. & Bayreuther, C. G. (2007) On multiscale FE analyses of heterogeneous structures: from 

homogenization to multigrid solvers. International Journal for Numerical Methods in 

Engineering, 71(10), 1135-1180. 

Nguyen, V. P., Lloberas-Valls, O., Stroeven, M. & Sluys, L. J. (2012a) Computational 

homogenization for multiscale crack modeling. Implementational and computational aspects. 

International Journal for Numerical Methods in Engineering, 89(2), 192-226. 

Nguyen, V. P., Stroeven, M. & Sluys, L. J. (2011) Multiscale continuous and discontinuous 

modeling of heterogeneous materials: a review on recent developments. Journal of Multiscale 

Modelling, 03(04), 229-270. 

Nguyen, V. P., Stroeven, M. & Sluys, L. J. (2012b) An enhanced continuous–discontinuous 
multiscale method for modeling mode-I cohesive failure in random heterogeneous quasi-

brittle materials. Engineering Fracture Mechanics, 79(0), 78-102. 

Oden, J. T., Belytschko, T., Babuska, I. & Hughes, T. J. R. (2003) Research directions in 

computational mechanics. Computer Methods in Applied Mechanics and Engineering, 

192(7–8), 913-922. 

Oden, J. T., Vemaganti, K., Moës, N. (1999) Hierarchical modeling of heterogeneous solids. 

Computer Methods in Applied Mechanics and Engineering, 172(1–4), 3–25. 

Park, K. & Paulino, G. H. (2012) Computational implementation of the PPR potential-based 
cohesive model in ABAQUS: Educational perspective. Engineering Fracture Mechanics, 93, 

239-262. 



  

34 

 

Phu Nguyen, V., Lloberas-Valls, O., Stroeven, M. & Johannes Sluys, L. (2010) On the existence of 

representative volumes for softening quasi-brittle materials – A failure zone averaging 

scheme. Computer Methods in Applied Mechanics and Engineering, 199(45–48), 3028-3038. 

Ren, W., Yang, Z., Sharma, R., Zhang, C. & Withers, P. J. (2015) Two-dimensional X-ray CT image 

based meso-scale fracture modelling of concrete. Engineering Fracture Mechanics, 133, 24-

39. 

Ruiz, G., Pandolfi, A. & Ortiz, M. (2001) Three‐dimensional cohesive modeling of dynamic 

mixed‐mode fracture. International Journal for Numerical Methods in Engineering, 52(12), 

97-120. 

Simulia/Abaqus. - Abaqus theory manual. Online version 6.12. 

Su, X., Yang, Z. & Liu, G. (2010) Monte Carlo simulation of complex cohesive fracture in random 

heterogeneous quasi-brittle materials: a 3D study. International Journal of Solids and 

Structures, 47(17), 2336-2345. 

Trias, D., Costa, J., Fiedler, B., Hobbiebrunken, T. & Hurtado, J. E. (2006a) A two-scale method for 
matrix cracking probability in fibre-reinforced composites based on a statistical 

representative volume element. Composites Science and Technology, 66(11–12), 1766-1777. 

Trias, D., Costa, J., Mayugo, J. A. & Hurtado, J. E. (2006b) Random models versus periodic models 

for fibre reinforced composites. Computational Materials Science, 38(2), 316-324. 

Trias, D., Costa, J., Turon, A. & Hurtado, J. E. (2006c) Determination of the critical size of a 

statistical representative volume element (SRVE) for carbon reinforced polymers. Acta 

Materialia, 54(13), 3471-3484. 

Vaughan, T. J. & McCarthy, C. T. (2011) Micromechanical modelling of the transverse damage 
behaviour in fibre reinforced composites. Composites Science and Technology, 71(3), 388-

396. 

Wang, X. F., Yang, Z. J., Yates, J. R., Jivkov, A. P. & Zhang, C. (2015) Monte Carlo simulations of 

mesoscale fracture modelling of concrete with random aggregates and pores. Construction 

and Building Materials, 75, 35-45. 

Xu, Q., Chen, J., Li, J. & Wang, M. (2013) Multi-scale numerical model for simulating concrete 

material based on fractal theory. Acta Mechanica Solida Sinica, 26(4), 344-352. 

Xu, X. F. & Chen, X. (2009) Stochastic homogenization of random elastic multi-phase composites 
and size quantification of representative volume element. Mechanics of Materials, 41(2), 

174-186. 

Xu, X. F. & Graham-Brady, L. (2005) A stochastic computational method for evaluation of global 

and local behavior of random elastic media. Computer Methods in Applied Mechanics and 

Engineering, 194(42–44), 4362-4385. 

Yang, Z. J., Su, X. T., Chen, J. F. & Liu, G. H. (2009) Monte Carlo simulation of complex cohesive 
fracture in random heterogeneous quasi-brittle materials. International Journal of Solids and 

Structures, 46(17), 3222-3234. 

Yu, R. C., Zhang, X. & Ruiz, G. (2008) Cohesive modeling of dynamic fracture in reinforced 

concrete. Computers and Concrete, Volume 5, Issue 4,  2008, pp.389-400. 

 

 



  

35 

 

NOMENCLATURE 

Acronyms: 

MsSFrM -multiscale stochastic fracture mechanics. 

MeE -meso-scale element. 

MaE -macro-scale element. 

CIE -cohesive interface element. 

BCs -boundary conditions. 

MSA -merging and splitting approach. 

CDA -crack path decomposition approach. 

 

Boundary conditions: 

B1-X, B2-X -meso-scale boundary conditions on X direction. 

B1-Y, B2-Y -meso-scale boundary conditions on Y direction. 

G1-X, G2-X -global-scale boundary conditions used for validation on X 

direction. 

G1-Y, G2-Y -global-scale boundary conditions used for validation on Y 

direction. 

 

Algebra:  

C -kernel crack path. 
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Hk -hidden key-points rendered on the stochastic crack path C. 

( )P C  -probability of crack path C evaluated as a surface/path 

integral. 

( )P E C
 

-prior probability of neighboring crack E to match the 

kernel crack path C. This probability is evaluated as a 

surface/ path integral. 

( )P C E
 

-Bayesian updated probability of crack C given an 

overlapped neighboring crack path E. This probability is 

evaluated using a Bayesian inference model. 

mC
 

-set of crack paths over a neighboring cluster. 

iL
 

-reduced order integration line fitted on a random crack 

path.  

fσ
 

-ultimate strength equivalent to the onset of fracture.   

,
( )

f u
uσ σ=

 
-softening evolution based on the ultimate strength pitch. 

fG
 

-fracture energy 

,f shortG
 

-fracture energy evaluated for short overlapping criteria. 

,f longG
 

-fracture energy evaluated for long overlapping criteria. 

u  -finite displacement. 

f
u

 
-final displacement. 

d  -scalar degradation variable. 
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shortd
 

-scalar degradation variable evaluated for short overlapping 

criteria. 

long
d

 
-scalar degradation variable evaluated for long overlapping 

criteria. 

f
V

 
-fibre volume fraction. 

mV
 

-matrix volume fraction. 

 

 



Author’s Accepted Manuscript

Non-stationary Demand Forecasting by Cross-
Sectional Aggregation

Bahman Rostami-Tabar, Mohamed Zied Babai,
Yves Ducq, Aris Syntetos

PII: S0925-5273(15)00381-3
DOI: http://dx.doi.org/10.1016/j.ijpe.2015.10.001
Reference: PROECO6250

To appear in: Intern. Journal of Production Economics

Received date: 3 July 2013
Revised date: 23 September 2015
Accepted date: 2 October 2015

Cite this article as: Bahman Rostami-Tabar, Mohamed Zied Babai, Yves Ducq
and Aris Syntetos, Non-stationary Demand Forecasting by Cross-Sectional
A g g r e g a t i o n , Intern. Journal of Production Economics,
http://dx.doi.org/10.1016/j.ijpe.2015.10.001

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/ijpe

http://www.elsevier.com/locate/ijpe
http://dx.doi.org/10.1016/j.ijpe.2015.10.001
http://dx.doi.org/10.1016/j.ijpe.2015.10.001


 1 

Non-stationary Demand Forecasting by Cross-Sectional 

Aggregation 

Bahman Rostami-Tabar
a
, Mohamed Zied Babai

b,
*, Yves Ducq

c
, Aris Syntetos

d 

a
 Coventry University, School of Strategy and Leadership, Priory Street, Coventry, CV1 5FB, UK 

b
 Kedge Business School, 680 cours de la libération, 33400 Talence, France 

c
 Univ. Bordeaux, IMS, UMR 5218, 33400 Talence, France 

d
 Cardiff Business School, Cardiff University, Aberconway Building, Cardiff CF10 3EU, UK 

 

 

 

Abstract:  

In this paper the relative effectiveness of top-down (TD) versus bottom-up (BU) approaches is 

compared for cross-sectionally forecasting aggregate and sub-aggregate demand. We assume 

that the sub-aggregate demand follows a non-stationary Integrated Moving Average (IMA) 

process of order one and a Single Exponential Smoothing (SES) procedure is used to 

extrapolate future requirements. Such demand processes are often encountered in practice and 

SES is one of the standard estimators used in industry (in addition to being the optimal 

estimator for an IMA process). Theoretical variances of forecast error are derived for the BU 

and TD approach in order to contrast the relevant forecasting performances. The theoretical 

analysis is supported by an extensive numerical investigation at both the aggregate and sub-

aggregate level, in addition to empirically validating our findings on a real dataset from a 

European superstore. The results demonstrate the increased benefit resulting from cross-

sectional forecasting in a non-stationary environment than in a stationary one. Valuable 

insights are offered to demand planners and the paper closes with an agenda for further 

research in this area. 
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1. INTRODUCTION 

Demand forecasting is the starting point for most planning and control organizational 

activities. A considerable part of the forecasting literature has been dedicated to strategies and 

methods for single time series, but in reality there are often many related time series that can 

be organized hierarchically and aggregated at several different levels in groups based on 

products, customers, geography or other features. The hierarchical level at which forecasting 

is performed then it will depend on the function the forecasts are fed into. With regards to 

products (or Stock Keeping Units - SKUs) in particular, forecasting at the individual SKU 

level is required for inventory control, product family forecasts may be required for Master 

Production Scheduling, forecasts across a group of items ordered from the same supplier may 

be required for the purpose of consolidating orders, forecasts across the items sold to a 

specific large customer may determine transportation and routing decisions etc.  

One intuitively appealing approach to obtain higher level forecasts is by cross-sectional 

(also referred to as hierarchical) aggregation, which involves aggregating different items 

(i.e. aggregating the requirements for different items usually in one specific time period) to 

reduce variability. Existing approaches to cross-sectional forecasting usually involve either a 

bottom-up (BU) or a top-down (TD) approach (or a combination of the two). When 

forecasting at the aggregate level is of interest, the former involves the aggregation of 

individual SKU forecasts to the group level whereas the latter relates to forecasting directly at 

the group level (i.e. first aggregate requirements and then extrapolate directly at the aggregate 

level). When the emphasis is on forecasting at the sub-aggregate level, then bottom-up relates 

to direct extrapolation at the sub-aggregate level whereas top-down involves the 

disaggregation of the forecasts produced directly at the group level (Gross and Sohl, 1990; 

Widiarta et al., 2007). An important issue that has attracted the attention of many researchers 

as well as practitioners over the last few decades is the (relative) effectiveness of such cross-

sectional forecasting approaches.  

TD and BU are extremely useful towards improving the accuracy of forecasts and plans 

when leveraged within an S&OP (Sales and Operations Planning) process (Lapide, 2006). 

The S&OP is a multi-functional process that involves managers from all departments (Sales, 

Customer Service, Supply Chain, Marketing, Manufacturing, Logistics, Procurement and 

Finance), where each department requires different levels of demand forecasts (Lapide, 2004). 

For example, in marketing, forecasting of revenues by product groups and brands is needed, 

sales departments deal with sales forecasts by customer accounts and/or sales channels, 
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supply chain managers request SKU level forecasts, while finance requires forecasts that are 

aggregated into budgetary units in terms of revenues and costs (Bozos and Nikolopoulos, 

2011).  

In this paper, we study analytically the relative effectiveness of the BU and TD approach 

when the underlying series follows a non-stationary Integrated Moving Average process of 

order one, ARIMA(0,1,1), and the forecasting method is the Single Exponential Smoothing 

(SES) which is the optimal estimator for the process under consideration (Box et al., 2008). 

Both assumptions bear a significant degree of realism. There is evidence to support the fact 

that demand often follows non-stationary processes (please refer also to subsection 2.1). 

Moreover, SES is a very popular forecasting method in industry (Acar and Gardner, 2012; 

Gardner, 1990, 2006; Taylor, 2003). In terms of the practical relevance of our research we 

refer to a set of SKUs where a large proportion of them follow an ARIMA(0,1,1) process; this 

is not an untypical scenario as demonstrated by analysis of empirical datasets including our 

own empirical investigation. 

The question is whether it is appropriate to use sub-aggregate data or one should rather 

aggregate data to derive the individual and aggregate forecasts. In addition, we analyse the 

case of non-stationary processes to reveal whether there is an increased benefit resulting from 

cross-sectional forecasting when departing from the stationarity assumption. To do so we 

compare the variance of the forecast error obtained based on the aggregate demand (VTD) to 

that of the sub-aggregate demand (VBU). Comparisons are performed at both the aggregate 

and sub-aggregate level, in the former case using both a theoretical and a numerical analysis 

while in the latter case only by means of a numerical simulation (since the mathematical 

results in that case are intractable). Our analysis is consistent with the fact that companies are 

often using both levels of forecasting to support different decision-making processes. In 

addition, it renders the comparison between the two approaches a more fair exercise since one 

might expect that BU provides more accurate forecasts at the sub-aggregate level and TD 

works better at the aggregate level (Zotteri et al., 2005).  

We mathematically show that the ratio of the variance of forecast error of the top-down to 

that of the bottom-up approach is equal to one for identical process parameters when 

compared at the aggregate level. The mathematical analysis is complemented by a numerical 

experiment to evaluate in detail the conditions under which one approach outperforms the 

other. Such an experiment also allows the introduction of non-identical process parameters of 

the sub-aggregate series (a condition that cannot be considered mathematically) and the 

comparison at the sub-aggregate level. In addition, an empirical investigation is also 
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conducted to assess the validity of the results on real data from a European superstore. 

Important managerial insights are derived based on the above research and tangible 

suggestions are offered to practitioners dealing with inventory forecasting problems.  

To the best of our knowledge, the only papers directly relevant to our work are those by 

Widiarta et al. (2007, 2008, 2009) and Sbrana and Silvestrini (2013). The researchers 

evaluated analytically at the aggregate level the effectiveness of the TD and BU approaches 

under the assumption of AR(1) (Auto-Regressive process of order 1), MA(1) and IMA(1,1) 

processes. Our additional contribution to the literature is threefold: (i) we analyse the 

superiority conditions of BU and TD approaches at both the aggregate and the sub-aggregate 

levels of forecasting by means of both analytical and simulation work, (ii) through a more 

detailed sensitivity analysis using simulation, we investigate the impact of all the process and 

control parameters on the comparative performance of the two approaches, and (iii) we 

analyse and validate empirically our theoretical results on real data noting that none of the 

previous theoretical work comparing BU and TD approaches has been validated empirically. 

With regards to this last point, it is important to note that rather recently Athanasopoulos et 

al. (2009) and Hyndman et al. (2011) have proposed a new approach to handling hierarchical 

time series forecasting. This approach does not emphasise the estimator being used to 

extrapolate requirements (i.e. any forecasting method may actually be used) but rather the 

weighted contribution of the forecasts produced at all levels of a given hierarchy (to 

appropriately retain important information that may be available at any hierarchical level) for 

the purpose of producing a required forecast at a particular level. Despite the fact that this 

approach lacks analytical insights it has been shown to perform well in practice and thus it is 

further considered (in addition to the BU and TD approaches) in the empirical part of our 

investigation. 

The remainder of our paper is structured as follows. In Section 2 we provide a review of the 

literature on demand aggregation related issues. In Section 3 we describe the assumptions and 

notations used in this study and we conduct an analytical evaluation of the variance of the 

forecast error related to both the BU and TD approaches, followed by a simulation study 

performed in Section 4. We conduct an empirical investigation in Section 5 and the paper 

concludes in Section 6 with the implications of our work for real world practices along with 

an agenda for further research in this area. 
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2. LITERATURE REVIEW 

Demand forecasting for sales and operations management often concerns many items, 

perhaps hundreds of thousands, simultaneously. The conventional forecasting approach is to 

extrapolate the data series for each SKU individually. However, most businesses have natural 

groupings of SKUs; that is, the SKUs may be aggregated to get higher levels of forecasts 

across different dimensions such as product families, geographical areas, customer types, 

supplier types etc. (Chen and Boylan, 2007). Such an approach enables the potential 

identification of time series components such as trend or seasonality that may be hidden or not 

particularly prevalent at the individual SKU level. Group approaches for example are known 

to offer considerable benefits towards the estimation of seasonal indices (Chen  and Boylan 

2008). Most of the forecasting literature in this area has looked at the comparative 

performance of the top-down (TD) and the bottom-up (BU) approach. The findings with 

regards to the performance of these approaches are mixed. 

Many researchers have provided evidence in favour of the TD approach. Gross and Sohl 

(1990) for example, numerically found that the TD approach (in conjunction with an 

appropriate disaggregation method) provided better estimates than BU forecasting in two out 

of three product lines examined. Fliedner (1999) evaluated by means of simulation the 

forecast system performance at the aggregate level resulting from varying degrees of cross 

correlation between two sub-aggregate time series. The sub-aggregate items were assumed to 

follow a Moving Average process of order one, MA(1), and the forecasting methods 

considered were SES and the Simple Moving Average (SMA). This research showed the 

forecast performance at the aggregate level to benefit from the TD approach. Barnea and 

Lakonishok (1980) examined the effectiveness of BU and TD on forecasting corporate 

performance. They reported that positive cross-correlation contributes to the superiority of 

forecasts based on aggregate data (TD).  

On the other hand, Orcutt et al. (1968) and Edwards and Orcutt (1969) argued that 

information loss is substantial when aggregating and therefore the bottom-up approach 

provides more accurate forecasts. Dangerfield and Morris (1992) and Gordon et al. (1997) 

used a subset of the M-competition
b
 data (Makridakis et al., 1982) to examine the 

performance of TD and BU approaches on sub-aggregate demand forecasting. They found 

that forecasts by the BU approach were more accurate in most situations especially when 

                                                 

b
 The M Competition is an empirical forecast accuracy comparison exercise introduced by Prof. Makridakis.  

http://www.ms.ic.ac.uk/iif/Data/index.htm
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items were highly correlated or when one item dominated the aggregate series. Weatherford et 

al. (2001) evaluated the performance of BU and TD approaches to obtain the required 

forecasts for hotel revenue management. The data they considered was perceived as very 

typical within the hotel industry. They experimented with four different approaches (fully 

disaggregated, aggregating by rate category only, aggregating by length of stay only, and 

aggregating by both rate category (i.e. the price per night) and length of stay) to get detailed 

forecasts by day of arrival, duration of stay and rate category. The results of their study 

showed that a purely sub-aggregate forecast strongly outperformed even the best aggregate 

forecast. 

Some authors take a contingent approach and analyse the conditions under which one 

method produces more accurate forecasts than the other. Shlifer and Wolff (1979) evaluated 

analytically the superiority of BU and TD on forecasting sales for specific and entire market 

segments. They specified the conditions under which BU is preferred to TD and vice versa. 

Such superiority was found to be a function of the number of markets, market size and 

forecast horizon. They mentioned that BU is preferable for the purpose of forecasting the 

aggregate series based on their observations in real situations. However, when the comparison 

was performed at the sub-aggregate level, they found that BU performs better for small 

marker segments, while both BU and TD perform equally well for large segments. Lütkepohl 

(1984) evaluated the performance of BU and TD approaches for forecasting at the aggregate 

level by using the mean squared error. It was shown that it might be preferable to forecast 

aggregate time series using a BU strategy when the data generation process is known. 

However, if the ARIMA processes used for forecasting, including the order of process and 

parameters, were estimated from a given set of time series data then the TD approach 

outperformed BU. Widiarta et al. (2007) studied analytically the conditions under which one 

approach outperforms the other for forecasting the item level demands when the sub-

aggregate items follow a first-order autoregressive [AR(1)] process with the same 

autoregressive parameter for all the items and when SES is used to extrapolate future demand 

requirements. They found that the superiority of each approach is a function of the 

autoregressive parameter. Widiarta et al. (2008, 2009) also evaluated analytically the 

effectiveness of TD and BU approaches at the sub-aggregate and aggregate level. They 

showed that when all sub-aggregate items follow an MA(1) process with identical moving 

average parameters, there is no difference in the relative performance of TD and BU 

forecasting as long as the optimal smoothing constant is used in both approaches. 

Subsequently, they conducted a simulation analysis considering non-identical process 
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parameters for sub-aggregate items and concluded that there is significant difference between 

the two approaches. The superiority of each approach was a function of the moving average 

parameter, the cross-correlation and the proportion of a sub-aggregate component’s 

contribution to the aggregate demand. Sbrana and Silvestrini (2013) evaluated the 

effectiveness of BU and TD approaches when forecasting the aggregate demand using a 

multivariate exponential smoothing framework. They established the necessary and sufficient 

condition for the equality of mean squared errors (MSEs) of the two approaches. In addition, 

they showed that the relative forecasting accuracy of TD and BU depends on the parametric 

structure of the underlying framework. 

In summary, both BU and TD approaches appear to be associated with more accurate 

forecasts depending on the level of comparison, structure of the series and cross-correlation 

related assumptions. It is easy to observe that most of the literature dealing with the issue of 

aggregation for forecasting purposes focuses only on stationary series and it does not consider 

the most realistic case of non-stationary processes. There is considerable evidence to suggest 

that inventory demand is non-stationary and thus relevant processes could be eventually 

assumed for representing their underlying structure. In the following subsection we provide an 

overview of the literature on the validity of the nonstationary assumption for real world 

applications. 

Before we close this section it should be noted that recently Athanasopoulos et al. (2009) 

and Hyndman et al. (2011)  have proposed a new approach, referred to as ‘the optimal 

method’, to handling hierarchical time series forecasting. As discussed in the previous section, 

the approach under concern is based on independently forecasting the series at all levels of a 

given hierarchy and then using a regression model to optimally combine and reconcile these 

forecasts at a particular desired forecast output level. By means of a simulation study using 

ARIMA type series and an empirical investigation using Australian tourism demand data, 

Hyndman et al.(2011) have shown that the optimal method outperforms both the TD and the 

BU approaches and as such we further consider it as a benchmark in the empirical part of our 

work. 

2.1. The validity of the non-stationary demand assumption 

Compared to stationary demand processes, nonstationary processes have received less 

attention in the academic literature (Bijvank and Vis, 2011) although there is evidence  that 

most of the forecasting and inventory control problems occur in situations where demand is 
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nonstationary (and partially observed) (Treharne and Sox, 2002). Naturally this may be 

attributed to the fact that the nonstationarity assumption complicates the relevant analyses and 

limits the theoretical results that may be obtained making it very difficult to determine an 

optimal forecast and stocking levels (Shang, 2012). 

Nonstationary demand is the rule rather than the exception in most industries nowadays. The 

nonstationarity may arise due to many reasons such as: (1) product life cycles with multi-

stages, (2) technological innovation and reduced product life, (3) seasonal effects, (4) volatile 

customer preferences, (5) changes in economic conditions, (6) exchange rate fluctuations, etc. 

(Li et al., 2011). Companies in all markets are introducing new products at a higher frequency 

with increasingly shorter life cycles. For instance, in the high-tech industry, the products have 

relatively short life cycles and their demand patterns are generally considered as nonstationary 

(Chien et al., 2008; Graves and Willems, 2000, 2008; Raghunathan, 2001).  

Furthermore, nonstationary demand processes have been observed in the wholesaling and 

retailing industry. Martel et al. (1995) argued that in the grocery distribution, because of the 

various promotion mechanisms such as weekly special promotions, national television 

advertising campaigns, etc., demand gets clearly nonstationary. Erkip et al. (1990) and Lee et 

al. (1997) empirically found that demands of consumer products are nonstationary and highly 

autocorrelated. Lee et al. (2000) used panel data to examine the weekly sales patterns of 165 

SKUs at a supermarket. They found that 150 out of the 165 SKUs analysed demonstrated 

nonstationary behaviour with high autocorrelation. Ali et al. (2011) experimented with a 

demand dataset of 1798 SKUs from a major European supermarket in Germany. They found 

that around 30% of the SKUs follow a nonstationary process and further an 80% of them 

follow an ARIMA(0,1,1) process. Moreover, Mitchell and Niederhausen (2010) noted that the 

nature of a nonstationary demand processes is consistent with the nature of retail demand for a 

wide variety of merchandise including apparel, consumer electronics, toys and other holiday 

items, patio furniture and other summer seasonal merchandise and school supplies.  

Another sector where it was reported that demand follows a nonstationary process is the 

tourism (Goh and Law, 2002). Finally, Tunc et al. (2011) confirmed that nonstationary 

stochastic demands are very common in all industrial settings associated with seasonal 

patterns, trends, business cycles, and limited-life items. 

There is also evidence that demand may follow an ARIMA(0,1,1) process in particular 

(which is the process considered in this study). This process has often been found to be useful 

in inventory control problems and econometrics (Box et al., 2008). More generally, Mahajan 
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and Desai (2011) argued that retailers often face a nonstationary demand that follows an 

ARIMA(0,1,1) process. 

In this study we compare the performance of BU and TD approaches on demand 

forecasting under the assumption of a nonstationary ARIMA(0,1,1) process. In the next 

section we analyse theoretically the forecasting effectiveness of these approaches. 

3. THEORETICAL ANALYSIS 

In this section we derive the variance of the forecast error associated with the TD and BU 

approaches. These approaches work as follows:  

The top-down approach consists of the following steps: i) sub-aggregate demand items are 

aggregated; ii) the forecast of aggregate demand is produced by applying SES at the aggregate 

level, and iii) the forecast is disaggregated back to the original level by applying an 

appropriate disaggregation method, if a sub-aggregate forecast is needed. Various 

proportional approaches may be used to disaggregate the TD forecasts. The reader is referred 

to Gross and Sohl (1990) for more details about such approaches. 

In the bottom-up approach: i) sub-aggregate demand forecasts are produced directly for the 

sub-aggregate items; ii) the aggregate forecast (if needed) is obtained by combining individual 

forecasts for each SKU, i.e. potentially a separate forecasting model is used for each item in 

the product family (Zotteri et al., 2005). These approaches are presented schematically in 

Figure 1. The presentation style follows that adopted by Mohammadipour et al. (2012).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graphical representation of the TD (left) and BU (right) approach 
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Comparisons may be performed at both the aggregate and sub-aggregate level although in 

our theoretical analysis the comparisons are performed only at the former level since 

(analytical) results regarding the latter are intractable. However, in the simulation study that 

follows the theoretical analysis we relax various assumptions and we also present results for 

both levels of comparison.  

3.1. Notation and Assumptions  

We denote by: 

di,t: Sub-aggregate item demand i in period t 

i,j: Correlation between the error term of sub-aggregate item i and j (cross-correlation) 

Dt: Aggregate demand in period t 

:, kti  Independent random variable for sub-aggregate item demand i in period t, normally 

distributed with zero mean and variance 2
 

kt
 : Independent random variable for aggregate demand in period t, normally distributed 

with zero mean and variance 2   

fi,t : Forecast of sub-aggregate demand in period t, the forecast produced in t-1 for the 

demand in t. 

Ft : Forecast of aggregate demand in period t, the forecast produce in t-1 for the demand in 

t. 

αi: Smoothing constant used in the Single Exponential Smoothing method for each sub-

aggregate item i in the BU approach, 10  i  

TD: Smoothing constant used in the Single Exponential Smoothing method for aggregate 

demand in TD approach, 1 0 TD   

pi: the relative weight of sub-aggregate item i's contribution to the aggregate family, 

where .1
1 


N

i ip  

VBU: Variance of Forecast Error of the BU approach 

VTD: Variance of Forecast Error of the TD approach 

VOP: Variance of Forecast Error of the optimal method  

i  : Moving average parameter of sub-aggregate item demand i, 1i  

  : Moving average parameter of aggregate demand, 1
 

iC  : Constant value of sub-aggregate item demand i  
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C   : Constant value of aggregate demand.  

N: the total number of sub-aggregate items. 

 

We assume that all the sub-aggregate demand series tid ,  follow an Integrated Moving 

Average process of order one, ARIMA(0,1,1), that can be mathematically written by (1). 
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 (1) 

 

From (1) it is obvious  that  the demand  in  the  next  period is  the  demand  in the  current 

period  plus  an error term. By writing and expanding (1) in a recursive form we have: 

 

  1,2,1,,0,, iitiitiitiiiti dCd      (2) 

 

where 
ii  1 . We note that only under this condition on iα , SES is optimal as it 

provides the minimum mean square error forecasts for the ARIMA(0,1,1) process. Here we 

consider the smoothing constant values as a control parameter determined by forecasters 

which varies between 0 and 1. Obviously, under this condition since 10  i , i will only 

take values between 0 and 1 and does not cover the whole range of -1i1.  

However, the theoretical analysis is still valid for the whole range of -1i1. In addition, 

in the simulation analysis we will relax this assumption to cover the whole range of -1i1 

when the value of the smoothing constant is fixed.  

We assume that all the sub-aggregate demand process parameters are identical 

(
N  321
).  This assumption is considered only for the purpose of the theoretical 

analysis and, as above, it is also relaxed in the simulation part of our work. The assumption 

under concern implies that the aggregate demand also follows an ARIMA (0,1,1) process. If  

N  321
 then the sum of the sub-aggregate items is not necessarily an 

ARIMA(0,1,1) process (Granger and Morris, 1976). 

The aggregate demand in period t,
tD  can be expressed as the sum of the demands of the 

sub-aggregate items, i.e.  


N

i tit dD
1 , . 
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The forecasting method considered in this study is the Single Exponential Smoothing 

(SES); this method is being applied in very many companies and in particular in an inventory 

production planning environment due to its simplicity (Gardner, 1990). At this point we 

should mention that the MSE is formally defined as   2BiasfdVarMSE tt  ,where Bias 

is defined as the expected forecast error and equals to  tt fdE   (Syntetos, 2001). 

 Note that under the condition that 
ii  1 , SES is an unbiased estimator of the demand 

process considered in this study. Therefore Bias = 0 which means that the variance of the 

forecast error is equal to the mean square error. Using SES, the forecast of sub-aggregate 

demand i in period t  produced at the end of period t-1 is 

 

  1,2,1,0,, iitiitiiiiti dCf      (3) 

 

We further assume that the standard deviation of the error term in (1) is significantly 

smaller than the expected value of the demand, so should demand be generated the probability 

of a negative value is negligible. 

3.2. Comparison of the Variance of Forecast Error 

We calculate the ratio of the variance of the forecast error corresponding to the TD 

approach (VTD) to the variance of the forecast error associated with the BU approach (VBU). A 

ratio that is lower than one implies a benefit in favour of the TD approach. Conversely, if the 

ratio is greater than one then the BU approach performs better (and if the ratio is equal to one 

both strategies perform the same). 

We begin the analysis by deriving the VBU, which is defined as follows: 
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by substituting (2) and (3) in (4) we have: 
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Since   2

, itiVar    and   jijitjtiCov  ,,, ,   we have: 

 




 


1

1 1

,

1

2 2
N

i

N

ij

jiji

N

i

iBUV   (6) 

 

We now derive the variance of the forecast error for the TD approach. As discussed above, 

it has been shown that when the sub-aggregate items follow an IMA (1,1) process, the 

aggregate family demand also follows an IMA (1,1) process (Granger and Morris, 1976). The 

family aggregate process is defined as follows: 
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 (7) 

where =1-TD. 

 

Considering   N321
 results in the same theta also in the aggregate demand 

so,   . Now by considering TD  1 and   , it is obvious that the optimal 

smoothing constant for the aggregate demand is  1TD , which is equal to the optimal 

smoothing constant for  the sub-aggregate process.  

The aggregate demand and its forecast can be expressed as a function of the error terms, so 

we have: 

  1210    TDtTDtTDtt DCD   (8) 

 

Knowing that 



N

i

tit

1

, , we obtain 
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N

i

tit CovVarVar   

(9) 

 

The aggregate forecast is 

 

  1210    TDtTDtTDt DCF 
 (10) 
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The variance of the TD forecast error is defined as: 

 

 ttTD FDVarV   (11) 

 

By substituting (8) and (10) into (11), we have: 

 

 tTD VarV    (12) 

 

By substituting (9) into (12) we have: 
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N

i

iTDV   (13) 

 

Proposition. If all the sub-aggregate demand items follow an ARIMA(0,1,1) process with 

identical moving average parameters (
N  321
) and the optimal smoothing constant 

value is used to forecast both the sub-aggregate and aggregate demand, then the performance 

of the TD and BU approaches for forecasting aggregate demand is identical (VTD = VBU). The 

proof of the proposition follows directly from (6) and (13). 

This finding is in agreement with the results reported by Widiarta et al. (2009) which 

theoretically show that there is no significant difference between the TD and BU approaches 

on forecasting aggregate demand when all sub-aggregate items follow an MA(1) process with 

identical process parameters. 

4. SIMULATION STUDY 

In this section, we perform a simulation study to evaluate the relative performance of the 

TD over the BU approach under some more realistic assumptions. In particular we consider 

the following scenarios: i) a simulation study at the aggregate level for non-identical 

(12…N) process parameters; ii) a simulation investigation to discuss the effectiveness 

of the BU and TD approach compared at the sub-aggregate level for non-identical 

(12…N) process parameters. In both cases, the search procedure has been performed in 

the whole range of -1i1. 
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When the underlying process follows an ARIMA(0,1,1) representation, as i moves from 

+1 toward -1 the resulting underlying structure changes considerably. When i is negative, the 

autocorrelation parameter exhibits a smooth exponential decay with positive values and the 

autocorrelation spans all time lags (not only lag 1). For example for i=-0.9 the 

autocorrelation is very close to +1. As we move up towards i+1 the autocorrelation reduces 

but still remains positive and for high positive values of i it becomes close to zero meaning 

that the series are random. 

By considering many SKUs in the simulation experiment, the presentation of results and 

the evaluation of the impact of different parameters on the ratio of VTD / VBU becomes 

complex. Therefore, we restricted the simulation analysis to a family of two SKUs to obtain 

meaningful insights. This is in concordance with most of the earlier papers using simulation 

approaches as they have also restricted the number of items to two (Dangerfield and Morris, 

1992; Fliedner, 1999; Widiarta et al., 2008, 2009).  

The parameter values for our simulation experiment are presented in Table 1. 

 

Table 1. Parameters of the simulation experiment 

i  2

i  
i  

ij  
N° Sub-

Aggregate 

N° 

Replications 

N° Time 

Periods 

400 900 -0.9 : +0.9 -0.9: +0.9 2 100 1000 

 

The sub-aggregate demands in each period are generated randomly subject to the 

parameters described in Table 1. 

 The value of 
i  is set to be quite smaller than 

i  to avoid the generation of negative sub-

aggregate demand values. Experiments have also been conducted with other values of 
i  and 

i  but these are not reported here as they lead to the same insights. 

 To generate the demands in each period t, we first generate randomly the error terms t,1  

and t,2 with a cross-correlation coefficient of 12  and then we use (1) to generate the 

correlated sub-aggregate demands. We initialise the generated demand at the value of the 

mean plus an error term. The simulation experiment has been designed and run in the forecast 

package in R. For each parameter combination described in Table 1, a demand series of 1000 

observations is generated and we introduce 100 replications. 

We split the generated demand for each series at both the sub-aggregate and aggregate 

level, into two parts. The first part (within sample) consists of 700 time periods and is used in 
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order to fit the model and estimate the parameters. The smoothing constant and the initial 

value are found based on Maximum Likelihood estimation (Hyndman et al., 2008; Hyndman 

et al., 2002). Note that for the BU approach, the smoothing constants are optimized for each 

item individually. Finally, in order to evaluate the performance of the two forecasting 

approaches, we calculate the value of the variance of the forecast error for the last 300 periods 

of the simulation (out-of-sample).  

The relative benefit of one forecasting approach over the other is measured by VTD / VBU. 

As previously discussed, a ratio lower than one implies that the TD approach outperforms the 

BU one whereas a ratio greater than one implies the opposite.  

4.1. Comparison at the Aggregate Level 

We first analyse the relative performance of the two forecasting approaches at the aggregate 

level when the sub-aggregate process parameters are not necessarily identical. For each 

experiment, the ratio of the variance of the forecast error is calculated as 

  







 



2

1

,

i

tittt fDVarFDVar .  

The simulation results show that when the process parameters are identical there is no 

difference between the BU and the TD approach. Whereas, when the process parameters are 

not identical, which is more realistic, the results are different. The results for the latter case 

are presented in Figure 2.  

We see that as the cross-correlation coefficient changes from -0.9 toward +0.9 the ratio of 

VTD/VBU is being reduced. The ratio is higher than or equals to 1 when the cross-correlation is 

negative, equals to zero or takes low positive values. The ratio is lower than 1 only if the 

cross-correlation is (highly) positive.  

The detailed results show that when the moving average parameters, 1 and 2, take 

negative values, the performance of BU and TD approaches is always identical regardless of 

the values of the cross-correlation. One possible explanation for this result is that when the 

MA parameters of sub-aggregate series take negative values, the optimal value of the 

smoothing constant is set at the highest value in the considered range which is equal to 0.99 

for both approaches. As the smoothing constant for both BU and TD approaches is equal and 

the same procedure of forecasting is used for the sub-aggregate items and the aggregate one, 

the aggregate forecast under both BU and TD approaches is the same. 
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a)1=0.9 b) 1=0.5 

  

c) 1=0.1 d) 1=-0.9 

  

e) 1=-0.5 f) 1=-0.1 

Figure 2. Relative performance of the TD and BU approach in forecasting aggregate 

demand under different combinations of 1, 2 and 12 

 

When the cross-correlation is positive the superiority of each approach depends on the 

value and the sign of the moving average parameters, 1 and 2. The TD approach 
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outperforms the BU one only when the cross-correlation is (highly) positive and the moving 

average parameters take high values and have opposite signs, i.e. either 1<0 and 2>0 or 

1>0 and 2<0.  

Note that as the cross-correlation decreases the superiority of the TD approach decreases 

too. For highly positive cross-correlation, TD outperforms BU with a forecast error variance 

reduction that can go up to 15%. By decreasing the cross-correlation to 0.5, the maximum 

benefit of the TD approach decreases to 5% and it tends toward zero when the cross-

correlation tends towards zero as well. Under negative cross-correlation, BU outperforms TD. 

When the two moving average parameters take opposite signs under the ARIMA(0,1,1) 

process, this means that one series has positive autocorrelation while the other has a low 

autocorrelation (series with random fluctuations). In addition, when the cross-correlation is 

positive there is a tendency for the pair of series to move together in the same direction, so the 

demand series have the same pattern. When using TD, we sum up all sub-aggregate series to 

get an aggregate one, so the fluctuations from one series may be cancelled out by those of 

another resulting in a less random series associated with a lower forecast error.  

When the cross-correlation coefficient is negative, for all values of 1 and 2, with the 

exception of the case when both are negative, the BU approach performs better. Performance 

differences are further inflated when the moving average parameters have opposite signs in 

which case the variance reduction achieved by the BU approach can be as high as 500% for 

highly negative cross-correlation. For negative cross-correlation, the pair of series moves in 

the opposite direction, (i.e. if one increases the other decreases), so the sub-aggregate demand 

series have different patterns of evolution. Combination of different patterns of variation and 

opposite autocorrelation values lead to a large forecast error for the TD approach and 

consequently large values of VTD / VBU for very high negative cross-correlation. In these cases 

it is better to forecast sub-aggregate requirements separately and then aggregate them to get 

the aggregate forecast. 

When the 1 and 2 values are positive, the ratio is almost equal to 1 for highly positive 

cross-correlation and greater than 1 for less positive and negative cross-correlation. In the 

latter case, the ratio of VTD / VBU is increased as 1 takes low values and 2 is high and vice 

versa. 

In summary, when the sub-aggregate items follow an ARIMA(0,1,1) process and the goal is 

to forecast at the aggregate demand level, then: i) if the autocorrelation of all items is highly 

positive, the performance of BU and TD is always identical; ii) if items have different 
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autocorrelation patterns, one has a very high positive autocorrelation while the other has an 

autocorrelation close to zero, the superiority of each approach is affected by the cross-

correlation between items; for a highly positive cross-correlation, TD outperforms BU and for 

a highly negative cross-correlation BU outperforms TD; iii) when the autocorrelation for all 

items is low, BU generally dominates TD, although for highly positive cross-correlation the 

difference is very low.  

Our findings are somehow in agreement with some of the earlier studies in this area by 

Barnea and Lakonishok (1980) and Fliedner (1999) (although we do note that our results are 

not directly comparable to these studies as we analyse a non-stationary case). The analysis of 

Barnea and Lakonishok (1980) based on an empirical evaluation showed that positive cross-

correlation contributes to the superiority of forecasts based on aggregate data (TD), which is 

also the case in our study. Fliedner (1999) used a simulation study to compare the 

performance of TD and BU in forecasting aggregate series where the two sub-aggregate items 

follow an MA(1) process. He found that TD dominated BU regardless of the values of the 

cross-correlation coefficient. They have not reported the values of 1 and 2 used in their 

study, so our interpretation is that this work considered only the opposing signs for 1 and 2. 

Should this be the case then these findings are in agreement with ours. 

4.2. Comparison at the Sub-Aggregate Level 

In this subsection we evaluate the relative performance of the TD and BU approaches in 

forecasting sub-aggregate demand when the moving average parameters are not necessarily 

identical. The simulation structure in terms of within and out-of-sample arrangements is as 

discussed in the previous sub-section. Under the BU approach, we generate 300 one step-

ahead forecasts for each item individually using the optimal smoothing constant. Under the 

TD approach, we first sum up the demand of all sub-aggregate items to obtain aggregate 

series, we then produce the aggregate forecast and finally we break down (disaggregate) that 

to sub-aggregate forecasts by using proportional factors based on the historical contribution of 

each series. For each experiment, the ratio of the variance of forecast error is calculated 

as:     


2

1 ,,

2

1 , *
i titii titi fdVarFpdVar  . 

Figure 3 shows the ratio of the variance of forecast error of the TD over the BU approach at 

the sub-aggregate level for different values of 1, 2 , 12  and p1 when the sub-aggregate 

items follow an ARIMA(0,1,1) process with non-identical moving average parameters 

(12). Different levels of item proportion, pi, are used to reflect the cases where the sub-
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aggregate items contribute almost equally to the aggregate forecast and cases where one item 

dominates the aggregation process. The results show that the BU approach always 

outperforms TD in forecasting the sub-aggregate items regardless of the 12 and pi. 

 

  
a)1=0.9, 2=0.95 b) 1=0.1, 2=0.9 

  

c) 1=0.1, 2=0.05 d) 1=-0.9, 2=-0.95 

  

e) 1=-0.1, 2=-0.15 

 

f) 1=-0.1, 2=-0.9 

 

Figure 3. Relative performance of TD and BU approaches in forecasting sub-aggregate 

items under different values of 1, 2, 12 and p1. 
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In Figure 3 we show that by moving from a cross-correlation of -0.9 toward +0.9 the ratio of 

VTD/VBU is generally reduced but it always remains greater than 1 regardless of the cross-

correlation coefficient and the items’ contributory power. 

When the cross-correlation and the moving average parameters, 1, 2, are highly positive, 

i.e. 10.99, 20.99 and 120.99, the ratio of VTD/VBU becomes close to one.  

Figure 3a shows also that BU outperforms TD by a maximum of about 50% for highly 

negative cross-correlation; the rate of superiority of BU becomes very high when 1 and 2 are 

not highly positive (see Figure 3b, c, d). Widiarta et al. (2009) reported that when demand 

follows an MA(1) process, BU outperformed TD by a maximum of 4% when 1=0.3 and 2=-

0.8 and the cross-correlation is negative. The superiority of BU at the sub-aggregate level can 

be attributed to the potentially high positive autocorrelation between demand periods. When 

the series follow an ARIMA(0,1,1) process, the autocorrelation is (highly) positive unless the 

moving average parameter takes high positive values, in which cases autocorrelation becomes 

close to zero. Generally, as θi moves from positive toward negative values, the autocorrelation 

between two consecutive observations di,t  positively increases, in addition to spanning higher 

time lags (not only a lag of 1). This makes it much more difficult to apportion the resulting 

aggregate forecast, Ft, to each item in the family based on the historical demand proportion, 

pi. As a result, the performance of the TD approach is affected adversely. The performance of 

the BU approach, however, is not affected as it forecasts the demand for each item 

individually. 

Our findings are in accordance with those previously reported in the academic literature. 

Widiarta et al. (2007) argued that when the sub-aggregate time series follow an AR(1) process 

and the value of the autocorrelation is high, there is a sharp deterioration in the relative 

performance of TD. Gordon et al. (1997) and Dangerfield and Morris (1992) used empirical 

data from the M-competition database and stated that BU dominated TD when forecasting the 

sub-aggregate time series. Weatherford et al.(2001) have shown that a purely disaggregate 

forecast (BU) strongly outperformed even the best aggregate forecast (TD) at the sub-

aggregate level. 

These results generally confirm our findings although we must note (as we did in the 

previous sub-section) that there is not a direct comparison between these studies and ours due 

to the consideration of a non-stationary ARIMA(0,1,1) time series process. Contrasting our 

results with those reported by Widiarta et al. (2007, 2009) on stationary MA(1) and AR(1) 

processes, we observe that the rates of superiority of the BU approach when the process is 
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non-stationary is much higher than the stationary case. When the demand follows a stationary 

AR(1) process, the maximum ratio of VTD/VBU equals to 2 and is obtained with series with 

high positive autocorrelation (high positive autoregressive parameter values 1, 2) and highly 

negative cross-correlation, while this ratio for the IMA(1,1) process is higher than 50. 

5. EMPIRICAL ANALYSIS 

In this section, we assess the empirical validity of our results on the comparative 

performance of the TD and BU approaches. In addition, the empirical performances of these 

approaches are compared to that of the optimal approach proposed by Hyndman et al. (2011), 

at both the aggregate and subaggregate levels. We first provide details of the empirical data 

available for the purposes of our investigation along with the experimental structure employed 

in our work. We then present the actual empirical results. 

The demand dataset available for the purposes of our research consists of 103 weekly sales 

observations (i.e. it spans a period of two years) for 1,798 SKUs from a European grocery 

store. The auto.arima function of the forecast package in R has been used to identify the 

underlying ARIMA demand process for each series and to estimate the relevant parameters. 

This function uses a variation of the Hyndman and Khandakar (2008) algorithm which 

combines unit root tests, minimization of the Akaike's Information Criteria (AICc ) and 

maximum-likelihood estimation (MLE) to identify an ARIMA(p,d,q) model. First, the number 

of differences d is determined using unit-root tests by applying repeated KPSS tests 

(Kwiatkowski et al., 1992). Then, the value of process orders, p and q, are chosen by 

minimizing the AICc after differencing the data d times. Please refer to Hyndman and 

Khandakar (2008) for a discussion on ARIMA identification methodology related issues. 

Based on the identification process discussed above, it was found that around 24% of the 

series (424 series) may be represented by the process considered in this research, 

ARIMA(0,1,1). In Table 2 we summarize the characteristics of the SKUs relevant to our study 

by indicating the estimated parameters for the ARIMA(0,1,1) process. It is important to note 

that these results are sensitive to the modelling methodology being used to identify the series 

in the first place. If the methodology employed by the auto-arima function potentially 

identifies ARIMA(0,1,1) series incorrectly then our results will be obviously subject to 

relevant errors. 

To facilitate a clear presentation, the estimated parameters are grouped in intervals and the 

corresponding number of SKUs is given for each such interval. The average   value per 
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interval is also presented. This categorisation allows us to compare the empirical results with 

the theoretical findings. We must remark that the   parameter values are all positive, except 

for two SKUs, and most of them take highly positive values. As such, the data do not cover 

the entire theoretically feasible range of the parameters. 

 

Table 2. Processes present in the empirical data set 

Group θ intervals Average of θ No. of SKUs 

1 [0.1,0.3[ 0.2097 4 

2 [0.3,0.4[ 0.3652 8 

3 [0.4,0.5[ 0.4656 17 

4 [0.5,0.6[ 0.5591 32 

5 [0.6,0.7[ 0.6561 67 

6 [0.7,0.8[ 0.7503 108 

7 [0.8,0.9[ 0.8467 141 

8 [0.9,1] 0.9534 47 

Total number of SKUs: 424 

 

The data series have been divided into two parts. The first part (within sample) consists of 

70 time periods and is used in order to estimate the SES parameters. The second part consists 

of 33 time periods which are used to evaluate the performance of each approach (out-of-

sample). The geometric mean (across SKUs) of the VTD/VOP and VBU/VOP ratios is considered 

for comparison purposes at the disaggregate level (where VOP is the variance of the forecast 

errors resulting from the implementation of the optimal approach). Note that the ratio VTD/VBU 

can be directly deduced from the two variance ratios as (VTD/VOP) / (VBU/VOP). 

The empirical results presented in Table 3 are shown for the same  intervals considered in 

Table 2. With regards to the comparative performance of BU and TD, we can see that when 

the smoothing constant values are optimised for both approaches, the variance ratio is greater 

than 1 when the comparison is undertaken at the sub-aggregate level, whereas when the 

comparison is undertaken at the aggregate level, the difference between BU and TD is 

insignificant. This means that overall one can consider that the BU approach provides more 

accurate forecasts. Furthermore, when the smoothing constants used for BU and TD are equal, 

the ratio of VTD/VBU equals to 1 in the case of disaggregate demand forecasting. As discussed 

above, the moving average parameter  is highly positive for most SKUs considered in this 

research. More than 85% of the SKUs have a moving average parameter greater than 0.6 (see 

Table 2). In addition, the sub-aggregate cross-correlation coefficients between SKUs vary 
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between -0.5 and +1; however most of those coefficients are positive. By referring to the 

detailed results of the simulation study we see that for this range of moving average parameter 

values, 0<<1, the BU approach performs better than TD at the subaggregate level. However, 

for the comparison at the aggregate level, the ratio of VTD/VBU is close to one, and the 

superiority of each approach depends on the cross-correlation. TD may outperform BU for 

highly positive cross-correlation. In an empirical context, the average of the variance of 

forecast error reduction may be as high as 1.01% when the comparison is performed at the 

aggregate level, while 70% variance error reduction may be achieved for the comparison at 

the sub-aggregate level. 

Table 3. Empirical variance ratios for an ARIMA(0,1,1) process 

Group θ intervals 

Comparison Level 

Aggregate 

 

Disaggregate 

VTD/VOP VBU/VOP VTD/VOP VBU/VOP 

1 [0.1,0.3[ 0.998 1.020 2.391 0.990 

2 [0.3,0.4[ 1.001 1.022 2.078 0.993 

3 [0.4,0.5[ 1.000 1.005 1.880 0.997 

4 [0.5,0.6[ 1.000 1.002 1.727 0.994 

5 [0.6,0.7[ 1.000 1.020 1.629 0.990 

6 [0.7,0.8[ 1.000 1.008 1.428 1.003 

7 [0.8,0.9[ 1.000 1.007 1.290 0.996 

8 [0.9,1] 1.001 1.000 1.162 0.999 

Average 1.000 1.011 1.613 0.995 

 

With regards to the implementation of the optimal approach, the hierarchy structure of our 

data consists of two levels. At the top level we have aggregated all series to get one single 

series while at the bottom level we have 424 series, so we have 425 series in total for 

forecasting purposes. First, we generated forecasts for all 425 series using SES. Next, we have 

used the combinef  function in the hts package (Hyndman et al., 2014) of R to reconcile these 

forecasts using the optimal method to obtain forecasts at both aggregate and sub-aggregate 

levels. 

With regards to the comparative performance of the optimal approach (as reported based on 

its variance of forecast errors, VOP), Table 3 shows that for comparison at the aggregate level, 

the optimal method performs better than BU; however there is no significant difference 
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between the performance of the optimal method and the TD approach. When the comparison 

is undertaken at the sub-aggregate level, the optimal method significantly outperforms TD, 

whereas BU works slightly better than the optimal method (the difference is less than 1%). 

Generally, for the empirical data used in this study, either the TD or the optimal method can 

be used for forecasting at the aggregate level, while at the sub-aggregate level, BU is 

preferable, although the optimal approach may also be used as the difference is less than 1%. 

In Table 3, we report ratios of the variance of forecast errors in specific moving average 

parameter interval. In Table 4, we report collective performance across different possible 

(ranges of) moving average parameter values and we evaluate the impact of such values on 

the superiority of each approach. To do so we create a category containing groups 1, 2 and 3 

that includes 29 SKUs; this is regarded as a category with the lowest values of  . As we 

move from this category to groups 4, 5 and 6 the value of  increases. We aggregate all these 

groups with group 8 that represents the highest values of . The ratios VBU/VOP and VTD/VOP 

are then presented for both levels of comparison. 

 

Table 4. Empirical variance ratios by reporting performance across different groups 

(intervals of   values) 

Comparison Level Group 1,2,3 4 5 6 

Aggregate 
VTD/VOP  

 

8 

1.001 1.001 1.000 1.000 

VBU/VOP 0.855 0.902 0.977 0.998 

Subaggregate 
VTD/VOP 1.484 1.435 1.399 1.366 

VBU/VOP 0.956 0.976 0.987 0.998 

 

With regards to the comparative performance of BU and TD, the results indicate that when 

two groups with different moving average parameters are considered (Group 1,2,3 with 8) 

then the variance ratio VTD/VBU is high and as the  values increases (tending towards the 

values covered by group 8) the ratio decreases. This implies that when we aggregate groups of 

SKUs with low and high   values there is a greater benefit of using the BU approach in terms 

of accuracy. This is exactly what we have observed in the simulation results for 2 SKUs (one 

associated with a small and one with a high  value). These empirical results generally 

confirm the findings of the simulation study. With regards to the performance of the optimal 

approach, Table 4 shows that for comparisons at the sub-aggregate level, the optimal method 

outperforms TD. However, BU performs better than the optimal approach. When 
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performances are contrasted at the aggregate level, both optimal and TD approaches perform 

equally well and BU outperforms them. 

6. DISCUSSION, CONCLUSION AND FURTHER RESEARCH 

In this paper we have evaluated analytically the effectiveness of the bottom-up (BU) and 

top-down (TD) approaches to forecasting aggregate and subaggregate demand when the 

subaggregate series follow a first order integrated moving average [ARIMA(0,1,1)] process. 

Forecasting was assumed to be relying upon a Single Exponential Smoothing (SES) 

procedure and the analytical results were complemented by a simulation experiment at both 

the aggregate and sub-aggregate level as well as experimentation with an empirical dataset 

from a European superstore.  

Admittedly, the current fast changing market environments result in many demand 

processes being non-stationary in nature. Some empirical pieces of work discussed in 

subsection 2.1 confirm such a statement and provide support for the frequency with which 

ARIMA(0,1,1) processes are encountered in real world applications. In addition, SES is a 

most commonly employed forecasting procedure in industry and its application implies a non-

stationary behaviour (SES is optimal for an ARIMA(0,1,1) process). Both BU and TD 

approaches are very useful in practice when dealing with Sales and Operations Planning 

systems in which forecasting is required at both aggregate and subaggregate levels. In 

summary, we feel that the problem setting we have considered is a very realistic one. 

Analytical and simulation developments were based on the consideration of the variance of 

forecast error for the TD and BU approaches and comparisons were undertaken at the 

aggregate level in the theoretical part of this work and at both the subaggregate and aggregate 

level in the simulation investigation. The conditions under which one approach outperforms 

the other were identified and the main findings can be summarized as follows: 

 When the moving average parameter for all the subaggregate items is identical 

(1=2=…=N), there is no significant difference between TD and BU in forecasting 

the aggregate level, as long as the optimal smoothing constant is used for both 

approaches. When the smoothing constant used for all the subaggregate items and the 

aggregate level is set to be identical (=TD), TD and BU perform the same in 

forecasting the demand at the aggregate level regardless of the values of the moving 

average parameters and the cross-correlation between items. In addition when the 



 27 

observations of the subaggregate items are highly auto-correlated (negative ), the 

performance of BU and TD is also the same for all autocorrelation values. 

 TD performs better than BU at the aggregate level when the subaggregate moving 

average parameters take relatively high values of an opposing sign and the cross-

correlations between sub-aggregate items are (highly) positive. Otherwise, when 

cross-correlation is positive low or takes negative values, BU is preferable. Therefore, 

using the aggregate data to produce top level forecasts is preferable only if the sub-

aggregate items follow similar series evolution with combination of high vs. low 

autocorrelation. The TD appears not to be very accurate when the sub-aggregate items 

consist of different patterns of fluctuation. 

 BU outperforms TD when forecasting at the sub-aggregate level and when the 

smoothing constant is set to its optimal value for both approaches, regardless of the 

cross-correlation, the disaggregation weight and the values of the process parameters. 

It’s not preferable to use the aggregate data to derive the individual forecasts, when the 

autocorrelation of subaggregate items is highly positive, in which cases subaggregate 

data provide more accurate forecasts. The degree of superiority of the BU approach 

for non-stationary processes is much higher compared to stationary ones. 

 The performance of BU improves as the cross-correlation decreases, moving from 

positive toward negative values. For highly negative cross-correlation values BU is 

always preferable; this is generally true for comparisons at both the aggregate and sub-

aggregate level. 

 The benefit achieved by BU and TD for non-stationary demands in terms of forecast 

accuracy is higher than that associated with stationary cases. 

 The optimal approach performs well at both levels of comparison as indicated by the 

empirical results. When considering ratios of the variance of forecast errors in 

particular moving average parameter intervals or different possible (ranges of) moving 

average parameter values, the optimal approach  is superior as it performs as well as 

the BU at both levels but significantly better than the TD at the disaggregate level. It 

should be noted though that the optimal approach bears considerable relevance to 

many realistic cases when: i) more than two levels of hierarchy need to be considered, 

and ii) (more than one) various forecasting methods need to be employed. 

Please also note that since the optimal approach is not always superior to the BU and TD 

approaches, the comparative performance between BU and TD needs to be carefully 
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considered in order to inform real world applications. In addition, and even when the optimal 

approach outperforms both BU and TD, the latter approaches still remain of explicit interest 

to practitioners (because of the simplicity characterising their implementation, their intuitive 

appeal and their support by most inventory software) but also to academics (because of the 

insights that the mathematical analysis of those cases may offer – in contrast with the optimal 

approach where the optimisation procedure hinders any explicit messages as to what is going 

on with the underlying properties of the series.) The major difficulty associated with the 

optimal approach is the computation of the reconciliation weights used to form a weighted 

average of forecasts at an individual node and the non-transparent nature of the regression 

analysis taking place. Another difficulty is the fact that forecasts from all levels need to be 

taken into account when producing the final (reconciled) forecasts which obviously increases 

the computational effort and managerial involvement beyond that required by either BU or 

TD. 

If the practitioners require demand forecasts at the SKU level when demand is non-

stationary (and highly autocorrelated) then it would always be preferable to use the BU 

approach. If a higher level demand forecast is needed then the BU approach should be 

considered when the individual items are associated with different patterns of evolution, and 

the TD or the optimal approach when they have the same patterns but are associated with 

different autocorrelation values. In addition, if one uses the same value of smoothing 

constants for both BU and TD, then both approaches perform the same in forecasting 

aggregate demand. 

In this paper we have considered the case of non-stationary demand processes in 

conjunction with the SES forecast method to evaluate the comparative performance of TD and 

BU in forecasting aggregate and item level demand. Naturally, there are many other avenues 

for further research and the following possibilities should be very important in terms of 

advancing the current state of knowledge in this area.   

 The consideration of more extensive datasets that cover the whole range of the process 

parameters should allow a better understanding of the comparative benefits of the TD 

and BU approach.  

 The extension of the work described here to cover inventory/implication metrics 

would allow a linkage between forecasting and stock control. Cross-sectional 

aggregation is known to be very helpful in inventory applications and it is indeed 

being covered by relevant software packages. Further work into the interactions 
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between forecasting and stock control in a cross-sectional setting should add value to 

real world practices.  

 The interface between (and the potential of combining) temporal and cross-sectional 

aggregation has received minimal attention both in academia and industry and is an 

issue that we are to take further in the next steps of our research. A unified approach – 

one that simultaneously considers choices of aggregation levels and frequency along 

multiple dimensions – would seem to be a valuable step in the right direction. The 

problem with the separation of the cross-sectional and temporal dimensions is that the 

right level of cross-sectional aggregation may vary across time frequencies and vice 

versa. Procedures that combine forecasts for a cross-sectional hierarchy, such as the 

optimal approach discussed in this paper, and procedures that combine forecasts over 

time frequencies, such as the multiple temporal-aggregation technique discussed by 

Kourentzes et al. (2014), may conceivably be pooled to form a holistic strategy for 

forecasting hierarchies (see also the Introduction of Tashman et al. (2015)). 

 Finally, the analytical and empirical consideration of Integer ARMA (INARMA) 

processes offers a great opportunity for advancements in the area of aggregation. Such 

processes bear a considerable relevance to intermittent demands where the benefits of 

aggregation may be even higher due to the reduction of zero observations 

(Mohammadipour and Boylan, 2012). 
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