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Abstract 12 

The increasing interest in sentiment classification of product reviews is due to its potential 13 

application for improving e-commerce services and quality of the products. However, in 14 

realistic e-commerce environment, the review-related data is imbalanced, and it leads to a 15 

problem in which minority class information tends to be ignored during training phase of a 16 

classification model. To address this problem, we propose a topic sentence-based instance 17 

transfer method to process imbalanced Chinese product reviews by using an auxiliary dataset 18 

(source dataset). The proposed method incorporates a rule and supervised learning hybrid 19 

approach to identify a topic sentence of each product review and adds the feature set of the topic 20 

sentence to the feature space of sentiment classification. Next, to measure the transferability of 21 

instances in source dataset, a greedy algorithm based on information gain of Top-N common 22 

features is used to select common features. Then, a common feature-based cosine similarity of 23 

instances between source dataset and target dataset is introduced to select the transferable 24 

instances. Furthermore, a SMOTE (Synthetic Minority Over-sampling Technique) based method 25 

is adopted to overcome feature space inconsistency between source dataset and target dataset. 26 

Finally, we immigrate the instances selected in source dataset into target dataset to form a new 27 

dataset for the training of classification model. Two datasets collected from Jingdong 28 

(http://www.jd.com) and Dangdang (http://www.dangdang.com) known as target dataset and 29 

source dataset respectively have been used in this paper. The experimental results verify that, 30 

considering the ability of generalization, our proposed method helps Support Vector Machine 31 

(SVM) to outperform J48, Naive Bayes, Random Forest and Random Committee when applied on 32 

N-gram, resample and SMOTE. 33 

1 Introduction 34 

In the last few years, we have witnessed a surge of interest in opinions mining automated 35 

systems for online product reviews [1-19]. The major supporting technology for opinion 36 



mining systems includes topic modelling and sentiment analysis. Researchers and 1 

engineers/practitioners believe that the systems capable of automatically analyzing consumer 2 

sentiment expressed widely in online venues will help companies to understand how the 3 

consumers perceive their products and services. Many research efforts on sentiment analysis 4 

on product reviews had been carried out to enable companies to understand consumer’s 5 

perception of the products and services. Most of them rely on an assumption that the class 6 

distribution in the training datasets is balanced. However, in reality, the class distribution in 7 

collected product review data is usually imbalanced, called as imbalanced data. The imbalanced 8 

data encountered in classification is a well-known problem, especially when the size of majority 9 

classes is above three times of the size of minority classes. This leads to a situation where 10 

minority class information gets ignored during training phase of classification model. The model 11 

trained from this kind of dataset that have low identification precision in minority classes has a 12 

phenomenon known as over-fitting of majority class. Some researchers employed sub-sampling 13 

strategy on imbalanced data to balance the class distribution of the dataset. This approach 14 

deteriorates the performance and generalization ability of the classification model trained on 15 

subsampled dataset. At the same time, different products (topics) from one data source may have 16 

imbalanced distribution characteristic in emotion class which could form different feature spaces 17 

with diverse data distribution in emotion classification. That is, the imbalanced distribution of 18 

emotion classes with different products (topics) represents different kind of interactions and 19 

mental state of the users. 20 

The traditional methods for handling imbalanced classification problem rely on data level 21 

sampling, cost sensitive learning, features selection, feature weight adjustment and one-class 22 

learning [24] approaches. However, because these methods normally only rely on one dataset, the 23 

classification models that are trained on the dataset have over-fitting problem and lack the ability 24 

of generalization. For example, a balanced dataset is created from only one dataset according to a 25 

sampling strategy for training the classifiers. When a trained classifier is applied to a different 26 

data set of real-world for analysis, the classification performance is often degraded [25]. 27 

The methodologies behind classifiers that are trained on more than one auxiliary datasets have 28 

been widely adopted [26-30] in recent years in an attempt to address aforementioned problems of 29 

insufficient or homogeneous data by adopting the knowledge transfer learning method [31]. A 30 

simple method could directly combine an auxiliary dataset and an original dataset into a single 31 

dataset to train the classifier. As the tasks of emotion detection are strong domain/topic-dependent 32 

and the feature distribution of each topic has its own characteristics, we believe that such method 33 

will destroy the innate and unique features that exist in different domains and will decrease the 34 

recognition accuracy. In this paper, the task of topic sentence-based instance transfer is to sample 35 

similar instances from the auxiliary dataset in order to deal with imbalanced sentiment 36 

classification of target dataset of product reviews. This can be classified as one of data level 37 

sampling approaches. Figure 1 illustrates the core idea of this research on instance transfer for 38 

providing a solution to the problem of imbalanced sentiment classification of product reviews. 39 

There are two datasets: target dataset (T) and source dataset (S) and dataset T can have different 40 

instance numbers in each class. The goal of instance transfer is as follow: assume that datasets S 41 

and T have the same classes of the sentiment analysis. In order to achieve the training task of 42 

sentiment classification model in T, it chooses the transferable instances of same class from S and 43 

transfer them to the corresponding class in T dataset to create a new target dataset D’, while it 44 



ensures that different classes in dataset D’ have a similar data size. This helps to improve the 1 

performance of the classification model that is trained on dataset D’. Figure 1 shows that both of 2 

datasets T and S have two same classes to be recognized, known as Pos (Positive) and Neg 3 

(Negative). After instance transfer, the instances of these classes in new dataset D’ have similar 4 

number. 5 

Source Dataset

Target Dataset New Dataset

num

Pos Neg

num

Pos Neg

num

Pos Neg

 6 

Figure 1. An instance transfer for imbalanced emotion classification 7 

Challenges of implementing the above core idea depicted in Figure 1 are as follows: how to 8 

measure the transferability of instances in S and how to homogenize the feature space of these 9 

instances with that of T. The similarity between feature space Ω(F|T) in T and feature space Ω(F|S) 10 

in S is adopted to evaluate the transferability of each instance in S. If Ω(F|T)=Ω(F|S), then 11 

instance transfer becomes a simple task to be solved as they have direct transferability. However, 12 

in general, datasets S and T not only have common words in the unigram sets or phases in the 13 

bigram set, but also have their own innate and unique words in the unigram set or phases in the 14 

bigram set. This leads to the issue of feature space inconsistency between T and S which can be 15 

represented as Ω(F|T)≠Ω(F|S).  We use two datasets collected from two famous Chinese 16 

e-commerce portals, Jingdong (www.jd.com) and Dangdang (http://www.dangdang.com/), and 17 

are named as JingDong and Dangdang, respectively in this research. The feature space of both 18 

datasets is one or many types of N-gram features, such as Unigram and Bigram of the product 19 

reviews corpora. In these two corpora, the products (topics) of Jingdong only include Laptop and 20 

PC, while the topics of Dangdang only includes digital product accessories. The number of items 21 

of Unigram and Bigram in the feature sets, JingDong and DangDang, are 1385 and 1258, and 22 

most of the items are different. 23 

Inspired by the idea of ‘topic’ sentence [20] and [21] provide a strong indication of overall 24 

subject in each product review, this research proposes a topic sentence-based instance transfer 25 

method for imbalanced emotion classification of Chinese product reviews. The contributions of 26 

the proposed approach are as follows:  27 

1) Introduce a concept, ‘topic’ sentence, of each product review. An algorithm for identifying 28 

topic sentence for each product review is proposed based on features of title, first sentence or last 29 

sentence of the review 30 

2) Introduce new feature spaces, based on two feature sets, features of topic sentences and 31 

features of the whole body of each review. A feature set of a topic sentence includes syntax 32 

http://www.jd.com/
http://www.dangdang.com/


feature and frequency of emotion words and relevant nouns as shown in Table 1. 1 

3) Propose a feature selection strategy for transferable instances, which is a greedy algorithm 2 

based on a function of extracting the proportion of sum of the information gain of Top-N common 3 

features between T and S datasets. This strategy helps to choose a set of common features, which 4 

contribute towards improvement of imbalanced data classification. 5 

4) Introduce a SMOTE [33] based method for processing feature space inconsistency in order 6 

to overcome the inconsistency problem between feature spaces of T and the instances transferred 7 

from dataset S. 8 

5) Generate a training dataset by immigrating instances depending on emotion class 9 

distribution of both T and S. 10 

 Note that, the datasets we used in this paper contain two similar scales of minority emotion 11 

classes. The terms, sentiment and emotion are exchangeable, and there is no difference between 12 

them in this paper [22]. 13 

2 Related works 14 

In the field of sentiment analysis of product reviews, two important issues, such as feature 15 

selection and classification methods, need to be discussed.  16 

Different features for sentiment classification are used to analyze product reviews [1-9, 13, 15]. 17 

Chen et al. [3] use dependency parsing with shallow semantic analysis for Chinese opinion 18 

related expression extraction. Wu et al. [4] use phrase dependency parsing for opinion mining. Hu 19 

et al. [5] used frequent item sets to extract the most relevant features from a domain and pruned it 20 

to obtain a subset of features, while abstracted the nearby adjectives to a feature as an opinion 21 

word regarding that feature. Kang et al. [13] adopted sentiment unigram and bigram as features. 22 

N-gram is also used as the features [13] [12]. Mukherjee et al. [7] abstract POS (part of 23 

speech)-tagged, all Nouns, direct neighbor and dependency relationship as the feature space of 24 

product feature. Cho et al. [15] presented a data-driven method for adapting sentiment 25 

dictionaries to diverse domains and showed that the integrated sentiment dictionary constructed 26 

using ‘merge’, ‘remove’, and ‘switch’ operations robustly outperforms individual dictionaries in 27 

the sentiment classification. Fu et al. [17] adopted HowNet lexicon for sentiment analysis of 28 

product reviews. 29 

Currently, different kinds of data mining based techniques [1-19] are employed in sentiment 30 

analysis of product reviews.  The researchers [2] applied text mining and NLP (natural language 31 

processing) approach to design NLP rule-based models for predicting sentiments in test data 32 

consisting of six hundred textual reviews for each app from Google Play, Android App Store. 33 

Mukherjee et al. [7] developed a system (rule-based and supervised classification) that extracts 34 

potential features from a review and clusters opinion expressions describing each of the features, 35 

which achieves a high accuracy across all domains and performs at par with state-of-the-art 36 

systems. Albornoz et al. [10] proposed a feature-driven approach for product review rating, and 37 

their proposed joint model based method performs significantly better than the previous 38 

approaches on featuring 1000 hotel reviews from booking.com. Maks et al. [11] incorporated 39 

standard machine learning techniques naive Bayes and SVM into the domain of online 40 

Cantonese-written restaurant reviews to automatically classify user reviews as positive or 41 

negative. Kang et al. [13] proposed an improved Naïve Bayes algorithm for sentiment analysis of 42 



restaurant reviews and got a higher accuracy than the original Naïve Bayes and SVM (support 1 

vector machine). Three supervised machine learning algorithms, Naïve Bayes, SVM and character 2 

based N-gram model are adopted for sentiment classification in [14]. Recently, Wang et al. [1] 3 

proposed a semi-supervised deep learning model which introduces supervised sentiment labels 4 

into traditional neural network language models for sentiment analysis. Both Fu et al. [17] and 5 

Bagheri et al. [18] adopted unsupervised methods for sentiment analysis of product reviews. After 6 

analyzing related literatures, we can conclude that most of the aforementioned methods are based 7 

on supervision approaches and only balanced datasets are used in their models. 8 

Imbalanced data classification [25] is a challenging problem in the field of machine learning. 9 

The imbalanced distribution of class labeled samples (or class distribution) makes the classifier 10 

heavily biased towards majority class/label during the training process, which leads to decrease in 11 

recognition performance [32]. The common methods to handle the above problem include data 12 

level sampling, cost sensitive learning, feature selection, feature weight adjustment and one-class 13 

learning
[
24][39]. 14 

Data level sampling mainly contains two basic methods known as over sampling and under 15 

sampling. Under sampling extracts some data from majority class to balance the class distribution. 16 

Over sampling repeatedly samples the minority class or directly copy them to increase the size of 17 

minority class to balance the class distribution. Pan et al. [31] and Barandela et al. [32] discuss 18 

advantages and disadvantages of these two sampling methods in relation to handling imbalanced 19 

problem. Under sampling leads to data loss, while over sampling increases training time and 20 

causes the effect of over-fitting. 21 

The main idea of cost sensitive learning is to assign different weights to elements in a fusion 22 

matrix of classified results when the instances of minority class and majority class are 23 

misclassified, which forces the classifier to pay more attention to minority class. Kamel proposed 24 

a boosting method based on cost sensitive training [34]. Zhou et al. proposed a method, which 25 

adopts neural network for cost sensitive learning to handle imbalanced problem [35]. 26 

The idea behind feature selection is to choose features, which are biased towards minority class 27 

in order to improve the learning outcome of minority class. Ogura et al. [24] proposed three 28 

metrics to select features, which are biased towards minority class, and they pointed out that these 29 

three metrics should be used synthetically. Liao et al. [36]
 
proposed a method that selects features 30 

biased towards minority class by using feature distribution information. Wang et al. [1] 31 

emphasized the problem of sentiment classification on imbalanced data and proposed a boundary 32 

region cutting algorithm that is only suitable for two-category sentiment classification problems, 33 

and rely on a single dataset. 34 

The feature weight adjustment corrects the classifier bias by assigning higher weight to features 35 

that is more important to minority class to solve imbalanced problem. Ying Liu et al. [37]
 

36 

proposed a method that adjusts features weight according to distribution ratio of minority class 37 

and majority class to increase the influence of minority class.
 

38 

One-class learning is mainly applied to situations in which class distribution is seriously 39 

imbalanced, such as information filtering and fraud detection. One-class learning trains a model 40 

by using a single class and ignores other information. Raskutti investigated the limitation of a two 41 

class discrimination from the data with heavily unbalanced class proportions and pointed out that 42 

there is a consistent pattern of performance differences between one and two-class learning for all 43 

SVMs [38]. 44 



The research efforts mentioned above solve imbalanced problem aimed at a single target data 1 

set. These efforts take full use of the information of data itself to solve the problem. In recent 2 

years, researchers begin to adopt auxiliary datasets to solve the classification problem in different 3 

applications [26-31]. This paper is inspired by the idea of topic sentence and aims to transfer 4 

similar instances from auxiliary datasets into a target dataset in order to overcome the imbalanced 5 

class distribution problem. 6 

3 A topic sentence-based instance transfer method 7 

As mentioned in Section 1, the challenge for the instance transfer method is how to measure the 8 

transferability of the instances (product reviews) in a dataset S. A top priority task of measuring 9 

the transferability of the instances is to find common features between T and S. As we understand, 10 

the on-line product reviews are a kind of paragraph-like writing-style. Inspired by the concept of 11 

‘topic’ sentence used in automatic generation of abstract of literatures [20], we intend to apply the 12 

similarity of the topic sentences of two product reviews in the different data sets to measure the 13 

similarity of the two product reviews because a topic sentence essentially tells what the rest of the 14 

paragraph is about. Note that the meaning of ‘topic’ in ‘topic’ sentences is different from the 15 

meaning of topic modelling. The topic in the field of topic modelling [22] is an object (such as 16 

products), event or domain, while the ‘topic’ sentence gives a strong indication of its overall 17 

subject [21]. 18 

Moreover, the core idea behind a common-feature selection-based instance transfer method is 19 

as follows: considering that the classification task on datasets S and T is same, we denote the 20 

feature space in T and the one in S as Ω(F|T ) and Ω(F|S) respectively, and then transfer similar 21 

instances in S into T. In general, Ω(F|T) ≠ Ω(F|S). In this paper, including the feature set of topic 22 

sentences, the features of product reviews have syntactic features, frequency features and N-gram 23 

features. Syntactic features and frequency features are shown in Table 1. In syntactic features, a 24 

Chinese sentiment lexicon base (include HowNet and our manually collected in our prior works 25 

[22], [23]) adopted. N-gram feature refers to the combinations of the words and has a strong 26 

dependency on data/corpus. In this paper, Bigram and Unigram are two feature subsets of N-gram. 27 

Based on the topic sentence, the challenges to implement the core idea are how to identify a topic 28 

sentence of each product review and evaluate the similarity and effectiveness of Ω(F|T) in T and 29 

Ω(F|S) in S, and how to overcome the inconsistent feature space between T and S that is caused 30 

by their unique features. We should solve the following problems: 1) identifying a topic-sentence 31 

of each product review and abstracting its features; 2) discovering and selecting common features 32 

of T and S; 3) evaluating the transferability of each instance in dataset S; 4) homogenizing 33 

incoherent feature spaces between transferred instances and dataset T to overcome issue of feature 34 

space inconsistency. 35 



 1 

Figure 2. The frame diagram of our proposed approach 2 

This paper proposes a new approach to solve the above problems. The frame diagram of the 3 

approach is shown in Figure 2. The dataset T contains N1 pieces of review instances and dataset S 4 

contains N2 pieces of review instances. TF  represents matrix of the feature values of dataset T 5 

and has k dimensions common features and p dimensions N-gram features. STPF  represents 6 

matrix of the feature values of the dataset that contains M2 pieces of transferable instances, and 7 

has k dimensions common features and p dimensions 0-value. omoHF  represents matrix of the 8 

feature values of the dataset that contains M2 pieces of transferable instances, and has k 9 

dimensions common features and p dimensions N-gram features generated. Matrix NEWF is the 10 

union of TF  and omoHF . The approach encompasses five steps: 11 

Step 1: Topic-sentence identification. This step corresponds to the label ① in Figure 2. A 12 

topic sentence of each product review is identified according to position and content of the 13 

sentences in each product review.  14 

Step 2: Common feature selection. This step corresponds to the label ② in Figure 2. A 15 

greedy algorithm based on a function for calculating proportion of sum of the information gain of 16 

Top-N common features of topic sentences between T and S is employed to solve the problem of 17 

discovering and selecting common features. In this paper, common features is used to represent 18 

common features of topic sentences. 19 

Step 3. Transferability evaluation. This step corresponds to the label ③ in Figure 2.It 20 

evaluates the transferability of each instance in dataset S to determine appropriate instances to 21 

transfer. It can be divided into two sub-problems: 1) Determining a suitable amount of the 22 

transferred instances; 2) choosing appropriate instances from dataset S. To solve sub-problem 1, it 23 



starts with balancing the instance size of the minority class in T to overcome its class imbalance. 1 

For the sub-problem 2, we adopt the cosine similarity scores based on common features of topic 2 

sentences to measure the similarity between instances in S and the corresponding ones in T. 3 

Table 1. Feature set of each topic sentence 4 

No. Items of feature Description of items of features in a topic sentence 

1 negatorBlongAtt There exists negators in the attributive part of a topic sentence 

2 existDegreeBelongAtt There exists adverbs of degree in the attributive part of a topic sentence 

3 advBelongAtt There exists adverbs in the attributive part of a topic sentence 

4 adjBelongAtt There exists adjectives in the attributive part of a topic sentence 

5 existPronoun There exists pronoun in the subjective part of a topic sentence 

6 negatorBelongadverCount Number of negators in the adverbial part of a topic sentence 

7 degreeBelongAdverCount Number of adverbs of degree in the adverbial part of a topic sentence 

8 advBelongAdver There exists adverbs in the adverbial part of a topic sentence 

9 adjBelongAdver There exists adjective in the adverbial part of a topic sentence 

10 emotionVerb There exists emotion verb in the predicate part of a topic sentence 

11 nagatorBelongComplement There exists negators in the complement part of a topic sentence 

12 degreeBelongComplement There exists adverbs of degree in the complement part of a topic sentence 

13 advBelongComplement There exists adverbs in the complement part of a topic sentence 

14 adjBelongcomplement There exists adjective in the complement part of a topic sentence 

15 existObject There exists objects in the object part of a topic sentence 

16 emotionNoun There exists objects in the object part of a topic sentence 

17 sentencestructure What topic sentence structure is, simple or clauses 

18 conjunction Conjunctions, such as casual. 

19 maxEverySetence The frequency of the most occurred character in a topic sentence 

20 posWord The frequency of positive words occurred in a topic sentence 

21 negWord The frequency of negative words occurred in a topic sentence 

22 FrePunct Frequency that a punctuation occurred in a topic sentence 

23 oneWord Frequency that a single word occurred in a topic sentence 

24 twoWord Frequency that a bigram/phrase occurred in a topic sentence 

25 FreFunctionWord The number of functional words in a topic sentence is composed of 

26 FreCha The number of characters in a topic sentence 

27 FreVerb Frequency that a verb occurred in a topic sentence 

28 FreNoun The number of nouns in a topic sentence 

29 FreAdv The number of verbs in a topic sentence 

30 FreAdj The number of adjectives in a topic sentence 

31 emotionSign Emoticons, for example, =. =, :@ 

32 emotionGraph Emotional image the speaker posted. 

33 otherSign Special punctuation, for example,??,!!,and . . . ., etc. 

Step 4: Homogenization. This step corresponds to the label ④ in Figure 2. It involves 5 

processing of the feature space inconsistency between the transferable instances from S and the 6 

ones in dataset T by combining the similar common features of T and S and feature space of T to 7 

solve the homogenization problem. 8 

Step 5: New dataset and Training. This step corresponds to the label ⑤ in Figure 2. It 9 



immigrates the transferable instances in S into dataset T by considering different emotions in 1 

order to form a new target dataset D’, and it trains different classifiers on it and evaluate and 2 

compare their performances on the trained classification models to select the best one. 3 

The following subsections describe the proposed method in details. Section 3.1 describes a 4 

topic-sentence identification method. Section 3.2 explains the method of selecting the common 5 

features of both T and S. Section 3.3 presents a cosine similarity calculation method for selecting 6 

the transferable instances from source dataset, which measures the transferability of each instance 7 

in S, while Section 3.4 introduces the homogenization process for the feature space of transferable 8 

instances in S. 9 

3.1 Topic-sentence identification method 10 

We have investigated the collected data and discovered that, if there exists a title of a product 11 

review or it has only one sentence in a product review, it is definitely a topic sentence; otherwise, 12 

most of times the topic sentence of the product review located in first sentence or last sentence. 13 

So, a rule and supervision learning hybrid method for identifying topic sentence is proposed. In 14 

which, if there exists a title of a product review or has only one sentence in a product review, the 15 

method labels it as a topic sentence of the product review; otherwise, we use nouns (includes the 16 

product name, type and its producer), their frequency of occurrence in the review, relevant 17 

keywords of products, emotion words and their POS-tag, and their dependency in the first 18 

sentence and last sentence of each product review forms the feature set. We apply seven 19 

classification algorithms including J48, Random Forest, ADTree, AdaBoostM1, Bagging, 20 

Multilayer Perceptron and Naïve Bayes to the labeled datasets while using ten-fold 21 

cross-validation to test the performance of each classification model. According to the 22 

experimental results, we use Bagging method to identify that a topic sentence is either first or last 23 

sentence of a product review. This experiment and its results are shown in Section 4.2. 24 

3.2 Common features selection in source and target datasets 25 

In the feature set of topic sentence, category variables are majority variables. After computing, 26 

we found that the proportion of sum of the information gain [40] of common features between T 27 

and S has a relatively large proportion in both datasets. So, we have decided to utilize this 28 

proportion to select common features. The steps of this process are as follows: 29 

1) Compute the information gain of each feature in T and S respectively, and sort and list 30 

these features in descending order based on their information gain; 31 

 2) Mark the position of common features in the sorted list; 32 

3) For each marked position, compute the proportion of the sum of information gain of 33 

common features at the specific position and all other features lower than that position and the 34 

sum of information gain of all the features which appear before the position (that is called as the 35 

proportion of sum of the information gain of common features between T and S). Select the 36 

common features, which have larger proportion to construct the feature set to represent instances. 37 
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Figure 3. Pseudo code of the function of the proportion of sum of the information gain of Top-N common 2 

features between T and S 3 

This process is shown in Figure 2, which is used for evaluating features by considering their 4 

weights in both datasets. The element position in two different ranked lists shows the difference 5 

of their importance in classification. There exists a subset of common features of T and S before 6 

the position of each element in the common features. The sum of the weight of this subset before 7 

the element’s position reflects the importance of this subset. In Figure 3, SF  represents the 8 

feature set of dataset S, and 1R  is the dimension of SF ; TF represents the feature set of dataset T, 9 

and 2R  is the dimension of TF ; 1 2R R ;
com

S TF  represents the common features of S and T 10 

datasets, R is the dimension of 
com

S TF . In computing process, Function mode calculates the 11 

element number in each dataset; If total   and S and T datasets have no common feature, 12 

the algorithm stops. SF ’
 is the feature set of S dataset and the features in it have been arranged in 13 

descending order based on the information gain. TF ’
 is the feature set of dataset T and its 14 

features have been arranged in descending order of their information gain. Function ( )IG F  15 

calculates the information gain of each feature in the feature space of corresponding dataset. 16 

Function Sort is to rank the data in descending order according to specified value. The 17 

equation , ]=[
SFS T S TF Fin Fdex’ ’ ’,（ ）is used to find the common features of S and T and return 18 

numerical value
SFindex . { , , ,... } | 1,2,...={ }S T S T S T S T S T S TF f f f f f i M ’ ' 1 ' 2 ' 3 ' M ' 1

, 19 



mod ( )S TM e F '
and ==M total ; { ( ) | 1,2,... }

SFindex index g g M   represents the 1 

index of the common features of S and T datasets in 
SF ’

; max_ ( )index Max TopN  is used 2 

to find the features which have the largest proportion of sum of the information gain of Top-N 3 

common features between target and source datasets, and return its index in 
SF ’

. In the line 21, 4 

we get feature set
com

S TF . 5 

3.3 Selection of transferable instances from source dataset using cosine similarity calculation rule 6 

Cosine similarity is a common method for calculating two files similarity in natural language 7 

processing, in which each file is represented in a form of feature vector. This research adopts the 8 

cosine similarity scores based on common features to measure the similarity between instances in 9 

S and the corresponding ones in T, and to evaluate the transferability of instances in S. The 10 

algorithm can be divided into the following three steps:  11 

Step1: Express each instance with the selected common features in a vector form, and 12 

normalize them. The feature normalization process involves two sub-steps: 1, processing category 13 

attributes: All category attributes/features are replaced directly with numerical value starting from 14 

0 and increased by 1 subsequently. For example, the feature conjunction has 8 values: none, turn, 15 

casual, supposition, coordinate, comparison, undertake and select. We replace them with 0, 1, 2, 3, 16 

4, 5, 6 and 7 respectively to convert the discrete quantities of the feature into numerical quantities; 17 

2, normalizing features: This adopts maximum and minimum normalization method [22] to 18 

normalize numerical features.  19 

Step2: Calculate the overall cosine similarity scores between corresponding emotion instances 20 

from source dataset and the emotion instances in target dataset. Generally, the more similar two 21 

instances are, the higher their overall cosine similarity score is. Let 22 

1 2 3{ , , ,..., } { | 1,2,..., }N pL l l l l l p N   denotes a set of class labels, N denotes the number 23 

of labels of classification tasks (in this paper, N=2, l1 represents positive emotion, and l2 24 

represents negative emotion), and the formula of cosine similarity calculation is as follows: 25 

1

( ( ), ( ))

( ( ))

P P

P

m
l l

l i

COS InsSou i InsTar j

score InsSou i
m




    (1) 26 

Where, 
 
denotes an instance labeled with pl  in the target dataset; 27 

1,2, ,j n  denotes that there are n instances with the same label in the target dataset; 28 

 denotes an instance labeled with pl  in the source dataset; 29 

denotes that there are K instances with the same label in the source dataset;

 

30 

means the common features-based cosine similarity score 31 

between
 

 

and , where the function COS calculates the cosine 32 

similarity between values of the common features of two instances after normalizing their feature 33 

values. 34 



Step3: The instances with same label from the same domains in source dataset are sorted by 1 

their cosine similarity scores based on common features in descending order, and the top ones 2 

have high priority for transfer. 3 

3.4 Homogenization processing of feature space 4 

Homogenization processing is used to solve the problem of incompatibility between the 5 

instances in source and target datasets. While the source and target datasets have common features, 6 

both T and S have unique features that lead to a situation where transferable instances from the 7 

source dataset cannot be used for training directly. Therefore, the homogenization processing 8 

should be carried out on the transferable instances to make the feature spaces of both T and S 9 

compatible. The elements and sizes of N-gram in T and S are different and their element types are 10 

numerical. In this paper, we adopt SMOTE method to produce the values of N-gram features of 11 

each instance to be transferred in order to make transferable instances compatible with the target 12 

dataset. 13 

3.5 Instance combination and model training 14 

The above three sections provide detail of how to select the instances to be transferred with the 15 

same label and from the corresponding domain of the source dataset and use the homogenization 16 

processing method to overcome the inconsistency of feature spaces between source and target 17 

datasets. Then, we transfer the instances selected from the source dataset into the target one to 18 

overcome the imbalanced problem in the target dataset. The next step is to train a sentiment 19 

classification model. The instance combination conforms to following two principles:  20 

1) An instance can only be transferred once, the reason is that multiple transfer of one same 21 

instance will cause over-fitting problem. 22 

2) Make the number of instances in each emotion class in T balanced. That is to overcome the 23 

imbalance in the target dataset as much as possible. 24 

4 Experiments and their analysis 25 

This section describes the steps involved in experiments carried out and the analysis of 26 

experimental results. 27 

4.1 Experiment 28 

The experiments involve following steps: 29 

Step1: Collect experimental corpora: Two datasets were collected from two famous Chinese 30 

e-commerce portal, Jingdong (http://www.jd.com) and Dangdang (http://www.dangdang.com). 31 

These datasets are named as JingDong and DangDang, respectively. The feature space of both 32 

datasets are one or many types of N-gram features, such as Unigram and Bigram, of the product 33 

review corpora, as well as the manually collected sentiment word base [23] is adopted when 34 

abstracting the features. In both corpora, the topics (products) of Jingdong only include Laptop 35 

and PC, while the topics of Dangdang only includes digital product accessories. Each review and 36 

its topic sentence in these corpora are labeled manually with polarity, negative or positive. 37 

Features (as shown in Table 1) and N-gram (Bigram and Unigram according to TF-IDF (term 38 

frequency-inverse document frequency)) are abstracted from Jingdong and produce two datasets, 39 

JDTSF and JDN-gram. Combining JDTSF and JDN-gram forms a new dataset JD. After 40 

abstracting these two features from Dangdang, we obtain DDTSF and DDN-gram. Merging the 41 



two datasets forms a new dataset DD. JDTSF, JDN-gram and JD are imbalanced datasets, while 1 

DDTSF, DDN-gram and DD are balanced datasets. So we take JD as the target dataset and DD as 2 

the source dataset. 3 

Step2: Identify the topic sentence of each review in Jingdong by employing the method 4 

described in Section 3.1 to evaluate the performance of the proposed method. 5 

Step3: Based on JDTSF and DDTSF select common features of topic sentences according to 6 

the steps mentioned in Section 3.2 and calculate the overall cosine similarity between instances in 7 

source dataset and instances in target dataset, then determine the instances to be transferred from 8 

source dataset. 9 

Step4: Carry out feature space homogenization processing method on the instances to be 10 

transferred according to the steps presented in Section 3.4. 11 

Step5: Incorporate the transferred instances into each domain of target dataset according to the 12 

steps described in Section 3.4 and form a new training dataset JDImmigration. Note that, for 13 

comparison with traditional data sampling strategies/methods for imbalanced datasets, other two 14 

dataset, JDResample and JDSmote, are produced by applying resample and SMOTE to JD. 15 

Step6: Apply five classification algorithms including J48, Random Forest, support vector 16 

machine, Random Committee and Naive Bayes to the above datasets while using ten-fold 17 

cross-validation to test the performance of each classification model. Note that, in Figure 4-9 18 

"RF" denotes Random Forest classification algorithm, Support Vector Machine [43] is denoted as 19 

"SVM", "RC" denotes Random Committee classification algorithm, and "NB" denotes Naive 20 

Bayes classification algorithm. The classification models, we take JDN-Gam, JD, JDResample, 21 

JDSmote, and CFImmigration as training set for the classification method and an extra dataset, 22 

JD634, in which 634 instances are collected from Jingdong as a testing dataset. To simplify the 23 

experiment, only J48, RF, RC, SVM, and NB are adopted in this step. 24 

In the classification experiments, "P", "R" and "F" denote Precision, Recall and F1-measure 25 

respectively. Precision is the ratio of the classified relevant instances divided by all classified 26 

instances, while Recall (also known as sensitivity) is the ratio of all classified relevant instances 27 

divided by all relevant instances in the dataset. F1-measure is the harmonic mean of Precision and 28 

Recall. The classification experiments are carried out using Weka [44]. In addition, Weighted 29 

Average of each indicator in our experiment is the result of multiplying the value of the indicator 30 

in each emotion class (positive and negative) by corresponding weights and adding the total sum 31 

of the overall value, then dividing the total sum by total number of units. 32 

 33 

4.2 Experimental results 34 

After carrying out Step1 in Section 4.1, the number of features in the feature sets, of JD and 35 

DD, are 1418 and 1291, respectively. The numbers of N-gram in the two dataset are 1385 and 36 

1258, respectively. The number of both positive instances and negative instances in DD is 2887. 37 

The number of positive instances in JD is 1600 while the number of negative instances in JD is 38 

320. 39 

Table 2. Performance of applying seven classification algorithms to identify topic sentences 40 

Classifiers Weighted. Average 

 P R F  

J48 0.890 0.881 0.880 

Random Forest 0.856 0.855 0.855 



ADTree 0.880 0.871 0.870 

AdaBoostM1 0.890 0.874 0.872 

Bagging 0.890 0.881 0.880 

Multilayer Perceptron 0.853 0.853 0.852 

Bayes  0.886 0.877 0.876 

Table 2 shows weighted average of Precision, Recall and F1-measure of seven classification 1 

algorithms on identification of topic sentence. After executing the method described in Section 2 

3.1, the average accuracy of identifying the topic sentence of each review of JD is 87.8%. The 3 

Bagging algorithm has shown the best performance. 4 

The common features are selected by applying the method described in Section 3.2 and shown 5 

in Table 3. 6 

Table 3. Selected common features according to the index of information gain 7 

No. Value of Information gain Feature name 

1 0.102806 adjBelongcomplement 

2 0.080285 negFre 

3 0.080285 posFre 

4 0.079128 adjBelongAtt 

5 0.077421 function 

6 0.073725 FrecharFre 

7 0.058382 adjBelongAdver 

8 0.057395 oneFre 

9 0.05737 nounFre 

10 0.052104 maxFre 

11 0.043774 negatorBlongAtt 

12 0.03817 otherSign 

13 0.03453 nagatorBelongComplement 

14 0.033746 adjFre 

15 0.029066 negatorBelongadverCount 

16 0.023059 twoFre 

17 0.018511 degreeBelongComplement 

18 0.016339 emotionVerb 

19 0.014923 advBelongAtt 

20 0.009263 degreeBelongAdverCount 

21 0.005853 emotionNoun 

After executing Step 4, the number of the transferred instances from DD is 1280 to make 8 

JDImmigration balanced. That is, the number of both positive and negative instances in 9 

JDImmigration is 1600. 10 

In order to highlight the overall performance, we just list and analyze the weighted average of 11 

Precision, Recall and F1-measure in the following paragraphs. We collectively explain 12 

performance on negative and positive emotions at the end of this section and their experimental 13 

results are shown in corresponding tables in the Appendix.  14 

Figures 4-6 show part of experimental results corresponding to Step 6 and Step 7 in our 15 

experiments.  16 



 1 

 2 

Figure 4. Weighted average of Precision of ten-fold crossing validation and the generalization ability evaluation  3 

Figure 4 shows the weighted average of Precision of ten-fold crossing validation and the 4 

generalization ability evaluation. In Figure 4, dotted lines depict the results of ten-fold crossing 5 

validation when applying J48, NB, RC, RF and SVM on JDN-gram, JDTSF, JD, JDResample, 6 

JDSmote and JDImmigration, while the solid lines show the results of generalization ability when 7 

applying J48, NB, RC, RF and SVM on JDN-gram, JD, JDResample, JDSmote and 8 

JDImmigration. 9 

 According to five dotted lines shown in Figure 4, the best result of weighted average of 10 

Precision in ten-fold crossing validation is achieved by applying RF to JDResample, which 11 

achieves a value of 0.99. The four methods, NB, SVM, RF and RC applied on JD, JDResample 12 

and JDSmote perform better than applied on JDN-gram. Compared with the performance 13 

achieved on JDN-gram, the average improvement in weighted average of Precision of JD, 14 

JDResample, JDSmote and JDImmigration are 0.99%, 4.40%, 1.94% and 2.14%.  15 

According to five solid lines shown in Figure 4, the best result of weighted average of Precision 16 

in generalization ability evaluation is achieved by applying SVM to JDImmigration, the value 17 

achieved is 0.913. Compared with the performance achieved on JDN-gram, the average 18 

performance improvement in weighted average of Precision of JD, JDResample, JDSmote and 19 

JDImmigrationare are 1.59%, 2.63%, 0.69% and 5.50% respectively. This show that our proposed 20 

method helps the adopted classification algorithms perform better than other methods in terms of 21 

the weighted average of Precision in generalization ability evaluation. 22 

 Note that, the percentage of average improvement is equal to the average of the difference of 23 

five method’s performance on JDN-gram and other dataset dividing by performance on 24 

JDN-gram. The percentages of average improvement mentioned in the following paragraphs are 25 

calculated in the same way. 26 



 1 

Figure 5. Weighted average of Recall of ten-fold crossing validation and the generalization ability evaluation  2 

Figure 5 shows the weighted average of Recall of ten-fold crossing validation and the 3 

generalization ability evaluation. In the figure, dotted lines depict the results of ten-fold crossing 4 

validation when applying J48, NB, RC, RF and SVM on JDN-gram, JDTSF, JD, JDResample, 5 

JDSmote and JDImmigration, while the solid lines show the results of generalization ability when 6 

conducting J48, NB, RC, RF and SVM on JDN-gram, JD, JDResample, JDSmote and 7 

JDImmigration. 8 

 According to five dotted lines shown in Figure 5, the best result of weighted average of Recall 9 

in ten-fold crossing validation is achieved by applying RF to JDResample, which achieves value 10 

of 0.99. The four methods, NB, SVM, RF and RC applied on JDResample and JDSmote perform 11 

better than applied on JDN-gram. According to Table 5, compared with the performance achieved 12 

on JDN-gram, the average improvement in weighted average of Recall of JD, JDResample, 13 

JDSmote and JDImmigration are 1.44%, 5.05%, 2.50% and 1.96% respectively. 14 

As shown by solid lines in Figure 5, the best result of weighted average of Recall in 15 

generalization ability evaluation is achieved by applying SVM to JDImmigration, a value of 0.907 16 

is achieved. The four methods, J48, RC, RF and SVM applied on JD, JDResample, 17 

JDImmigration and JDSmote perform better than applied on JDN-gram. Compared with the 18 

performance on JDN-gram, the average performance improvement in weighted average of Recall 19 

of JD, JDResample, JDSmote and JDImmigration are 11.11%, 15.91%, 10.32% and 23.91%. This 20 

show that our proposed method helps the adopted classification algorithms perform much better 21 

than others in terms of the weighted average of Recall in generalization ability evaluation. 22 

 23 



 1 

Figure 6. Weighted average of F1-measure of ten-fold crossing validation and the generalization ability 2 

evaluation  3 

Figure 6 shows the weighted average of F1-measure of ten-fold crossing validation and the 4 

generalization ability evaluation. In the figure, dotted lines describe the results of ten-fold 5 

crossing validation when applying J48, NB, RC, RF and SVM on JDN-gram, JDTSF, JD, 6 

JDResample, JDSmote and JDImmigration, while the solid lines show the results of 7 

generalization ability when applying J48, NB, RC, RF and SVM on JDN-gram, JD, JDResample, 8 

JDSmote and JDImmigration. 9 

 The five dotted lines shown in Figure 6 indicate that best result of weighted average of 10 

F1-measure in ten-fold crossing validation is achieved by applying RF to JDResample, and it 11 

achieves value of 0.99. The five methods J48, NB, SVM, RF and RC applied on JDResample 12 

perform better than applied on JDN-gram. Compared with the performance on JDN-gram, the 13 

average improvement in weighted average of F1-measure of JD, JDResample, JDSmote and 14 

JDImmigration are 1.54%, 5.82%, 3.08% and 2.58%. 15 

According to five solid lines shown in Figure 6, the best result of weighted average of 16 

F1-measure in generalization ability evaluation is achieved by applying SVM to JDImmigration, 17 

the value of which is 0.908. The five methods applied on JD and JDResample perform better than 18 

applied on JDN-gram. Compared with the performance achieved on JDN-gram, the average 19 

improvement in weighted average of F1-measure of JD, JDResample, JDSmote and 20 

JDImmigration are 14.18%, 20.0%, 14.14% and 28.54%. This show that our method helps the 21 

adopted classification algorithm perform better than Resample and SMOTE in terms of the 22 

weighted average of F1-measure in generalization ability evaluation. 23 

 24 

According to above experimental results, their analysis and Tables shown in Appendix, our 25 

conclusions are as follows: 26 

 As it can be observed from dotted lines shown in Figure 4-6 and Tables A1-A9 that the 27 

performance of four classification methods (J48, RC, RF and SMV) when applied on the 28 



feature set of topic sentences, JDTSF is good enough to achieve the performance comparable 1 

to JDN-gram considering the weighted average of Precision, Recall and F1-measure. This 2 

verifies that a ‘topic’ sentence is a strong indication of overall subject in each product review. 3 

 In step 6 of the experiment, for ten-fold cross validation, JDResample has the best 4 

performance, which reached 0.99 on all three indicators, Precision, Recall and F1-measure. 5 

The outstanding performance of JDResample is mainly caused by over-fitting problem. This 6 

over-fitting problem is caused by applying resampling method to the minority class of JD, 7 

because the number of its negative instances is increased from 189 to 1880 by repeatedly 8 

sampling and the classification models trained on this kind dataset tend to recognize the 9 

information of features of duplicated instances in minority class of JD. Same thing happened 10 

to JDSmote.  11 

 In order to evaluate the ability of generalization of Resampling, SMOTE and our proposed 12 

method, we conducted the step 7 of experiment. The results of step 7 show our proposed 13 

method has a stable improvement of Recall and F1-measure when applying J48, SVM, RC and 14 

RF. Moreover, F1-measure is the most common used method to comprehensively consider 15 

Precision and Recall indicators [45]. It effectively reflects the performance of the classification 16 

methods. Therefore, comparing the weighted average of F1-measure in the experiment, the 17 

average improvement of applying four classification methods (SVM, RF, RC and J48) to the 18 

immigration dataset produced by our proposed method outperforms other methods in the 19 

results of the generalization ability evaluation as well as the most results of ten-fold crossing 20 

validation. This verified that our proposed method overcome the influence of over-fitting 21 

problem and has an outstanding ability of generalization in terms of weighted average of 22 

F1-measure. 23 

 Considering the weighted performance index, Precision, Recall and F1-measure, in the 24 

experiments for evaluating the ability of generalization, SVM on JDImmigration outperforms 25 

other classification methods as well as the data-level imbalanced data processing methods, 26 

resample and SMOTE. 27 

 In our experiments, the improvement of performance of negative emotion is at a sacrifice of 28 

performance of positive emotion, this can be observed from Tables A1-A18. According to 29 

Tables A4-A6 and Tables A12-A15, the immigration dataset produced by our proposed method 30 

improves the classification performance on minority class (negative emotion) significantly in 31 

both ten-fold cross validation and generalization ability evaluation.   32 

 33 

5 Conclusion 34 

To effectively address the challenge of imbalanced sentiment analysis of product reviews, this 35 

paper proposes a topic sentence-based instance transfer method. This method is inspired by the 36 

topic sentence and combines a feature set of topic sentence with N-gram features as the new 37 

feature set. Firstly, a rule and supervised learning hybrid method is designed to identify topic 38 

sentence of a product review. Secondly, after incorporating the feature set of the topic sentence 39 

into the feature space of sentiment classification, a greedy algorithm based on a function of 40 

extracting the proportion of sum of the information gain of Top-N common features between 41 

source dataset and target dataset is proposed to help select the transferable instances. Next, a 42 



SMOTE-based method for processing feature space inconsistency in order to overcome the 1 

inconsistency problem between feature spaces of T and the instances transferred from dataset S. 2 

Extensive experiments on different feature sets produced by N-gram, resample, SMOTE and our 3 

proposed method are carried out. The experimental results show that (1) with the help of newly 4 

added features of topic sentence, many methods perform better than as on N-gram features; (2) it 5 

can be verified  that Resample leads to over-fitting problem of the trained classification model; 6 

(3) the most importantly  in the experiments for evaluating the ability of generalization, SVM 7 

outperforms J48, Random forest, Random Committee and Naive Bayes according to the weighted 8 

average of performance indices, Precision, Recall and F1-measure. 9 

Future work will focus on adapting our instance transfer method to process large scale corpora, 10 

even unlabeled ones. Moreover, the long-term vision for our research is to implement and employ 11 

a reliable service [41], [42] for a real e-commerce platform. The service will analyze imbalanced 12 

sentiments in product reviews in real time. 13 
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Appendix 1 

This appendix describes some experiment results haven’t listed in main body of this paper. 2 

Table A-1 Precision of five methods’ recognizing positive emotion on JDN-gram, JDTSF, JD, 3 

JDResample, JDSmote and JDImmigration 4 

Positive JDN-gram JDTSF JD JDResample JDSmote JDImmigration 

J48 0.906 0.918 0.932 0.927 0.914 0.891 

NB 0.96 0.917 0.969 0.955 0.922 0.753 

RC 0.905 0.924 0.904 0.984 0.928 0.938 

RF 0.906 0.923 0.903 0.99 0.931 0.968 

SVM 0.952 0.923 0.968 0.991 0.982 0.991 

 5 

Table A-2 Recall of five methods’ recognizing positive emotion on JDN-gram, JDTSF, JD, 6 

JDResample, JDSmote and JDImmigration 7 

Positive JDN-gram JDTSF JD JDResample JDSmote JDImmigration 

J48 0.996 0.964 0.962 0.933 0.931 0.913 

NB 0.893 0.955 0.949 0.938 0.969 0.99 

RC 0.99 0.973 0.993 0.994 0.993 0.969 

RF 0.996 0.979 0.998 0.996 0.996 0.978 

SVM 0.979 0.969 0.978 0.979 0.978 0.969 

Table A-3 F1-measure of five methods’ recognizing positive emotion on JDN-gram, JDTSF, JD, 8 

JDResample, JDSmote and JDImmigration 9 

Positive JDN-gram JDTSF JD JDResample JDSmote JDImmigration 

J48 0.949 0.941 0.947 0.93 0.922 0.902 

NB 0.925 0.936 0.959 0.947 0.945 0.855 

RC 0.946 0.948 0.946 0.989 0.959 0.953 

RF 0.949 0.95 0.948 0.993 0.962 0.973 

SVM 0.965 0.946 0.973 0.985 0.98 0.98 

Table A-4 Precision of five methods’ recognizing negative emotion on JDN-gram, JDTSF, JD, 10 

JDResample, JDSmote and JDImmigration 11 

Negative JDN-gram JDTSF JD JDResample JDSmote JDImmigration 

J48 0.963 0.763 0.773 0.829 0.819 0.911 

NB 0.602 0.717 0.768 0.852 0.91 0.985 

RC 0.906 0.814 0.932 0.986 0.977 0.968 

RF 0.963 0.851 0.98 0.99 0.989 0.977 

SMO(SVM) 0.88 0.796 0.885 0.95 0.944 0.969 
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Table A-5 Recall of five methods’ recognizing negative emotion on JDN-gram, JDTSF, JD, 13 

JDResample, JDSmote and JDImmigration 14 

Negative JDN-gram JDTSF JD JDResample JDSmote JDImmigration 

J48 0.484 0.572 0.65 0.816 0.78 0.888 

NB 0.813 0.569 0.85 0.891 0.794 0.675 



RC 0.481 0.6 0.472 0.959 0.806 0.936 

RF 0.484 0.591 0.463 0.975 0.814 0.968 

SVM 0.753 0.597 0.841 0.978 0.956 0.991 

Table A-6 F1-measure of five methods’ recognizing negative emotion on JDN-gram, JDTSF, JD, 1 

JDResample, JDSmote and JDImmigration 2 

Negative JDN-gram JDTSF JD JDResample JDSmote JDImmigration 

J48 0.644 0.654 0.706 0.822 0.799 0.899 

NB 0.691 0.634 0.807 0.871 0.848 0.801 

RC 0.629 0.691 0.627 0.972 0.884 0.952 

RF 0.644 0.697 0.628 0.983 0.893 0.972 

SVM 0.811 0.682 0.862 0.964 0.95 0.98 

Table A-7 Weighted average of Precision of five methods’ recognizing emotions on JDN-gram, 3 

JDTSF, JD, JDResample, JDSmote and JDImmigration 4 

Weighted Ave. JDN-gram JDTSF JD JDResample JDSmote JDImmigration 

J48 0.916 0.892 0.906 0.899 0.887 0.901 

NB 0.9 0.884 0.936 0.926 0.918 0.869 

RC 0.905 0.906 0.909 0.984 0.942 0.953 

RF 0.916 0.911 0.916 0.99 0.947 0.973 

SVM 0.94 0.902 0.955 0.979 0.972 0.98 

Table A-8 Weighted average of Recall of five methods’ recognizing emotions on JDN-gram, 5 

JDTSF, JD, JDResample, JDSmote and JDImmigration 6 

Weighted Ave. JDN-gram JDTSF JD JDResample JDSmote JDImmigration 

J48 0.911 0.899 0.91 0.899 0.888 0.901 

NB 0.879 0.891 0.932 0.925 0.919 0.833 

RC 0.905 0.91 0.906 0.984 0.939 0.953 

RF 0.911 0.915 0.909 0.99 0.944 0.973 

SVM 0.942 0.907 0.955 0.979 0.971 0.98 

Table A-9 Weighted average of F1-measure of five methods’ recognizing emotions on JDN-gram, 7 

JDTSF, JD, JDResample, JDSmote and JDImmigration 8 

Weighted Ave. JDN-gram JDTSF JD JDResample JDSmote JDImmigration 

J48 0.898 0.893 0.907 0.899 0.887 0.901 

NB 0.886 0.885 0.934 0.925 0.917 0.828 

RC 0.893 0.905 0.893 0.984 0.937 0.952 

RF 0.898 0.908 0.895 0.99 0.942 0.972 

SVM 0.94 0.902 0.955 0.979 0.971 0.98 

Table A-10 Precision of five methods’ recognizing positive emotion on JDN-gram, JD, 9 

JDResample, JDSmote and JDImmigration for evaluating the ability of generalization 10 

Positive JDN-gram JD JDResample JDSmote JDImmigration 

J48 0.458 0.549 0.601 0.549 0.697 

NB 0.686 0.752 0.782 0.566 0.448 

RC 0.468 0.501 0.521 0.516 0.716 

RF 0.463 0.498 0.534 0.541 0.693 



SVM 0.639 0.733 0.726 0.737 0.833 

Table A-11 Recall of five methods’ recognizing positive emotion on JDN-gram, JD, JDResample, 1 

JDSmote and JDImmigration for evaluating the ability of generalization 2 

Positive JDN-gram JD JDResample JDSmote JDImmigration 

J48 0.971 0.893 0.856 0.856 0.881 

NB 0.955 0.922 0.918 0.984 0.996 

RC 0.975 0.979 0.984 0.984 0.934 

RF 0.996 0.988 0.979 0.984 0.955 

SVM 0.992 0.959 0.959 0.955 0.942 

Table A-12 F1-measure of five methods’ recognizing positive emotion on JDN-gram, JD, 3 

JDResample, JDSmote and JDImmigration for evaluating the ability of generalization. 4 

Positive JDN-gram JD JDResample JDSmote JDImmigration 

J48 0.623 0.68 0.706 0.669 0.778 

NB 0.799 0.828 0.845 0.719 0.618 

RC 0.633 0.663 0.681 0.677 0.811 

RF 0.632 0.662 0.691 0.698 0.803 

SVM 0.777 0.831 0.826 0.832 0.884 

Table A-13 Precision of five methods’ recognizing negative emotion on JDN-gram, JD, 5 

JDResample, JDSmote and JDImmigration for evaluating the ability of generalization 6 

Negative JDN-gram JD JDResample JDSmote JDImmigration 

J48 0.945 0.895 0.882 0.867 0.914 

NB 0.964 0.945 0.944 0.982 0.99 

Rcom 0.956 0.97 0.978 0.978 0.951 

RF 0.992 0.981 0.975 0.98 0.964 

SMO 0.992 0.969 0.969 0.966 0.962 

Table A-14 Recall of five methods’ recognizing negative emotion on JDN-gram, JD, JDResample, 7 

JDSmote and JDImmigration for evaluating the ability of generalization 8 

Negative JDN-gram JD JDResample JDSmote JDImmigration 

J48 0.303 0.555 0.655 0.573 0.768 

NB 0.735 0.815 0.845 0.543 0.255 

RC 0.328 0.408 0.45 0.44 0.775 

RF 0.298 0.395 0.48 0.493 0.743 

SVM 0.66 0.788 0.78 0.793 0.885 

Table A-15 F1-measure of five methods’ recognizing negative emotion on JDN-gram, JD, 9 

JDResample, JDSmote and JDImmigration for evaluating the ability of generalization 10 

Negative JDN-gram JD JDResample JDSmote JDImmigration 

J48 0.458 0.685 0.752 0.69 0.834 

NB 0.834 0.875 0.892 0.699 0.406 

RC 0.488 0.574 0.616 0.607 0.854 

RF 0.458 0.563 0.643 0.656 0.839 

SVM 0.793 0.869 0.864 0.871 0.922 

Table A-16 Weighted average of Precision of five methods’ recognizing emotions on JDN-gram, 11 

JDTSF, JD, JDResample, JDSmote and JDImmigration for evaluating the ability of generalization 12 



Weighted Ave. JDN-gram JD JDResample JDSmote JDImmigration 

J48 0.761 0.764 0.776 0.747 0.832 

NB 0.859 0.872 0.883 0.825 0.785 

RC 0.772 0.793 0.805 0.803 0.862 

RF 0.792 0.799 0.808 0.814 0.862 

SVM 0.859 0.88 0.877 0.88 0.913 

Table A-17 Weighted average of Recall of five methods’ recognizing emotions on JDN-gram, JD, 1 

JDResample, JDSmote and JDImmigration for evaluating the ability of generalization 2 

Weighted Ave. JDN-gram JD JDResample JDSmote JDImmigration 

J48 0.555 0.683 0.731 0.68 0.81 

NB 0.818 0.855 0.872 0.709 0.535 

RC 0.572 0.624 0.652 0.645 0.835 

RF 0.561 0.619 0.669 0.678 0.823 

SVM 0.785 0.852 0.848 0.854 0.907 

Table A-18 Weighted average of F1-measure of five methods’ recognizing emotions on JDN-gram, 3 

JD, JDResample, JDSmote and JDImmigration for evaluating the ability of generalization 4 

Weighted Ave. JDN-gram JD JDResample JDSmote JDImmigration 

J48 0.52 0.683 0.735 0.682 0.813 

NB 0.821 0.857 0.874 0.706 0.486 

RC 0.543 0.608 0.641 0.633 0.838 

RF 0.524 0.601 0.661 0.672 0.825 

SVM 0.787 0.854 0.85 0.856 0.908 
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