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Abstract

MZXenes are promising electrode materials for Li-ion batteries because of their high Li ca-
pacities and cycling rates. We use density functional theory to investigate the structural and
energy storage properties of Li decorated ZroC and ZryCXs (X = F, O and S). We find for
ZrsC and ZroCSs high Li specific capacities and low diffusion barriers. To overcome the critical
drawbacks of the OH, F, and O groups introduced during the synthesis we propose substitution
by S groups and demonstrate that an exchange reaction is indeed possible. ZroCSy shows a

similar Li specific capacity as ZraCOs but a substantially reduced diffusion barrier.
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1 Introduction

Numerous two-dimensional materials, including boron nitride,® transition metal chalcogenides,? and

3 are products of the graphene era.*® MXenes” ! form a rather new class of two-dimensional

silicene,
carbides and/or carbonitrides'? with numerous potential applications in sensors, electronic devices,
optoelectronic devices, supercapacitors, or as catalyst materials.'>'® MXenes are commonly syn-
thesized by selective etching of the A metal from the three-dimensional M, 1 AX,, phases (where
n = 1,2,3,4, M is an early transition metal, A is a group 13-16 element, and X is C and/or N).1%:20
The M,,.1AX,, phases have hexagonal structures (space group P63/mmc), which are composed of n
“ceramic” MX layer(s) alternating with the “metallic” A layer. The combination of ceramic (high
decomposition or melting temperature, high elastic stiffness, and good machinability) and metallic
(high thermal shock resistance and good thermal and electrical conductivities) characteristics leads
to widely applicable materials.

The main drive for the investigation of MXenes as electrode materials for Li-ion batteries is the
high Li storage capacity, which is comparable to the commercial graphite electrodes.?! Small Li
diffusion barriers additionally result in high cycling rates.?!?? Most metallic MXenes provide a high
electrical conductivity.?® Ti,C has been predicted to be stable during the Li adsorption process?*
and dimethylsulfoxide intercalation has been demonstrated to improve the Li capacity of TizCy.?°
Concerning materials simulations, Xie and Kent?® have shown that the Perdew-Burke-Ernzerhof
(PBE) and Heyd-Scuseria-Ernzerhof (HSE06) functionals result in similar structural and electronic
properties for Ti,1C, (n =1 to 9), even though the HSE06 functional often is deemed to be more
accurate.

Although the MXene family grows continuously and consists of various types of compounds
(M = Sc, Ti, V, Cr, Zr, Nb, Hf, and Ta),?"?® only the titanium carbides have been investigated
systematically.?12426:29 Reports on the performance of other MXenes are scarce. In the case of V,C
a Li capacity of 941 mAh/g has been predicted when considering multilayer Li adsorption, which
is considerably higher than the experimental value of 260 mAh/g.3® The successful preparation of
Z1,11AX, phases332 paves the way to Zr-based MXenes, as the synthesis of MXenes from the
respective bulk materials is well established. Indeed, Zr-based MXenes are likely to be realized

more easily than their Ti and Nb counterparts because of larger differences in the bonding strength

within the ab-plane and along the c-axis.?? Inevitably, OH, F, and O groups cap the MXene during



preparation due to the presence of HF and H,0O.3* These hard nucleophiles may bind to Li to form
byproducts, which obstruct Li diffusion.?® In the present study we investigate the applicability of
Zr,C, a material that so far has escaped attention, for Li-ion batteries, focusing on new capping

elements, including S, Se, and Te.

2 Computational method

The calculations are performed in the framework of density functional theory using the projector
augmented wave method as implemented in the Vienna Ab-initio Simulation Package.®¢ The gen-
eralized gradient approximation (PBE flavor) is selected for the exchange-correlation potential.3”
Brillouin zone integrations are performed on 6 x 6 x 1 and 12 x 12 x 1 k-meshes, respectively, for
the geometry optimization and electronic structure calculations. A cut-off energy of 500 eV for the
plane wave basis is found to yield converged results. The energy criterion for the iterative solution
of the Kohn-Sham equations is set to 107% eV. All structures are relaxed until the residual forces on
the atoms have declined to less than 0.01 eV/A. A 2 x 2 x 1 supercell of monolayer Zr,C is used
to model Li decoration, where a vacuum layer of 15 A thickness is found to be sufficient to avoid
unphysical interaction between images due to the periodic boundary conditions. We have tested for
the Li diffusion barriers that the results for a 3 x 3 x 1 supercell deviate by less than 5%. The nudged
elastic band method?® with 7 to 9 images between the initial and final configurations is applied to
calculated the energy barriers of Li diffusion and thus to determine the minimum energy paths.
Reaction enthalpies A,.H are derived form the computed bulk/molecular total energies of the
reactants and products: —41.203 eV for ZroyCFy, —47.358 eV for ZroCOy, —40.087 eV for ZryCSs,
—32.656 eV for Sg, —3.557 eV for Fy, —9.858 eV for Oy, —22.953 eV for CO,, —16.220 eV for CS,,
—19.828 eV for COS, —11.202 eV for HyS, and —14.219 eV for H,O. The cohesive energy of Zr,CSs is
calculated to be 4.95 eV /atom, reflecting chemical stability. Gibbs energies A,.G are calculated using
the gas phase entropies at the respective temperatures, which are available from the NIST database,
except for the MXenes.?® We assume that i) an entropic contribution of the MXenes to the overall
thermochemistry of the conversions can be neglected due to very similar compositions and structures,
ii) all reactants are in the gas phase with the exception of the solid MXenes, which is reasonable
as similar conversions typically require elevated temperatures and gaseous reactants can well access

the MXene surface, and iii) A, H is constant within a synthetically reasonable temperature range.



ZrC

Figure 1: Structures of Zr,C and Zr,CX, (X = F, O, S, Se, and Te) (left: top view, others: side
view). The Zr, C, F, O, S, Se, and Te atoms are shown in blue, black, green, purple, brown, cyan,
and pink color.

Applying available gas phase enthalpy corrections,® A, H changes by less than 1.4 kcal/mol between
300 and 1000 K.

3 Results and discussion

Figure 1 shows the structures of Zr,C and Zr,CX, (X = F, O, S, Se, and Te). Non-magnetic,
ferromagnetic, and antiferromagnetic calculations are performed in the case of the bare MXene. An-
tiferromagnetism with parallel spins within each Zr layer but opposite spins in the top and bottom
Zr layers is found to constitute the ground state (10 meV per atom lower energy than ferromag-
netism), which contradicts previous calculations®® that have used a weaker energy criterion for the
self-consistency (10~* eV). The in-plane lattice constant of Zr,C is calculated to be 3.317 A, which is
in agreement with a previous theoretical result (3.269 A)_40 Added capping elements can be located
on top of the C, Zr(1) (top Zr layer), and Zr(2) (bottom Zr layer) atoms, on both sides of the MXene.
All groups favor to be located on top of the C atoms (coordinated equidistantly to three neighbouring
Zr atoms), which results in a non-magnetic state. The Zr(1)-X bond lengths are calculated to be
2.12, 2.53, 2.69, and 3.01 A for O, S, Se, and Te functionalization, respectively, reflecting the different
ionic radii. The Zr-F bond (2.33 A) is longer than the Zr-O bond due to the different oxidation states
of the anionic capping elements. The higher negative charge of the O group results in a stronger
Coulombic interaction to the positively charged Zr atoms.

Li can be located on top of the C, Zr(1), and Zr(2)/X atoms. Energetical favorable is Zr(2) for



Figure 2: Charge redistribution due to the interaction with Li. Yellow/red color represents charge
accumulation /depletion, where the isosurfaces refer to an isovalue of 2 x 1073 electrons/bohr®. The
Zr, C, Li, F, O, and S atoms are shown in blue, black, grey, green, purple, and brown color.

the bare MXene, C for F/O/S passivation, and Zr(1) for Se/Te passivation. The Li-X bond lengths
are calculated to be 1.86, 2.04, 2.29, 2.41, and 2.62 A for F, O, S, Se, and Te, respectively, due to
increasing atomic radii. The stability of a phase is given by its formation energy with respect to a

reference material,

AH=F — EMXene - Ereferencea (1)

where FE is the total energy of the full system, Fyxene the total energy of the MXene without Li, and
FEreference the total energy of the reference material (bulk Li and LisX). The capping atoms may form
byproducts with Li. For the F group and one Li atom with respect to LiF and the O, S, Se, and Te
groups and two Li atoms with respect to Lis X (X = O, S, Se, and Te) we obtain formation energies of
—0.25, —2.62, —1.06, 0.55, and 2.88 eV, respectively. Negative values indicate an exothermic process.
The instability of the Se and Te terminations when Li atoms are added is a consequence of the larger
Zr-Se and Zr-Te bond lengths. Since capping with Se and Te atoms is unstable in Li environment,
these cases will not be considered in the following. For decoration with a single Li atom with respect
to bulk Li we obtain values of —0.34, —1.05, —1.70 and —2.07 eV for Zr,C and Zr,CX,; (X = F, O
and S), respectively. The positive value of 0.88 eV in the case of ZroC(OH), points to the formation
5

of Li clusters.?

Further insight into the stability can be obtained from the charge density differences shown in



Table 1: Partial atomic charges (in electrons) calculated by the Bader approach for Zr,C and ZroCXy
(X =F, O, and S).

bare F O S
Li +0.81 +0.88 +0.87 +0.86
X —0.85 —1.35 —1.08
Zr(1) +0.82 +1.74 +2.15 +1.84
C -219 -214 -198 -—-194

Figure 2, defined as

Ap = P — PMXene — PLi, (2)

where p, pyxene, and pr; are the charge densities of the full system, the MXene without Li, and
an isolated Li atom, respectively. In the case of the bare MXene the charge redistribution towards
Li is significantly different from the cases of the passivated MXenes, reflecting differences in the
interaction. For the passivated MXenes, the charge redistribution becomes smaller from F to S
because of the decreasing electronegativity. Mostly the Zr(1) and X (X = F, O, and S) atoms are
affected. Table 1 lists partial atomic charges calculated by the Bader approach. A higher charge
redistribution indicates a stronger polarization of the electronic shells of the X atoms and this in turn
an enhanced covalency for the X-Li interaction, which explains the less negative formation energy
for Li decoration described above. The densities of states shown in Figure 3 demonstrate increasing
hybridization between the X p and Li s states (enhanced covalent interaction) from X = F to S.
The charging rate depends on the diffusion properties of Li. Three diffusion paths are considered,
where the ground state position of Li and its nearest neighbor positions are the initial and final
states. Path I/II passes the top of the C/Zr(1) and Zr(1)/X atoms, respectively, for the bare and
F/O/S passivated MXenes, whereas path III directly connects the initial and final states. Path I,
see Figure 4, exhibits a lower diffusion barrier than path II for all cases due to the strong interaction
at the transition states. Path III always converges to path 1. The diffusion barrier for Li along path
I is compared in Figure 5. ZryC shows the lowest value of 34 meV due to flat a surface charge
distribution with the transition state located on top of the Zr(2)-C bond. There is a local minimum
(17 meV) on top of the C atom. In the other cases the diffusion barriers are much higher, where
the transition state is located on top of the Zr(1) atom for Zr,CO, and on top of the Zr(1)-C bond
for ZroCFy and Zr,CSy. Presence of many OH groups can be expected because of the synthesis in
water.4! Although this group can be converted into an O group by high temperature annealing to

improve the Li stability,® the semiconducting character? and high diffusion barrier still limit the
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Figure 3: Densities of states for ZroCXs (X = F, O, and S) after Li decoration. The Fermi level is
set to zero.

applicability of the material. In contrast, ZroCSs is found to be metallic, which is crucial for battery
applications.

However, our calculations indicate that exchanging the OH, F, and O groups on the Zr,C surface
sheet for S should overcome these drawbacks. We expect that such an exchange should indeed be
experimentally feasible. Qualitatively, the conductive Zr,C has a high electron density and corre-
spondingly the Zr atoms should be considered rather soft Lewis metal centers unlike the Zr(IV) ions
in typical Zr salts, resulting in a preference for the soft S over the hard F and O anions. To evaluate
which reagent might allow the synthesis of Zr,CS,, we estimate the thermochemistry for conversions
of the respective MXenes from a combination of computational and experimental data.3"

Concerning the interconversions of the MXenes with elemental S, we find strongly endothermic
reactions

ZrZCXQ + 1/4 . Sg(g) — Zr2C82 + Xg(g)

132/128 kcal/mol for X = F/O. A temperature above 600 K would be required to achieve a reasonable
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Figure 4: Diffusion paths for Li atoms. The Zr, C, Li, and F/O/S atoms are shown in blue, black,
grey, and purple color. The surface charge distribution is shown in yellow for the O case. For the F
and S cases the distribution is virtually the same.

vapor pressure of Sg (and smaller S, molecules) in the gas phase.?? For X = F/O we obtain A,G
values of 125/121 kecal/mol at 298 K, 119/115 kcal/mol at 600 K, and 115/112 kcal/mol at 800 K.

Correspondingly, a reagent with a strongly exergonic S/O-exchange is necessary to drive the reaction.

HyS as S transfer reagent cannot provide the free energy required

AH® = —99.9 keal/mol, A,G° = —91.4 kcal/mol) so that a treatment of the MXenes with HyS is
not sufficient. A more exothermic S/O-exchange reagent should react with water under release of

43,44

HyS. CSs is known to hydrolyze under formation of CO, and HsS. Its formal conversion to COS

2CS,(g) + Oy — 2COS + 1/4 - Sg(g),

A H® = —127.2 kecal/mol, A,G° = —119.8 kcal/mol) can provide the necessary free energy. The
interconversion of Zr,COy with CSs to ZroCS, under the release of COS should therefore be nearly
thermoneutral and feasible, for example by applying an excess of S. The calculated A,G for this
reaction is 1.7 kcal/mol at 298 K, 2.6 kcal/mol at 600 K, and 3.2 kcal/mol at 800 K. The exchange

of both S atoms in CS, for O is slightly less exothermic

CSs(g) + O — COo + 1/4 - Ss(g),

A HY = —116.0 kecal/mol, A,G" = —107.4 kcal/mol) so that the ZryCO,/ZryCS, interconversion
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Figure 5: Diffusion barriers for Li atoms on ZryC and Zr,CX, (X = F, O, and S).

under the release of CO, is moderately endergonic (14.1 kcal/mol at 298 K, 16.7 kcal/mol at 600
K, and 18.5 kcal/mol at 800 K). Literature provides evidence that the above reactions are kineti-
cally feasible. CS, has a rich chemistry with transition metals and readily inserts into MO bonds.*®
Correspondingly, CSy has been used as a less toxic replacement of HyS in the preparation of metal-
sulfides form oxides, for example in the synthesis of ZrS,,%6 the full or partial S/O-exchange in spinel
LisTi5O12, and the preparation of other transition metal sulfides. 4”4

A high Li specific capacity (ability to absorb Li atoms) is crucial for usage of MXenes as anode
material. We consider adsorption up to a monolayer of Li on both sides of the MXene as our aim
is to demonstrate the effects of the functional group. The real capacity will be higher, because the
Li atoms can arrange in multilayers.3? The open circuit voltage as a function of the Li coverage is
addressed in Figure 6. For Zr,CLi, the voltage is approximately 0.4 V, ZroCO,Li, delivers a maximal
voltage of 2.5 V when 3 Li atoms are located on each side of the MXene (z = 1.5), and the voltage
decreases continuously for ZroCSyLi,. ZryCSy can absorb up to 10 Li atoms per 2 x 2 x 1 supercell
without forming clusters, see Figure 7, where 8 are located on top or bottom of C atoms and 2 on
top of Zr(1) atom, corresponding to 2.5 Li atoms per unit cell. Zr,C and ZryCO; can accommodate

9 Li atoms (2.25 Li atoms per unit cell), whereas ZryCFy can accommodate only 2 Li atoms without
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Figure 7: Side and top views of fully lithiated Zr,C, ZroCO,, and Zr,CSs. The Zr, C, O, S, and Li
atoms are shown in blue, black, purple, brown, and grey color.

forming LiF, as reported previously for TisCy and V,C.?23° The Li specific capacity is given by

e ©

where M is the atomic mass of ZroCXy and F' is the Faraday constant. We obtain 310 mAh/g for
Zr5C, 266 mAh /g for ZroCO, and 259 mAh /g for ZryCSy. These values are comparable to the high Li
specific capacity of TizCy (320 mAh/g).?? A much lower value of 58 mAh/g is obtained for Zr,CFs.

Importantly, the S group provides a similar performance as the O group.

10



4 Conclusions

Our comparative study of Li decoration of ZryC and Zr,CX, (X = OH, F, O, S, Se, and Te),
for evaluating possibilities and limitations of application in Li-ion batteries shows that the charge
redistribution at the interface between Li and the functional group of the MXene decreases from F to
S, following the electronegativity trend. Li specific capacities of 310 and 259 mAh /g are obtained for
Zr5C and ZryCS,, respectively, which are very promising values. Zr,CSs shows a substantially reduced
diffusion barrier but similar Li specific capacity as ZroCO,. Nowadays OH, F, and O groups attached
to the surface are inevitable during the preparation of MXenes. Their replacement with S groups is
predicted to result in high electric conductivities and cycling rates (minor structural distortions, low
diffusion barriers) for Li-ion batteries using Zr-based MXenes. In addition, byproducts affecting the
lifetime are avoided. Importantly, the replacement is compatible with present synthesis techniques,
since it can be applied to the as-prepared MXenes. While OH groups can be converted into O
groups by high temperature annealing, O and F groups can be replaced by S groups via moderately
endergonic and kinetically feasible reactions with CSs in solution. Zr-based MXenes therefore are

predicted to form a class of highly promising electrode materials for Li-ion batteries.
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