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GRAPHICAL ABSTRACT 

 

 

 

HIGHLIGHTS 

 Use of bis-tryptaminium dual-sulfonate bis(indolenine)squaraine salt 

 Ternary complexes indicate molecular interactions, observed in UV-vis 

 No enhanced fluorescence (above that of other squaraines) in protein solutions 

 X-ray crystal structures of two tryptamine proton-transfer salts are reported 

 Electrophoresis gels stained with bis-tryptaminium squaraine fluoresce 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

A water-soluble dual pendent squaraine with tryptaminium cations has been mixed 

with mono-nitroaromatics in solution to create ternary complexes with the aim of creating 

indole-nitroaromatic charge-transfer pairs. Examination of the X-ray crystal structures of two 

tryptamine-nitroaromatic complexes, without the squaraine moiety, revealed that neither 

demonstrated charge-transfer pair or stacking associations between the indole and 

nitroaromatic rings. Examination of the fluorescence performance upon illumination with 300 

nm light of each ternary squaraine complex, particularly in the presence of an equimolar 

amount of protein, showed that the levels across the series were no more than that observed 

for the base bis-tryptaminium squaraine, as was observed in a previous study. However, 

electrophoresis gels stained with the base bis-tryptaminium squaraine, whose X-ray crystal 

structure is also reported, were found to fluorescence; the only other squaraine dye of this 

type to do so in addition to the bis-piperidinium squaraine of previous studies.  

 

Keywords: Squaraine dyes; X-ray crystal structure; Gel electrophoresis; Tryptaminium salts; 

Protein detection; Fluorescence 

 

 

1. Introduction 

Electrophoresis gel documentation systems (or gel docs), those commonly employed 

to fluorometrically image electrophoresis gels, are fitted with an ultraviolet (UV) light 

illuminator source emitting UV light at 310 ± 40 nm. For this reason, dyes such as ethidium 

bromide, which fluoresces a bright orange colour when excited with UV light, is equally 

commonly employed as a fluorescent tag in detecting nucleic acids in gel electrophoresis 

techniques [1], where the gels are imaged using a gel doc. In contrast, 



bis(indolenine)squaraine dyes, studied as fluorescent protein-sensitive molecular probes, 

fluorescence in the near-infrared region of the visible spectrum and thus require excitation at 

the wavelength of maximum visible light absorbance (i.e. λmax), which is normally > 600 nm 

[2-4]. It was therefore surprising to discover that the bis-piperidinium salt of a dual pendant 

sulfonate bis(indolenine)squaraine (1) (Fig. 1) fluoresced an intense pink color when a 

protein loaded gel, stained with this particular dye, was imaged in fluorescence mode (i.e. 

illumination with the UV light source) on a gel doc [5]. No other variant in that series of dual 

pendant sulfonate squaraine dyes, including dyes charge-balanced with alkali metals, could 

emulate this [6]. Compound 1 does not specifically absorb in the UV region so a synthetic 

strategy, and subsequent study, was devised that incorporated charge-transfer complexes with 

the squaraine dye in an attempt to increase the UV absorption of the squaraine-based 

compound [7]. This was done with the aim of promoting energy transfer from the charge-

transfer component to the squaraine moiety to increase the squaraine fluorescence. The 

synthetic strategy adopted, similar to that illustrated in figure 2, involved the use of di-nitro 

aromatics, which are known to form charge-transfer complexes with the indole ring of the 

tryptamine cation. However, examination of each of these squaraine-based compounds 

against that of the squaraine-tryptaminium salt (2), both with and without the presence of 

protein, showed no improvement in fluorescence output upon illumination of UV light (at 

300 nm). As a continuation to that study, here we report the use of four mono-nitro aromatics 

for potential incorporation with compound 2 to create compounds 3 – 6 (Fig. 2). The single 

crystal structures of 2 and two of the individual complexes employed (7 and 8), illustrated in 

figure 3, are reported, as are the results following use of two of the ternary complexes plus 

compound 2 as both colorimetric and fluorometric stains for gel electrophoresis.             

 

 



2. Experimental 

2.1. Synthesis 

All chemicals were purchased from Sigma-Aldrich and were used as received without 

further purification. The water used in this study was purified using reverse osmosis 

techniques. Infrared spectra were recorded using a Perkin-Elmer Spectrum 100 FT-IR 

spectrometer. 1H NMR data were recorded in DMSO-d6 on a Bruker AVIIIHD 500 MHz FT-

NMR spectrometer equipped with a SMART probe. Details of the synthesis of 2,3,3-

trimethyl-1-(propan-3-sulphonyl)-indolenine, bis-piperidinium 2,4-bis-(3,3-dimethyl-(1-

propan-3-sulphonate)-2-indolinylidenemethyl)cyclobutene-1,3-diolate (1) [5] and  bis-(2-

(1H-indol-3-yl)ethanaminium) 2,4-bis-(3,3-dimethyl-(1-propan-3-sulphonate)-2-

indolinylidenemethyl)cyclobutene-1,3-diolate (2) [7] have been previously published, with 

the crystal structure of 1 (as a trihydrate) also previously reported [6]. 

 

2.1.1. Preparation of tryptamine-squaraine-nitroaromatic complexes 

 Bis-(2-(1H-indol-3-yl)ethanaminium) 2,4-bis-(3,3-dimethyl-(1-propan-3-sulphonate)-

2-indolinylidenemethyl)cyclobutene-1,3-diolate hemihydrate (2) (2.90 mg, 3.0 μmol) was 

dissolved with twice molar amounts of 2-nitrophenol (0.83 mg, 6.0 μmol), 4-nitrophenol 

(0.83 mg, 6.0 μmol), 5-nitroquinoline (1.0 mg, 6.0 μmol) and 5-nitroisoquinoline (1.0 mg, 6.0 

μmol), in water (100 mL) with sonication to produce 30 μM stock solutions of 3, 4, 5 and 6 

respectively. 

 

2.1.2. Synthesis of tryptaminium salts for X-ray analyses 

Tryptamine (100 mg, 0.62 mmol) was reacted with an equimolar amount of either 2-

nitrophenol (86 mg), 4-nitrophenol (86 mg), 5-nitroquinoline (108 mg), or 5-

nitroisoquinoline (108 mg) by warming in ethanol (3 mL). Total evaporation of the ethanol 



from each reaction yielded yellow crystals for 7 and 8, a yellow-brown gel for 9 (that 

solidified after several days) and yellow-brown powder for 10, each identified as organic salt 

complexes (for 7 and 8) or a co-crystal adduct (for 9 and 10) using infrared spectroscopy 

techniques. Compounds 7 and 8 yielded crystals from which specimens were cleaved for the 

X-ray analyses.  

 

2.1.3. X-ray crystallographic analysis 

Crystallographic data for 2 was collected at 100(1) K on a Rigaku Saturn724+ 

diffractometer using monochromatized Mo-Kα x-ray radiation (λ = 0.71075 Å) equipped 

with an Oxford Cryosystem low temperature device, and for 7 and 8 was collected at 200(1) 

K on an Oxford Diffraction Gemini-S CCD-detector diffractometer using monochromatized 

Mo-Kα X-ray radiation (λ = 0.71073 Å). All structures were solved by direct methods 

SHELX97 [8], and refined by full-matrix least-squares calculations. Crystal data for 2: 

C52H60N6O8S2, Mw = 961.18, monoclinic, P21/n, Z = 2, a = 14.3879(9), b = 5.8044(3), c = 

29.186(2) Å, β = 99.645(7)°, Dcalcd = 1.328 g cm-3, T = 100(1) K, F(000) = 1020, μ = 0.173 

mm-1, 13756 reflections were collected, 4230 unique (Rint = 0.0698), 2780 observed (I > 

2σ(I)), 310 parameters, R1 = 0.0528, wR2 = 0.1161.Crystal data for 7: C16H17N3O3, Mw = 

299.33, monoclinic, P21/c, Z = 4, a = 14.334(3), b = 4.9651(8), c = 20.658(4) Å, β = 

94.59(2)°, Dcalcd = 1.357 g cm-3, T = 200(1) K, F(000) = 632, μ = 0.096 mm-1, 5773 

reflections were collected, 2878 unique (Rint = 0.0619), 1542 observed (I > 2σ(I)), 226 

parameters, R1 = 0.0754, wR2 = 0.1277. Crystal data for 8: C16H17N3O3, Mw = 299.33, 

triclinic, Pī, Z = 2, a = 8.4490(9), b = 9.7178(8), c = 9.7199(9) Å, α = 74.751(7), β = 

74.168(8), γ = 84.662(7)°, Dcalcd = 1.333 g cm-3, T = 200(1) K, F(000) = 316, μ = 0.094 mm-1, 

4949 reflections were collected, 2925 unique (Rint = 0.0209), 2307 observed (I > 2σ(I)), 211 

parameters, R1 = 0.0419, wR2 = 0.0916. Crystallographic data (2 (CCDC 1421976), 7 (CCDC 



1054363) and 8 (CCDC 1054364)) have been deposited at the CCDC, 12 Union Road, 

Cambridge CB2 1EZ, UK. 

 

2.2. Materials 

Bovine serum albumin (BSA) was purchased from Sigma-Aldrich and used as 

received without further purification. A stock solution of 100 μg/mL BSA was prepared by 

dissolving BSA (10 mg) in water (100 mL), for immediate use. 

 

2.3. Spectroscopic measurements 

Visible absorption spectra were recorded on a Shimadzu UV-1650 UV/visible 

spectrometer. Absorbance spectra for 7 – 10 were recorded between 200 – 800 nm in a 3 mL 

cell at a concentration of 70 μM whereas the spectra for 2 – 6 were recorded at a 

concentration of 10 μM. Visible absorption spectra of tryptamine, 5-nitroquinoline, 5-

nitroisoquinoline, 9 and 10, were recorded in aqueous solutions with 10% v/v 

dimethylsulfoxide, to ensure full solubility of the compound. For this reason the UV-visible 

spectrum in each of these cases is cut-off below 240 nm. All other spectra were recorded in 

water. 

 

2.4. Fluorescence measurements 

 Solution fluorescence measurements were made on a Perkin-Elmer luminescence 

spectrometer LS50. Arbitrary fluorescence emission intensities were recorded between 330 – 

800 nm (excitation: 300 nm) in a 3 mL fluorescence cell at a concentration of 1 μM. For the 

solutions without the presence of protein, 100 μL of squaraine stock solution was diluted to 3 

mL in the fluorescence cell. Solutions containing protein had 2 mL of BSA stock solution 

plus 100 μL of squaraine stock solution diluted to 3 mL in the fluorescence cell. 



 

2.5. Gel electrophoresis experiments 

 All electrophoresis gels were prepared according to previously described 

methodologies [5]. For each gel, lanes 2 - 8 were consecutively loaded with 20, 15, 12.5, 10, 

7.5, 5, and 2.5 µL of unstained Precision Plus Protein standard from Bio-Rad. Staining with 

selected squaraines was undertaken using 200 mL aqueous solutions containing a dye 

concentration of 5 x 10-4 M. All squaraine staining solutions were mixed for 16 h and filtered 

before use. All gels were imaged, immediately following destaining, using a Bio-Rad Gel 

Doc EZ Imager system.   

 

3. Results and discussion 

3.1. Synthesis strategy 

 The background to the strategy adopted for this current study is detailed in the 

previous paper [7] and involves the incorporation of charge-transfer complexes with a 

squaraine dye with the aim of increasing the absorption of the overall complex at 300 nm. As 

mentioned in the previous paper, the use of tri-nitro aromatics was dismissed on health and 

safety grounds, even though they may display the biggest improvement in complex 

absorption at 300 nm. Results from the di-nitro aromatics demonstrated that formation of the 

desired complexes was achieved but no additional improvement in the squaraine fluorescence 

was achieved with excitation at 300 nm. With this in mind, two mono-nitro aromatics chosen 

for examination in this study were 2-nitrophenol (2NP) and 4-nitrophenol (4NP). There were 

many other possibilities but the one advantage of using these two mono-nitro aromatics was 

the fact that, at low concentration (i.e. 30 μM) both are soluble in water. Although the use of 

10% dimethylsulfoxide (DMSO) in water was required in the last study to dissolve certain 

chemicals, water solubility was an important consideration in this study for the choice of 



mono-nitro aromatics. However, as stated in the previous study, two choices pre-determined 

for this study were 5-nitroquinoline (NQ) and 5-nitroisoquinoline (NIQ).  The intention of 

using nitro-substituted aromatics in this study is that they (being considered as acceptor rings) 

should form charge-transfer complexes with the tryptamine ring (a strong donor ring), as 

observed with the di-nitro aromatics in the last study [7], thus increasing the absorption of the 

complex across the blue – UV region of the visible spectrum.  

 

3.2. X-ray crystallographic analysis 

Fine needle crystals of 2 formed out of the DMSO-d6 solution used to record the 1H 

NMR spectrum, and were suitable for X-ray crystal structure elucidation. The structure of 2 is 

illustrated in figure 4 and shows a centrosymmetric squaraine molecule in the trans 

conformation, similar to the structure of 1 [6]. However, unlike 1, and all of the all of the 

other previously reported crystal structures in this series bar the structure of the bis-

quinolinium dye [5,6], the structure of 2 does not contain any water molecules. The main 

squaraine moiety of 2 is slightly twisted with a dihedral angle of 21.0(3)° between the plane 

of the squarate group and the plane of the indolenine ring. All previous dihedral angles 

observed in the crystal structures for this series of dyes are listed in Ref. [6]. The dihedral 

angle between the squarate group and the indole ring of the tryptaminium cation is 89.4(3)°. 

The indole N—H hydrogen bonds to an adjacent sulfonate oxygen atom O4 [2.925(4) Å; -x - 

½, y + ½, -z + ½], whereas the three aminium hydrogen atoms sequentially hydrogen bond to 

the squarate oxygen O1 [2.746(3) Å], and the two remaining sulfonate oxygen atoms O2 

[2.763(3) Å] and O3 [2.796(3) Å; x, y + 1, z]. For reference to those listed in Ref. [6], the 

three torsion angles, in the structure of 2, that define the pendant sulfonate group are C13-N1-

C14-C15 [78.4(3)°], N1-C14-C15-C16 [175.5(2)°] and C14-C15-C16-S1 [-84.3(3)°]. 

Furthermore, although the squaraine moieties in 2 are off-set stacked, the intermolecular 



distances between the closest atoms are > 4 Å, thus no charge transfer associations are noted. 

Similarly, no such associations are observed for the indole ring in the tryptaminium cation, 

which (being a strong electron donor ring) could possibly charge transfer stack with the 

strong electron-accepting squarate group.          

Figure 5 shows each of the associated molecular pairs for 7 and 8 with a common 

atom numbering scheme used for easy comparison of the cation (A) and the anion (B) species 

in each of the structures. Figures 5a and 5b show two confirmations of the tryptamine cation 

in the structure of 7 due to the indole ring rotating around a line running approximately 

through C3A, C9A and C6A. This is a very unique type of disorder for an indole molecule. 

The angle between the two six-membered rings is 37.7(4)°, and 41.8(4)° for the five-

membered rings. Interestingly, the ethanaminium chain is not involved in the disorder. For 

both structures (7 and 8), the tryptaminium cations show no regular side-chain 

conformational features, as indicated by the defining torsion angles C2A –C3A-C31A-C32A1 

and C3A-C31A-C32A-N32A (tabulated values have been deposited as supplementary 

material). However, neither crystal structure demonstrates any cation-anion charge-transfer 

interactions, which is interesting because such interactions are observed in both the crystal 

structures of tryptamine with benzoic acid [9] and 4-chlorobenzoic acid [10], respectively, 

and nitrophenols are expected to be stronger acceptor rings than either benzoic acid or it’s 4-

chloro derivative. The crystal packing found in the structures of 7 and 8 is described in more 

detail in the Supplementary material. 

 

 

 

 

                                                 
1 C21A-C3A-C31A-C32A and C22A-C3A-C31A-C32A for 7. 



3.3. Spectroscopic investigations  

3.3.1. UV-visible spectroscopy 

 Figure 6 is a collection of solution absorbance spectra across the UV-visible range for 

compounds 2 – 6 and 7 – 10. Figures 6a, 6c, 6e and 6g are the combined spectra for 

compounds 7 – 10, respectively, and their constituent components. Synthesis of these 

compounds, through the addition of one component dissolved in ethanol to the other 

(dissolved in ethanol), yielded an observable increase in colour intensity for the combined 

mixture. This increase in colour intensity (upon mixture of solutions of the constituent 

molecules) is commonly observed in the preparation of charge-transfer complexes (if the 

appropriate molecules are present) although it is not the definitive sign for the construction of 

such complexes [11]. UV-visible examination of solutions of the resultant complexes 

corroborates an increase in colour intensity for compounds 7 (Fig. 6a) and 9 (Fig. 6e), but not 

for 8 (Fig. 6c) or 10 (Fig. 6g). None of these spectra, in corroboration with the crystal 

structures of 7 and 8, indicate the presence of charge-transfer associations because no 

additional absorption, other than across the wavelengths absorbed by the individual 

components, is observed. This is interesting because the previously determined structure of 

indole-2-carboxylic acid with NQ arranges in charge-transfer stacks [12].  

Figures 6b, 6d, 6f and 6h are the combined spectra for compounds 3 – 6, respectively, 

and their constituent components including 2. This latter spectral series all show increased 

absorption below 400 nm, in comparison with the spectra of their constituents. The two 

crystal structures of 7 and 8 and the spectra of 7 – 10 would each suggest that these increases 

in absorption are not due to charge-transfer associations. However, squaraine dyes consist of 

a donor-acceptor-donor structure in their rings and this structure has been the subject of much 

comment throughout the history of squaraines and it is possible that the nitro aromatics 

studied in this paper associate (in some form) with one of the two donor rings in the 



squaraine moiety, in much the same way that Smith et al. utilize donor rings to associate with 

the central acceptor ring in the squaraine to form their squaraine rotaxanes [13].  

Corroboration that 3 – 6 in solution are ternary complexes comes in two forms. The 

first is that, similar to the water insoluble di-nitro aromatics in the previous paper [7], the 

water insoluble constituents in this paper, NQ and NIQ, are both dissolved (at 30 μM 

concentration) in a water solution containing 2. The second is indicated in a study of λmax for 

each ternary complex with increasing solution concentration, as opposed to the same for 2. 

Figure 7a is a plot of λmax verses solution concentration for a solution of 2 in water and it can 

be seen that 2 is linear to a concentration of 7 μM (or 7 x 10-6 M). Interestingly, 1 is also 

linear to 7 μM (refer Supplementary material). But, similar plots of 3 – 6 (Fig. 7b) all show 

linearity to 10 μM (or 1 x 10-5 M) and above. Plots of 2 with 3,5-dinitrobenzoic acid 

(DNBA), 3,5-dinitrosalicylic acid (DNSA), and 2,4-dinitrophenol (DNP) show that although 

2 with DNBA is linear to 8 μM, the other two are linear to (and above) 10 μM (refer 

Supplementary material). There are a number of possible reasons why higher concentrations 

of both 1 and 2 reduce from linearity, and most of those reasons are due to the possible 

aggregational forms that 1 and 2 can take at higher concentrations, but incorporation of 

additional species that can interact with either the tryptamine ring or squaraine moiety in 2 

must disrupt the formation of those aggregational forms thus allowing linearity to increased 

concentrations.     

 

3.3.2. Fluorescence spectroscopy 

 Figure 8 is a collection of comparative solution fluorescence spectra for compounds 2 

– 6 (figure 8a – 8e respectively) both with (upper) and without (lower) an equimolar amount 

of BSA, plus BSA itself (Fig. 8f), all irradiated using 300 nm light. All spectra were recorded 

at a concentration of 1 μM  (or 1 x 10-6 M) for the squaraine and, as observed in the previous 



paper for 2 with DNBA and 2 with DNP [7], none indicate any increase in fluorescence 

intensity over that of 2 by itself upon irradiation with 300 nm light. Although these ternary 

complexes have been interesting to study and the results thus far obtained have demonstrated 

the principle of ternary formation in solution, with a multitude of further possibilities; the 

primary aim of improving upon the fluorescence of 2 by creating a charge-transfer complex 

has not been achieved.  

 

3.4 Gel electrophoresis 

 The purpose of the solution fluorescence studies thus far undertaken on the ternary 

squaraine complexes previously reported [7] and in this paper was to screen the fluorescence 

performance of any particular complex (upon excitation at 300 nm), to minimize the number 

of complexes that required full experimentation on gel electrophoresis. With the 

spectroscopic results (across all ternary complexes except for 2 with DNSA) indicating no 

difference between ternary complex and compound 2, reliance fell upon the X-ray crystal 

structure results to determine which complexes should be further studied in the gels. 

Evaluation of all X-ray crystal structure results (both previously reported in Ref. [7] and in 

this paper) suggested that only two ternary complexes, those of 2 with DNBA and 2 with 

DNSA (both from Ref. [7]), were worth studying in electrophoresis gels because they were 

the only complexes where there was a definite indication of charge-transfer stacking 

interactions between the nitroaromatics and the tryptaminium moiety. As a ‘control’ to gels 

stained with 2 with DNBA and 2 with DNSA, gels were also stained with compound 2 by 

itself. The performances of these three stains were further compared against the performance 

of compound 1. Limits to the solubility of compound 2 meant that staining solutions were 

half the concentration of those previously utilized (i.e. 1 x 10-3 M) [5,6]. The colorimetric 

performance of 2 with DNBA, 2 with DNSA and compound 2 itself on gels containing 



separated proteins was equal across all gels; judged on stain intensity and protein band 

resolution (Fig. 9). Gels stained with these three complexes were colorimetrically less intense 

than comparative gels stained with compound 1. Staining at the reduced concentration (of 5 x 

10-4 M) certainly resulted in reduced destain procedures, with only two or three washes 

within an hour being required to return gels with a clear background, but colorimetric results 

were not as good as those previously determined for 1 and other water-soluble dual pendent 

squaraine dyes used at 1 x 10-3 M [5,6]. In this respect, compound 1 currently remains the 

best performing colorimetric stain in this entire series of water-soluble dual pendent 

squaraine dyes.  

When the stained gels from this study were examined fluorometrically (upon 

illumination at 300 nm) (Fig. 9), the three stains based on 2 fluoresced with equal intensity, 

with no indication of any quenching from 2 with DNSA. In certain respects, the fact that 

these three stains can be visualized fluorometrically (upon illumination at 300 nm) achieves 

the aim of this and the previous paper [7]. But, considering the equal fluorescence 

performance of 2 with DNBA and 2 with DNSA verses that of just compound 2 then it can be 

assumed that the addition of either DNBA or DNSA to compound 2 contributes nothing to 

the performance of 2 itself. It is possible that the tryptamine group in compound 2 interacts 

with available electron-accepting aromatics / heterocyclics within the proteins to form 

charge-transfer complexes. Possible candidates could arise from histidine, tyrosine and 

phenylalanine, although the aromatic / heterocyclic rings in these amino acids are not 

considered as strong electron-accepting ring systems (certainly not as strong as the 

nitroaromatics utilized in this and the previous study [7] that did not charge-transfer stack 

with the tyrptaminium molecule) but it is worth noting that in the X-ray crystal structure of 

tryptaminium benzoate [14] the two rings are charge-transfer stacked, indicating that such 

interactions may still be possible with weaker electron-accepting rings. However, this 



approach cannot be used to explain the fluorescence behaviour of these stains in the gels 

because this type of charge-transfer association (with the protein) is not possible for 

compound 1.  

It is interesting that gels stained with 2 fluoresce because it is the only water-soluble 

dual pendent squaraine compound other than 1 to demonstrate this phenomenon. However, in 

the original paper that first reported the gel electrophoresis behaviour of compound 1 [5] it 

was stated that prior to that work there was only one previous report of the use of a squaraine 

dye as a gel stain [15]; this is now known to be incorrect, a second report utilizing a 1,3-

symmetric core substituted squaraine (Fig. 10) had also been previously published [16]. 

Furthermore, the gel stained with this squaraine was imaged fluorometrically.  Unfortunately, 

the dissimilarities between compounds 1, and 2, and the squaraine shown in figure 10 do not 

yet indicate a molecular design direction for the preparation of future squaraine dyes that can 

be used as fluorometric stains for gel electrophoresis.       

 

Conclusions 

 A water-soluble dual pendent squaraine with tryptaminium cations has been mixed 

with mono-nitroaromatics in solution to create ternary complexes with the aim of creating 

indole-nitroaromatic charge-transfer pairs. Examination of the X-ray crystal structures of two 

tryptamine-nitroaromatic complexes, without the squaraine moiety, revealed that neither 

demonstrated charge-transfer pair or stacking associations between the indole and 

nitroaromatic rings. The absence of charge-transfer associations was evident in the UV-

visible absorption spectra of each complex, although intermolecular associations (of 

unspecified form) were evident in the spectra of the mixtures incorporating the squaraine. 

Examination of the fluorescence performance upon illumination with 300 nm light of each 

ternary squaraine complex, particularly in the presence of an equimolar amount of protein, 



showed that although there was a ten-fold increase in the fluorescence of the squaraine 

moiety (at ~ 650 nm) the levels across the series were no more than that observed for the base 

bis-tryptaminium squaraine. However, electrophoretic gels stained with the base bis-

tryptaminium squaraine were found to fluorescence; the only other squaraine dye of this type 

to do so in addition to the bis-piperidinium squaraine of previous studies. 
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Appendix A. Supplementary data 

 The comparative infrared spectra of tryptamine and each of 2-nitrophenol, 4-

nitrophenol, 5-nitroquinoline, and 5-nitroisoquinoline with 7 – 10, respectively; the 

sequential visible absorption spectra of 1 – 6 plus the three ternary compounds from the 

previous paper [7] (ranging from 1 μM – 10 μM in steps of 1 μM); the comparative 

fluorescence spectra of 2 – 6 both with and without an equimolar amount of BSA (excitation: 

300 nm and 624 nm); the 1H NMR data for 2; descriptions of packing arrangements for 7 and 

8; tables of the conformational data on the tryptaminium cations / tryptamine molecule in the 

X-ray crystal structures of compounds 7 and 8; and tables of the hydrogen-bond geometry for 



the X-ray crystal structures of 7 and 8 have all been deposited as Supplementary data, which 

can be found, in the online version, at http://  
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Figure captions 

 

Figure 1 Chemical diagram for compound 1. 

 

Figure 2 Schematic showing the synthetic route for compound 2 and complexes 3 – 6. 

 

Figure 3 Chemical diagrams of complexes 7 and 8, as indicated by their X-ray crystal 

structures, and as suspected for 9 and 10. 

 

Figure 4 ORTEP and atom naming scheme for 2 (a = -x, -y + 1, -z) (displacement ellipsoids 

are drawn at 50% probability levels) (atom C19, C20 and C24 are not named for image 

clarity). 

 

Figure 5 ORTEP and atom naming scheme for a,b) 7 and c) 8 (displacement ellipsoids are 

drawn at 50% probability levels). 

 

Figure 6 Comparative UV-visible absorption spectra for a) 7 (———), 2NP (– – –) and 

tryptamine (------) (conc. 70 μM); b) 3 (———), 2NP (– – –) and 2 (------) (conc. 10 μM); c) 

8 (———), 4NP (– – –) and tryptamine (------) (conc. 70 μM); d) 4 (———), 4NP (– – –) 

and 2 (------) (conc. 10 μM); e) 9 (———), NQ (– – –) and tryptamine (------) (conc. 70 μM); 

f) 5 (———), NQ (– – –) and 2 (------) (conc. 10 μM); e) 10 (———), NIQ (– – –) and 

tryptamine (------) (conc. 70 μM); and f) 6 (———), NIQ (– – –) and 2 (------) (conc. 10 

μM). 

 



Figure 7 Comparative plots of absorbance λmax verses concentration for a) 2 and b) 3 ranging 

from 1 μM – 10 μM in steps of 1 μM.  

 

Figure 8 Comparative fluorescence spectra (irradiated at 300 nm) for a) 2 with BSA (upper) 

and 2 (lower) (conc. 1 μM); b) 3 with BSA (upper) and 3 (lower) (conc. 1 μM); c) 4 with 

BSA (upper) and 4 (lower) (conc. 1 μM); d) 5 with BSA (upper) and 5 (lower) (conc. 1 μM); 

e) 6 with BSA (upper) and 6 (lower) (conc. 1 μM); and f) BSA (conc. ~67 μg/mL). 

 

Figure 9 Electrophoresis gels loaded with 20, 15, 12.5, 10, 7.5, 5, and 2.5 µL of unstained 

Precision Plus Protein standard (Lanes 2 - 8), stained with a 5 x 10-4 M aqueous solution of 2 

and imaged using a Bio-Rad Gel Doc EZ Imager in (left) colorimetric and (right) fluorescent 

image mode. 

 

Figure 10 The 1,3-symmetric core substituted squaraine from reference [16]. 
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