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Abstract 

To inform the design of superior transformation-induced plasticity (TRIP) steels, it is important to 

understand what happens at the microstructural length scales. In this study, strain-induced 

martensitic transformation is studied by in situ digital image correlation (DIC) in a scanning electron 

microscope. Digital image correlation at submicron length scales enables mapping of transformation 

strains with high confidence. These are correlated with electron backscatter diffraction (EBSD) prior 

to and post the deformation process to get a comprehensive understanding of the strain-induced 

transformation mechanism. The results are compared with mathematical models for enhanced 

prediction of strain-induced martensitic phase transformation.  

Keywords: TRIP steel, DIC, EBSD, Martensite, SEM, MTEX 

1. Introduction 

The need for improvement of crash-worthiness of automobile structural components without 

increasing their overall weight has led to the development of high-strength steels. High strength in 

steel can be achieved in a number of ways [1]. One class of high-strength steels of current interest are 

those that derive their strength from the formation of hard solid-state transformation products in the 

form of hard constituent martensite phase [2]–[5]. The advantage of this is that it also gives rise to 

exceptional ductility. Martensitic transformations are solid-state diffusionless transformations that 

have been extensively investigated over the past century[3], [6]–[8], yet still continue to  intrigue the 

research community [2], [9], [10]. Zackay et al. were the first to exploit martensitic transformations to 

enhance ductility of steels, coining the now well-known term TRansformation Induced Plasticity (TRIP) 

steels [11].  
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The high strength and improved ductility of TRIP steels is due to a combination of the hard martensite 

phase in the soft austenite matrix, analogous to a hard-particle-reinforced composite [12]. The solid-

state solution hardening of carbon in iron and the very high dislocation density obtained from the 

rapid diffusionless martensitic transformation are further exploited in the strengthening process. 

Extensive literature can be found on martensite’s influence on the properties of TRIP type steels, such 

as the correlation between martensite fraction and strength [2], [13], [14], martensite fraction and 

ductility [10], and deformation and transformation kinetics [15]–[18]. Also, one particular area of 

conjecture was the origin of exceptional ductility in TRIP type steels, with many authors attributing it 

to transformation strain [19], a theory mathematically disproven by Bhadeshia in [12] and to some 

extent experimentally corroborated by some of the current authors in [2] and shown to be closely 

related to composite theory.  It is reasonable to assume that for better understanding of the 

strengthening mechanisms that lead to the exceptional strength and ductility of TRIP steels, there 

needs to be thorough investigation of local stresses and strains observed in the vicinity of the 

transformation product. It is as a result of these stress and strain fields around transformation sites 

that dislocation movement and localised plasticity are resisted [20], [21].  

The local stress and strain state around a single martensite region is influenced by many factors, 

however those believed to be of most significance are: the orientation of the martensite forming and 

the extent to which the parent grain has slipped. The orientation of the forming martensite directly 

influences the transformation strain. In this manuscript we report an analysis of the local strain 

occurring during the strain induced martensite transformations and variant selection based on the 

Patel and Cohen theory [22] as reported in [23]. 

In TRIP material the formation of martensite is mechanically induced. Essentially, metastable FCC 

(face-centred cubic) austenite is transformed into martensite by the addition of strain energy. In 

commercially interesting alloys such as those reported in [2], small regions of austenite are retained 

by heat treatment and then transformed mechanically to form a ferrite matrix with small martensite 

regions. These commercially interesting alloys are far too complex, both in terms of microstructure 

and phase makeup, for the purpose of gaining an understanding and ultimately predicting the local 

strains and crystallography of TRIP martensite. Therefore, the material reported here is a meta-stable, 

virtually 100% austenitic, type 301 stainless steel. This material is known to transform to martensite 

under room temperature deformation [24], [25] and due to the almost fully austenitic starting 

microstructure, offers an opportunity to isolate newly forming martensite for analysis. 

For each austenite grain there are 24 possible crystallographic variants of martensite that can form. 

For each of these variants the resulting strain and stress local to the martensite plate will be different. 



3 
 

This will have a direct influence on the material’s ability to resist non-uniform deformation and reduce 

the desirable properties of high strength and exceptional ductility. Kundu et al. [23], [26], [27], using 

crystallographic data from the austenite phase as input parameters, compared the martensite variants 

predicted and experimentally measured.  They assumed that the interaction of applied stress with the 

shape deformation associated with the martensitic transformation determined the favourable 

variants formed. The interaction energy U between the applied stress and martensite was as 

suggested by Patel and Cohen [22].  

𝑈 =  𝜎𝑁𝛿 +  𝜏𝑠 

Where N is stress component normal to the habit plane of the martensite, τ is the shear stress 

resolved on the habit plane in the direction of shear, and δ and s are the respective normal and shear 

strains associated with transformation. This interaction leads to formation of a transformation 

texture. If this is the case for TRIP steels in general it will mean that with knowledge of the starting 

austenite texture, the orientations of the martensite expected to form can be calculated, and although 

not within the scope of this work, the mechanical properties can be predicted. 

In this manuscript, the deformation at the microstructural length scale of 301 stainless steel deformed 

plastically to induce martensitic transformation is reported using EBSD and an in situ, high-resolution 

digital image correlation (HRDIC) technique. These techniques have been proven in [28]–[33] as very 

useful tools to develop understanding of microstructural length scale deformation. Combination of 

the HRDIC and EBSD give a comprehensive insight into material behaviour at different stages of the 

deformation process. Discussion here is focussed on strain-induced martensite formation on the 

active {111} slip planes and how the material constraints within a grain and its surrounding affect the 

overall transformation mechanisms. The aim is to understand plasticity at the microstructural length 

scale, and ultimately apply these data sets as input data for improving reliability of existing material 

models. 

2. Experimental 

This section describes the experimental techniques used for the measurement of the local strain 

during strain-induced martensitic transformations. It starts by giving an introduction to the material 

used in the tests. This is followed by parameters used for EBSD on the same set of grains prior to and 

post the deformation process. Finally, the in situ micro-mechanical tests for HRDIC data acquisition 

and treatment for data acquired within a scanning electron microscope is explained. These data are 

used to map plasticity due to slip and martensitic phase transformation, within individual austenite 

grains.  
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2.1. Material 

The material studied for this work is a 301 grade austenitic stainless steel. This material is nominally 

fully austenitic (FCC crystal structure), with good oxidation and corrosion resistance properties and is 

used for decorative and structural applications. As mentioned earlier, this material has been selected 

because it has nearly 100% austenitic starting material. This reduces the complications of analysis 

introduced by other BCC type phases such as ferrite and bainite, which are often present in TRIP steels. 

At room temperature this material readily transforms into martensite on application of stress [25], 

[34].  The material was received in a fully annealed condition with a grain size of 15-20 m and 

relatively free from preferred orientation (see figure 1) with the chemical composition given in Table 

1.  

Table 1 the chemical composition of a 301 austenitic stainless steel 

Fe C Si Mn P S Cr Ni  Cu Mo 

Bal. 0.001 0.48 1.057 0.043 0.001 16.98 7.12 0.381 0.311 

 

 

 

Figure 1: EBSD orientation map of the as received material having more than 99% austenite. 

A 301 stainless steel sheet with a nominal thickness of 1.6 mm was machined into flat dog-bone 

shaped specimen having 20 mm gauge length and 3 mm width (see figure 2). Figure 2 schematically 

shows the testing regime. Stages I, II and V are explained in greater detail in the following 3 sections. 

During stage IV, the specimen was incrementally strained using a strain rate of 4x10-4 from 2 to 10 % 

strain with 2 % strain increments. 
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Figure 2: Schematic flowchart of experimental procedure.  

The specimen was strained using an in situ 4.5 kN ADMET mini-tensile testing machine, inside a Zeiss 

Supra 55VP field emission gun scanning electron microscope (FEG SEM). At each macroscopic strain 

value, the test was interrupted to capture three backscattered electron (BSE) images at two different 

magnifications to be used for DIC analysis. The region of interest (ROI) for the high magnification 

images was contained within the lower magnification images. The parameters used for image capture 

are shown in table 2.  

Table 2 SEM Imaging parameters 

Image Imaging 
Mode 

Accelerating 
Voltage 

Working 
distance 

Magnification Image size 
(pixels) 

Spatial 
resolution 
(nm) 

Low mag BSE 20 11.6 mm 2000X 2048 x 
1536  

92 

Hi mag BSE 20 11.6 mm 5000X 2048 x 
1536 

37 

 

2.2. EBSD 

Prior to any further analysis or testing, the specimen was metallographically prepared by grinding and 

polishing, removing approximately 85 m of material from the sample surface, and electro-polished 

using an electrolyte solution of 85% ethanol, 10% 2-butoxyethanol and 5% water (branded as Struers 

A21). During stage II (see figure 2), EBSD was performed prior to deforming the sample with a step-

size of 0.2 µm. Greater than 99% volume fraction of austenite was observed (figure 1). Stage V involves 

very careful processing of the sample to remove the gold nano-particles from the surface preserving 

the microstructural features beneath. Here the specimen was polished using a 0.25 µm diamond paste 

solution for less than a minute followed by finally polishing up to 10 minutes using OP-S to improve 
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EBSD indexing, similar to the method used by Di Gioacchino et al. [32]. The EBSD measurement is then 

performed with a step size of 0.15 µm to identify the thin martensite plates formed during the 

deformation process, which will be discussed in the results section. The analysis of the EBSD data was 

conducted using the Matlab toolbox MTEX [35]. 

 

Figure 3: Backscatter image of gold remodelled speckle pattern used for digital image correlation. Raw image shows speckle 
pattern of a single image, 3-image sum is combination of three images actually used for correlation. 

2.3. HRDIC data collection 

After the initial EBSD scanning, the test specimen is coated with a thin > 50 nm film of gold using a 

K575X gold sputter coater. The surface with the gold layer is then held at 350 C for 90 minutes in a 

humid atmosphere. This causes the gold layer to re-distribute into a fine speckle pattern (see figure 

3). This method has been developed by Gioacchino et al. [28], and used by the same authors in their 

recent work [32] providing sub-pixel accuracy in strain measurements from SEM imaging. As a 

consequence of being far apart in the periodic table, the gold particles give an excellent contrast with 

the steel substrate in the BSE imaging mode. Moreover, the BSE mode is less sensitive to changes in 

topography throughout the straining process, which is critical for 2D digital image correlation (DIC).  

2.4. HRDIC data treatment 

Digital image correlation is a computational technique that tracks small regions throughout the 

deformation process. These regions on the surface are tracked throughout the series of digital images, 

producing a displacement vector. If this is performed at positions across the entire image then a vector 

field is produced. If the displacement of the sample occurs in the image plane, then this vector field 

will describe the displacement of the imaged sample. This vector field can then be differentiated to 

calculate strain difference in the sample between the two images. In addition to the assumption that 
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the surface is moving in plane, there is also the implicit assumption that the pixels are square. This 

assumption is easily satisfied when using a standard camera sensor, but when using an SEM to produce 

the images this becomes more difficult to ensure, as described in the following paragraphs. For this 

reason, sets of three images were taken at each strain step so that any inconsistencies can be reduced 

by image summation.   

Raster errors in images obtained by SEM may cause the violation of the square pixel assumption 

required in DIC analysis and leads to pseudo-strain in calculations. To alleviate this error, each set of 

three images, taken at a single strain step, was shift-corrected to sub-pixel accuracy by taking a DIC 

(in DaVis software using an FFT-based algorithm) measurement of the relative shifts for each image 

for a central 128  128 pixel region. The images were shifted to sub-pixel accuracy using bi-cubic spline 

interpolation and then summed together (see figure 3). As well as reducing the raster error by 

improving the regularity of the pixel sample points, this step increases the effective bit depth of the 

images and improves the quantum efficiency of the imaging process so that the image stability is 

increased. 

The DIC analysis of BSE images was carried out using commercial software DaVis 8.2 [36]. This software 

uses the least-squares approach to iteratively solve the sum of squared differences (SSD) correlation 

function [37]. The algorithm initially calculates the displacement of a specified seed point in the image 

via the Lucas-Kanade method [38] using the implementation of Bouguet [39]. Once the seed point 

displacement is established, a “region grow” approach is then used assuming displacement continuity 

to limit the search area. The user specific parameters for the DIC calculation are presented in table 3.  

Strain was calculated from the DIC displacement vectors using Matlab code that fits a plane to a square 

region containing 9 vectors: a “strain window” [40]. Strain is calculated for every vector position, by 

overlapping the strain windows, and is done separately for the x and y displacement fields. The 

gradients of the two planes, calculated from the x and y displacement fields, are taken as the average 

strain tensor for that vector position. By calculating strain in this way no further smoothing is required 

so the size of the smallest strain feature that can be resolved can be clearly established (i.e. the size 

of the strain window plus the size of the DIC subregion, a total of 26 pixels in this case). This method 

also has the advantage that strain is calculated at the same point for all parts of the strain tensor. 

However, in this case this makes little difference as the strain result is linearly interpolated onto the 

EBSD measurement points for plotting grain boundaries.  

In this manuscript, the average strain in a grain is calculated in a similar manner to the local strain. In 

this case displacement vectors for a single grain are fitted to a plane. An outlier filter is then applied 



8 
 

to remove any displacement vectors that are more than 3 standard deviations from the plane. The 

filtered data is fitted a second time to calculate the average strain for the grain. A sliding strain window 

containing 9 vectors (3  3) was used for this work.  

 

Table 3 DIC Parameters used for displacement vector calculation 

Subregion 
size 

Step 
size 

Pyramid 
Levels 

Epsilon Correlation 
threshold 

Threshold 
confidence 
margin 

Subregion 
weighting 

Sub-pixel 
interpolation 

1111 
pixels 

5 
pixels 

1 0.01 0.2 pixels 0.01 Round 
Gaussian 

Bi-cubic spline 

3. Results 

Figure 4 shows high-resolution EBSD orientation maps before and after the strain-induced martensitic 

phase transformation. Figure 4(a) is the pre-strained EBSD grain boundary map of the as-received 301 

austenitic stainless steel. It does not have any strain-induced martensite present and has austenite 

volume fraction greater than 99%. Figure 4 (b) is the post deformation EBSD grain boundary map 

showing strain-induced martensite locations within the same set of grains at 10% applied strain.  

In this figure the orientation relationship between the parent austenite () grain and the product 

martensite (ʹ) plate used is that of Kurdjumov-Sachs (K-S) [41], where (111) is parallel to (011)ʹ, and 

[011] is parallel to [111]ʹ. However, it is now known that the true orientation relationship between 

ʹ is irrational [42]–[44], reported as (111) parallel to (0.012886 0.981915 0.978457)ʹ, and the 

[110] direction parallel [0.927033 1.055684 −1.071623]ʹ [44]. Still the K-S orientation relation is 

found to be a good approximation. In figure 4 (b), each variant of strain-induced martensite plates is 

coloured distinctly and the grains labelled 1 and 2 are analysed in the following sections. Since only 

the martensite variant most favourable to the direction of the applied stress nucleates [27], post-

straining EBSD results (figure 4b) will help in identifying the conditions for martensitic transformations, 

when combined with the strain maps obtained with DIC analysis. The dominance of variants 5 and 6 

is interesting and may be due to the driving force from either chemical or mechanical origins being 

higher for these variants [26]. 
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Figure 4: EBSD orientation maps of strain-induced martensitic phase transformation in the same set of grains. (a) Prior to 
straining having more than 99% austenite, and (b) after 10% applied strain in horizontal direction. A histogram of the 
frequency of different variants (by number of individual martensite grains using the lower magnification EBSD scan) is shown 
in (c). The details of the 24 K-S variants and the planes and directions that are parallel in the austenite and martensite are 
displayed. The martensite variants are coloured based on which of these 24 variants they represent. 

Figure 5 illustrates the low resolution DIC strain maps overlaid over the pre-strained EBSD grain 

boundary map. Figures 5 (a) & (b) are the xx strain maps at 5 and 10 % strain respectively; they clearly 

show the heterogeneous nature of strain accommodation in the different grains. At 10 % global strain, 

some grains are experiencing close to 20 % strain whilst there are nearby grains exhibiting little or no 

strain. We have developed a Matlab graphical user interface (GUI) for combining the EBSD and DIC 

data sets which uses the MTEX toolbox [35]. Details of the GUI, dbsd and dice, including capabilities 

and applications [45] will be published soon. The toolbox enables partitioning of DIC data with respect 

to individual grains calculated from EBSD grain boundary measurements. To get a representative 

average strain measurement, the strain outliers observed within grains are removed, however the 

high strains close to some grain boundaries are taken into account (figure 5(d)). Thus average xx within 

individual austenite grains can be plotted (figure 5 (d) showing data for a macro strain of 10%). This 

allows for the strain distribution for each individual grain to be measured for each strain increment, 

which enabled the determination of the average xx distribution within the different grains, at each 
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strain increment (figure 5 (c)). The histogram plot (figure 5(c)) shows the distribution of average strain 

within grains as the global strain increases (figure 5 (c)), providing a useful indication of how strain 

heterogeneity develops during deformation. It is observed that application of strain does not simply 

shift the histogram plot to the right, but it is accompanied by a change in shape of the profile. 

 

Figure 5: Low magnification strain maps overlaid with EBSD grain boundary map, showing the heterogeneous nature of strain 

accommodation within individual grains. (a) & (b) show xx at 5% and 10% strain respectively. (c) Histogram plot of xx at 5% 

and 10% macroscopic global strain values. (d) Map of the average xx within grains at 10% strain used for producing (c). 

To obtain greater resolution in strain, a fraction of the area was analysed at a magnification of 5000X. 

Figure 6 shows the HRDIC maximum shear strain map at 10 % elongation. This shear strain map is 

overlaid on the post-strain EBSD map of austenite grain boundary, and strain induced martensite 

phase boundary. In this material slip occurs on the {111} slip-lines and these are visible as shear bands 

that are a few microns thick. These shear bands occur at about ±45° to the loading direction, and along 

the direction of maximum resolved shear stress. It can be seen that on deforming the material, that 
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the strain-induced martensite forms and is parallel to these {111} slip planes.

 

Figure 6: High magnification maximum shear strain maps overlaid on EBSD grain boundary map at 10% strain. The EBSD 
grain boundary map has phase transformation boundaries as well. The lines represent the different {111} slip traces; the 
length of the black lines is proportional to the Schmid factor and the plane with the highest Schmid factor is thicker. 

4. Discussion  

Acquisition of the images was performed in situ to eliminate the possibility of transformation or 

plasticity owing to back-stresses [46], which builds up during the unloading stage. It is worth noting 

here, that in preliminary studies of this material, higher fractions of transformation product were 

observed in samples that had undergone unloading cycles compared to those strained directly to the 

same final macro strain. Moreover, optimal contrast and resolution in BSE images is obtained at low 

working distance, however owing to the bulkiness of the in situ equipment it was not possible to 

obtain a working distance lower than 11.5 mm.  

Due to the necessity of in situ testing and the higher working distance the resolution was limited 

compared to that obtained by Di Gioacchino et al. [32]. However, by performing additional processing 

the quality of the strain results were improved. Averaging of SEM images increased the number of 

vectors the DIC obtained from a given set of data. Moreover, introducing this step also reduced the 

number of vectors being removed at the grain averaging stage, indicating fewer spurious vectors. This 

indicates that there is significant benefit from taking multiple images at each increment of these quasi-

static tests, with little detriment to the test efficacy or duration. From the comparison of a single image 

to the summed image in figure 3, it is evident that the summing process reduces the high-spatial-

frequency stochastic noise present in the single images.  Summing the images both reduces the effect 
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of the image noise, and increases the effective contrast of the speckles by summing the sensitivity 

depth of the images (see figure 3). This approach also mitigates the effect of step changes in e-beam 

position during the scanning process, as the step positions are random [47]. This dramatically 

improves the consistency of strains measured perpendicular to the scanning direction (the y direction 

in this case). 

Due to two different magnifications of imaging being used on the same region, a compromise in 

speckle pattern size was required. The speckle pattern size was optimised for the low magnification 

images, where the gold remodelled surface produced a speckle size of approximately 2 pixels, which 

is optimal for DIC [37]. In the high-resolution images speckle size is compromised, but sufficient 

speckle detail was still found to enable DIC to work successfully at a similar sub-region size. The gold-

remodelled surface, imaged using BSE, was found to contain sufficient detail to allow DIC to be 

performed over a range of length-scales and so reducing the requirement for extensive speckle 

optimisation investigations. 

Strain localisation is observed within some grains and more evidently at certain grain boundaries. This 

is mainly caused by the incompatibility between grains, since they would rotate in different ways if no 

boundary was present [32]. However, there can be secondary effects such as the build-up or transfer 

of dislocations at grain boundaries (see figure 5 (a) & (b)) [48]. The low magnification data allow for a 

larger number of grains to be collected and provide a more representative sample of the bulk, 

improving the reliability of microstructural plasticity models such as the Taylor model or crystal 

plasticity finite element model. However, at this magnification it is difficult to resolve the strain owing 

to individual slip planes. This is possibly due to a small grain size of the material and lower 

magnification (2000X) used in these measurements compared to the higher magnification 

measurements at (5000X) as shown in figure 6.  

The plastic deformation observed in these tests shows a periodic and discontinuous variation in shear 

strain. This creates regularly-spaced micro shear bands which are similar to but sharper than that 

observed in aluminium [49], in duplex steel [30], Fe-Cr alloy [50], but less than those measured in 

austenitic stainless steel [32]. The characteristic of these bands is that they form in groups and are a 

few microns apart from each other (see Figure 6 and 8). At higher strain values most of these shear 

bands become more intense. As the deformation progresses new bands form at the boundary of the 

existing ones. The heterogeneous nature of plastic deformation is evident from the start of the uniaxial 

tensile straining in all the high-resolution strain maps as shown in figure 5.  

At early stages in the deformation process, plasticity does not seem to be due to the martensitic phase 

transformation and is possibly due to slip occurring in the material. However, martensite adds to total 
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plasticity and only occurs at higher global strain values at the shear band intersections, grain 

boundaries, or from other nucleation sites [51]. A limitation in the approach used here is that it has 

not been possible to separate the strains associated with slip and martensitic transformation. This 

could be improved if the gaps between strain increments was reduced or if the formation of the 

martensite could be observed, which is not possible because of the gold coating. However, these 

changes are impractical for the current test. 

 

Figure 7: Mechanisms for martensitic phase transformation in fully austenitic grains. Grain 1 (top) and grain 2 (bottom) are 
shown with the corresponding DIC strain maps, made at various strain increments represented by red dots on the stress strain 
curve. 

Figure 7 explains the two-step nature of the martensitic phase transformation mechanisms at room 

temperature for Grains 1 and 2 (refer to figure 4). Grain 1 shows two active slip systems and four 

martensite variants; whilst in grain 2, a single dominant slip system and three unique martensite 

variants are found (see figure 8). In Grain 1 there are two {111} slip planes which appear to dominate 

the deformation process (the green and blue lines approximately equal length), both activated when 

the critically-resolved shear stress is reached for that slip plane (see Figure 7 - grain 1). Other slip 

systems may be active, however, they do not seem to be as localised along their slip plane as the 

dominant ones do: that is why no additional slip lines appear in either the DIC and EBSD data sets. 
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Initially, when the stress exceeds the critically-resolved shear stress threshold, plasticity occurs due to 

shear band formation on the {111} slip planes of the austenite grains [34]. Even at relatively lower 

strain values of  2 % strain a second slip system may be activated. Intersection of the slip/shear bands 

within these highly strained grains leads to potential nucleation sites for martensitic transformation 

[51]. The grain now contains significant overlapping of stacking faults and if further strained, these 

martensite (ʹ) nucleation sites become activated leading toʹ transformation [34]. In Grain 2 (Figure 

7 – grain 2), only one {111} slip system is activated upon straining of the austenite grain (the pink slip 

plane in Figure 8 is dominant). Here, additional straining of the grain leads to activating toʹ on the 

very same shear bands, where the potential nucleation site may be a region with a high density and 

overlapping of stacking faults. The specimen was only strained to 10 % strain, at which a small fraction 

(10 %) of austenite transformed into martensite.  

 

Figure 8: EBSD maps of the two grains studied. The martensite is coloured to represent the different K-S variants (see Figure 
4). The {111} austenite slip traces of these different variants are shown, where the length of the coloured line is proportional 
to the Schmid factor. The strain-induced martensite plates display the (110) slip line trace, indicating that the K-S orientation 
relationship is approximately observed.  

It is observed that the orientation relationship between austenite and strain-induced martensite 

approximately follows the K-S relationship. These martensite plates form in austenite grains along the 

{111} slip planes with higher Schmid factors. In grain 1 it is seen that the martensite forms along the 

corresponding slip line traces, and these seem to be the dominant slip systems active within the grain. 

In grain 2, however, although the pink coloured martensite variant occurs along the active slip plane, 

the red coloured variants do not have an ideal match. This mismatch may be due to the constraints 

provided by the surrounding grains. Kundu et al. [23] modelled transformation texture in austenite 

grains of having Goss and Cube components of texture that showed martensite variant selection. As 

explained earlier the model was based on the interaction of the applied stress with the shape 

deformation associated with the martensitic phase change and interaction energy calculated in 

accordance with Patel et al. [22]. We have applied this model to our data as shown in figure 9. 
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Figure 9: Pole figure plots of the spread of 24 possible martensite variants predicted for grain 1 and grain 2. The coloured 
circle is predictions, the triangles are the measured variants and the circle encircling the predictions shows the closest match 
for a given grain.  

In Figure 9 all the predicted martensite variants based on the above model for grain 1 and grain 2 are 

shown. In grain 1, the measured variant 2 is the closest to the predicted variants, which is ranked third 

in the list of 24 possible variants based on interaction energy [22], [23]. Hence, for this variant there 

is a good agreement between the predicted and measured variants.  However, the same was not true 

for grain 2; the agreement between the predicted and measured variants was poor and the closest to 

the measured variant was variant 13, which is ranked eighth out of 24 possible variants. In grain 2, 

martensite transformation occurs on the {111} slip plane with the highest critically-resolved shear 

stress (highest Schmid factor). Here, it is thought that the nucleation site is on highly deformed shear 

bands. These are locations of planar defects arising from the overlapping of stacking faults on the 

{111} austenite slip planes [34].  

From Figure 10 it is shown that there is also a correlation between the maximum Schmid factor and 

the number of strain-induced martensite variants formed within a single grain. As shown earlier, slip 

bands mostly form on {111} slip systems with the highest Schmid factor. Furthermore, the martensite 

also tends to form along these slip bands. An example of this is shown in figure 8, but this is also found 

in several more grains (see figure 10 (B)). For an austenite grain having a single dominant slip system, 

slip is limited to a single slip plane and direction and strain-induced martensite appears to form mainly 

along this plane (grain 2 and 4); whereas if a single dominant slip system is not observed, with two slip 

systems having a similar critically-resolved shear stress, martensite nucleation can occur on both the 

slip planes (grain 1 and 3), meaning a greater number of martensite orientations are present in that 

particular grain. It is thought that the sequence of transformation has the following steps [34], [51], 

[52]: 
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 Dislocation generation, accumulation and glide along the {111} slip systems with highest 

critically resolved shear stress. Slip lines occur when critically-resolved shear stress crosses its 

threshold, enabling the slip system to get activated. 

 Formation of nucleation sites (martensite embryos) – i.e. locations of planar defects – arises 

from overlapping of stacking faults; they may also form at the intersection of the shear bands.  

 Further deformation of the austenite grains with nucleation sites leads to formation of strain 

induced α martensite.  

If the above assumptions are correct, the use of the Schmid factor (see figure 10 (A)) to predict the 

number of variants forming within a single austenite grain can offer some insight, as can be seen from 

figure 10 (B). For example, grains with very low Schmid factor (numbered 5 and 6) have little 

transformation present, and grains with moderate to high Schmid factor (numbered 1 to 4) may have 

up to 8 variants present. However, because some grains with moderate Schmid factor have 2 active 

slip systems and therefore the opportunity for many more variants to form, Schmid factor alone does 

not give the full picture. Some grains with the highest Schmid factor show no sign of transformation 

at all, this could be due to the 2 dimensional cross-section of a 3 dimensional system. The summarized 

data for the 6 sampled grains from figure 10b is summarized in table 4. 

 

Figure 10: Figure (A) Schmid factor map of austenite grains at 10 % strain with the martensite phase shown in blue (B) Strain-
induced martensite variants at 10 % global strain within each of these austenite grains. The {111} austenite slip traces of 
these different variants are shown for Grains 1 to Grain 4, where the length of the coloured line is proportional to the critically-
resolved shear stress on that plane. 

Table 4. List of Schmid factor, number of active slip systems, and number of strain induced martensite variants 

Grain 
number 

Schmid 
factor 

No. of active 
slip systems 

No. of 
variants 

1 0.44 2 8 
2 0.45 1 5 
3 0.47 2 8 
4 0.48 1 4 
5 0.38 0 0 
6 0.37 0 0 
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In order to improve the ability to predict transformation in each austenite grain, further work is 

needed to explore plasticity prior to transformation using more complicated plasticity models. It is 

observed that within a grain there are often multiple slip systems active, which would not be 

considered using the Sachs model [53]. In this model the stress state of each grain is assumed to be 

the same, and the active slip system is the one with the maximum Schmid factor. A good first 

approximation to account for this is to assume all grains have the same strain, as used in the Taylor 

model [54], [55]; however with the data we have available by combining local strain measurements 

with EBSD, this is also an unreasonable assumption. For the meantime, using Schmid factor as a first 

approximation is felt to be the most reasonable method considering the experimental rather than 

modelling scope of this work. 

5. Conclusions 

In this work, strain-induced martensitic transformations in TRIP steel have been studied by in situ EBSD 

and high resolution digital image correlation to better understand the mechanisms and conditions of 

the strain-induced martensitic transformations. The main conclusions of this work are as follows: 

 Combining high-resolution DIC (HR-DIC) with EBSD has proven invaluable understanding for 

the crystallographic origins of local strains owing to plastic deformation and phase 

transformations in polycrystalline steel. 

 The variant selection model of Kundu et al. predicts the transformation only in some grains: 

where it fails is possibly due to the constraints provided by the surrounding material. A more 

robust technique needs to be developed that can incorporate these effects. 

 Upon straining, plastic deformation occurs due to the formation of {111} slip bands. 

Subsequent deformation of the austenite leads to strain-induced martensitic phase 

transformation. These martensite plates form along the {111} slip planes in the deformed 

austenite grains with the (111) parallel to (0.012886 0.981915 0.978457)α, and the [110]  

direction parallel [0.927033 1.055684 −1.071623]α [44]; however, the K-S orientation 

relationship is found to be a good approximation. 

 The Schmid factor has been shown to be a useful method to predict if transformation will 

occur in a particular grain, however it is limited in predicting the number of variants due to 

not taking into account slip on multiple slip systems. 

 Combining DIC examination with EBSD has confirmed that grains containing two slip systems 

with high and similar Schmid factors show slip in two directions and independently 

corroborates the conclusion that transformation occurs along these slip lines. 
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