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Abstract 

This paper if focused on Laser shock processing (LSP) of silicon carbide (SiC) advanced ceramic. A 

comprehensive study was undertaken using a pulsed Nd:YAG  laser. Surface modifications were investigated, 

particularly:  the roughness, hardness, fracture toughness, microstructure, phase transformation and residual 

stress induced before and after the LSP surface treatment. The findings showed increase in the surface 

roughness, changes to the surface morphology, improved hardness, and a reduction in the fracture lengths. The 

LSP surface treatment also improved the surface fracture toughness from an average of 2.32 MPa.m
1/2 

to an 

average of 3.29 MPa.m
1/2

. This was attributed to the surface integrity and the induced compressive residual 

stress as a maximum of -92 MPa was measured compared to an average of +101 MPa on the as-received SiC. A 

slight change in the surface chemistry was also observed from the XPS spectra, however, no real phase 

transformation was observed from the X-Ray diffraction analysis. Laser energy density of around 1.057 

J/cm2, 8.5 mm spot size, 10Hz pulse repetition rate (PRR) at 6ns pulse duration, and 1064nm wavelength 

resulted to obtaining a crack-free surface treatment and demonstrated that the technique is also beneficial to 

enhance some of the properties to strengthen brittle ceramics such as SiC. 

 

 

Keywords: Laser Shock Peening; LSP; SiC; Ceramics; Hardness; K1c; Residual Stress; Microstructure, Surface 

finish; Phase Transformation. 
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Laser shock peening (LSP) or laser shock processing has been an applied technique for many years to engineer 

surface properties of metallic materials [1-4]. This is so because the process offers many benefits such as, 

improvement in fatigue and hardness; reduced wear rates; increase in compressive stresses just to mention a 

few. Such benefits have been addressed extensively for metals and alloys over the last two decades [1-5]. With 

that said, research in LSP of ceramics is rare due to their physical properties inhibiting mechanical yielding and 

plastic deformation in the same way as it occurs with metals. This is particularly so when ceramics are 

introduced to intense shock pulse pressure during LSP surface treatment. Therefore, it is not common to obtain 

the same gains which are conventionally obtained by LSP of metals and alloys. Thus, it is extremely challenging 

and fruitful to investigate the effects of LSP upon ceramics such as SiC. A successful process to strengthen SiC 

for machine tool applications for instance could manifest faster spindle speeds, higher feeds rates, with less 

wear, and have longer operational life. The work in this paper would also enable one to understand the 

effects of the pulsed laser energy interaction with brittle ceramics such as SiC.  

 

Over two decades of research has been conducted in the area of LSP of metals and alloys [6-11]. Published 

literature in this area has evolved from the use of micro-second, nano-second to even shorter pulses being 

applied in both picosecond and femtosecond range on metals and alloys [11-15]. In terms of ceramics, there is 

very little progress made. Koichi et.al. [16], and the preliminary work from the leading author of this study [17] 

as well as the work of Schnick [18], are the few investigations that exist in the field of LSP of ceramics such as 

Si3N4 and Al2O3.  Koichi et.al. used the Nd:YAG laser at 532nm to laser peen a Si3N4 ceramic. Their results 

reported an increase in surface roughness as the laser irradiance increased. This was reported due to plastic 

straining as the surface layer of the Si3N4 was induced with compressive residual stress with increase in laser 

irradiance.  However, other  findings  in  their  work  showed  reduction  in  strength,  thus, showing 

inconsistency and contradiction with their results as residual compressive stress in general would indicate  

surface strengthening leading to a reduction in the flaw size unlike the findings reported by Koichi et.al.  Bending 

strength was  also  reported  to  be  lower  than  the  as-received  surface,  but  showed some inconstancy  
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between  identical  samples.  Important details such as evidence of the laser shock peened microstructures 

were not illustrated in their report. Furthermore, Schnick et. al. [18] investigated the laser shock processing of 

Al + SiC particulate composite coatings. The coating was produced using a spray of powders that ranged 

between 100µm to 500µm over 30 samples. The results showed a modified morphology of the sprayed coatings 

as the surfaces became smoother and the coatings were less porous. In addition, the process was made to 

improve wear resistance of high-velocity oxygen fuel sprayed Al + SiC particulate composite coatings. 

 

The motivation of this paper is to examine the surface effects of LSP upon a brittle material such as SiC ceramic 

by specifically investigating modifications in the hardness, fracture morphology and the microstructure, plane 

strain fracture toughness (KIC) along with changes in the residual stress, phase transformations using X-Ray 

Diffraction (XRD) followed by examination of the surface chemistry with the use of XPS. To observe the effects 

of LSP on SiC, only the laser energy density was changed whilst keeping other parameters constant. This 

work is a first-step towards developing an LSP technique for SiC based ceramics for applications such as 

machine tools as well as other industrial ceramics in general. The effects of LSP are investigated to fill the gap in 

knowledge and will also demonstrate a first-step towards providing a strengthening technique which could 

improve the service life of industrial ceramics and create new avenue for their applicability, especially where 

ceramics could replace other materials but are currently restricted to crack sensitivity and low fracture 

toughness.  

 

2. Experimental Procedures and Analysis 

2.1 Material Characterization Methods 

2.1.1 Background of the SiC Advanced Ceramic 

The SiC ceramic was mechanically and microstructurally characterized prior to all experimentation. The ceramic 

was cold pressed using isostatic pressing technique (CIP) by Shanghai Unite Technology, China. It was produced 

with dimensions of 50 x 10 x 5 mm3 for the LSP experiments (see in Figure 1). The CIP process was conducted 
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at 455 bar pressure and was sintered at a temperature of 1200  C̊ for 5 hours. The average grain size was 17.1 

µm and ranged from 9 µm to 26 µm over a 100 µm2 area of the polycrystalline SiC ceramic.  

 

2.1.2 Surface Finish, Hardness Testing and Fracture Toughness Measurements (KIc) 

Surface finish was examined using a form Taylor Hobson, Talysurf Series 2, PGI plus - 8nm; Leicester, U.K., for 

both the as-received and LSP samples. The average as-received surface finish (from 5 samples) was Ra 1.53µm. 

Indentation tests were carried out with a Vickers macro/micro indentation method using 73.6N indentation 

load (VHTM 2000; Vickers Ltd. Engineering Group; Sheffield; England). Fracture toughness (KIc) was determined 

based on the Vickers indentation technique in relation to our previous work [19-22]. The surface hardness was 

measured to be 12.50 GPa and the KIc was determined as 2.31 MPa.m1/2.  

 

2.1.3 Microstructural Observations 

Following the LSP surface treatment, a detailed observation of the microstructure of the laser shock peened 

zone was undertaken and all crack lengths found after Vickers hardness tests were observed using optical 

microscopy and with a scanning electron microscopy ((SEM) SUPRA 40, Zeiss SMT AG; Germany). Both the as-

received and the laser shock peened samples were cross-sectioned using a diamond cutter and polished with 

600µm, 200µm, 6µm and 1µm polishing cloth for approximately 8mins each so that the cross-sectional 

microstructure could be examined. The cross-sectional analysis required chemical/thermal etching to reveal 

the microstructure of the SiC ceramic. The etching process adopted the use of Murakami reagent at boiling 

temperatures (approximately 200°C) for about 30mins in a high temperature furnace.  

 

2.1.4 Compositional Analysis  

Samples were analyzed for elemental change in the surface and near-surface regions using X-ray 

photoelectron spectroscopy (XPS) and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) 

measurements were made using a silicon drift detector system (X-Act with INCA software, Leo 1455VP SEM, 

https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
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Oxford Instruments; U.K.). The XPS analyses were performed using a bespoke ultra-high vacuum chamber fitted 

with Specs GmbH Phoibos 150 analyzer, Focus 500 monochromater and F20 charge neutralizing gun. Spectra 

were acquired using the Al monochromatic source, 1486.6 eV X-ray energy with an analysis area approximately 

2mm diameter. The SiC ceramic was also analyzed for elemental change in the surface and near-surface regions 

using XPS and SEM-EDX prior to and after the LSP surface treatment.  

 

2.1.5 Phase Transformation and Residual Stress Analysis  

A detailed analysis of the phase evolution was carried out by x-ray diffraction (XRD) technique (Bruker D8 

Discover, Germany) with Cu Kα radiation (wavelength ≈ 0.15418 nm) at a scanning speed of 0.02°/s. The X-ray 

source was operated at an accelerating voltage of 40kV and current of 25mA. The size-strain plot (SSP) method 

was used to calculate the crystallite size, strain, and stress on the as-received SiC surface and laser shock 

peened SiC based on previous methodology of Bindu and Thomas [23]. The SSP method has a significant 

advantage over other methods, so that less importance is given to the high angle peaks and it is assumed that 

the “strain profile” is characterized by a Gaussian function. The “crystallite size” is characterized by a Lorentzian 

function [23]. Hence, the SSP approximation is: 

(𝑑ℎ𝑘𝑙 𝐵ℎ𝑘𝑙 𝑐𝑜𝑠𝜃ℎ𝑘𝑙)2 =  
1

𝑉𝑠
 (𝑑ℎ𝑘𝑙

2  𝐵ℎ𝑘𝑙 cos 𝜃ℎ𝑘𝑙) + (
Ɛ

2
)2                                                                                   (1) [23] 

 

where dhkl is the interplanar distance between (hkl) planes, βhkl is the full width half maximum of the peak at a 

particular (hkl) which was obtained after subtracting from the instrumental broadening, Vs=(3/4)Dv (where Dv 

is the crystallite size), and ε is the apparent strain. The crystallite size and strain were calculated from the slope 

and intercept of the plot between (dhklβhklcos θhkl)2Vs (d2
hklβhklcos θhkl), where (dhklβhklcos θhkl)2 was plotted on 

the Y-axis and (d2
hklβhklcos θhkl) on the X-axis. 

 

Residual stress on the laser shock peened and untreated zones were also measured using the XRD technique 

(d Vs sin2Ψ technique) by application of a stress Goniometer attached to a Bragg Brentano Diffractometer 
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(Bruker D8 Discover; Germany). The X-ray source was operated at an accelerating voltage of 40kV and current 

of 25mA. The measurement of stress on the SiC samples was performed using Cu Kα radiation with a step size 

of 0.01° and time per step of 10s. In this method, θ/2θ scans corresponding to a particular reflection were 

conducted at various tilt angles ψ (0, 5, 10, 15, 20, 25, 30, 35, 40, and 45), where ψ is the angle between the 

sample normal and the diffraction vector. For the calculation of residual stress, the (304) plane of SiC phase at~ 

133.3° was considered.  

 

Figure 1. A schematic of the SiC ceramic used for laser shock processing surface treatment. 

2.2 Laser Shock Processing Surface Treatment 
 

A pulsed laser (Continuum; Powerlite; DLS 8000; San Jose; USA) was used for the experimental study herein 

and is shown in Figure 2. The laser emitted a wavelength of 1064nm and was applied with an energy density 

ranging from a minimum of 0.379J/cm2 to a maximum of 1.702J/cm2. The laser delivered 6ns long pulse with a 

repetition rate of 10Hz. This was done by generating a single shot to the surface of the SiC in order to investigate 

the LSP effects on the tool-grade SiC for the first-time. The profile of the laser was top-hat and its far field 

divergence was 0.45mrad. A large spot diameter of 8.5mm was used so that the energy density is focused on 

a large surface area, thus, avoiding the possibility of generating any potential cracks that may result from 

thermal shock. The footprint of the beam was taken on 8.5mm spot on a laser burn paper prior to conducting 

the main experiments. The laser emitted a radiance density of 0.83 to 2.36 (J/mm2/Sr-1), per pulse as calculated 

using our previous methodology published elsewhere [24]. All the experiments are made with single pulse. This 

was because it was the very first investigation which had made in-roads into this field. In addition, over-lapping 
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would increase the thermal shock that would be introduced into the material so in order to understand the 

laser material interaction during LSP, it was essential that the effects of a single pulse, without any overlaps is 

first investigated and understood. Further studies are underway to determine the ideal pulse over-lap. The 

treatment was conducted using atmospheric condition. In addition, LSP was conducted using a black 

polyethylene (PE) tape as an absorptive surface layer over the material and a water layer of about 1 to 2 mm 

thickness was made to flow over the SiC surface. Conventionally, both ablative and the confinement layers 

were known to bring about the obvious benefits to the components part [25]. Five samples were used for the 

experiments in order to evaluate the effect of LSP on the SiC ceramic. Laser energy was recorded using an 

energy meter which enabled the measurement of the energy fluctuations of ± 3mJ, recorder for 30 sec 

duration. Table 1 show laser energy density delivered to the surface of the SiC ceramic during the LSP surface 

treatment with its effects created on the material at the respective energy densities that were applied. 

 

 

Figure 2 A schematic of the laser beam delivery and the experimental set-up of LSP SiC ceramic.  

Table 1. The laser energy densities and its effects when delivered to the SiC ceramic during LSP using an 8.5mm 

Spot size, 6ns pulse duration and 10 Hz frequency. 

Laser Energy 
Density (J/cm2) 

Effect on SiC   

0 (Untreated) Some porous zones evident 

0.379 Evidence of laser beam foot print 

1.057 Laser foot-print became distinct 

1.702 Porosity formation in various zones 
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2.3 Hugoniot Elastic Limit in Relation to Laser Shock Processing Parameters 

One of the well-known aspects about the LSP process is that the plasma pressure created by the laser pulse 

must exceed the Hugoniot Elastic Limit (HEL) of the material so that sufficient deformation could occur. The 

HEL is classified as the peak stress which a solid could withstand in one-dimensional shock compression as the 

laser beam interacts with the solid. This is when deformation could occur which is reversible at the particular 

shock wave front [26]. In the present work, the plasma pressure is first identified and calculated using equations 

(2). This equation was used as an estimation rather than an accurate calculation. For accurate calculation, more 

sophisticated numerical model can be employed to evaluate the pressure of the plasma [40, 46, 47]. However, 

a simpler model was sufficient for this work [34], and the use of sophisticated models were beyond the scope 

of this work.  

𝑃𝑚𝑎𝑥(𝐺𝑃𝑎) = 0.01 √
𝛼

2𝛼+3
 √𝑍√𝐼0                                                                                                                        (2) [27] 

Where Pmax is the maximum peak pressure induced by the plasma in GPa (See Table 2); α is the ratio of thermal 

to internal energy which was 0.1; 𝑍 is the reduced shock impedance between the SiC and confinement medium 

(water) in our case (926000). I0 is the constant absorbed laser power density in the confined ablation mode 

given elsewhere [27 - 34]. This was determined using the [27 – 34] and is presented in Table 2. So the model 

of the plastic deformation due to the shock wave produced by the LSP surface treatment can be determined 

by Equation (3): 

𝐻𝐸𝐿 =  
1−𝑣

1−2𝑣
 𝜎𝑦

𝑑                                                                                                                                                         (3) [34] 

Where ʋ is the Poisson’s ratio of the material (0.14 for SiC ceramic), 𝜎𝑦
𝑑 is the dynamic yield strength at high 

strain rates. Furthermore, as the shock wave propagates into the material (usually the case for metals), plastic 

deformation occurs up to a depth at which the peak stress induced on the material would equal to its HEL. The 

HEL is related to the dynamic yield strength at high strain rates, 𝜎𝑦
𝑑 according to [27 - 34]. The values were 

determined for the LSP of SiC ceramic using both equation (2) and (3) to determine the plasma pressure and 

the HEL for the LSP conditions applied in this work (see Table 2). 
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On account of previous literature, it can be assumed that the increase in hardness would decrease the dynamic 

yield strength [35]. The static yield strength of the SiC used in this work was 21 GPa, whilst the dynamic yield 

strength would decrease to about 7 GPa based on previous literature stating that the dynamic yield strength is 

reduced during the material interaction with the laser [44]. This equated to HEL of the SiC to be 26.90 GPa 

owing to the dynamic strength of 21 GPa and HEL of 8.96 GPa as per the static yield strength being 7 GPa. In 

both cases, the pressure at various laser energies and intensities was far too low and was not sufficient enough 

(see Table 2) to exceed the HEL, and render the material to plastically deform. Additionally, it should be further 

noted that only light pressure was introduced so that a crack-free surface was produced. In addition, the laser 

energies adopted in this research were maximum capacity that the laser system could deliver.  

 

Upon increasing the laser intensity would enable the generation of enough plasma pressure for the material to 

exceed the HEL; at the same time, working under the fracture threshold of the SiC ceramic. Furthermore, we 

would like to emphasize that, since no residual stress can be derived by the shock wave traveling along the 

materials due to the processing conditions being far from the SiC yield limit, it was still possible to obtain 

encouraging results, namely; residual stress backed by microstructural changes as well as an increase in 

hardness and fracture toughness. Due to the existing knowledge, we speculate that the change in composition 

could have caused the increase in compressive residual stress despite the laser parameters not yielding to 

sufficient shock pulse pressure. The XPS spectra and the values in Table 4 in particular showed increase in C 

content of 19.6%, a rise in O content of 49% as well as a reduction in the Si by 83%. These changes could be 

the predominant drivers in increasing the hardness, fracture toughness, as well as the compressive stress as 

further shown in this paper. The work of Khor et.al. [48], showed that oxidation improved the mechanical 

properties. In addition, two types of oxidation effects that could be found on SiC ceramic - either an active or a 

passive oxidation, as stated by Roy et.al. [49]. The former was reported to reduce the strength of the ceramic 

and the latter on the other hand improved the strength with respect to weight gain as the SiO2 layer was formed 

which was the case in the laser shock peened SiC herein. Moreover, the C content has increased after LSP. This 

could also be attributed to carbon hardening, as well as the enhancement in dislocations density that created 
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low level of plastic or elastic + plastic deformation, leading to not only improved fracture toughness but also 

compressive residual stress despite the shock pulse pressure being low from the applied laser parameter.  

Table 2 Presents values of both pressure and HEL for the parameters applied for this work. 

Laser Energy (mJ) Laser Intensity - I0 
(Gw/cm2) 

Plasma Pressure (GPa) 

215 0.063 0.427 

600 0.1763 0.7136 

800 0.235 0.8246 

966 0.2838 0.904  

 
Note: All calculations are based on the following parameters: pulse duration 6ns; frequency 10Hz; Spot Size 8.5 mm, 

dynamic yield strength of 7GPa for SiC [35] and static yield strength 26.90 GPa, Poisson’s ratio of a SiC is 0.18.  

 

3. Results and Discussion 

3.1 SiC Microstructure Evaluation after Laser Shock Processing   

The as-received surface in some areas showed evidence of machining marks such as striations, and micro-pores 

and voids as illustrated from Figure 3 of the SEM micrograph of the SiC as-received surface. Figure 4(a) 

showed an optical image of the 8.5 mm diameter laser spot exhibited on the SiC ceramic. With increasing laser 

energy density, the spot diameter became more evident on the surface of the ceramic. Using higher laser 

energy in the range of 1.410J/cm2 to 1.702J/cm2, it was possible to see the maximum footprint of the beam as 

shown in Figure 4(b). After further increase in the laser energy density, the effect on the SiC ceramic became 

somewhat distinct as shown in Figure 5(a) to (d). This was particularly evident when the laser shock peened 

surfaces were compared to the as-received surface in Figure 4(b). With increasing laser energy density, as the 

SiC surface was treated with LSP, the machining marks and striations were no longer apparent. A considerable 

level of machining marks were initially present on the as-received surface that were eliminated after LSP. This 

goes to show that the LSP surface treatment modified the surface integrity which was also confirmed by the 

measured asperities. Particularly, 1.498J/cm2 and 1.702J/cm2 resulted to considerable microstructural change. 

This in turn opened some surface pores at 1.410J/cm2 to 1.702J/cm2 energy density. At low laser energy density 
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(0.379J/cm2), not a remarkable microstructural change was apparent as seen in Figure 5(a). However, one can 

see that pre-existing surface defects were eliminated as the energy density was increased to 1.057J/cm2, 

1.410J/cm2, and finally to 1.702J/cm2 (see Figure 5 (a-d)). With that said, the opening of pores, and voids (at 

maximum laser energy) could be attributed to the laser pulse ablating some of the material, thus, exposing the 

surface defects. This indicated that defect-free surface and undesirable features could be readily obtained using 

energy density of around 1.057J/cm2, and by applying aforementioned conditions. At the same time, energy 

density beyond 1.057J/cm2 may not be desirable for LSP of SiC ceramic, on account of our applied conditions, 

as it seems to produce some ablation during laser material interaction. Thus, it is suggested that the results 

found at the energy density of 1.057J/cm2 were more suitable for conducting LSP operation to engineer the 

surface respectively. 

 

Figure 3. As-received SEM micrograph of the SiC ceramic.  

 

 

 

 

 

 

 

(a) 
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(b) 

Figure 4. Optical and SEM images of the SiC ceramic with distributed pulses in (a); and (b) LSP 

conducted at 1.702J/cm2, 10Hz, for 6ns pulse duration with a single pulse.  
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Laser Shock  
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Laser Shock  
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Untreated area 

215 mJ 
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(b) 

 

(c) 

600 mJ 

800 mJ 
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(d) 

Figure 5 SEM micrograph of the laser shock peened SiC ceramic at 0.379J/cm2 in (a); 1.057 J/cm2 in (b); 

1.410 J/cm2 in (c); and 1.702J/cm2 in (d), around the centre of the spot. 

 

Figure 6 showed the cross-sectional microstructure of the as-received SiC ceramic in (a), LSPned SiC with laser 

energy density of 0.379 J/cm2 in (b), LSP SiC with laser energy density of 1.057 J/cm2 in (c), and (d) the LSP of SiC 

with laser energy density of 1.702 J/cm2. Presence of two phase microstructure was evident from the 

microstructure of as-received SiC ceramic and LSP SiC ceramics. EDS analysis, as shown in Figure 7, revealed that 

the light phase was rich in Si and C and the dark phase was rich in Si. Thus, from EDS analysis, it was concluded 

that the light phase is SiC and the dark phase is the untreated Si. The near surface region showed no signature 

of melting which can be seen from Figure 6 (b) and (c). During LSP of SiC ceramics, a black polyethylene tape 

was used as an absorbent which prevented the surface of the SiC ceramic from being melted. The absorbent 

layer allowed the laser energy to pass through the surface of SiC ceramic in form of shock waves. Changes in 

the microstructure (grain refinement, precipitate formation, micro-crack formation etc.) in metallic systems due 

to laser shock peening have been reported previously [38 - 41]. A close comparison between the microstructures 

of the untreated SiC ceramic and LSP of SiC ceramics revealed no significant difference due to increase in laser 

966 mJ 
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energy as shown in Figure 6(a) to (d). The laser energy densities which transported into the SiC ceramic in form 

of shock waves was unable to cause any visible microstructural change.  

The shock waves are responsible for the low level plastic deformation in the near surface region of the material 

in the form of increased dislocation density, which changed the microstructure of the material in the near 

surface region. It is believed that due to the presence of significantly less plastic deformation (or low dislocation 

density) in LSP SiC ceramics, no visible microstructural changes were observed. To understand the effect of LSP 

on the formation dislocation, XRD peak profile analysis was conducted and is presented in section 3.7.1. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 6 SEM micrographs of cross-section of untreated SiC in (a), LSP SiC with laser energy density of 0.379 

J/cm2 in (b), LSP SiC with laser energy density of 1.057 J/cm2 in (c), and LSP SiC with laser energy density of 

1.702 J/cm2 in (d). 

 

 

 

Figure 7 SEM of some light phase was rich in Si and C and the dark phase rich in Si in (a), and (b) the Energy 

disperive X-ray (EDX) spectroscopic analysis of the untreated SiC ceramic zone. 
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3.2 Topographical Effects 

The surface measurements were conducted over five individual sample of SiC and were compared with the as 

received surface. The average surface roughness (Ra) over five samples was measured to be 1.55µm for the as-

received SiC (see Table 3). The average Ra value for the laser shock peened surfaces peaked to 5.30µm as 

shown in Table 3. This is generally expected with LSP of metallic materials so it is reasonable to assume it will 

be so for ceramics and could also be predicted/tailored, based on the material removal phenomena during 

laser pulse processing. The surface roughness and material removal increased with increasing laser energy 

density, particularly for SiC/Si3N4 ceramic systems [44]. This is generally thought to be the case until ablation, 

melting, vaporization begins to take place [36, 37], naturally, increasing the waviness and in turn the roughness. 

However, this was not the case herein (melting and vaporization), as further evident from the microstructure 

which showed changes in the material integrity, ultimately, leading to roughening of the laser shock peened 

SiC ceramic. This caused the laser shock peened surface to change roughness from Ra of 1.55µm (as-received) 

to 2.50 µm at 0.379 J/cm2, 3.51µm at 1.057 J/cm2 and 5.30µm at J/cm2, respectively as shown in Table 3 and 

Figure 8. 

 

Table 3. The average surface roughness of the SiC as-received and the laser shock peened surfaces of the SiC 

ceramic. 

Surfaces As-received 

0 J/cm2 

Laser shock 

processing @ 

0.379 J/cm2 

Laser shock 

processing @ 

1.057 J/cm2 

Laser shock 

processing @ 

1.702 J/cm2 

Average Surface Roughness (Ra) 1.55 µm 3.50 µm 4.35 µm 5.30 µm 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8 Roughness of the as-received  SiC ceramic surface profile in (a and b), and the laser shock peened 

surface applied 1.057 J/cm2 in (b and c).  

3.3 Phase Transformation   

3.3.1 Phase Analysis by X-Ray Diffraction  

LSP is a high strain rate processing technique, where there is a chance of alteration of phase and microstructure 

of the sample from its original state (although not always common). Figure 9 showed the x-ray diffraction scans 

of the as-received SiC (plot 1) and laser shock peened SiC with energy densities 0.379 J/cm2 (plot 2), 1.057 J/cm2 

(plot 3), and 1.702 J/cm2 (plot 4). Presence of cubic SiC as a major phase and hexagonal SiC along with few 
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unreacted Si as minor phases were evident from Figure 9. It was also evident from Figure 9 that there was no 

phase transformation or formation of new phases as-results of LSP surface treatment. It was observed that the 

cross-sectional microstructure of the SiC ceramics was unaffected by the LSP surface treatment (see Figure 6). 

Similarly, it was also observed from Figure 9 that LSP has no effect on the phase structure with these particular 

parameters applied to the SiC ceramic. It was believed that the applied laser energy densities were not 

sufficient to generate significant plastic deformation or increased dislocation density to cause changes in phase 

and microstructure of the SiC.  However, the original intention behind application of LSP is to induce 

compressive stress on the material surface without altering its phase or microstructure. So, the range of 

parameters studied here were acceptable keeping in mind no change in phase and microstructure was 

observed. 

 

Figure 9 X-ray diffraction scans of untreated SiC (plot 1) and laser peened SiC with laser energy densities of 

0.379 J/cm2(plot 2), 1.057J/cm2(plot 3), and 1.702 J/cm2(plot 4). 

 

The peak broadening analysis of the (304) plane was undertaken to understand the effect of LSP surface 

treatment on the development of plastic strain as shown in Figure 10. The peak broadening was not so 

significant between the LSP SiC ceramic and as-received SiC, as evident from Figure 10. A careful examination 
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of the peaks revealed that a slight increase in peak broadening associated with LSP of SiC ceramics had occured. 

This implied development of plastic strain of very less magnitude due to LSP of SiC ceramics within the studied 

parameters.  

 

A similar analysis was done by Akita et.al. [16], to understand the effect of LSP on the diffraction peak 

broadening of Si3N4. They observed a significant peak broadening after LSP which they attributed to increase 

in dislocation density. It was previously observed that shot peening by mechanical impact could also increase 

dislocation density on the surface of the ceramic [42]. Thus, it is understood that the selected range of laser 

energy densities were not sufficient to introduce significant amount plastic deformation on the surface of SiC 

ceramics, but that is a significant finding in its own right as a first-time study of LSP of SiC ceramics. 

  

 

Figure 10 X-ray diffraction scans of SiC phase for the (304) plane at different laser energy densities.   
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3.3.2 Phase Transformation with Respect to Elemental and Compositional Changes Post Laser Shock 

Processing 

 

Since no real phase transformation was observed from the XRD analysis was an indication that the results ought 

to be verified by other techniques such as elemental and compositional change that may have taken place as 

further shown. The results of surface elemental analysis by SEM-EDX and by using the XPS for the as-received 

and the LSP surface treatment are shown in Table 4. The XPS measurements reflect the composition of the 

outermost few nano meters of the sample, typically up to 10 nm (at maximum), whereas, the SEM-EDX results 

were from a much greater depth of approximately 1m. The SEM-EDX data from the untreated reference 

sample show a composition similar to that except for bulk SiC, with a small percentage of the Si replacing O (i.e. 

a slightly oxidized surface) and weak evidence for a possible carbon-rich surface layer. The LSP surface 

treatment caused relatively little difference in the SEM-EDX results, with only a small increase in O and a small 

decrease in C found. The XPS data from the untreated reference sample, with its much enhanced surface 

sensitivity compared to the SEM-EDX, showed a composition consisting of an oxidized surface hydrocarbon 

layer typical of that found on material exposed to the normal laboratory environment, overlying a bulk SiC 

ceramic. After LSP, the XPS data showed a strong increase in the amounts of surface C and O, and a reduction 

in the amount of Si. This is indicative of the formation of an oxidized carbon-rich surface layer, although, only 

in the region of 10 nm depth. In general, the LSP surface treatment also resulted in a lower overall level of 

minor species. The changes in the surface chemistry were apparent from changes in the line-shapes of the XPS 

C 1s and Si 2p peaks as shown in Figure 11 (a) to (d). The carbon 1s XPS spectrum from the as-received untreated 

reference surface (Figure 11 (a)), showed a low binding energy component due to carbon in carbide bonds. It 

also showed a major component due to C-C bonded carbon, probably hydrocarbon contamination typical of 

air-exposed surfaces, with additional minor components at higher binding energies due to carbon in single- and 

double-bonded oxygen-containing groups. The corresponding Si 2p spectrum (Figure 11 (c)) showed a major 

component due to Si in SiC, and a weaker contribution from oxidized SiC. The corresponding spectra after LSP 

surface treatment were significantly altered. The carbide component of the carbon peak (Figure 11 (b)) was 
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only just visible, and the carbon spectrum was dominated by C-C bonds and by carbon in C-O bonds. The Si 

spectrum (Figure 11 (d)) was much reduced in intensity, reflecting the much lower level of Si detected by XPS 

on this surface, and showed components due to oxidized SiC and to elemental Si, along with a weak 

contribution from Si in SiC. These results indicate transformation of the surface from that of SiC with the 

expected level of surface contamination of an air-exposed material, to a surface with a high carbon and oxygen 

content indicative of an oxidized and possibly graphitized surface with some elemental Si present. The LSP 

surface treatment appeared to have resulted in breakdown of the SiC to Si and C, both of which became 

partially oxidized in the process. The change in the surface chemistry of the SiC ceramic was not detrimental 

but was sufficient to bring about a change in the microstructure. In addition, this could have also led to a 

reduction the residual stress as well as the increase in hardness found over the surface of the laser shock 

peened SiC. Therefore, the modification of hardness, KIc and the reduction in flaw size and possibly the 

indentation of compressive residual stress could be closely linked with these microstructural alterations as well 

as induction of compression on the top surface layer of the laser shock peened region from the generated 

shock waves during the LSP surface treatment. 

  
Table 4. Summary of the surface compositions in atom % determined by XPS and by SEM-EDX for the as-

received reference and the LSP SiC ceramic. In all cases, the balance to 100 atom% was made up of low level 

species including Cl, K, Ca, Fe, Cu and Zn. 

 
Composition (atom %)  

As-received Surfaces Laser Peened Surfaces 

Element XPS SEM-EDX XPS SEM-EDX 

C 55.3 52.0 66.1 50.1 

Si 18.5 46.7 2.4 46.8 

O 19.1 1.1 28.1 2.8 

N 1.6 - 1.3 - 

Na 1.7 0.08 0.6 - 

Al 1.3 - 0.01 - 
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(a) 

 

 

(b) 
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(c) 

 

(d) 

Figure 11. C 1s spectra from the as-received and laser shock peened SiC surfaces respectively in (a) and (b); and 

(c) and (d) using the Si 2p spectra from the untreated and laser shock peened SiC surfaces respectively. 
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3.4 Stress and Strain Measurements   

3.4.1 Size-Strain Plot Analysis  

Table 5 summarizes the crystallite size and micro-strain measured on the untreated laser shock peened SiC 

ceramics under different parameters. Comparing the values of micro-strain for both the treated and untreated 

surfaces in Table 5, it was observed that the micro-strain in the LSP SiC ceramic was lower than the untreated 

SiC. A decreased micro-strain in the LSP SiC ceramic was attributed to the strain relaxation due to LSP. With 

increase in the laser energy density had increased the micro-strain up to 1.23 ×10-4, which indicated a 

generation of plastic deformation. It is well known that LSP has been used to introduce plastic deformation on 

the surface of metallic materials which in turn improves the mechanical properties significantly [33]. However, 

the micro-strains in all the SiC samples were of same order of magnitude which implies less plastic deformation 

due to LSP under the studied parameters. 

 

From Table 5, it was observed that the crystallite size was initially decreased and then increased with the rise 

in laser energy density. Decrease in grain size due to LSP of aluminium alloy was reported by Lu et.al. [42]. The 

observed grain refinement that was due to transformation of dislocation tangles to sub-grain boundaries as a 

result of high strain rates followed by dynamic recrystallization of these sub-grain boundaries to form  refined 

microstructure. However, in the present case it was believed that due to the presence of low plastic 

deformation, the above mentioned mechanism is not applicable. The reason behind the increase in crystallite 

size is under further investigation. It should be noted that a standard deviation associated with each 

measurement has been calculated and subsequently presented in Table 5. The software used for analysis of 

this data was Origin 8 platform in order to fit XRD peak profiles. All the fitting showed R2 values well above 99%. 
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Table 5 Geometric parameters for the as-received and laser shock peened SiC ceramic with changes in the 
power density. 

 

Sample Type 

J/Cm2 

Crystallite Size 
(µm) 

 

Strain (×10-4) 

0 
 

1.65 ± 0.03 1.85 

0.379 
 

1.55 ± 0.09 1.23 

1.057 
 

1.61 ± 0.04 1.4 

1.702 
 

1.80 ± 0.07 1.5 

 

3.4.2 Residual Stress Measurements  

Table 6 summarizes the residual stress developed on the surface of the as-received SiC ceramic and laser shock 

peened SiC ceramic. From Table 6, it is evident that LSP surface treatment significantly altered the residual 

stress state from tensile (as-received) to compressive (after LSP). The development of residual stress on the 

surface of SiC samples depend on the amount of laser energy delivered on to the surface as well as its ability 

to generate plastic deformation. Table 6 revealed that with increase in laser energy density from 0 J/cm2 to 

1.702 J/cm2, the residual stress changed from +101 MPa (tensile stress) to -97 (compressive stress), 

respectively. This was a reduction of 198 MPa and was in increase by almost 2 folds. The introduction of 

compressive residual stress on the surface of SiC after LSP would enhance their mechanical properties such as 

hardness, KIc, and the reduction found in the Vickers diamond indentations, and its respective crack lengths 

that resulted from induced compressive residual stress. Secondly, other properties such as wear resistance, 

fatigue performance and bending strength would also improve from this type of surface treatment. 
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Table 6 Residual stress on both the as-received laser shock peened SiC ceramic. 

Sample Type 

J/cm2 

Residual stress (MPa) 

0 
 

101 ± 16 

0.379 
 

51 ± 11 

1.057 
 

-92 ± 9 

1.702 
 

-97 ± 7.5 

 

3.5 Indentation Evaluation Post Laser Shock Processing   

The as-received surface of the SiC ceramic comprised of 12.50 GPa of hardness from an average of 10 Vickers  

indentation tests and so it was characteristic that the footprint of the Vickers indentation was measured at an  

average of 212µm and the respective crack length from tip-to-tip were measured to be 217µm (see Figure 12), 

with a possible error of ±10%. This was also taken from undergoing 10 individual indentation tests. Up on 

increasing the laser energy density resulted in Vickers diamond footprints that were reduced by an average of 

12µm at 0.379J/cm2, 44µm at 1.057J/cm2 and 32µm for 1.702J/cm2 of laser irradiation respectively. 

Nevertheless, the findings demonstrated that using LSP surface treatment increased the surface hardness of 

the SiC. This meant that the footprint of the diamond indentations were also reducing due to hardening of near 

surface layer when compared to the as-received surface. This is attributed to the compressive residual stress 

induced into the ceramic after LSP as evidenced from the residual stress analysis in section 3.4.2. 
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Figure 12 A graphical illustration showing Vickers indentation size of both the as-received (0 J/cm2) and the 

laser shock peened surfaces of SiC ceramic. The diamond indentation foot-print accompanied by the graph 

demonstrate the size of the diamond foot-print.  

 

3.6 Hardness and Crack Length Post Laser Shock Processing   

The crack lengths of the diamond indents produced on the laser shock peened surfaces were also considerably 

smaller when compared to the as-received surface as shown in Figure 13(a). On average the crack lengths were 

217µm for the as-received SiC, and comparatively, the crack lengths of the laser shock peened surfaces had 

reduced with increasing laser energy density. The lowest flaw size found was 152µm, which indicated that the 

surface became less prone to cracking and showed resistance against diamond impact despite the measured 

hardness to have shown significant increase. This inherently was an indication that there was an increase in the 

brittleness of the top/near surface layer. This meant that the surface should be more prone to cracking after 

the LSP surface treatment. However, the crack lengths were reduced in size from tip-to-tip which also showed 

that there was induction of some compressive stress. This in turn prevented the cracks from expanding, whilst 

being indented by the Vickers indentation. In order to investigate this further, a residual stress study was 

carried-out comparing the as-received residual stress state and the LSP induced residual stress of the SiC 

ceramic. This was confirmed later by the induced compressive stress. The Vickers diamond footprints also 

reduced in size considerably as previously stated which indicated that harder surface responded less in 
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comparison to the softer surface during the Vickers indentation test. The hardness of the laser peened surfaces 

was measured to a maximum of 19.98 GPa at 1.057 J/cm2, and then 16.45 GPa at 1.702 J/cm2 as shown in 

Figure 13(b). In terms of future study, it is suggested that the focus on the rationale for the change in hardness 

from 19.98 GPa to 16.45 GPa at 1.057 J/cm2 and 1.702 J/cm2 should be given. Thus, it is postulated based on 

the microstructural evaluation, the energy induced at 1.702 J/cm2 had created zones that would have covered 

some of the porous regions but less uniformly. This indicated that the ideal laser energy density would be 

around 1.057J/cm2 to bring about the best possible increase in hardness to the SiC ceramic compared to the 

laser shock peened surface at 1.410 J/cm2 and 1.702J/cm2. Overall, the findings from this work showed a level 

of strengthening of the SiC ceramics as it had become less prone to cracking and yielded a good response to 

Vickers indentation load impact of 73.6N when compared to the as-received surface of the SiC ceramic due to 

the induced residual compressive stress from the LSP surface treatment. 
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(b) 
 

Figure 13 The change in flaw size in (a); and (b) the change in hardness for both the as-received (0 J/cm2) and  

the laser shock peened surfaces of SiC ceramic applied at various energy densities. 

 

3.7 Fracture Toughness (KIc ) Parameter Post Laser Shock Processing 

Figure 14 shows the comparison between fracture toughness parameter KIc of the as-received surface and the 

laser shock peened surface at various energy densities of the SiC ceramic. The comparisons show an increase 

in KIc from 2.32 MPa.m1/2 for the as-received surface (0 J/cm2) to 2.60 MPa.m1/2, at 0.379J/cm2 and 3.29 

MPa.m1/2 at 1.702J/cm2 respectively for the laser shock peened surfaces. This demonstrated that the hardness, 

the crack length and the KIc could be altered to suite a specific surface requirement. This could be done upon 

optimizing the laser energy density and the associated parameters. On this more, the rise in hardness and the 

KIc could be attributed to the fact that an increase in residual compressive stress layer during LSP surface 

treatment and forming a path for increasing the dislocation motion may have resulted. Through this 

mechanism, a level of elastic + plastic deformation at the sub-micron level could have yielded to result to a 

better indentation response under the loading of the Vickers indentation diamond. As such, this resulted to 

reduction in the crack length and the indentation size of the diamond, as the acting tensile stress of the Vickers 

indenter would have to overcome the induced compressive stress under the laser peened area. But due to the 

induced compression, it was indicative that further loading would have to be applied to extend the flaw size, 
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and since the opposite effect took place, a rise in the surface KIc occurred under the applied conditions. This 

prediction would deem positive upon further analysis of the residual stress state under the laser peened area, 

as well as analyzing the cross-sectional residual stress state on the top surface layer. 

 
 

Figure 14 The fracture toughness parameter (KIc) for both the as-received (0 J/cm2) and the laser shock peened 

surfaces at different laser energy densities applied to the SiC ceramics. 

 

4. Conclusions 

This work is focused on the examination of surface properties of SiC ceramic following LSP surface treatment. It 

is a preliminary investigation reporting some of the very first findings in the field of LSP ceramics, particularly, 

applied to a brittle ceramic such as a SiC. The results have shown that it is possible to control the ceramic’s 

surface roughness, microstructure, hardness, crack geometry, KIc and the induced residual stress by applying 

required laser energy and appropriate LSP parameters. Upon further work, the process could prove to be 

effective for enhancing the performance and functional life of many industrial ceramic parts. In particular, the 

results of this work showed an increase in surface roughness after LSP compared to the as-received surface. 

This indicated a change in surface integrity at sub-micron level at the highest applied laser energy. Considerable 

microstructural modification also occurred on the laser shock peened surfaces as pre-existing surface defects 

were eliminated with increasing laser power, but surface pores and voids were exposed at the highest laser 

energy applied in various areas of the SiC ceramic. This goes to show that the suitable laser energy for LSP would 
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be around 1.057J/cm2, with 8.5mm spot size, 10Hz PRR delivered in 6ns. The hardness was increased from 12.50 

GPa to 19.98 GPa on the laser shock peened zone at 1.057J/cm2, whist the hardness reduced to 16.45 GPa at 

1.702J/cm2. Nonetheless, all laser peened surfaces revealed an increase in hardness and a reduction in the 

diamond footprints from the Vickers indentation test. Moreover, the lengths of the flaws of the diamond 

indentation footprints were also reduced. This shows that the laser shock peened SiC ceramic responded better 

under mechanical loading in comparison to the as-received SiC. In addition, an increase in KIc also resulted after 

LSP from 2.32 MPa.m1/2 to a 3.29 MPa.m1/2, under the applied conditions. Both the increase in hardness, a 

reduction in the flaw size and the increase in the surface KIc indicated that the laser shock peened surface may 

have undergone a level of plastic + elastic deformation as confirmed from the 2 folds increase in the residual 

stress (- 198 MPa) compared to the as-received SiC. This in turn, generated a compressive stress layer under the 

peened area and prevented a deeper and broader penetration of the diamond footprint and expansion of the 

resulting crack lengths. No such phase transformation was observed from the XRD analysis, however, a 

compositional change was observed. We believe that further refinement of the laser parameters could render 

further improvement in the aforementioned material properties and have a possibility of generating deeper and 

higher compressive stress that is a key factor in such a surface modification technique.     
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