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1. Introduction 

The search for the optimum management scheme that 

maximizes oil production in petroleum fields is one of 

the major challenges in Petroleum Engineering. In this 

context, reservoir simulations and optimization methods 

are extensively used. Thus, Zhao et al. [1] use a 

Simulated Annealing based optimizer to determine the 

optimum steam injection pressure and steam-solvent 

flooding strategy in a thin heavy oil reservoir in the 

absence and presence of a bottom water zone. 

Since the Net Present Value (NPV) is related to the 

production profit, it is commonly used in Reservoir 

Engineering management as the objective function [1], 

[2], [3], [4]. Waterflooding (WF) is the most widespread 

method used to improve oil recovery after primary 

depletion; i.e. after exhausting the reservoir’s natural 

energy. The method consists of injecting water to raise 

the pressure and increase oil production. Horowitz et al. 

[2] propose four formulations of the WF management 

problem leading to optimization problems of different 

complexities, using the NPV as the function to be 

maximized subject to constraints at platform’s total rates. 

They use a Sequential Approximate Optimization (SAO) 

procedure with a Sequential Quadratic Programming 

(SQP) local optimizer. This is a strategy proposed in [5], 

whose main feature is the sub-division of the original 

problem into a sequence of sub-problems to be solved in 

a sub-region of the original space named Trust Region 

(TR). Surrogate models to be called by the optimizer are 

built in the TR domain, which is updated as the search 
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progresses [5], [6], [7]. This technique is also used by 

other researchers in the WF optimization context [3]. 

The concession period is usually subdivided into a 

number of control cycles with fixed switching times, 

with the well rates in each cycle set as design variables. 

Oliveira and Reynolds [4] present a hierarchical 

procedure to determine appropriate number and duration 

of control cycles. The well-by-well approach is based on 

criteria for refining/coarsening of control cycles based 

on gradients of the objective function and on differences 

between consecutive well controls at each well. If 

gradients are not available, only the latter criterion is 

applicable, in which case the merging potential may be 

affected if optimal controls tend to be rough. 

While some of the formulations in [2] result in highly 

multimodal objective functions, the solutions found by 

the SQP optimizer are very sensitive to the initial guess. 

Hence we propose here to use a global search algorithm 

called Particle Swarm Optimization (PSO). The latter is 

composed of particles with different settings aimed at 

displaying complementary capabilities, and a so-called 

forward topology with time-increasing connectivity for 

the social network. In addition, since the plain PSO 

algorithm does not handle constraints on its own, an 

adaptive Constraint-Handling Technique (CHT) is 

developed and integrated into the optimizer. However, 

the fact that PSO is a population-based method also 

implies that it requires a high number of evaluations of 

the objective function. Given that the performance of a 

management scheme cannot be evaluated explicitly but 

by means of a computationally expensive High-Fidelity 

(HF) simulation, it is not feasible to use it directly to 

guide the search. Surrogate-based optimization has 

proved useful to the optimization of computationally 

expensive simulation-based models in the aerospace, 

automotive and oil industries [8]. Therefore, it is 
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proposed in this paper that a Kriging surrogate Model 

(KM) [9], [10] be used, which is trained offline via 

evaluations of a HF commercial simulator (IMEX [11]) 

on a number of sample points. The selection for this 

technique is based on results from previous work in 

which several procedures for the surrogate construction 

of the NPV function were tested [2], [12]. 

The WF management problem is of high importance 

in Petroleum Engineering, whose objective is to increase 

productivity in petroleum fields using the rates of 

injector and producer wells as control parameters, 

thereby maximizing their economic return. In this paper, 

we show that a Particle Swarm (PS) algorithm with 

adaptive constraint handling and a static Kriging model 

can be combined to obtain near optimal results without 

the hassle of extensive numerical trial-and-error testing 

and tuning on a case-by-case basis. It is important to 

note that no tuning is carried out in this paper. 

The layout of the paper is as follows: section 2 

presents the WF problem general formulation and four 

alternatives according to the operational conditions; 

section 3 offers a discussion on surrogate models, in 

particular on Kriging approximations; section 4 presents 

an overview of the PSO method, emphasizing the 

features that are used in our code; section 5 presents the 

proposed PSO algorithm, including the formulation and 

settings of the particles’ trajectory recurrence relation 

and neighbourhood topology, and the development of a 

novel adaptive CHT and termination conditions; section 

6 presents the Proposed Integrated Tool (PIT), consisting 

of the tandem Kriging-PSO for the global surrogate-

based optimization of the WF problem; finally, results 

from computational experiments are offered in section 7, 

a discussion of results is carried out in section 8, whilst 

conclusions and future work are presented in section 9. 

2. Waterflooding Problem Formulation 

The general formulation for the WF problem can be 

written as shown in Eq. (1): 
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where  TT

n

TT

t
qqqq  ...  21  is the vector of well rates for 

all control cycles;  Ttntt w
qq ,,1  ... q  is the vector of well 

rates at control cycle t; qp,t is the liquid rate of well p at 

control cycle t; nt is the total number of control cycles; 

and nw is the total number of wells. In the objective 

function equation, 𝑑 is the discount rate; t  is the time at 

the end of control cycle t; and F(qt) is the cash flow at 

control cycle t, which represents the oil revenue minus 

the cost of water injection and water production. This is 

given by Eq. (2): 
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where t  is the time length of control cycle t; P and I 

distinguish producer from injector wells; 
o

tpq ,  and 
w

tpq ,  

are the average oil and water rates at production well p at 

control cycle t; ro is the oil price; and cw and cwi are the 

costs of producing and injecting water. In Eq. (1), max,lQ  

is the maximum allowed total production liquid rate and 

max,injQ  is the maximum allowed total injection rate of 

the field. Superscripts l and u refer to the lower and 

upper bounds of design variables, respectively. 

Superscripts o and w denote oil and water phases, 

respectively. The last constraint in Eq. (1) requires that, 

for all cycles, the total injection rate belong to an interval 

that goes from the total production rate to  times this 

value, where  ≥ 1 is the over injection parameter. The 

commonly used approach to these problems is to 

subdivide the concession period into a number of control 

cycles, nt, with fixed switching times. The design 

variables are the well rates in each control cycle. Four 

alternative formulations derived from Eq. (1) are 

proposed in [2], where they combine different platform 

operational conditions with and without the inclusion of 

the switching times of the control cycles as design 

variables. The operational conditions considered are: 

1. Full Capacity Operation (FCO), in which the sum of 

both production and injection rates are at maximum 

platform’s total rates. Under this assumption, the last 

equation presented in Eq. (1) is automatically 

satisfied. These equality constraints actually simplify 

the problem, as they result in variables expressed in 

terms of others, thus reducing the dimensionality of 

the search-space and removing those constraints from 

the formulation of the optimization problem. 

2. Non-Full Capacity Operation (NFCO), in which the 

total injection and production rates may vary in order 

to increase the NPV, while the voidage replacement 

type constraints (last equation in Eq. (1)) are kept. 

In this paper, situations where the control cycles are 

determined by the user are referred to as Fixed Time 

(FT) whereas those where the control cycles comprise 

design variables are referred to as Variable Time (VT). 

The cases resulting from the combination of operational 

conditions and types of switching times are depicted in 

Table 1. For each case, the number of design variables 

(n) and the type of constraints involved are shown. In the 

table, nP is the number of producer wells and nI is the 

number of injector wells. The mathematical formulation 

of each of these cases in Table 1 can be found in [2]. 

3. Surrogate Models 

Surrogate models are built to provide smooth 

functions accurate enough to capture the general trends 
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of the HF model at a considerably lower computational 

cost. These properties make them especially adequate for 

optimization purposes. 

Surrogate models can be classified by differentiating 

functional from physical (hierarchical fidelity) categories 

[9]. The former comprises approaches such as data-

fitting, polynomial series, and reduced-order methods, 

whereas the latter involves physical-based models. In 

this paper, since the performance of a given management 

scheme is evaluated by means of a commercial simulator 

acting as a black-box, a data-fitting type is adequate; in 

particular, a Kriging data-fitting model [9], [13], [14] is 

used. The central idea of this model is to assume that 

errors are not independent but rather exhibit spatial 

correlation related to the distance between corresponding 

points modelled by a Gaussian process around each 

sample point. The main advantages of this scheme are to 

easily accommodate irregularly distributed sample data, 

and the ability to model multimodal functions with 

numerous peaks and valleys. Moreover, Kriging Models 

(KMs) provide exact interpolation at the sample points. 

The first step in the construction of a KM is to 

generate the sampling points in the design space, which 

can be performed using Design of Experiments (DoE) 

Techniques [10], [15]. Latin Centroidal Voronoi 

Tessellation (LCVT) [16] is the DoE technique used in 

this paper. This selection is based on studies presented in 

[12], where an extensive surrogate model assessment 

considering different combinations of data-fitting and 

DoE techniques were conducted for the NPV response 

considered here. Once m sample points are generated, 

predictor expressions are developed to evaluate the 

function at untried design points. 

In the KM literature, the true unknown function can 

be written as in Eq. (3): 

     xxx ZNf
k

j

jj 
1

  (3) 

In the above equation, the first part is a linear 

regression of the data with k regressors, in which βj are 

the unknowns and Z(x) is the error. The latter is a 

(generally normally distributed) random function with 

zero mean, σ
2
 variance, and non-zero covariance. The 

first term provides a global model or trend over the 

design space, while Z(x) is responsible for creating a 

localized deviation from the global model. Polynomials 

are generally used to construct Nj(x). A traditional 

approach called ordinary Kriging employs a zero-order 

(constant) function, so that the true unknown function 

becomes as in Eq. (4): 

   xx Zf    (4) 

where β is an unknown constant to be estimated based on 

m observed response values (samples). The covariance 

matrix of Z(x) is given by Eq. (5): 

       jiji RZZCov xxRxx ,, 2   (5) 

where i
x  and j

x are the sample points and R is the m×m 

correlation matrix of the stochastic process. Gaussian 

correlation function is used here. Therefore, 
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where θk is the k
th

 unknown correlation parameter used 

to fit the model. 

Predicted estimates of the response f(x) at any point of 

the design domain are defined as  xf̂ = E(f(x)|fs), which 

stands for the expected value of f(x) given the 

information in the true values of the function at m 

sampling points fs = [f1,…,fm]. 

A measure of the amount of error between the KM and 

the true model can be found introducing the concept of 

Mean Squared Error (MSE): 

    2ˆ xx ffEMSE   (7) 

By minimizing the MSE in Eq. (7), the best unbiased 

predictor in [9] is obtained, as shown in Eq. (8): 

     f-fRxrx    s

T
f 1ˆˆ  (8) 

where ̂  is unknown; f = [1,…,1] is a vector of ones; 

and r(x) is a correlation vector between untried x and the 

m sample data points, as shown in Eq. (9). 

      mRR xx,xx,xr ,...,1  (9) 

As described in [9], the unknown parameters θk 

present at Gaussian correlation function R are found 

using maximum likelihood estimation, which is reduced 

to an n-dimensional minimization problem with simple 

bounds. In this approach, the values for ̂ are obtained 

using generalized least squares, resulting in Eq. (10). 

  s

TT
fRffRf   111̂  (10) 

In KMs, some assessment strategies are required to 

check a priori if a generated model is adequate. They 

also provide guidelines for selecting the best surrogate 

when different options are constructed. The selection of 

the surrogate model in this paper is as in [12], which is 

based on results obtained considering two strategies: the 

Root Mean Square Error (RMSE); and the Predicted 

Error Sum of Squares (PRESS) [9]. 

Table 1 

Characteristics of the four formulations of the WF problem. 

Equality constraints are not transferred to the formulation of 

the optimization problems but reduce dimensionality instead. 

Problem Dimensionality (n) Constraint Type 

FCO-FT (nP + nI ‒ 2) ∙ nt Side, Equality 

NFCO-FT (nP + nI) ∙ nt Side, Inequality 

FCO-VT (nP + nI ‒ 2) ∙ nt  +  nt ‒ 1 
Side, Equality, 

Inequality 

NFCO-VT (nP + nI) ∙ nt + nt ‒ 1 Side, Inequality 

 



4 

 

4. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a global, 

population-based and gradient-free search method. In its 

standard form, it is suitable for single-objective, 

unconstrained problems with real-valued variables. 

Nevertheless, adaptations can be made to handle 

multiple objectives, constraints, and discrete problems 

[17], [18], [19], [20], [21], [22], [23], [24], [25]. 

The method was proposed by Kennedy and Eberhart 

[26], inspired by cooperative behaviour observed in 

social animals. While finding the global optimum is not 

guaranteed, it is a global optimizer in the sense that it is 

able to escape poor local attractors, which is possible due 

to a parallel search carried out by a swarm of cooperative 

particles sharing individually acquired information. The 

method does not necessarily return optimal solutions, as 

no optimality condition is considered. Nonetheless, it is a 

robust, general-purpose search method able to cope with 

problems for which it was not specifically designed or 

tuned. The method can also be viewed as a generator of 

good initial guesses for efficient local optimizers [27], 

[28]. For further reading, see [29], [30], [31], [32], [33]. 

4.1. Search Algorithm 

The ability of the PSO method to optimize stems 

from decentralized local interactions among a swarm of 

particles. Its overall behaviour can be viewed as the 

overlap between each particle’s individual behaviour and 

the social behaviour controlling the way individually 

acquired information is shared among particles [34]. The 

individual behaviour is governed by Eq. (11): 
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where 
 t
ijx  is the j

th
 coordinate of the position of particle 

i at time-step t; iϕ and sϕ are the individual and social 

acceleration coefficients, respectively; ω is the inertia 

weight; 
 t
ijpb  is the j

th
 coordinate of the best position 

found by particle i by time-step t; and 
 t
kjpb  is the j

th
 

coordinate of the best position found by particle k, which 

is a neighbour of particle i, by time-step t. In classical 

formulations, neighbour k is the best-performing particle 

in the neighbourhood of particle i, and the individual and 

social acceleration coefficients are as in Eq. (12): 
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(12) 

where iw and sw are the individuality and sociality 

weights; aw is the acceleration weight; and U(a,b) is a 

random number from a uniform distribution in [a,b]. 

The settings of the coefficients in the trajectory 

recurrence relation greatly influence the behaviour of the 

system. Pioneering work on the subject was carried out 

by Kennedy [35]; Ozcan et al. [36]; Clerc et al. [37]; 

Trelea [38]; and van den Bergh et al. [39]. More 

recently, Innocente et al. [40] studied the effect of the 

settings of ω and ϕ on the speed and form of 

convergence of a deterministic particle pulled by a 

stationary attractor (p). They propose a more general 

formulation aiming to control the degree of randomness 

in ϕ, where iϕ and sϕ are as in Eq. (13) (see also [33]): 
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Within this framework, the classical formulation is 

given by ϕmin = 0 and ι = 0.5, whereas the popular 

Constricted Original PSO (COPSO) formulation of Clerc 

et al. [37] is as in Eq. (14): 
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where the user typically sets aw close to but greater than 

4, and κ close to but smaller than 1. 

Other authors focus on the development of automatic 

tuning of these coefficients. Thus, Nickabadi et al. [41] 

identify two situations for a particle during the search: 

1. The particle and the global best position are far from 

the optimum, and the particle’s displacement sizes 

are low compared to its distance to the optimum. 

2. The global best position is close to the optimum and 

the particle’s position is far from them. 

They argue that the first case requires high values of 

ω because the particle is exploring, whereas low values 

of ω are required in the second case because the particle 

is exploiting previously found promising regions. They 

propose using ω as an adaptive parameter to control the 

exploratory and exploitative behaviour of the swarm. 

Leu et al. [42] propose two parameter automation 

strategies, one for ω and the other for the acceleration 

coefficients. Thus, ω and sw are updated adaptively 

using grey relational analysis with the best particle as 

reference, and iw = 4 – sw. The adaptive rules consist of 

linear functions of the grey relational grade between 

predefined bounds, where the higher the grade the lower 

the ω and the higher the sw. This is because higher 

grades imply higher similarity and hence exploitation; 

i.e. they argue that lower ω and higher sw for constant 

sw + iw are desirable during exploitation. Aiming to fix 

some weaknesses of the grey PSO, Leu et al. [43] 

propose using grey evolutionary analysis. In this case, 

the adaptation is based on an evolutionary factor 

computed using a modified version of the grey relational 

grade, where the distribution of particles at all previous 

time-steps is considered. In this approach, both ω and sw 

increase with the evolutionary factor, with the increase 

being nonlinear and iw = 4 – sw. Thus, they consider that 

ω should be increased during exploitation. 

Loosely speaking, a particle’s individual behaviour is 

controlled by the coefficients in its trajectory recurrence 

relation; i.e. ω, sw and iw in Eqs. (11) and (12), or ω, 

ϕmin, ϕmax and ι in Eqs. (11) and (13). In fact, it only 

depends on ω and ϕ, as shown later in Eq. (16). 

In turn, particles interact locally by exchanging 

individually acquired information. This exchange is 
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indirect because a particle accesses information from the 

memories of neighbouring particles without keeping this 

information in its own memory but having its trajectory 

influenced by it. This local exchange is controlled by a 

local sociometry that defines which memories the 

particle can access. Thus, a particle’s social behaviour 

materializes through the update of its social attractor 

(pbk in Eq. (11)), and also through the stochastically 

weighted average between its social and its individual 

attractors (pbk, pbi) to generate its overall attractor (pi): 
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Thus, without loss of generality: 
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The social behaviour of the swarm as a whole 

emerges from the individual behaviour of every particle 

combined with their local interactions and with features 

defined at the global level such as the synchrony of the 

updates. The overall sociometry results from assembling 

all local sociometries. For further reading on the subject, 

refer to [44], [45], [46], [30], [47], [48], [49] and [33]. 

Hence the convergence speed and the ability of PSO 

to escape poor suboptimal solutions are controlled by the 

convergence speed of each particle and by the speed at 

which information is spread throughout the swarm. 

In general, we refer to the function to be optimized, 

f(x), as the conflict function due to the original metaphor 

that individuals seek agreement by minimizing their 

conflicts in the space of beliefs [50], [29]. The more 

general denomination of objective function may also be 

used indistinctively. Other popular names are fitness 

function, imported from Evolutionary Optimization, and 

cost function, imported from the minimization of cost 

curves in Operations Research. Similarly, x is the vector 

of objective variables, also referred to as problem 

variables, decision variables, or design variables. 

4.2. Constraint-Handling 

Constraints bound the regions of the search-space 

where solutions are admissible. Some optimization 

methods such as the Simplex Method or SQP are 

inherently constrained optimization methods in the sense 

that the constraint-handling is embedded in the search 

strategy. Conversely, there is nothing in the standard 

PSO algorithm that tells particles how to handle 

constraints. Hence some Constraint-Handling Technique 

(CHT) must be incorporated for constrained problems. 

The constrained optimization problem is formulated 

as in Eq. (17) for convenience in PSO: 

 
   





















ni

lxux

ne, ... ,ninijTolg

, ... ,nijTolg

f

iiii

eqj

ineqj

, ... ,1

0 ,0max,0max

1    ;    )(abs

1    ;          )(

Subject to

)( Minimize

x

x

x

 

(17) 

where f(x) is the objective function; gj(x) is the j
th

 

constraint function; n is the dimensionality of the 

problem; ni is the number of inequality constraints; ne is 

the number of equality constraints; li and ui are the lower 

and upper bounds for the i
th

 dimension (variable), 

respectively; Tolineq ≥ 0 is the tolerance for inequality 

constraints violations; and Toleq > 0 is the tolerance for 

equality constraints violations. 

A straightforward CHT is the penalization method, 

where infeasible solutions are penalized by increasing 

their objective function values and treating the problem 

as unconstrained. The general rule is that the amount of 

penalization be linked to the amount of constraint 

violation. Other CHTs consist of introducing adaptation 

in the penalization [51]; using augmented Lagrange 

Multipliers [52]; considering the objective function 

values and the constraint violations separately [53]; or 

formulating constraints as additional objectives [21], 

[20]. For a survey of CHTs, refer to [54]. 

4.3. Applications 

Not only can PSO be applied directly to optimization 

problems, but also to a wide range of industrial problems 

that can be posed as such. Examples of the latter are 

structural design [52]; scheduling [55]; engineering 

optimal design [51]; shortest path problems [18]; neural 

networks training [56], [57]; data classification [58]; 

real-time moving object tracking [59]; reactive power 

dispatch [60]; software testing [61]; etc. For reviews of 

PSO applications, refer to [62], [63] and [64]. 

5. Proposed Optimizer 

Given the strong multimodality resulting from the 

formulations of the WF management problem, a global 

optimization algorithm for real-valued variables would 

be appropriate to seek the management scheme that 

maximizes oil production. There is a plethora of global 

search methods available in the literature, among which 

some of the most popular and widely tested ones are 

Genetic Algorithms (GAs), Evolution Strategies (ESs), 

Differential Evolution (DE), and PSO. These and other 

nature-inspired global search methods have a number of 

settings that affect their behaviour. Moreover, there are 

uncountable variants of each one of them, as well as 

hybridizations among them and also with classical local 

search methods. Therefore, it is not possible to identify a 

best problem-solver matching at the paradigm level. At 

most, a few specific variants with specific settings could 

be compared on a specific set of problems with specific 

characteristics and dimensionality. Clearly, this paper is 

not aimed at such comparisons. 

PSO and DE have gained increasing interest for a 

couple of decades, as numerous successful applications 

have been reported [62], [64], [65], [66]. Swagatam et al. 

[65] provided an overview of these two algorithms, 

which they claim are currently gaining popularity for 

their greater accuracy, faster convergence speed and 

simplicity. In particular, many successful applications of 

PSO have been reported in which this algorithm has 

shown advantages over other nature-inspired algorithms, 

mainly due to its robustness, efficiency and simplicity 
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[67], [63], [68], [69]. Thus, while the use of other global 

search methods is certainly feasible, we propose the use 

of a PSO algorithm to search for a near-optimal solution 

to the multimodal WF management problem. It is not 

argued that it is the unquestionably best alternative, but 

simply that the method performs well on these kinds of 

problems, where a good candidate solution generally 

implies that there is a better one in its proximity. 

5.1. Search Algorithm 

Swarm sizes in PSO commonly vary from 10 to 20 

particles for simple problems, and from 20 to 100 for 

complex ones. It can be reported that under testing, no 

swarm size between 20 to 100 particles produced results 

that were clearly superior or inferior to any other value 

for a majority of the tested problems [70]. A swarm of 

50 particles is used in this paper, the same as in [70]. 

The speed and form of convergence of the proposed 

PSO search algorithm is controlled by the settings of the 

coefficients in Eqs. (11) and (13), combined with the 

topology of the neighbourhood. Note that, as opposed to 

classical formulations, ϕmin ≠ 0 is allowed in our 

formulations. The settings of these coefficients affect the 

way a particle searches around its attractor, having an 

influence on its convergence speed as well as on the 

amplitudes and frequencies in its trajectory oscillations. 

Typically, all particles are identical, having the same 

coefficients’ settings. We propose to divide the swarm in 

sub-swarms of particles displaying different individual 

behaviours; i.e. each sub-swarm has different settings of 

its coefficients. The aim is to complement their abilities 

to cope with a range of environments posing different 

difficulties, thus becoming more general-purpose. This 

strategy is supported by experiments in [33]. 

Given that cooperation between less than 10 to 15 

particles may not be sufficient for complex problems, we 

divide our swarm of 50 particles into three sub-swarms 

of 17, 16 and 17 particles, respectively. While Liang and 

Suganthan [71] used more and smaller sub-swarms, they 

implemented a re-grouping mechanism to re-introduce 

diversity and allow cooperation among sub-swarms. 

Blackwell and Branke [72] also proposed the use of sub-

swarms, but with two different interaction mechanisms, 

namely a local interaction mechanism between colliding 

sub-swarms called exclusion, and an information sharing 

interaction mechanism called anti-convergence. 

For one sub-swarm, we use the popular Constricted 

Original PSO (COPSO), which introduces the Type 1” 

constriction factor (χ) proposed in [37]. The coefficients’ 

settings are as recommended in [37]: κ = 0.99994 (they 

actually recommend κ =1) and aw = 4.1, which results in 

χ = 0.7298 (see Eq. (14) and settings in [70] and [73]). 

Translating these settings into our formulation, ω = 

0.7298, ϕmin = 0, ϕmax = 2.9922, and ι = 0.5. For the other 

two sub-swarms, we propose using the Behaviour Type 1 

and Behaviour Type 2 formulations discussed in the next 

two sections. Recall that a particle i is in fact pulled by a 

single attractor pi
(t)

, as shown in Eqs. (15) and (16). 

5.1.1. Behaviour Type 1 

Here we study the average behaviour (i.e. ϕ = ϕmean) 

of a particle pulled by a stationary attractor p. Hence the 

position variables can be expressed in vectorial form 

(boldface), and sub-index j in Eq. (16) can be dropped. 

Given that we are studying an individual particle, sub-

index i in Eq. (16) can also be dropped. 

In line with our formulation in Eq. (13), the idea is to 

study the average individual behaviour of a given 

particle between updates of its attractor (p), while 

stochasticity would be introduced as accumulative noise 

for each dimension independently (not analyzed here). 

The aim is to find a relationship between ω and ϕmean 

to cancel the momentum once the particle has overflown 

the attractor. That is, if the particle overflies the attractor 

from time-step (t ‒ 1) to time-step t, then x
(t+1)

 = x
(t)

 so 

that the particle does not keep flying away from p in the 

next time-step. While it is not desirable in a deterministic 

algorithm to re-evaluate the same position, randomness 

would ensure that x
(t+1)

 ≠ x
(t)

. Thus, when the attractor is 

updated at (t ‒ 1), the conditions imposed for the mean 

behaviour are offered in Eq. (18), where it is assumed 

that x
(t‒1)

 = x
(t‒2)

 while ϕmean > 1 ensures that the particle 

overflies the attractor from (t ‒ 1) to t. 

 



















1mean

)()1(

)1(

mean

)1()(





tt

ttt

xx

xpxx

 (18) 

Since this analysis is between updates of p, it is 

reasonable to assume that x
(t‒1)

 = x
(t‒2)

 when an update 

takes place at time-step (t ‒ 1), and therefore the particle 

does not have an initial momentum. This means that the 

particle converged to its previous attractor by the time a 

new attractor is found at (t ‒ 1), starting its oscillatory 

trajectory towards it with x
(t‒1)

 = x
(t‒2)

. Even if the 

particle did not converge to its previous attractor, it is 

reasonable to assume that its momentum would be small 

for convergent settings of (ω,ϕmean) (hence x
(t‒1)

 ≈ x
(t‒2)

). 

Thus, after some arithmetic manipulations of Eq. (18): 

   
  )()1(

)(

mean

)1()()()1( 0

tt

ttttt

xpxp

xpxxxx












 (19) 

Operating with x
(t)

 in Eqs. (18) and (19), we obtain: 

1mean   (20) 

Thus, starting from an update of the attractor at t = 1 

with x
(1)

 = x
(0)

 (no momentum) and setting ω ∈ (0,1) and 

ϕmean such that Eq. (20) holds, the average behaviour of 

the particle consists of overflying the attractor at t = 2, 

losing its momentum thus maintaining its position at t = 

3, overflying the attractor again at t = 4, losing its 

momentum again and maintaining its position at t = 5, 

etc. Since the condition imposed for x
(t+1)

 in Eq. (18) is 

the same as the no momentum assumption at the 

beginning of the analysis (x
(t‒1)

 = x
(t‒2)

), this pattern 

repeats until the particle converges. 

An interesting case can be observed by extending the 

behaviour to ϕmean = 1 and hence ω = 0, thus removing 

the assumption of ϕmean > 1: the particle converges in a 

single time-step. In turn, by extending the behaviour to 

ϕmean < 1 and ω ∈ (‒1,0), the particle still maintains its 

previous position every other time-step, but converges 

monotonically (i.e. the attractor is not overflown). 
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The convergence conditions for the deterministic 

trajectory of a particle are [34], [40], [33]: 

1) ω < 1 

2) ϕ > 0 

3) ϕ < 2 · (ω + 1) 

All settings of (ω,ϕ) which satisfy these conditions 

result in convergent deterministic trajectories. The (ω,ϕ) 

pairs which satisfy ω ∈ [0,1] and Eq. (20) are shown in a 

red dotted line in Fig. 1 (top), where the region inside the 

black dotted parabola is the so-called complex region 

where the roots of the characteristic polynomial of the 

recurrence relation are complex. Within this region, the 

convergence speed of a particle’s deterministic trajectory 

is proportional to ω
0.5

 [40], [33]. As can be observed, the 

segment line of the (ω,ϕ) pairs satisfying ω ∈ (0,1) and 

Eq. (20) is within convergent complex region. 

We define the PSO-RRR1 (with RRR standing for 

Reduced Randomness Range) as a formulation which 

displays Behaviour Type 1 and introduces stochasticity 

by defining ϕmin as the average between ϕmean and the left 

convergence boundary, and ϕmax as the average between 

ϕmean and the right convergence boundary, as in Eq. (21). 

 

 1
2

3

1
2

1

1

max

min

mean













 
(21) 

As can be observed in Fig. 1 (top), the whole range 

of ϕ is within complex region for ω > 0.072. 

The deterministic trajectories corresponding to a set 

of settings with ω ∈ [0,1] and ϕ as in Eq. (20) in one 

dimensional space are shown in Fig. 2 (centre column), 

where x
(0)

 = 100 and p = 0. 

5.1.2. Behaviour Type 2 

Similar to the previous analysis, the aim now is to 

reach the attractor (p) in two time-steps from the 

moment the attractor is updated at time-step (t ‒ 1), also 

starting from stagnation (i.e. x
(t‒1)

 = x
(t‒2)

). 















dxx

dxp

)1()1(

)1(

tt

t

 (22) 

   dxxpxx    )1()1()1()( tttt  (23) 

   )()1()()()1( ttttt
xpxxxx     (24) 

From (23) and (24), 

 dxpddxx    )1()1()1( ttt  (25) 

 
2

422

2
1

2














 (26) 

The (ω,ϕ) pairs which satisfy ω ∈ [0,1] and Eq. (26) 

 

 

Fig. 1. Values of (ω,ϕmean) for Behaviour Type 1 (top) and Behaviour Type 2 (bottom) in the (ω,ϕ) plane (red, dotted lines). The 

figures also provide ϕmin and ϕmax for a given ω > 0 and ϕmean > 1 for PSO-RRR1 (top) and PSO-RRR2 (bottom). 
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with the positive square root (ϕ ≥ 1) are shown in a red 

dotted line in Fig. 1 (bottom). As can be observed, the 

segment line of the (ω,ϕ) pairs satisfying ω ∈ (0,1) and 

Eq. (26) is within convergent complex region. 

We define the PSO-RRR2 as a formulation which 

displays Behaviour Type 2 on the right branch, and 

introduces stochasticity by defining ϕmax on the right 

boundary of the convergence region and ϕmin 

accordingly. Thus, PSO-RRR2 is defined as in Eq. (27). 

 

 

maxmeanmin

max

2

mean

2

12

2

422















 
(27) 

As shown in Fig. 1 (bottom), the whole range of ϕ is 

not kept within complex region for PSO-RRR2. 

The deterministic trajectories corresponding to a set 

of settings with ω ∈ [0,1] and ϕ as in Eq. (26) in one 

dimensional space are shown in Fig. 2 (left and right 

columns), where x
(0)

 = 100 and p = 0. Trajectories on the 

left column are for ϕ ∈ (0,1] (left branch) whereas the 

ones on the right column are for ϕ ≥ 1 (right branch). 

Trajectories on the same row display the same 

convergence speed [33]. Recall that PSO-RRR2 requires 

ϕmean > 1 (right column only). 

As opposed to Behaviour Type 1, the condition 

imposed for x
(t+1)

 in Eq. (22) (x
(t+1)

 = p) is unrelated to 

the no momentum assumption at the beginning of the 

analysis (x
(t‒1)

 = x
(t‒2)

). Hence the pattern of having no 

 

Fig. 2. Deterministic trajectories corresponding to a set of settings along the lines displaying Behaviour Type 1 (centre column), 

Behaviour Type 2 with ϕ ≤ 1 (left column), and Behaviour Type 2 with ϕ ≥ 1 (right column) for a particle in one dimensional space, 

where x(0) = 100 and p = 0. Note the change of scale in the vertical axis for clarity in trajectories of Behaviour Type 2 with ω = 1.00 

and ω = 0.75. Trajectories in the same row display the same convergence speed. All three columns converge to (ω,ϕ) = (0,1). 
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momentum at time-step t and reaching the attractor at 

time-step (t + 2) does not repeat. Thus, starting from an 

update of the attractor at t = 1 with x
(1)

 = x
(0)

, ω ∈ (0,1) 

and ϕmean such that Eq. (26) holds, the average behaviour 

of the particle consists of reaching the attractor at t = 3, 

with the momentum taking it away from p at t = 4. From 

then on, the particle converges in a pattern unpredicted 

by this analysis, with high frequencies (ϕmean > 1). 

Trajectories resulting from Behaviour Type 1 and 

Behaviour Type 2 can be compared by observing the 

trajectories on the same row in the centre and right 

columns in Fig. 2, which share the same convergence 

speed. Note that both behaviour types converge on (ω,ϕ) 

= (0,1), which results in maximum convergence speed. 

Thus, our optimizer uses three sub-swarms: 

1) PSO-RRR2 formulation, with ω = 0.8167. 

2) PSO-RRR1 formulation, with ω = 0.80. 

3) COPSO formulation, with 

(ω,ϕmax) = (0.7298, 2.9922). 

The first sub-swarm displays the highest frequency 

and the largest amplitudes in the oscillations, a medium 

range of variation of ϕ (ϕmax ‒ ϕmin = 2.4667) and it is the 

only one whose ϕ can reach the right boundary of the 

convergence region. The second sub-swarm displays 

medium range frequency in the oscillations, and the 

lowest range of variation of ϕ (ϕmax ‒ ϕmin = 1.8). In turn, 

the third sub-swarm displays the lowest frequency in the 

oscillations (even though it has the lowest ω) and has the 

largest range of variation of ϕ (ϕmax ‒ ϕmin = 2.9922). 

These sub-swarms are independent from one another, 

interacting only by means of an information sharing 

mechanism different from those in [71] and [72], which 

is discussed in the next section. 

5.1.3. Neighbourhood Topology 

A so-called forward topology is proposed, which 

shares important characteristics with the classic ring 

topology. Namely, it allows any number of neighbours 

(nn) from 0 (no cooperation) to (swarm-size – 1) (full 

cooperation), and the graph that represents it is 

connected for any nn > 0. The difference between the 

ring and the forward topologies is that interconnections 

are not bidirectional in the latter, so that a particle is not 

generally informed by the same particles it informs. 

A graphical comparison between the ring and the 

forward topologies is offered in Fig. 3 for 6 particles and 

2 neighbours. Notice that the number of edges in the 

graphs that need to be traversed to go from a given node 

to its farthest node are the same in both cases. For 

instance, the farthest node for node 1 in Fig. 3 is node 4 

for the ring topology (traversing nodes 2 and 3) and node 

6 for the forward topology (traversing nodes 3 and 5). 

The reverse is only true for the ring topology: the 

farthest node for node 4 is node 1 for the ring topology, 

whereas the one for node 6 in the forward topology is 

not node 1 –which is actually the closest– but node 5. 

In our proposed optimizer, an independent forward 

topology is used within each of the 3 sub-swarms, where 

the number of neighbours is time-increasing linearly 

from 1 at the first time-step (i.e. the neighbourhood of a 

particle is composed of 1 neighbour plus the particle 

itself) until it becomes global when the search reaches 

the maximum number of time-steps permitted (tmax). 

The interaction between these 3 forward topologies 

takes place by extending the local sociometry of the first 

particle in each sub-swarm through their access to the 

individual memory of the other two. 

The use of the forward topology with linearly time-

increasing connectivity and of this so-called individual 

overlapping for the interaction between sub-swarms is 

supported by experimental results in [33]. 

5.2. Constraint-Handling 

Some of the formulations for the WF management 

problem involve constraints. Therefore, a novel, adaptive 

CHT is developed and integrated into the optimizer. 

We make use here of a Preserving Feasibility with 

Priority Rules (PFPR) technique, which consists of rules 

to decide, whenever two candidate solutions are 

compared, which one is better. The rules are as follows: 

1) If they are both feasible, the one with the lowest 

objective function value is better. 

2) If they are both infeasible, the one with the lowest 

Constraints Violation (CV) is better. 

3) If one is feasible and the other infeasible, the feasible 

one is always better. 

4) If they are both infeasible with the same amount of 

Constraint Violation (CV), the one with the lowest 

objective function value is better. 

Similar CHTs have been proposed in the literature 

[53], [74], [19], [75]. Takahama et al. [19] relaxed these 

priority rules by means of a control parameter in the 

comparisons (the so-called ε-level comparisons). 

The PFPR technique has the advantage that an initial 

feasible swarm is not required and that the objective 

function is seldom evaluated for infeasible particles. 

However, when searching highly constrained spaces, 

most of the search is driven by constraint satisfaction, 

disregarding the conflict function information. Thus, by 

the time a particle finds a feasible location, it might be 

anywhere with respect to the optimum. 

5.2.1. Self-Tuned Initial Tolerances Relaxation 

Since the use of a tolerance for equality CVs in PSO 

is a must, it is common practice to relax this tolerance at 

the beginning and decrease it as the search progresses. 

Usually, the tolerance is relaxed to an arbitrary initial 

 

Fig. 3. Swarm composed of 6 particles, with a) ring topology 

with 2 neighbours; b) forward topology with 2 neighbours. 
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value, and then deterministically decreased. The aim is 

to temporarily expand the feasible region of the search-

space to relax the priority rules in a similar fashion as the 

ε-level comparisons do. However, the impact of a given 

relaxation on the Feasibility Ratio (FR) of the search-

space is problem-dependent, and can vary greatly. For 

instance, to obtain a FR ∈ [0.20,0.25], a tolerance for 

equality CVs of around 0.26 is required for problem g11 

in [33], [76], [53], whereas a tolerance of around 6.63 is 

required for problem g13 (both with equality constraints 

only). Since there are problems involving only inequality 

constraints which present small FRs, the same concept 

can be applied. That is, the tolerance for their violations 

can also be relaxed. Thus, the tolerance required for 

problem g10 in [33], [76], [53] to present a FR ∈ 

[0.20,0.25] is around 10.83 whereas it is around 2790 for 

problem g06 (both with inequality constraints only). 

Therefore, initial self-tuned tolerance relaxations are 

proposed aiming for a target FR. Here, we arbitrarily set 

target FR ∈ [0.20,0.25]. Thus, the self-tuning procedure 

consists of starting with small, minimum values for the 

tolerances (0.01 for inequality and 0.1 for equality 

constraints), and evaluating the constraint functions on 

1000 randomly selected positions. The FR is calculated, 

and the tolerances are adequately increased or decreased. 

More precisely, if the resulting FR < 0.20, the tolerances 

are increased by a factor for 10 whereas, if the resulting 

FR > 0.25, a bisection search is triggered to find the 

minimum tolerances which satisfy FR ∈ [0.20,0.25]. For 

problems with FRs > 0.25, target FR ∈ [(1.1 ∙ FR),(1.1 ∙ 

FR + 0.05)], with the obvious limit of 1. 

5.2.2. Adaptive Decrease of Tolerances Relaxation 

The aim is to make the tolerance update adaptive so 

that updates are performed when they would have a less 

disruptive effect on the dynamics of the swarm and on 

maintaining potentially good solutions. Thus, updates are 

performed when a given minimum percentage (ptgmin) of 

the particles’ best experiences (pb) are located within 

feasible space for current tolerances. The coefficient for 

the exponential update (ktol
(t)

) is also adaptive, as shown 

in Eq. (28), while the exponential update of the 

tolerances is as posed in Eq. (29). 

  min

min

min)( 100
100

99.0
ktolptg

ptg

ktol
ktol t 




  (28) 

)1()()(  ttt TolktolTol  (29) 

Thus, ktol
(t)

 = 0.99 for ptg = ptgmin, ktol
(t)

 = ktolmin for 

ptg = 100, with linear variation in between. Therefore, 

the greater the percentage above a minimum established, 

the greater the size of the tolerance decrease. 

Aiming to avoid too many time-steps without a 

tolerance update, a safety mechanism is implemented by 

enforcing an update if: 

t
ntu

t
  (30) 

where t is the current time-step, ntu is the number of 

tolerances updates, and Δt is the maximum permitted 

average number of time-steps between tolerance updates. 

When an update is enforced by Eq. (30), the coefficient 

used in Eq. (29) is ktol
(t)

 = 0.99 (i.e. ktolmax). 

In order to give some time for the particles to find 

feasible solutions once the tolerances have reached their 

desired values, it is arbitrarily set that such values must 

be reached by the time 80% of the maximum search-

length (tmax) has elapsed. If the desired tolerances are not 

reached adaptively by the time 72% of tmax has elapsed, a 

tolerance update is enforced at every time-step so that 

the desired values are attained at t = (0.80 · tmax). Hence 

ktol is calculated as in Eqs. (31) and (32), and is kept 

constant for the remaining (0.08 · tmax) time-steps. 

   
desired

ttt
TolTolTolktol 

 maxmaxmax 8.072.008.0  (31) 

 

max

max

08.0

1

72.0

t

t

desired

Tol

Tol
ktol



 







  (32) 

where ktol is calculated independently for inequality and 

equality constraints. 

For inequality CVs, Toldesired is typically set to 0. Since 

this cannot be reached by exponential updates, we set 

Toldesired = 10
–5

 for the calculation of ktol in Eq. (32), re-

setting the tolerance to 0 as soon as it reaches a value 

equal to or below 10
–5

 in Eq. (29). 

5.2.3. Adaptive PFPR Technique 

The proposed adaptive scheme is coupled with the 

PFPR technique, which is especially useful in problems 

with low FRs. By means of the adaptive scheme, the 

PFPR technique is fooled into using objective function 

information while searching infeasible space. 

Thus, the proposed adaptive CHT consists of self-

tuning initial tolerance relaxations, and then decreasing 

these tolerances adaptively while using the PFPR 

technique to compare particles’ performances within 

current tolerances. Note that the word pseudo is used in 

[33] because there are still a few parameters to be set. 

Nonetheless, the scheme may be viewed as adaptive by 

fixing these parameters to general-purpose values, as it 

has been done in this paper. 

Bear in mind that only problems with side and 

inequality constraints are considered in this paper. The 

benefits of this technique are more evident when equality 

constraints are also present [33]. 

5.3. Termination Conditions 

Termination conditions are important for a general-

purpose optimizer because they allow setting a high tmax 

without resulting in unnecessarily large search-lengths 

for simple problems. Due to its population-based nature, 

PSO does not lend itself to traditional termination 

conditions used for single-solution methods. We propose 

some measures that can be used to infer convergence or 

stagnation in PSO, dividing them in two groups: 

1) Clustering measures: within a single time-step. 

2) Evolution measures: between time-steps. 

In addition, these measures can be computed in terms 

of the positions in the search-space (preceded by pb_ for 

position-based) or in terms of the values of the conflict 

function (preceded by cb_, for conflict-based). They can 
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also be computed in terms of the information currently 

held by the particles or in terms of their memorized 

information. Here we use the latter. 

Two clustering measures are offered in Eqs. (33) and 

(34) and four evolution measures are offered in Eqs. (35) 

to (38), where n is the number of dimensions; m is the 

swarm-size; x is a particle’s position; gb is the global 

best position; cg is the centre of gravity of the swarm; c  

is the average conflict in the swarm; cgb is the conflict 

of the global best position in the swarm; (xjmax ‒ xjmin) is 

the j
th

 feasible interval; t is the current time-step; and tref 

is a number of time-steps over which these measures are 

averaged to smooth their oscillations (see also [33]). 

For further reading on Termination Conditions in 

PSO, refer to [63]. 
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6. Proposed Integrated Tool (PIT) 

At the beginning of section 5, we argued that nature-

inspired global search methods would be appropriate to 

seek the optimum management scheme in the strongly 

multimodal waterflooding (WF) problem, and proposed 

the use of a PSO algorithm. The details of the algorithm 

were presented in detail in the remainder of the section. 

In addition to their ability to cope with multimodal 

problems, another advantage of nature-inspired methods 

in general and of PSO in particular is that the functions 

involved do not need to be differentiable, continuous, or 

even explicit. All that is needed is a way to evaluate the 

relative goodness of the potential solutions. If this cannot 

be achieved by the evaluation of an analytical function, it 

may be achieved by means of computational simulations, 

approximators, response surfaces, or even experiments. 

The functions involved in the WF reservoir problem 

formulation in section 2 cannot be evaluated analytically. 

Therefore, a computational simulation is required, for 

which we have a commercial High-Fidelity (HF) 

reservoir simulator available [11]. However, every HF 

simulation requires a high computational effort. For 

instance, one single simulation using an i7-3.4GHz 

processor takes over a minute for Reservoir 1 in section 

7.1; over 2 minutes for Reservoir 2 in section 7.2; while 

it could take several hours and even days for more 

complex reservoirs. This presents a problem for a 

population-based method like PSO, which typically 

requires a high number of function calls. Therefore, we 

propose the use of a remarkably cheaper Kriging 

surrogate model in place of the HF simulator. This 

model is trained offline using a much smaller number of 

simulations than would be required for the direct 

simulation-based optimization. 

Thus, the Proposed Integrated Tool (PIT) consists of 

the integration of a commercial HF simulator; a Kriging 

surrogate model; a DoE technique to train the model 

offline; and a general-purpose PSO algorithm coupled 

with an adaptive CHT and termination conditions. A 

high-level description of the PIT is offered in Fig. 4, 

where the green text boxes describe modelling modules 

whereas the red text boxes describe solver modules. The 

flowchart in Fig. 4 may be described as follows: 

1. Generate a number of sampling points using LCVT 

DoE technique. 

2. Perform High Fidelity (HF) reservoir simulations on 

sampling points (IMEX). 

3. Train Kriging Model (KM) using responses obtained 

from HF simulations. 

4. Search for global optimum of static KM with Particle 

Swarm Algorithm (PSA) coupled with adaptive CHT 

(no additional HF simulation). 

5. Validate results by evaluating trained KM on the 

coordinates of the best known solution, and also by 

performing an additional HF simulation on the 

coordinates of the best result returned by the PSA. 

 

Fig. 4. High-level description of the Proposed Integrated Tool 

(PIT), where the green text boxes are associated with the 

modelling of the physical phenomena and the red text boxes are 

the techniques used to optimize the model. 
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7. Computational Experiments 

The PIT is applied hereafter to two oil reservoir case 

studies. The features and settings of the PSA used are as 

described below, which are supported by experiments 

carried out on sets of benchmark problems in [33]: 

 The termination conditions are, either the maximum 

number of time-steps permitted for the search (tmax) is 

reached, or the minimum number of time-steps permitted 

(tmin) is reached and the measures of clustering and 

evolution reach a maximum value that allows inferring 

convergence or stagnation. Refer to section 5.3 and Eqs. 

(33) to (38) for more details. The settings are as follows: 

1. Maximum search length tmax = 10000. 

2. Minimum search length tmin = 500. 

3. Termination values for clustering measures: 

pb_me = pb_cge = 10
‒3

. 

4. Termination values for evolution measures: 

cb_av = cb_b = 10
‒6

; pb_cg = pb_gb = 10
‒3

. 

5. tref = 10. 

 A swarm of 50 particles is used, split in three sub-

swarms. The first sub-swarm is composed of 17 particles 

governed by PSO-RRR2 formulation with ω = 0.8167; 

the second one is composed of 16 particles governed by 

PSO-RRR1 formulation with ω = 0.80; and the third one 

is composed of 17 particles governed by COPSO 

formulation with settings equivalent to ϕmin = 0 and 

(ω,ϕmax) = (0.7298,2.9922). For all sub-swarms, ι = 0.50. 

Refer to section 5.1 for further details. 

 An independent forward topology is implemented for 

each sub-swarm, sharing information among them by 

means of an individual overlapping. The number of 

neighbours in each sub-swarm is time-increasing linearly 

from 1 at the first time-step until it becomes global at t = 

tmax. Refer to section 5.1.3 for further details. 

 Particles’ positions are initialized by generating 1000 

independent Latin Hypercube Samplings and selecting 

the one with the maximum minimum distance between 

particles. Each sub-swarm is initialized independently, 

and particles are initialized from stagnation. Every best 

experience (pb) is initialized at the same distance from 

its corresponding particle (x). Each component of this 

distance is calculated as the corresponding feasible 

interval divided by twice the number of particles in the 

swarm. The sign of the component and hence the 

direction of the distance vector are randomly generated. 

For each (x,pb) pair, a comparison is performed so that 

the best one becomes or stays pb and the other one 

becomes or stays x before the search begins. Thus, every 

particle starts the search with the same, moderate 

acceleration towards its best individual experience (pb). 

 25 runs are performed for each problem. 

 Constraints are handled by the PFPR technique 

coupled with the adaptive scheme proposed in section 

5.2, where target FR ∈ [0.2,0.25]. For problems with FR 

> 0.25, target FR ∈ [(1.1 ∙ FR),(1.1 ∙ FR + 0.05)], with 

the obvious limit of 1. For problems with side constraints 

only, the latter are handled by the plain PFPR technique. 

Note that no tuning is carried out in this paper. While 

even better results on some problems are likely possible 

for problem-specific parameter-tuning, the aim behind 

choosing a PSA with general-purpose settings, sub-

swarms with complementary behaviour, and an adaptive 

CHT is to unburden the user of the hassle of performing 

costly and complex numerical trial-and-error testing and 

tuning on a case-by-case basis. Instead, the optimizer is 

run with settings that may be viewed as default. Thus, all 

problems hereafter are optimized using the same 

settings. The ultimate goal is to design a fully adaptive 

tool. Meanwhile, our PIT (see Fig. 4) trains the KM 

offline, uses general-purpose settings for the Search 

Algorithm and an adaptive CHT. 

Furthermore, note that this PSA, with these settings, 

has also been tested on several benchmarking problems 

in [33], including the 5 unconstrained functions in [38], 

each with 2, 10 and 30 dimensions; the 13 constrained 

functions in [53]; the test suite of engineering problems 

in [77]; and the well-known 10-bar plane truss and 25-

bar space truss design problems. 

We also include results obtained optimizing the same 

KMs by the proposed PSA but without tolerance relation 

as well as by 3 commercial optimizers from the Matlab 

2014a Optimization and Global Optimization Toolboxes, 

namely the local optimizer SQP and the global 

optimizers GlobalSearch (using Multi-Start SQP) and 

Genetic Algorithm (GA). While the aim is not to 

compare optimizers’ performances, these values can be 

used as frames of reference to assess the benefits of the 

tolerance relaxation, the benefits of a global search, and 

also the accuracy of the proposed PSA with adaptive 

CHT irrespective of the accuracy of the KMs. In our 

experiments, the initial guess for SQP and Multi-Start 

SQP is in the middle of the bounding box defined by the 

feasible intervals, while the Multi-Start SQP considers 

1000 potential initial guesses. For the GA, the 

population-size is set to 200 and tmax = 2500 so that the 

maximum number of objective Function Evaluations 

(FEs) permitted is the same one used for the proposed 

optimizer. All remaining settings are kept as default. 

Bear in mind that t stands for time-step in the 

optimization context whereas it stands for control cycle 

in the reservoir simulation context. 

7.1. Reservoir 1 (small, with 3 permeability zones) 

The first reservoir has 1 injection and 2 production 

wells, as illustrated in Fig. 5 (from [78]). The reservoir 

has an area of 510x510 m
2
 with a thickness of 4 m, 

which is modelled with a mesh of 51x51x1. The main 

characteristics of the reservoir are given in Table 2. 

The arrangement of the injection and production 

wells and their regions are defined according to the 

horizontal permeability in the reservoir, as can be 

observed in Fig. 5. The horizontal permeability (kh) in 

the injection well (I-1) region equals 1000 mD; kh near 

the production well P-1 equals 500 mD; whereas kh near 

the production well P-2 is equal to 1500 mD. 

For this problem, Ql,max equals 40 m³/day, and the 

individual flow cannot exceed 30 m³/day. The Qinj,max 

equals 44 m³/day. The rate at the injector is kept fixed 

whereas the rates at producers are variable during the 

optimization process. This leads to the following side 

constraints at producers (P) and at each control cycle (t): 

0.25 ≤ xp,t ≤ 0.75. The total concession period considered 

is 16 years, and the oil price adopted is $25.00/m³. Other 

values used in the NPV calculations are: discount rate d 
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= 0.09; cost of water injection = $2.00/m
3
; and cost of 

water production = $5.00/m
3
. 

As discussed in section 2 (see also Table 1), 4 cases 

are analyzed here according to the operational conditions 

and types of design variables: 

 Case 1: FCO-FT considering different numbers of 

control cycles (side constrained problem). 

 Case 2: NFCO-FT considering 3 control cycles. 

 Case 3: FCO-VT considering 5 control cycles. 

 Case 4: NFCO-VT considering 3 control cycles. 

According to [2], inequality constraints are present in 

this problem for NFCO and/or VT operational 

conditions. The NFCO condition introduces (3·nt) 

inequalities whereas the VT condition introduces 1 

inequality. Some statistics of the NPVs returned by our 

Proposed Integrated Tool (PIT) for each of these cases 

and sub-cases are shown in Table 3, Table 4 and Table 5. 

Table 3 also shows the mean search length, the self-

tuned initial relaxation of the tolerance and the resulting 

estimated FR within that tolerance, as well as problems’ 

features such as the estimated FR, dimensionality (n), 

number of inequality (ni) and number of equality (ne) 

constraints. FRs are estimated by randomly generating 

10
6
 sampling points, checking their feasibility, and 

computing the ratio of the number of feasible over the 

number of infeasible generated points. 

Table 4 also shows the best known solution for each 

problem using a Sequential Approximate Optimization 

(SAO) procedure equipped with a SQP local optimizer 

and a Trust Region (TR) based method for the update of 

the search-space for each local solution [79]. It also 

includes the results of the High-Fidelity (HF) evaluations 

of the coordinates of the best results returned by our PIT, 

and the results of the evaluation of the KMs on the 

coordinates of the best known solutions. These last two 

pieces of information are helpful to evaluate the 

accuracy of the KMs in the vicinity of the best known 

solutions and in the vicinity of the best results found by 

the proposed optimizer. A comparison between the best 

known solutions and the results returned by our PIT 

enables the assessment of its accuracy as a whole. 

Table 5 also shows statistics of NPVs returned by our 

proposed PSA but without tolerance relation as well as 

by local optimizer SQP and global optimizers Multi-

Start SQP and GA on the same KMs. 

7.1.1. Optimization of Reservoir 1 for Case 1 

Three problems with side constraints only and 

different dimensionalities are considered here, where the 

number of control cycles equals the number of design 

variables (n). In order to observe the influence on the 

NPV response, n = 2, n = 12 and n = 24 design variables 

are considered. Each design variable represents the rates 

at producer P1 at one production cycle. 

The first step is to train the KM, for which 10 

sampling points are used per design variable. Thus, 20, 

120 and 240 HF simulations are performed, respectively. 

This problem with n = 2, n = 12, and n = 24 is 

referred to as Problem 1, Problem 5, and Problem 6, 

respectively, in Table 3, Table 4 and Table 5. The 

control cycles are shown in Fig. 6. 

These problems have side constraints only, and not 

even dimensionality seems to pose any difficulty for our 

PSA. As shown in Table 3 and Table 4, every run 

converged to the same result, and did so very quickly. In 

fact, the termination condition t ≥ tmin prevented the 

search from terminating before 500 time-steps have 

elapsed for Problem 1 (n = 2) and for Problem 5 (n = 

12), whilst the search was terminated after 647 time-

steps have elapsed, on average, for Problem 6 (n = 24). 

As shown in Table 5, all global search algorithms 

converged to this same NPV in all 25 runs, displaying 

very small sample standard deviations (smallest for 

Multi-Start SQP and largest for GA). Note that, since 

there are no constraints other than side constraints, our 

proposed PSA with and without tolerance relaxation are 

the same. Results also show that the very efficient local 

optimizer SQP falls short on these problems. 

As shown in Table 4, the best known solutions of 

these problems are very similar to the best results 

obtained by our PIT, only differing in 0.01%, 0.15% and 

0.07% of the best known solutions. 

 An accuracy check was performed by evaluating the 

HF simulator on the coordinates of the best results found 

Table 2 

Characteristics of Reservoir 1. 

Simulation mesh 51x51x1 (510x510x4 m3) 

Porosity 30% 

Horizontal permeability (kh) 500 to 1500 mD 

Vertical permeability (kv) 10% of kh 

Rock compressibility at 

200 kgf/cm² 
5 x 10‒5 (kgf/cm²)‒1 

Viscosity     0.97 cP 

Gas-Oil Ratio (GOR) 115.5 m³/m³ std 

Maximum platform liquid 

production rate 
40 m3/day 

Maximum platform injection rate 44 m3/day 

Maximum liquid rate at producers 30 m3/day 

Minimum liquid rate at producers 10 m3/day 

 

 

Fig. 5. Reservoir 1: Permeability field and well locations. 
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by our PIT, resulting in errors of our KMs of 0.03% of 

the HF simulation for Problem 1 (n = 2); 0.23% for 

Problem 5 (n = 12); and 0.07% for Problem 6 (n = 24). 

Another accuracy check was carried out by evaluating 

the KMs on the coordinates of the best known solutions, 

resulting in errors of our KMs of 0.00% of the best 

known solution for Problem 1 (n = 2); 0.29% for 

Problem 5 (n = 12); and 0.13% for Problem 6 (n = 24) 

(see Table 4). 

7.1.2. Optimization of Reservoir 1 for Case 2 

In order to study the impact of more flexible 

management schedules, we investigate in this section the 

case of a Non-Full Capacity Operation (NFCO) of the 

problem discussed in the previous section (see Table 1). 

The control cycles considered are shown in Fig. 7 with 

fixed switching times (FT). Since the rates at all three 

wells are variable, and the number of control cycles 

equals 3 (nt = 3), this problem presents a total of 9 design 

variables (n = 3·nt = 9) and 9 inequality constraints (ni = 

3·nt = 9) (see Table 3). This problem is referred to as 

Problem 3 in Table 3, Table 4 and Table 5. 

As in the previous cases, 10 sampling points are used 

per design variable to train the KM, leading to 90 HF 

simulations. 

While there is no equality constraint, the problem is 

still highly constrained with an estimated FR = 0.0087%, 

as shown in Table 3. After the relaxation of the tolerance 

to 0.4215, the resulting estimated FR = 22.75%, which is 

within the range specified in the settings (20% to 25%). 

This problem is noticeably harder than those in the 

previous section. Nevertheless, as shown in Table 3 and 

Table 4, our optimizer obtains good results consistently: 

the best NPV found in 25 runs equals 1.7151; the median 

NPV equals 1.7145; the mean NPV equals 1.7137; and 

the worst NPV equals 1.6985; with a sample standard 

deviation (σs) of 0.003. The maximum search-length 

permitted was reached in every run. Nevertheless, the 

mean convergence curve is reasonably flat by the end of 

the search, as shown in Fig. 8 (left). 

Further analysis on the data extracted from the search 

(not presented for brevity) shows that the difference in 

coordinates between the best and the median results is 

minor in every dimension, and therefore they are in the 

same region of the search-space. In fact, the maximum 

and average absolute differences between corresponding 

coordinates of the best and of the median results returned 

equal 6.14% and 2.45% of the corresponding feasible 

interval, respectively. Hence it can be inferred that the 

difference is in fine-tuning. Only in 1 out of 25 runs is 

the result in a different region of the search-space. 

As shown in Table 5, the Multi-Start SQP converged 

to the same NPV, namely 1.7151, in all 25 runs. Our 

PSA with and without tolerance relaxation is able to find 

Table 4 

Statistics of NPVs returned by PIT for Reservoir 1, best known solutions from [79], High Fidelity (HF) evaluations on best 

coordinates returned by PIT, and Kriging Models evaluations on coordinates of best known solutions. Values are scaled by 10‒6. 

PROBLEM Best Known 

Solution 

x 10-6 

NPVs returned by 

Proposed Integrated Tool (PIT) x 10-6 
HF evaluation on  

coordinates returned 

by PIT x 10-6 

KM evaluation on 

coordinates of Best 

Known Solution x 10-6 
No. Denomination Best Median Mean Worst Sample σ 

1 2dv_FCO 1.4922 1.4924 1.4924 1.4924 1.4924 4.6000E-16 1.4920 1.4922 

2 9dv_FCOdt 1.4936 1.5167 1.5167 1.5167 1.5167 9.6002E-12 1.4867 1.4823 

3 9dv_NFCO 1.7240 1.7151 1.7145 1.7137 1.6985 3.2619E-03 1.5950 1.6190 

4 11dv_NFCOdt 1.7259 1.7216 1.7216 1.7160 1.6521 1.9191E-02 1.7100 1.5020 

5 12dv_FCO 1.4935 1.4957 1.4957 1.4957 1.4957 9.7139E-12 1.4923 1.4892 

6 24dv_FCO 1.4928 1.4938 1.4938 1.4938 1.4938 7.3492E-09 1.4927 1.4909 

 

 

Table 3 

Problems’ features and statistics of NPVs returned by Proposed Integrated Tool (PIT) for Reservoir 1, scaled by a factor of 10‒6. 

Additional information such as average search length, tolerance relaxation, and Feasibility Ratios (FRs) is also offered, where FRs 

are estimated by checking the feasibility of 106 randomly generated sample points within side constraints. 

PROBLEM 
FR [%] n ni ne 

FR 

Relaxed 

Tol. [%] 

Relaxed 

Initial 

Tol. Ineq. 

NPVs returned by 

Proposed Integrated Tool (PIT) x 10-6 
Mean 

Final 

t 
No. Denomination Best Median Mean Worst Sample σ 

1 2dv_FCO 100 2 0 0 - - 1.4924 1.4924 1.4924 1.4924 4.6000E-16 500 

2 9dv_FCOdt 79.8503 9 1 0 89.18 0.0927 1.5167 1.5167 1.5167 1.5167 9.6002E-12 2739 

3 9dv_NFCO 0.0087 9 9 0 22.75 0.4215 1.7151 1.7145 1.7137 1.6985 3.2619E-03 10000 

4 11dv_NFCOdt 0.008 11 10 0 22.84 0.4223 1.7216 1.7216 1.7160 1.6521 1.9191E-02 9847 

5 12dv_FCO 100 12 0 0 - - 1.4957 1.4957 1.4957 1.4957 9.7139E-12 500 

6 24dv_FCO 100 24 0 0 - - 1.4938 1.4938 1.4938 1.4938 7.3492E-09 647 

 

 



15 

 

this NPV in some but not all runs, where the one with 

the tolerance relaxation exhibits better performance in 

terms of median, mean and σs. In turn, the GA exhibits 

worse performance whereas the result returned but the 

efficient SQP is very poor. Thus, results in Table 5 show 

that our proposed optimizer obtains good results, being 

the second best among the ones compared on this KM. 

They also show that a global search is necessary, and 

that the tolerance relaxation is beneficial. 

As shown in Table 4, the best known solution of this 

problem (1.7240) is very similar to the best result 

returned by our PIT (1.7151), only differing in 0.52% of 

the best known solution. Comparing this (NFCO-FT) to 

the FCO-FT operational conditions, it can be concluded 

that the former improves the NPV with fewer control 

cycles and fewer design variables. 

An accuracy check was performed by evaluating the 

HF simulator on the coordinates of the best result found 

by our PIT, resulting in an error of our KM of 7.53% of 

the HF simulation. Another accuracy check was carried 

out by evaluating the KM on the coordinates of the best 

known solution, resulting in an error of our KM of 

6.09% of the best known solution (see Table 4). 

Table 5 

Statistics of NPVs returned by proposed PSA with adaptive CHT on KMs for Reservoir 1. Statistics of NPVs returned by the same 

PSA but without tolerance relation as well as by 3 commercial optimizers, namely the local optimizer SQP and the global optimizers 

Multi-Start SQP and Genetic Algorithm (GA), are offered as frames of reference. Recall that values are scaled by 10‒6. 

PROBLEM 
Algorithm 

NPVs returned by different 

Optimizers on our Kriging Models x 10-6 
Mean 

Obj. 

FEs 

No. 

runs 
No. Denomination Best Median Mean Worst Sample σ 

1 2dv_FCO 

Proposed PSA + Adaptive CHT 1.4924 1.4924 1.4924 1.4924 4.6000E-16 24985 25 

PSA without Tolerance Relaxation 1.4924 1.4924 1.4924 1.4924 4.6000E-16 24985 25 

Matlab 2014a SQP 1.4900 - - - - 38 1 

Matlab 2014a Multi-Start SQP 1.4924 1.4924 1.4924 1.4924 4.5325E-16 1040 25 

Matlab 2014a Genetic Algorithm 1.4924 1.4924 1.4924 1.4924 7.5150E-13 53211 25 

2 9dv_FCOdt 

Proposed PSA + Adaptive CHT 1.5167 1.5167 1.5167 1.5167 9.6002E-12 109184 25 

PSA without Tolerance Relaxation 1.5167 1.5167 1.5164 1.5111 1.1200E-03 106570 25 

Matlab 2014a SQP 1.5111 - - - - 260 1 

Matlab 2014a Multi-Start SQP 1.5167 1.5167 1.5167 1.5167 1.0336E-13 18276 25 

Matlab 2014a Genetic Algorithm 1.5167 1.5167 1.5155 1.5090 2.4832E-03 52754 25 

3 9dv_NFCO 

Proposed PSA + Adaptive CHT 1.7151 1.7145 1.7137 1.6985 3.2619E-03 162701 25 

PSA without Tolerance Relaxation 1.7151 1.7140 1.7122 1.6993 4.1722E-03 178718 25 

Matlab 2014a SQP 1.4805 - - - - 86 1 

Matlab 2014a Multi-Start SQP 1.7151 1.7151 1.7151 1.7151 1.1808E-13 14581 25 

Matlab 2014a Genetic Algorithm 1.7134 1.6954 1.6916 1.6262 1.7018E-02 53883 25 

4 11dv_NFCOdt 

Proposed PSA + Adaptive CHT 1.7216 1.7216 1.7160 1.6521 1.9191E-02 168945 25 

PSA without Tolerance Relaxation 1.7216 1.7215 1.6907 1.6497 3.5523E-02 168512 25 

Matlab 2014a SQP 1.7216 - - - - 229 1 

Matlab 2014a Multi-Start SQP 1.7216 1.7216 1.7216 1.7216 7.8983E-14 18376 25 

Matlab 2014a Genetic Algorithm 1.7214 1.6365 1.6390 1.5306 6.5535E-02 119448 25 

5 12dv_FCO 

Proposed PSA + Adaptive CHT 1.4957 1.4957 1.4957 1.4957 9.7139E-12 20584 25 

PSA without Tolerance Relaxation 1.4957 1.4957 1.4957 1.4957 9.7139E-12 20584 25 

Matlab 2014a SQP 1.4943 - - - - 860 1 

Matlab 2014a Multi-Start SQP 1.4957 1.4957 1.4957 1.4957 6.7987E-16 1794 25 

Matlab 2014a Genetic Algorithm 1.4957 1.4957 1.4957 1.4957 1.1476E-08 53211 25 

6 24dv_FCO 

Proposed PSA + Adaptive CHT 1.4938 1.4938 1.4938 1.4938 7.3492E-09 30787 25 

PSA without Tolerance Relaxation 1.4938 1.4938 1.4938 1.4938 7.3492E-09 30787 25 

Matlab 2014a SQP 1.4934 - - - - 2380 1 

Matlab 2014a Multi-Start SQP 1.4938 1.4938 1.4938 1.4938 4.5325E-16 3101 25 

Matlab 2014a Genetic Algorithm 1.4938 1.4938 1.4938 1.4938 3.5587E-06 53211 25 

 



16 

 

7.1.3. Optimization of Reservoir 1 for Case 3 

In this problem, the switching times for the control 

cycles are included as design variables for the FCO 

condition (FCO-VT in Table 1). 5 control cycles are 

chosen, leading to a problem with 9 design variables (n = 

9) and 1 inequality constraint (ni = 1), the latter due to 

the VT condition (see Table 3). This problem is referred 

to as Problem 2 in Table 3, Table 4 and Table 5. 

As before, 10 sampling points are used per design 

variable to train the KM, leading to 90 HF simulations. 

This problem presents a high FR = 79.85%, as shown 

in Table 3. While this is already notably higher than the 

target FR of 20% to 25%, the automatic self-tuning 

mechanism of the CHT relaxes the tolerance to 0.0927, 

which results in an estimated FR = 89.18%. This 

relaxation is especially useful in cases where the solution 

lies on or near the boundaries of the feasible region. 

For this problem, our optimizer obtains the same 

NPV in every run (1.5167), for which it requires 2739 

time-steps on average (see Table 3 and Table 4). 

As shown in Table 5, our proposed optimizer and the 

Multi-Start SQP converged to the same NPV, namely 

1.5167, in all 25 runs. The best and the median of the 

NPVs obtained by the PSA without tolerance relaxation 

and also by the GA are also equal to 1.5167, but they fail 

to achieve this value in some runs. Among these last two 

algorithms, GA exhibits marginally worse performance 

in terms of the mean and σs. Once again, the NPV 

returned but the efficient SQP is the worst one. Thus, 

results in Table 5 show that our proposed optimizer and 

the Multi-Start SQP achieve the best results on this KM. 

They also show that a global search is necessary, and 

that the tolerance relaxation is beneficial here as well. 

As shown in Table 4, the best known solution of this 

problem (1.4936) is similar to the best result returned by 

our PIT (1.5167), only differing in 1.55% of the best 

known solution. Comparing this solution (FCO-VT) to 

those obtained with FCO-FT, it can be concluded that 

this operational condition marginally improves the NPV. 

An accuracy check was performed by evaluating the 

HF simulator on the coordinates of the best result found 

by our PIT, resulting in an error of our KM of 2.02% of 

the HF simulation. Another accuracy check was carried 

out by evaluating the KM on the coordinates of the best 

known solution, resulting in an error of our KM of 

0.76% of the best known solution (see Table 4). 

7.1.4. Optimization of Reservoir 1 for Case 4 

This is the most generic formulation defined in 

section 2 (see Table 1), resulting in the most flexible 

reservoir management process. Thus, 3 control cycles 

and NFCO-VT operational condition are chosen, leading 

to a problem with 11 design variables (n = 11) and 10 

inequality constraints (ni = 10). As in Case 2 in section 

7.1.2, the number of inequality constraints due to NFCO 

with 3 control cycles equals 9, whilst the VT condition 

introduces 1 additional inequality constraint as in Case 3 

in section 7.1.3. This problem is referred to as Problem 4 

in Table 3, Table 4 and Table 5. 

As before, 10 sampling points are used per design 

variable to train the KM, leading to 110 HF simulations. 

While there is no equality constraint, this problem is 

still highly constrained with an estimated FR = 0.008%, 

as shown in Table 3. After the relaxation of the tolerance 

to 0.4223, the resulting estimated FR = 22.84%, which is 

within the range specified in the settings (20% to 25%). 

For this problem, our optimizer is able to obtain very 

good results consistently (see Table 3 and Table 4), 

converging to the best NPV in 23 out of 25 runs. Thus, 

both the best and the median NPVs equal 1.7216; the 

mean NPV equals 1.7160; and the worst NPV equals 

1.6521; with σs = 0.019 and an average search-length of 

9847 time-steps. All 10000 time-steps permitted for the 

search were used up in 24 out of 25 runs. Nevertheless, 

the mean convergence curve is reasonably flat by the end 

of the search, as shown in Fig. 8 (right). 

As shown in Table 5, the Multi-Start SQP converged 

to the same NPV, namely 1.7216, in all 25 runs. Our 

 

Fig. 6. Control cycles for FCO-FT operational conditions (Reservoir 1; Case 1; Problems 1, 5 and 6). 
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Fig. 7. Control cycles for NFCO-FT operational condition (Reservoir 1, Case 2, Problem 3). 
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proposed optimizer converged to the same NPV in 23 

out of 25 runs. In turn, the PSA without tolerance 

relaxation obtained good results, though not quite as 

good, whereas the GA was able to achieve considerable 

worse performance in this case. Strangely enough, the 

result returned but the efficient SQP is spot on this time. 

Thus, results in Table 5 show that our proposed 

optimizer obtains very good results on this KM, almost 

as good as those obtained by the Multi-Start SQP and by 

the efficient plain SQP. They also show that the 

tolerance relaxation is beneficial. 

As shown in Table 4, the best known solution of this 

problem (1.7259) is very similar to the best result 

returned by our PIT (1.7216), only differing in 0.25% of 

the best known solution. Comparing these results against 

those obtained with the other operational conditions, this 

operational condition results in the best optimized NPV, 

which is achieved considering 3 control cycles only. 

An accuracy check was performed by evaluating the 

HF simulator on the coordinates of the best result found 

by our PIT, resulting in an error of our KM of 0.68% of 

the HF simulation. Another accuracy check was carried 

out by evaluating the KM on the coordinates of the best 

known solution, resulting in an error of our KM of 

12.97% of the best known solution (see Table 4). 

7.2. Reservoir 2 (with real permeability field) 

The second reservoir investigated here is the more 

realistic, medium-sized reservoir shown in Fig. 9. This 

case was taken from [78], and is a synthetic form based 

on the Brush Canyon Outcrop data [80]. It has 12 wells, 

7 producers and 5 injectors. The numerical model 

consists of a grid of 43x55x6 blocks, whose main 

characteristics are shown in Table 6. According to [2], 

the FCO condition in this reservoir results in 4·nt 

inequality constraints (ni = 4·nt). The same as in 

Reservoir 1, the NFCO condition introduces (3·nt) 

inequalities, whilst the VT condition introduces 1 more. 

Thus, three problems are analyzed hereafter with 2 

operational conditions: FCO-FT and NFCO-VT. Some 

statistics of the NPVs returned by our PIT for these 

problems are shown in Table 7, Table 8 and Table 9. 

Table 7 also shows the mean search length, the self-

tuned initial relaxation of the tolerance and the resulting 

estimated FR within that tolerance, as well as problems’ 

features such as the estimated FR, dimensionality (n), 

number of inequality (ni) and number of equality (ne) 

constraints. FRs are estimated by randomly generating 

10
6
 sampling points, checking their feasibility, and 

computing the ratio of the number of feasible over the 

number of infeasible generated points. 

Table 8 also shows the best known solution for each 

problem using a Sequential Approximate Optimization 

(SAO) procedure equipped with a SQP local optimizer 

and a Trust Region (TR) based method for the update of 

the search-space for each local solution [79]. It also 

includes the results of the HF evaluations of the 

Table 6 

Characteristics of Reservoir 2. 

Simulation mesh 43x55x6 

Porosity 16% to 28% 

Horizontal permeability (kh) 157 to 2592 mD 

Vertical permeability (kv) 30% of kh 

Rock compressibility at 1019 kgf/cm² 2 x 10‒7 (kgf/cm²)‒1 

Viscosity 0.11 cP 

Gas-Oil Ratio (GOR) 78.1 m3/m3std 

Maximum platform liquid production 

rate 
5000 m3/day 

Maximum platform injection rate 5500 m3/day 

Maximum liquid rate at producers 900 m3/day 

Maximum water rate at injectors 1500 m3/day 

 

 

Fig. 8. Mean convergence curves for Problems 3 and 4, where conflict stands for ‒NPVx10‒6, average is calculated among all 

feasible particles in a given time-step of a given run, and mean is calculated among 25 runs. 
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coordinates of the best results returned by our PIT, and 

the results of the evaluation of the KMs on the 

coordinates of the best known solutions. These last two 

pieces of information are helpful to evaluate the 

accuracy of the KMs in the vicinity of the best known 

solutions and in the vicinity of the best results found by 

the proposed optimizer. A comparison between the best 

known solutions and the results returned by our PIT 

enables the assessment of its accuracy as a whole. 

Table 9 also shows statistics of NPVs returned by our 

proposed PSA but without tolerance relation as well as 

by local optimizer SQP and global optimizers Multi-

Start SQP and GA on the same KMs. 

7.2.1. Optimization of Reservoir 2 for FCO-FT Case  

This case is analyzed with 1 and 6 control cycles, as 

shown in Fig. 10. This leads to a problem with 10 design 

variables (n = 10) and 4 inequality constraints (ni = 4) in 

the former case, and to a problem with 60 design 

variables (n = 60) and 24 inequality constraints (ni = 24) 

in the latter case. In Table 7, Table 8 and Table 9, these 

problems are referred to as Problem 7 for 1 control 

cycle, and as Problem 9 for 6 control cycles. 

Problem with 1 Control Cycle (Problem 7) 

For this problem, 10 sampling points are used per 

design variable, thus performing 100 HF simulations for 

the training of the KM. 

While there is no equality constraint, this problem is 

still highly constrained with an estimated FR = 0.0794%, 

as shown in Table 7. After the relaxation of the tolerance 

to 0.2532, the resulting estimated FR = 23.65%, which is 

within the range specified in the settings (20% to 25%). 

For this problem, our optimizer obtains very good 

results consistently (see Table 7 and Table 8): the best 

NPV found in 25 runs equals 300.5358; the median NPV 

equals 300.5345; the mean NPV equals 300.5341; and 

the worst NPV equals 300.5305; with a σs = 0.0014. The 

maximum search length permitted of 10000 time-steps 

was reached in every run. Nevertheless, the convergence 

curve in Fig. 11 (left) shows that practical convergence 

has been achieved. CVs are calculated disregarding 

tolerance relaxation and therefore are actual violations. 

Further analysis on the data extracted from the search 

(not presented for brevity) shows that the difference in 

coordinates between the best and the worst results is 

minor in every dimension, and therefore they are in the 

same region of the search-space. In fact, the maximum 

and average absolute differences between corresponding 

coordinates of the best and of the worst results returned 

 

Fig. 9. Reservoir 2: Permeability field and well locations. 

 

Fig. 10.  Control cycles for FCO-FT operational condition (Reservoir 2, Case 1, Problems 7 and 9). 
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equal 0.75% and 0.22% of the corresponding feasible 

interval, respectively. Hence it can be inferred that the 

difference is in fine-tuning. 

As shown in Table 9, the Multi-Start SQP converged 

to the same NPV, namely 300.5359, in all 25 runs. Our 

proposed optimizer converges around the same solution 

in every run, despite not being able to complete the fine-

tuning of the search; note that the search is terminated 

due to reaching tmax in every run. In turn, the PSA 

without tolerance relaxation obtained marginally worse 

results, whereas the GA displays considerable worse 

performance in this case. Strangely enough, the result 

returned but the efficient SQP is spot on this time. Thus, 

results in Table 9 show that our proposed optimizer 

obtains very good results on this KM, almost as good as 

those obtained by the Multi-Start SQP and by the 

efficient plain SQP. They also show that the tolerance 

relaxation is beneficial. 

As shown in Table 8, the best known solution of this 

problem (303.8614) is similar to the best result returned 

by our PIT (300.5358), only differing in 1.09% of the 

best known solution. 

An accuracy check was performed by evaluating the 

HF simulator on the coordinates of the best result found 

by our PIT, resulting in an error of our KM of 5.09% of 

the HF simulation. Another accuracy check was carried 

out by evaluating the KM on the coordinates of the best 

known solution, resulting in an error of our KM of 

12.59% of the best known solution (see Table 8). 

Problem with 6 Control Cycles (Problem 9) 

For this problem, only 6 sampling points are used per 

design variable, thus performing 360 HF simulations for 

the training of the KM. 

While there is no equality constraint, this problem is 

still highly constrained with FR < 10
‒4

%, as shown in 

Table 7. After the relaxation of the tolerance to 0.4253, 

the resulting estimated FR = 24.14%, which is within the 

range specified in the settings (20% to 25%). 

Search Algorithms in general, and PSO in particular, 

suffer from the curse of dimensionality. This means that 

the performance of the method quickly deteriorates as 

the dimensionality of the search-space increases. The 

PSA used here is a general-purpose one, equipped with 

no additional strategy to cope with large-scale problems. 

Nonetheless, our optimizer is able to obtain good 

results, although not as consistently as before (see Table 

7 and Table 8): the best NPV found in 25 runs equals 

282.7148; the median NPV equals 252.9083; the mean 

NPV equals 258.5174; and the worst NPV equals 

252.3202; with a σs = 10.8881. The search went through 

all 10000 time-steps permitted in every run. 

As shown in Fig. 11 (right), the extremely low FR 

has a strong influence on the dynamics of the search, as 

compliance with all constraints proves remarkably more 

difficult than in all previous problems. The adaptive 

update of the relaxed tolerance is not sufficient to reach 

zero tolerance by the time 72% of tmax has elapsed. 

Therefore, additional updates are enforced to ensure that 

it is reached by the time 80% of tmax has elapsed. 

Compare this with the tolerance updates for Problem 7 

in Fig. 11 (left), which reaches the zero tolerance before 

250 time-steps have elapsed. It is also interesting to note 

that the CV of the best candidate solution in the swarm is 

consistently higher than the average CV of the swarm. 

Also note that, while the tolerance is relaxed, the curves 

of not only the best but also of the average conflict fall 

below the best feasible candidate solution finally found, 

which suggests that solutions are being pushed by 

Table 8 

Statistics of NPVs returned by PIT for Reservoir 2, best known solutions from [79], High Fidelity (HF) evaluations on best 

coordinates returned by PIT, and Kriging Models evaluations on coordinates of best known solutions. Values are scaled by 10‒6. 

PROBLEM Best Known 

Solution 

x 10-6 

NPVs returned by 

Proposed Integrated Tool (PIT) x 10-6 
HF evaluation on  

coordinates returned 

by PIT x 10-6 

KM evaluation on 

coordinates of Best 

Known Sol. x 10-6 
No. Denomination Best Median Mean Worst σs 

7 10dv_FCO 303.8614 300.5358 300.5345 300.5341 300.5305 0.0014 285.9695 265.6160 

8 38dv_NFCOdt 346.3539 290.5559 263.6527 267.3696 241.2921 13.1455 265.5500 204.8254 

9 60dv_FCO 287.5235 282.7148 252.9083 258.5174 252.3202 10.8881 279.8260 252.1032 

 

Table 7 

Problems’ features and statistics of NPVs returned by Proposed Integrated Tool (PIT) for Reservoir 2, scaled by a factor of 10‒6. 

Additional information such as average search length, tolerance relaxation, and Feasibility Ratios (FRs) is also offered, where FRs 

are estimated by checking the feasibility of 106 randomly generated sample points within side constraints. 

PROBLEM 
FR [%] n ni ne 

FR 

Relaxed 

Tol. [%] 

Relaxed 

Initial 

Tol. Ineq. 

NPVs returned by 

Proposed Integrated Tool (PIT) x 10-6 
Mean 

Final 

t 
No. Denomination Best Median Mean Worst σs 

7 10dv_FCO 0.0794 10 4 0 23.65 0.2532 300.5358 300.5345 300.5341 300.5305 0.0014 10000 

8 38dv_NFCOdt 0.3391 38 10 0 24.29 0.1799 290.5559 263.6527 267.3696 241.2921 13.1455 9666 

9 60dv_FCO < 10‒4 60 24 0 24.14 0.4253 282.7148 252.9083 258.5174 252.3202 10.8881 10000 
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tolerance updates towards the progressively smaller 

feasible space. For Problem 7, the curve of the best 

conflict falls below the best feasible candidate solution 

finally found only at the early stages of the search, 

whereas the average conflict is always above. 

Further analysis on the data extracted from the search 

(not presented for brevity) shows that only in 4 out of 25 

runs did the results converge to the same region of the 

search-space where the best result was found. The 

remaining 21 runs return results in different regions of 

the search-space, not close to one another, all displaying 

conflicts in the range 252 to 256. 

As shown in Table 9, the Multi-Start SQP converged 

to the same NPV, namely 282.7150, in all 25 runs. Our 

proposed optimizer converges around the same result 

(282.7) in 4 out of 25 runs, converging to results in the 

range of 253 to 256 for the remaining 21 runs. In turn, 

the PSA without tolerance relaxation found marginally 

better results, converging around 282.7 in 6 out of 25 

runs, and around results in the range of 252 to 257 for 

the remaining 19 runs. The GA exhibit similar 

performance in this case, whilst the result returned by 

SQP is similar to the median NPV returned by our PSA 

with and without tolerance relaxation and by the GA. 

Thus, results in Table 9 show that our proposed 

optimizer obtains results on this KM which are worse 

than those obtained by the Multi-Start SQP and 

competitive with the other Global Search algorithms. It 

seems that the tolerance relaxation does not have a 

strong beneficial effect if the adaptive scheme does not 

manage to eliminate it in time, and therefore the search 

is mostly driven by tolerance updates pushing the best 

candidate solutions towards the progressively smaller 

feasible space. This issue needs to be studied further. 

As shown in Table 8, the best known solution of this 

problem (287.5235) is similar to the best result returned 

by our PIT (282.7148), only differing in 1.67% of the 

best known solution. 

An accuracy check was performed by evaluating the 

HF simulator on the coordinates of the best result found 

by our PIT, resulting in an error of our KM of 1.03% of 

the HF simulation. Another accuracy check was carried 

out by evaluating the KM on the coordinates of the best 

known solution, resulting in an error of our KM of 

12.32% of the best known solution (see Table 8). 

7.2.2.  Optimization of Reservoir 2 for NFCO-VT Case  

This case is analyzed with 3 control cycles (nt = 3) 

and NFCO operational condition, leading to a problem 

with 38 design variables (n = 38) and 10 inequality 

constraints (ni = 3  nt + 1 = 10). In Table 7, Table 8 and 

Table 9, this problem is referred to as Problem 8. 

For this problem, 10 sampling points are used per 

design variable, leading to 380 HF simulations to train 

the KM. 

While there is no equality constraint, this problem is 

still highly constrained with estimated FR = 0.3391%, as 

shown in Table 7. After the relaxation of the tolerance to 

0.1799, the resulting estimated FR = 24.29%, which is 

within the range specified in the settings (20% to 25%). 

This is a remarkably difficult problem, as it is high-

dimensional, highly multimodal, and highly constrained. 

As shown in Table 7 and Table 8, the best NPV found in 

25 runs equals 290.5559; the median NPV equals 

Table 9 

Statistics of NPVs returned by proposed PSA with adaptive CHT on KMs for Reservoir 2. Statistics of NPVs returned by the same 

PSA but without tolerance relation as well as by 3 commercial optimizers, namely the local optimizer SQP and the global optimizers 

Multi-Start SQP and Genetic Algorithm (GA), are offered as frames of reference. Recall that values are scaled by 10‒6. 

PROBLEM 
Algorithm 

NPVs returned by different 

Optimizers on our Kriging Models x 10-6 
Mean 

Obj. 

FEs 

No. 

runs 
No. Denomination Best Median Mean Worst Sample σ 

7 10dv_FCO 

Proposed PSA + Adaptive CHT 300.5358 300.5345 300.5341 300.5305 1.4177E-03 184087 25 

PSA without Tolerance Relaxation 300.5357 300.5340 300.5328 300.5242 3.0933E-03 182340 25 

Matlab 2014a SQP 300.5359 - - - - 322 1 

Matlab 2014a Multi-Start SQP 300.5359 300.5359 300.5359 300.5359 1.6176E-11 20993 25 

Matlab 2014a Genetic Algorithm 300.4864 300.2907 300.2119 299.5569 2.3146E-01 25987 25 

8 38dv_NFCOdt 

Proposed PSA + Adaptive CHT 290.5559 263.6527 267.3696 241.2921 1.3146E+01 171422 25 

PSA without Tolerance Relaxation 290.5543 261.7965 264.2924 231.0983 1.7895E+01 172653 25 

Matlab 2014a SQP 280.0735 - - - - 3831 1 

Matlab 2014a Multi-Start SQP 290.5853 286.8488 283.8809 261.0225 6.6127E+00 151555 25 

Matlab 2014a Genetic Algorithm 286.2416 260.5684 257.8816 229.1166 1.5151E+01 63622 25 

9 60dv_FCO 

Proposed PSA + Adaptive CHT 282.7148 252.9083 258.5174 252.3202 1.0888E+01 121558 25 

PSA without Tolerance Relaxation 282.7140 254.7223 261.7703 252.2277 1.3197E+01 150977 25 

Matlab 2014a SQP 254.6023 - - - - 4559 1 

Matlab 2014a Multi-Start SQP 282.7150 282.7150 282.7150 282.7150 6.9994E-11 358559 25 

Matlab 2014a Genetic Algorithm 282.7002 252.2455 261.5048 252.2265 1.3428E+01 46641 25 
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263.6527; the mean NPV equals 267.3696; and the worst 

NPV equals 241.2921; with a σs = 13.1455. The search 

used up all 10000 time-steps permitted in 23 out of 25 

runs. Only 1 run found the best NPV (290.5559); 8 runs 

found an NPV around 280; 3 runs found an NPV around 

270; 10 runs found an NPV of around 260; and the 

remaining 3 runs found lower NPVs. 

Further analysis on the data extracted from the search 

 

Fig. 11. Mean convergence, mean CVs, and mean tolerance curves for Problems 7 and 9, where conflict stands for ‒NPVx10‒6, 

average is calculated among all feasible particles in a given time-step of a given run, and mean is among 25 runs. 
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shows that different runs return different NPVs in 

different regions of the search-space, suggesting that 

numerous local optima exist in the KM. 

As shown in Table 8, the best known solution of this 

problem (346.3539) differs from the best NPV returned 

by our PIT (290.5559) in 16.11% of the former. 

An accuracy check was performed by evaluating the 

HF simulator on the coordinates of the best result found 

by our PIT, resulting in an error of our KM of 9.42% of 

the HF simulation. Another accuracy check was carried 

out by evaluating the KM on the coordinates of the best 

known solution, resulting in an error of our KM of 

40.86% of the best known solution (see Table 8). 

8. Discussion 

For the first reservoir, 4 operational conditions were 

considered, namely FCO-FT; NFCO-FT; FCO-VT and 

NFCO-VT (see section 7.1). 

Thus, Problems 1, 5 and 6 were given by FCO-FT 

operational condition with 2, 12 and 24 control cycles, 

respectively. These problems were unconstrained, with 

2, 12 and 24 variables, respectively. For each of them, 

the proposed optimizer found the same Net Present 

Value (NPV) in every run, and did so quickly. The same 

performance was shown by all other global optimizers 

tested on our Kriging models (KMs). Thus, the proposed 

optimizer performs consistently well on these problems. 

The KMs of all 3 problems are very accurate, with errors 

on the coordinates of the best NPVs found below 0.23% 

of the High Fidelity (HF) simulations, and on the 

coordinates of the best known solutions below 0.29% of 

the latter. Overall, the Proposed Integrated Tool (PIT) 

found best results that differ from the best known 

solutions in less than 0.15% of the latter. 

Problem 2 was given by FCO-VT operational 

condition with 5 control cycles, 1 inequality constraint, 9 

variables and FR = 79.85%. The proposed optimizer 

converged to the same NPV in every run, and did so 

reasonably quickly. The same was true for the Multi-

Start SQP. The other global optimizers tested on our 

KMs showed good performance, though not as good. 

Thus, the proposed optimizer performs consistently well 

on this problem, with the adaptive tolerance relaxation 

being beneficial even for high FRs. Furthermore, the KM 

is accurate, with errors on the coordinates of the best 

NPV found of 2.02% of the HF simulation, and on the 

coordinates of the best known solution of 0.76% of the 

latter. Overall, the PIT found a best result that differs 

from the best known solution in 1.55% of the latter. 

Problem 3 was given by NFCO-FT operational 

condition with 3 control cycles, 9 inequality constraints, 

9 variables and FR = 0.0087%. The proposed optimizer 

consistently converged to the same region in the search 

space in 24 out of 25 runs, although the fine-tuning of 

the search is not as accurate as for the previous 

problems. Termination conditions other than maximum 

search-length were never met. The Multi-Start SQP 

exhibited marginally better performance on our KM 

converging to the best NPV in every run, whereas the 

other global optimizers tested showed worse 

performance. Thus, the proposed optimizer performs 

consistently well on this problem, though not as well as 

the Multi-Start SQP, with the adaptive tolerance 

relaxation being beneficial. The KM is less accurate, 

with errors on the coordinates of the best NPV found of 

7.53% of the HF simulation, and on the coordinates of 

the best known solution of 6.09% of the latter. Overall, 

the PIT found a best result that differs from the best 

known solution in 0.52% of the latter. 

Problem 4 was given by NFCO-VT operational 

condition with 3 control cycles, 10 inequality 

constraints, 11 variables and FR = 0.008%. The 

proposed optimizer consistently converged to the same 

NPV in 23 out of 25 runs, even though termination 

conditions other than maximum search-length were not 

met in 24 runs. The Multi-Start SQP exhibited 

marginally better performance on our KM, converging to 

the best NPV in every run, whereas the other global 

optimizers tested showed worse performance. Thus, the 

proposed optimizer performs consistently well on this 

problem, though not as well as the Multi-Start SQP, with 

the adaptive tolerance relaxation being beneficial. The 

KM is accurate in the vicinity of the best NPV found, 

with an error of 0.68% of the HF simulation. The KM is 

less accurate in the vicinity of the best known solution, 

with an error of 12.97% of the latter. Overall, the PIT 

found a best result that differs from the best known 

solution in 0.25% of the latter. 

For the second reservoir, 2 operational conditions 

were considered, namely FCO-FT and NFCO-VT. 

Problem 7 was given by FCO-FT operational 

condition with 1 control cycle, 4 inequality constraints, 

10 variables and FR = 0.0794%. The proposed optimizer 

consistently converged to virtually the same NPV in 

every run. Termination conditions other than maximum 

search-length were never met. The Multi-Start SQP 

exhibited marginally better performance on our KM, 

converging to the best NPV in every run, whereas the 

other global optimizers tested showed worse 

performance. Thus, the proposed optimizer performs 

consistently well on this problem, though not as well as 

the Multi-Start SQP, with the adaptive tolerance 

relaxation being beneficial. The KM is not very accurate 

in this case, with errors on the coordinates of the best 

NPV found of 5.09% of the HF simulation, and on the 

coordinates of the best known solution of 12.59% of the 

latter. Overall, the PIT found a best result that differs 

from the best known solution in 1.09% of the latter. 

Problem 8 was given by NFCO-VT operational 

condition with 3 control cycles, 10 inequality 

constraints, 38 variables and FR = 0.3391%. For this 

high-dimensional, highly multimodal, and highly 

constrained problem, the performance of our optimizer 

deteriorates markedly, returning best NPVs in different 

regions of the search-space for different runs. The Multi-

Start SQP exhibits better performance, although it is also 

unable to converge to the same NPV in every run on our 

KM. The other global optimizers tested return worse 

results. Thus, no optimizer tested consistently converged 

to the same NPV in every run, with the Multi-Start SQP 

performing best and our PIT performing second best. 

The KM is not very accurate, with errors on the 

coordinates of the best NPV found of 9.42% of the HF 

simulation, and on the coordinates of the best known 

solution of 40.86% of the latter. Overall, the PIT found a 
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best result that differs from the best known solution in 

16.11% of the latter. 

Finally, Problem 9 was given by FCO-FT operational 

condition with 6 control cycles, 24 inequality 

constraints, 60 variables and FR < 10
‒4

%. For this 

problem, the Multi-Start SQP converged to the same 

NPV in every run whereas the other 3 global optimizers 

returned similarly less accurate NPVs. Among these, our 

proposed optimizer returns marginally worse results, 

where 4 out of 25 runs converged to the region of the 

search-space where the best NPV was found whereas the 

others converged to different regions displaying conflicts 

in the range from 252m to 256m. The KM is accurate in 

the vicinity of the NPV returned by the proposed 

optimizer, with an error of 1.03% of the HF simulation. 

The KM is less accurate in the vicinity of the best known 

solution, with an error of 12.32% of the latter. Overall, 

the PIT found a best result that differs from the best 

known solution in 1.67% of the latter. 

It is important to highlight that the result returned by 

the proposed optimizer in every one of the 25 runs for 

every one of the 9 KMs is better than the corresponding 

evaluation of the KM on the coordinates of the best 

known solution, which explains why the optimizer did 

not converge there. This can be observed in Table 4 and 

Table 8, where the worst NPVs returned by the proposed 

optimizer on the KM for every problem is higher (i.e. 

better) than the evaluation of the corresponding KM on 

the coordinates of the best known solution. 

Note that local optimizer SQP found the best NPV 

for Problems 4 and 7, a good NPV compared to those 

returned by the other optimizers for Problem 8, but low 

quality NPVs for problems that proved to be relatively 

easy for the global optimizers like Problems 1, 2, 5 and 

6, and for tougher ones like Problems 3 and 9. Thus, the 

use of global optimizers is advisable at the expense of 

considerably higher computational effort. Furthermore, 

results returned by SQP are overly sensitive to the initial 

guess for multimodal problems, so that its outputs would 

be less reliable for problems with unknown solutions. 

We would like to emphasize here that the aim of this 

paper is not to compare optimizers’ performances. Thus, 

only 25 runs are carried out for each experiment. This 

number of runs, together with the maximum number of 

objective FEs set to 500000 (50 particles, tmax = 10000) 

are in agreement with the evaluation criteria of the 

Congress of Evolutionary Computation (e.g. CEC 2005, 

CEC 2006, CEC 2008 and CEC 2010). While this is 

sufficient to show that the proposed optimizer is able to 

deal with the problems tested with some consistency, a 

higher number of runs and statistical tests would be 

required for a rigorous comparison among stochastic 

algorithms. Nonetheless, for this specific set of 9 

problems and the specific results obtained, it seems 

evident that the optimizer performing the best in terms of 

the quality of the results is the Multi-Start SQP, with the 

second best being the proposed optimizer. It also seems 

evident that the third best is the proposed PSA without 

the adaptive tolerance relaxation, while the fourth is the 

GA and the worst results are obtained by the very 

efficient SQP algorithm. 

9. Conclusions and Future Work 

In petroleum engineering, waterflooding (WF) is the 

most widespread method used to improve oil recovery 

after primary depletion. When searching for optimum 

management of the process, computationally expensive 

reservoir simulations are required. In addition, according 

to the formulation of the operational conditions, the 

optimization problem may also be highly multimodal 

and/or highly constrained. Therefore, finding a global 

search method and a computationally cheaper alternative 

to reservoir simulations are of great interest. In this 

paper, we proposed using a Particle Swarm Algorithm 

(PSA) with general-purpose (default) settings, adaptive 

Constraint-Handling Technique (CHT) and suitable 

termination conditions integrated with a Kriging Model 

(KM) trained offline using a Latin Centroidal Voronoi 

Tessellation (LCVT) Design of Experiments (DoE) 

technique and High-Fidelity (HF) reservoir simulations. 

The Proposed Integrated Tool (PIT) was applied to 9 

problems arising from the management of the WF 

technique in 2 oil reservoirs with different operational 

conditions and numbers of control cycles. 

With regards to the operational conditions, the Non-

Full Capacity Operation with Variable Time (NFCO-

VT) leads to the highest Net Present Values (NPVs) with 

fewer design variables and control cycles. 

With regards to the KMs trained offline, it can be 

observed that they are reasonably accurate for problems 

with Full Capacity Operation (FCO) in the first 

reservoir. For both reservoirs, accuracy decreases for 

problems with NFCO. It is interesting to note that, in 4 

out of the 5 problems where the accuracy of the KMs is 

poorer, namely Problems 4, 7, 8 and 9, the accuracy is 

noticeably better on the coordinates of the best NPV 

found by our optimizer than on the coordinates of the 

best known solutions of the actual problems. For the 

remaining problem (Problem 3), the accuracy of the KM 

is similar on both locations. This suggests that the 

optimizer converged towards the better approximations. 

In other words, the highest accuracies and the highest 

NPVs of the KMs are located in the same regions. 

With regards to the proposed optimizer (PSA + 

Adaptive CHT), it quickly converged to the same result 

on every problem with FCO and high Feasibility Ratio 

(FR) in the first reservoir, irrespective of dimensionality 

(Problems 1, 2, 5 and 6). Note that these are also the 

problems for which the KMs are most accurate. For the 2 

problems with NFCO and very low FRs in the first 

reservoir, the optimizer did not manage to find the exact 

same result in every run but nearby results of similar 

quality, thus still showing consistency. For the 10-

dimensional problem with FCO and low FR in the 

second reservoir, the optimizer again converged to the 

same result in every run. However, the performance 

deteriorates for the other 2 problems, which are high-

dimensional, highly multimodal and highly constrained. 

Despite the optimizer finding good results, consistency is 

remarkably poorer than for the other 7 problems. 

With regards to the Adaptive Constraint Handling 

Technique, its incorporation resulted in smaller sample 

standard deviations (σs) for every problem tested, and 

led to undoubtedly better results in highly constrained 
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Problems 3, 4, 7 and 8. It is interesting to observe that 

the adaptive relaxation of the tolerance was beneficial 

even for Problem 2, which presents a very high FR of 

approximately 80%. For Problem 9, the incorporation of 

the adaptive tolerance relaxation did not lead to clear 

improvement. In this problem, Fig. 11 shows that the 

adaptive scheme was unable to drive the tolerance to its 

desired value smoothly and had to eventually force it. 

This results in the swarm finding it more difficult to 

maintain good candidate solutions between tolerance 

updates. Therefore, the rules for the adaptation of the 

tolerance relaxation need to be studied further. 

With regards to the PIT as a whole, which is 

composed of a PSA with general-purpose settings, sub-

swarms with complementary behaviour, an adaptive 

CHT and an integrated static KM, it was shown that it is 

able to obtain near-optimal results without the hassle of 

performing costly and complex numerical trial-and-error 

testing and tuning on a case-by-case basis. However, 

performance deteriorates for increasing dimensionality 

and for NFCO condition, which increases multimodality. 

While dimensionality, multimodality and low FRs do not 

seem to pose overly difficult problems by themselves, 

the PIT finds it difficult to deal with them when they 

occur simultaneously. 

At a higher level of description, the PIT is composed 

of a function approximator and a global optimizer. 

Besides their details, results in this paper suggest that 

integrating these tools is a good strategy to search for the 

optimal management of the WF technique. Therefore, 

different surrogate models, training algorithms, DoE 

techniques and global optimizers may be considered. 

Higher accuracy of the surrogate models would 

noticeably improve performance of the PIT. This could 

be achieved by increasing the number of sampling points 

for the training of the model at the expense of higher 

computational effort. A next cleverer step would consist 

of implementing an adaptive scheme so that the training 

of the surrogate model takes place as the optimization 

progresses. This would increase the accuracy of the 

model in the regions of interest only, without spending 

computational effort in training the model away from the 

global optimum. This adaptive scheme would also 

eliminate the need for a DoE technique. 

Finally, our aim is to develop a global optimizer for 

real-world applications that require no parameter tuning 

or sensitivity analysis. While a first step was to develop 

an adaptive CHT and termination conditions which 

control the search-length and hence the computational 

effort spent according to the difficulty posed by the 

problem at hand, the use of general-purpose settings for 

the PSA is a temporary solution. Moving towards a fully 

adaptive scheme is the next logical step. 
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