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Abstract This paper presents a novel hybrid observer structure to 

estimate the lateral tire forces and road grip potential without using any 

tire-road friction model. The observer consists of an Extended Kalman 

Filter structure, which incorporates the available prior knowledge about 

the vehicle dynamics, a feedforward neural network structure, which is 

used to estimate the highly non-linear tire behavior, and a Recursive 

Least Squares block, which predicts the road grip potential. The 

proposed observer was evaluated under a wide range of aggressive 

maneuvers and different road grip conditions using a detailed validated 

vehicle model, validated tire model and sensor models in the simulation 

environment IPG CarMaker®. The results confirm its good and robust 

performance.       

Keywords Tire force estimation·Grip potential estimation·Neural 

Networks·Hybrid observer 

1. Introduction 

Lateral dynamics estimation has been an extensive field of 

automotive research during the last decades. As [1] pointed out, 

the influence of driver actions on the chassis responses, i.e. 

controllability, is strongly influenced by the vehicle sideslip, 

which depends directly on the tire-road friction interaction. 

Thus, in order to keep the vehicle within controllable and stable 

limits, active safety systems limit the vehicle’s sideslip angle. 

On the other hand, latest research results suggest that collision 

avoidance in some situations might be possible only if high 

attitudes angles are generated, e.g. drift [2,52], so it is expected 

that accurate lateral dynamics estimation in aggressive 

maneuvers will be required to apply these Advanced Driver 

Assistance Systems (ADAS) solutions. Unfortunately, the 

stochasticity and nonlinearity with the forces generated by the 

tires as well as the road grip coefficient contribute to 

complicating significantly this task. 

 

Different approaches have been proposed in the literature for 

estimating in real-time the tire forces. The most extended among 

them is the well-known Kalman Filter [3–7]. To start with, [3, 

7] suggested an Extended Kalman Filter (EKF) structure where 

the tire-road interactions were modeled using a Dugoff tire 

model. In [3], the grip coefficient was treated as a stochastic 

variable while in [7] was considered a known parameter. Both 

designs were validated at constant speed tests. EKF is most 

suitable for smooth nonlinear problems and cannot handle 

highly nonlinear problems [7]. In an attempt to estimate tire 

forces during aggressive maneuvers, [8] presented an Unscented 

Kalman Filter (UKF) based on a detailed vehicle model which 

included the Magic Formula empirical model to estimate the 

tire-road interactions. Road grip was modeled as a stochastic 

variable and results were presented in ABS braking maneuvers 

and sine steer tests. Other authors [9, 10] tried to approximate 

the tire-road interactions by using Sliding Mode Observation 

(SMO) techniques. In [10] a linear adaptive tire model was 

proposed. These methods were validated in constant speed 

maneuvers. Finally, [4, 11, 12] eliminated completely the tire 

modeling task, and considered the tire forces as stochastic 

variables, using a random-walk Kalman Filter approach. 

 

This tire model-less trend has been accepted and followed 

by other authors. [13, 14] pursued the estimation of tire forces 

from standard inertial measurements using simple methods such 

as RLS or PID observers. [15] Integrated successfully vertical 

forces and shaft torque estimation modules to predict the tire 

forces under combined solicitations (longitudinal and lateral 

traction). In [16], online lateral force measurements from load-

sensing hub bearings were presented and used to estimate the 

vehicle lateral velocity. In [49] the tire forces were estimated 

using an optical tire sensor. In the same line of thought, some 

authors took a different path and focused on kinematic models 

to achieve an accurate lateral dynamics estimation. [17] 

described a kinematic observer based on GPS and Inertial 

Motion Unit sensor fusion, [18] used GPS information to 

develop a motorsport observer for high attitude angles and [19] 

presented a robust approach using a Domain Control Unit with 

6- Degrees Of Freedom (DOF) of the vehicle body. The main 

problem encountered with kinematic observers is the signal drift 

over a prolonged period of observation when no reference signal 

exists. 

 

mailto:ac3354@coventry.ac.uk
mailto:ab8522@coventry.ac.uk


M. Acosta, S. Kanarachos 

 

2 

 

Other authors tried to solve the problem from a different 

perspective, by following a data-based approach instead of a tire 

model-based. Thus, [20] proposed a “black-box” approach to 

model the lateral dynamics using feedforward and recurrent 

Neural Network (NN) structures. Results were shown for steady 

state and lane change maneuvers under different road grip 

conditions. Similarly, [21] used the “black-box” concept and 

generated a training dataset using random steering inputs at 

constant speed. The structure was tested in lane change 

maneuvers.      

 

While the adherence coefficient was considered an a priori 

known parameter in the majority of the works presented in the 

preceding paragraphs, other authors [22–26], have studied the 

identification of this parameter in detail. Concerning lateral slip-

based approaches, in [23], relevant work was presented using 

Multibody simulation tools and an off-line road grip 

identification method based on Genetic Algorithms and lateral 

acceleration error. These works were completed in [24], where 

an on-line estimator was presented using an EKF and an NN 

structure. The latter was proposed as an efficient and simple way 

to handle the correlation between tie-rod forces and tire self-

alignment moment. The same concept, based on the tire self-

alignment moment information, was exploited in [22, 25]. In 

[25] Torque measurements from the Electric Power Steering 

system (EPS) were used to predict the lateral grip margin, while 

in [22] an online identification method using strain gauge 

measurements on the steering tie rods was presented. Other 

authors [48] have focused on the grip recognition based on 

longitudinal slip-based methods. Finally, the Smart Wheel was 

presented in [26] as an accurate way to supply the tire forces and 

self-alignment moments required for the road friction 

identification.  

 

In this paper, a tire model-less approach is presented taking 

advantage of a novel hybrid observer structure. The proposed 

methodology is fundamentally different compared to other 

approaches, in the sense that it does not assume an a priori 

knowledge of the tire model nor does it treat the vehicle 

dynamics as a black box. Instead, it combines the advantages of 

Neural Networks in modeling the tire’s highly nonlinear 

behavior using a data-based approach with a first principles 

vehicle model that captures the overall dynamic behavior. In 

particular, the vehicle planar dynamics are modeled using an 

EKF based on a 3-DOF vehicle model and the tire-road 

interactions are estimated by a Feedforward NN structure. The 

NN structure is formed by the high grip (high mu), intermediate 

grip (mid mu) and low grip (low mu) blocks. Information from 

these blocks is fed into a Recursive Least Squares (RLS) module 

to complete the road grip potential identification process. The 

grip estimator block proposed in this paper is developed 

considering the road as a rigid surface, (e.g. asphalt, wet asphalt, 

ice), that is, assuming that the road friction in low adherence 

conditions can be approximated using a scaling approach such 

as described in [28]. Surfaces such as gravel, sand or loose snow 

are considered out of the scope of this research due to the 

complexity derived from the tire friction mechanisms. 

Additionally, road grade and road bank angle are disregarded, 

assuming that the road is completely flat. The modular structure 

of the estimator permits the addition of an external observer 

developed for this task without a considerable burden (e.g. 

kinematic-based [ref]). 

 

This state estimator presents an inherent advantage with 

respect to other works found in literature [7], as it takes into 

consideration the influence of the longitudinal dynamics on the 

tire force generation. This extends the operating range of the 

observer to non-constant-speed maneuvers such as braking in a 

turn or power off. Thus, the approach described in this paper is 

proposed as an efficient way to recognize the road grip potential 

under intermediate driving situations, where neither pure lateral 

slip-based nor longitudinal slip-based methods provide accurate 

results due to lack of dynamic excitation (i.e. grip consumption 

level) or force coupling (i.e. combined efforts in the longitudinal 

and lateral direction). These blocks can be integrated forming a 

hybrid structure [53], where the output from each estimator is 

weighted according to the driving situation. 

 

In Section 2, the vehicle model and tire-force prediction 

block are presented. A description of the observer structure is 

included in Section 3, followed by a brief insight into the 

Discrete Extended Kalman Filter, Feedforward Neural 

Networks, and Recursive Least Squares formulation. Detailed 

explanations about the Neural Networks training, grip 

identification block, and observer implementation complete the 

content of the Section. Results are presented in Section 4 for 

different open loop, closed loop and mu-jump maneuvers 

implemented in IPG CarMaker®, to evaluate the performance 

of the observer. The robustness of the state estimator is tested 

under variations in the tire size and tire operating pressure. 

Finally, Section 5 includes a discussion of the results and further 

research steps are proposed. 

 

2. Vehicle Modeling 

A single track model is used to capture the vehicle planar 

dynamics, Fig. 1. Despite the simplicity of this model, 

satisfactory results have been obtained in previous works [4, 9, 

10], demonstrating that this approach represents a good 

compromise between model complexity and accuracy of results. 

The dynamic equations were discretized using a First order 

approximation (𝑒𝐴𝑇𝑠 ≈ 1 + 𝐴𝑇𝑠) and expressions (1-3) were 

obtained. 

 

𝑣𝑥,𝑘+1 = 𝑣𝑥,𝑘 + 𝑟𝑘𝑣𝑦,𝑘 +
𝑇𝑆
𝑚
(𝐹𝑥𝑓,𝑘 cos(𝛿𝑘) − 𝐹𝑦𝑓,𝑘 sin(𝛿𝑘) + 𝐹𝑥𝑟,𝑘) (1) 

𝑣𝑦,𝑘+1 = 𝑣𝑦,𝑘 − 𝑟𝑘𝑣𝑥,𝑘 +
𝑇𝑆
𝑚
(𝐹𝑦𝑓,𝑘 cos(𝛿𝑘) + 𝐹𝑥𝑓,𝑘 sin(𝛿𝑘) + 𝐹𝑦𝑟,𝑘) (2) 

𝑟𝑘+1 = 𝑟𝑘 +
𝑇𝑆
𝐼𝑧
(𝐹𝑦𝑓,𝑘 cos(𝛿𝑘)𝑙𝑓 + 𝐹𝑥𝑓,𝑘 sin(𝛿𝑘) 𝑙𝑓 − 𝐹𝑦𝑟,𝑘𝑙𝑟) (3) 
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Fig. 1 Single Track model 

 

In this paper, the steering wheel angle 𝛿 is considered an 

input variable to the system, which can be obtained from the 

signals available in the vehicle CAN bus. The vehicle mass 𝑚, 

yaw inertia 𝐼𝑧, and distances from the front and rear axle to the  

center of gravity 𝑙𝑓, 𝑙𝑟 , are assumed to be known constant 

parameters. A robustness analysis was performed to check that 

this assumption was valid under normal weight variations (kerb 

– 2 passengers). The estimation of the longitudinal forces 𝐹𝑥𝑓, 

𝐹𝑥𝑟 is out of the scope of this paper. These are treated as inputs 

to the system that can be estimated by an external observer using 

Engine Management Torque signals and ESP brake pressure 

measurements [27]. Finally, the state vector is formed by the 

yaw rate 𝑟𝑘, the longitudinal velocity 𝑣𝑥 and the lateral velocity 

𝑣𝑦. The output states (measurable variables) are the yaw rate and 

the longitudinal velocity. 

 
𝑈𝑘 = (𝛿𝑘 , 𝐹𝑥𝑓,𝑘𝐹𝑥𝑟,𝑘) (4) 
𝑌𝑘 = (𝑟𝑘 , 𝑣𝑥,𝑘) (5) 

𝑋𝑘 = (𝑟𝑘 , 𝑣𝑥,𝑘 , 𝑣𝑦,𝑘) (6) 

 

2.1. Tire model 

The tire lateral forces are assumed to be unmeasurable 

signals that depend on the vehicle states. These forces are 

estimated at each time step by the Neural Network structure, 

assuming a quasi-static model of the form (7, 8). 

 
𝐹𝑦𝑓,𝑘 = 𝑓(𝛼𝑓,𝑘 , 𝜆𝑘) (7) 
𝐹𝑦𝑟,𝑘 = 𝑓(𝛼𝑟,𝑘 , 𝜆𝑘) (8) 

 

Where 𝛼 represents the tire lateral slip and 𝜆 the tire 

longitudinal slip. The expressions (7, 8) are often approximated 

using an analytical or empirical static tire model, e.g. Magic 

Formula [28]. Tire dynamics are added by means of the 

relaxation length, and a first order low pass filter structure is 

proposed as an acceptable approximation [7]. For further 

discussion in tire transient dynamics, the reader is referred to 

[29]. 

 

𝐹𝑦 ≈ 𝐹𝑦0 +
𝜕𝐹𝑦
𝜕𝛼
(∆𝛼) +

𝜕𝐹𝑦
𝜕𝜆
(∆𝜆) (9) 

 

As a tire model-less approach is proposed in this work, no 

previous knowledge about the non-linear tire-road interactions 

is assumed. Thus, functions (7, 8) are linearized using a first 

order Taylor expansion (9), Fig. 2. The equilibrium term 𝐹𝑦0 is 

estimated directly from the Neural Network block. The 

derivative of the lateral force 
𝜕𝐹𝑦

𝜕𝛼
 is calculated using a finite 

difference approximation (10). The term ∆𝛼𝑡 is a fixed 

increment used in equation (10) and thus is independent from 

the ∆𝛼 of expression (9). 

 
𝜕𝐹𝑦
𝜕𝛼

= 𝐶 ≈
𝐹𝑦,𝛼0+∆𝛼𝑡 − 𝐹𝑦,𝛼0−∆𝛼𝑡

2∆𝛼𝑡
 (10) 

 

 

Fig. 2 Linear approximation of tire lateral force for a given nominal load 

(𝐹𝑧0) and longitudinal slip (𝜆). 

 

The second derivative term (∆𝜆) is neglected under the 

assumption of quasi-static conditions in the longitudinal 

direction [30]. In other words, the braking and driving 

commands are considered steady-state events in comparison to 

the driver steering corrections. Tire dynamics are considered of 

little influence in the planar dynamics chassis operating range 

(0-5Hz), [31]. Finally, the wheel slips are related to the system 

states by the expressions (11, 12) using a small angle 

assumption [32]. 

 

𝛼𝑓,𝑘 = 𝛿𝑘 − (
𝑟𝑘𝑙𝑓 + 𝑣𝑦,𝑘

𝑣𝑥,𝑘
) 

(11) 

𝛼𝑟,𝑘 = −(
𝑣𝑦,𝑘 − 𝑟𝑘𝑙𝑟
𝑣𝑥,𝑘

) 
(12) 

 

3. Observer Structure 

The structure of the observer presented in this paper is depicted 

in Fig 3. As can be noticed, a hybrid structure [33] formed by an 

EKF, NN structure and RLS block is proposed.  

 
Table 1. Observer inputs and outputs 

Signal EKF NN RLS 

Inputs 𝛿, 𝐹𝑥𝑓 , 𝐹𝑥𝑟 𝛼, 𝑎𝑥 𝐹𝑦𝑓,ℎ𝑖𝑔ℎ−𝑚𝑖𝑑−𝑙𝑜𝑤 

Measurements 𝑟, 𝑣𝑥 - - 

Outputs 𝑟̂, 𝑣𝑥, 𝑣𝑦 𝐹𝑦ℎ𝑖𝑔ℎ−𝑚𝑖𝑑−𝑙𝑜𝑤 𝜇̂ 
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This modular approach has significant advantages with respect 

to the standard NN “black-box” modeling, as it combines an a 

priori knowledge of the process being modeled (Planar 

dynamics - EKF) with an estimation of the unknown parameters 

(Tire forces - Neural Network, Grip coefficient - RLS). As 

portrayed in Fig 3, the states predicted by the EKF in the Time 

Update step are used to estimate the axle wheel slips. These 

values are used as inputs in addition to the longitudinal 

acceleration in the NN high-mid-low mu blocks. 

 

Fig. 3 Hybrid observer structure diagram. 

The NN outputs feed the RLS block, in which the road grip 

coefficient is estimated. The tire forces are linearly interpolated 

on the basis of the estimated grip  and reinjected into the EKF 

block. Finally, the EKF corrects the vehicle states using the yaw 

rate and longitudinal velocity measurements in the 

Measurement Update stage. Table 1 summarizes the signals 

used at each observer block. 

 

3.1. Discrete Extended Kalman Filter 

 

The EKF is presented using the state space formulation. A 

nonlinear dynamic system is described by the set of discrete 

equations (13, 14): 

 
𝑋𝑘+1 = 𝑓(𝑋𝑘 , 𝑈𝑘) + 𝑤𝑘 (13) 
𝑌𝑘 = ℎ(𝑋𝑘) + 𝑣𝑘 (14) 

 

Where 𝑓(. ) and ℎ(. )  represent the state evolution and 

observation vectors, 𝑋𝑘, 𝑈𝑘 the system states (yaw rate 𝑟𝑘, long. 

velocity 𝑣𝑥 and lat. velocity 𝑣𝑦) and system inputs (steering 

angle 𝛿, front long. force 𝐹𝑥𝑓 and rear long. force 𝐹𝑥𝑟) 

respectively and 𝑌𝑘 the observed variables. The process 

uncertainties and observation noises are modeled by the 

variables 𝑤𝑘 and 𝑣𝑘. These are assumed to be Gaussian, 

uncorrelated and zero mean, i.e. (𝑤 ≈ 𝑁(0, 𝑄), 𝑣 ≈ 𝑁(0, 𝑅)). 𝑄 

and 𝑅 are referred as the filter tuning covariance matrices. 

Following the formulation presented in [7] the EKF filter 

function is represented by the expressions (15-19).  

 
Time update 

𝑋̂𝑘|𝑘−1 = 𝑓(𝑋̂𝑘−1|𝑘−1, 𝑈𝑘) (15) 
𝑃𝑘|𝑘−1 = 𝐴𝑘𝑃𝑘−1|𝑘−1𝐴

𝑇 +𝑄 (16) 
 

Measurement update 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇[𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅]
−1

 (17) 

𝑋̂𝑘|𝑘 = 𝑋̂𝑘|𝑘−1 + 𝐾𝑘[𝑌𝑘 − ℎ(𝑋̂𝑘|𝑘−1)] (18) 
𝑃𝑘|𝑘 = [𝐼 − 𝐾𝑘𝐻𝑘]𝑃𝑘|𝑘−1 (19) 

 

 During the Time update stage, the system states are 

predicted according to the process model (a priori knowledge of 

the system). The predicted covariance matrix 𝑃𝑘−1|𝑘−1 is 

calculated using the process covariance matrix 𝑄 and the 

Jacobian matrix 𝐴𝑘 of the state evolution vector 𝑓(·). After that, 

in the Measurement update stage, the system states are corrected 

according to the measurement residuals using the filter gain 𝐾𝑘 

and the covariance matrix of the next step is computed 𝑃𝑘|𝑘. In 

order to determine whether the system states can be estimated 

from the available set of measurements it is necessary to study 

the observability of the system. If a Taylor-expansion of the 

expression (14) is developed with respect to time, the equation 

(20) is obtained, [34]. 

 

𝑦(𝑡) ≈ 𝑦(0) + 𝑡𝑦̇(0) +
𝑡2

2!
𝑦̈(0) + ⋯+

𝑡𝑛−1

(𝑛 − 1)!
𝑦𝑛−1(0) 

(20) 

 

Where 𝑛 denotes the number of states of the system. The 

first time derivative can be presented as a function of the state 

evolution vector using the chain rule (21). 

 

𝑦̇ =
𝜕ℎ

𝜕𝑡
 

(21) =
𝜕ℎ

𝜕𝑥
·
𝜕𝑥

𝜕𝑡
 

=
𝜕ℎ

𝜕𝑥
𝑓(𝑋, 𝑈) 

 

In order to simplify the calculation of the higher order terms, 

the Lie Derivative operator is taken (22).  

 

𝐿𝑓 · ℎ𝑖 =
𝜕ℎ𝑖
𝜕𝑥
𝑓(𝑋,𝑈) (22) 

 

Here 𝑖 represents the i-th term of the observation vector ℎ. 

The higher order derivative terms can be expressed recursively 

(23), with the initial condition (24), where 𝑟 denotes the (n-1)-

th derivative with respect to time, 𝑟 = 1…𝑛 − 1.  

 

𝐿𝑓
𝑟 · ℎ(𝑋) = 𝐿𝑓 (𝐿𝑓

𝑟−1 · ℎ(𝑋)) (23) 

𝐿𝑓
0 · ℎ(𝑋) = ℎ(𝑋) (24) 

 

Thus, the derivative terms required to describe the output of 

a dynamical system can by grouped in matrix form (25). 
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(

𝑦
𝑦̇
…
𝑦𝑛−1

) =

(

 
 
𝐿𝑓
0

𝐿𝑓
1

…
𝐿𝑓
𝑛−1
)

 
 
· ℎ(𝑋) (25) 

 

The system will be locally observable if the states can be 

reconstructed from the available measurements. To study this, it 

is necessary to linearize the system outputs around the 

equilibrium states (𝑥0) by a first order Taylor-expansion (26). 

 

𝑦𝑟 ≈ ℎ(𝑥0) +
𝜕ℎ

𝜕𝑥
(𝑥 − 𝑥0) (26) 

 

Then, the local observability will be guaranteed if expression 

(26) is invertible. If all the derivative terms are grouped, the 

local observability analysis is reduced to study the rank of the 

nonlinear observability matrix, 𝑂 (27). 

 

𝑂 =

(

 
 
𝐿𝑓
0

𝐿𝑓
1

…
𝐿𝑓
𝑛−1
)

 
 
·
𝜕ℎ

𝜕𝑥
 (27) 

𝛬(𝑋𝑘) =
𝜆𝑚𝑖𝑛[𝑂

𝑇𝑂, 𝑋𝑘]

𝜆𝑚𝑎𝑥[𝑂
𝑇𝑂, 𝑋𝑘]

 (28) 

 

 An efficient way to evaluate the degree of local 

observability of the system [7, 10] is to study the conditioning 

ratio of the observability matrix. The conditioning ratio is 

defined by the ratio of the minimum and maximum eigenvalues 

of the observability matrix (28). The system analyzed in this 

paper is observable unless the longitudinal velocity is zero. In 

order to avoid ill-conditioning, the system is switched off each 

time the vehicle velocity goes below the 2.7 m/s threshold (29). 

 

𝑋𝑘 = {
𝑋𝑘 , 𝑣𝑥 > 2.7 𝑚/𝑠
0, 𝑣𝑥 ≤ 2.7 𝑚/𝑠

 (29) 

 

 

 

3.2. Feedforward Neural Networks 

Feedforward Neural Networks are used to characterize time-

independent properties of systems. The formal description of 

static systems is given in (30), [35]. 

 
𝑌𝑘 = 𝑓(𝑈𝑘 , 𝑍𝑘) (30) 

 

Where 𝑌𝑘 is the output vector of the system, 𝑈𝑘 is the input 

vector and 𝑍𝑘 comprises the system parameters. The simplest 

element of a Neural Network Structure is an Artificial Neural 

Network cell (Neuron), Fig. 4. 

 

 

Fig. 4 Neural Network Structure and Artificial Neural Network cell. 

Neurons are grouped forming a structure of different layers, 

named Input layer, Hidden Layers, and Output Layer. Between 

the input and output layers, a series of simple operations are 

performed, given by the equations (31, 32). 

 

𝑆𝑗 =∑𝑤𝑖𝑗𝑎𝑖
𝑖

+ 𝑏𝑗 (31) 

𝑎𝑗 = 𝑓(𝑆𝑗) (32) 

 

Where 𝑆𝑗 represents the output from the 𝑗𝑡ℎ neuron, formed 

by the sum of the relevant products of weights (𝑤𝑖𝑗) and outputs 

(𝑎𝑖) from the previous layer 𝑖. This sum is biased by the factor 

𝑏𝑗. 𝑎𝑖 represents the activation of the node at hand and 𝑓 the 

activation function of the 𝑗 layer. Normally, sigmoid functions 

are chosen for the hidden layers while linear functions are set 

for the output layers. 

 

3.2.1. Neural Network Structure 

Axle lateral forces are modeled using a Feedforward Neural 

Network Structure. In order to keep the complexity of the NN 

structure low, the number of hidden layers was set to one prior 

to starting with the selection of the number of internal neurons. 

After a sensitivity analysis in which different number of hidden 

neurons were tested, a structure formed by ten hidden neurons 

was selected (1-10-1). As good results were obtained with a 

single hidden layer, it was not necessary to repeat the sensitivity 

analysis with additional layers. The inputs to the static NN 

structure are the axle wheel slip (𝛼𝑖) and the measured 

longitudinal acceleration (𝑎𝑥). This approach is contrary to the 

traditional formulation of quasi-static tire models (7, 8), [28] 

where in addition to the wheel slip angle, tire nominal forces 

and tire longitudinal slip are required (33). 

 
𝐹𝑦 = 𝑓(𝐹𝑧 , 𝛼, 𝜆) (33) 

 

Without considering the burden of accurately estimating 

wheel longitudinal slips and tire nominal loads, training a 
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Neural Network structure with this number of inputs will add a 

notable complexity to the problem. Thus, in this paper, a simple 

but efficient approach is used under the following 

considerations: 

 

Quasi-static weight transfer: If suspension pitch dynamics are 

neglected, axle vertical loads can be expressed as a function of 

the longitudinal acceleration (34). 

 

𝐹𝑧,𝑖 = 𝐹𝑧𝑒𝑠𝑡,𝑖 ∓
𝑚ℎ𝐶𝑜𝐺
(𝑙𝑓 + 𝑙𝑟)

𝑎𝑥 ,     𝑖 = {𝑓, 𝑟} (34) 

 

Axle adherence ellipsoid: While operating in the longitudinal 

linear region, axle longitudinal forces can be expressed as a 

function of the vehicle longitudinal acceleration. Under braking 

events, this function will depend on the braking bias, while in 

driving circumstances the axle longitudinal forces will vary 

according to the driveline layout. (35).  

 
𝐹𝑥𝑖 = 𝑓𝑏𝑟𝑘(𝑎𝑥),     𝑎𝑥 < 0 (35) 
𝐹𝑥𝑖 = 𝑓𝑑𝑟𝑖𝑣𝑒(𝑎𝑥),    𝑎𝑥 > 0 

 

The effect of these relationships can be observed in Fig 5. 

These graphs are equivalent to the ellipse of adherence of each 

axle. Concerning the front axle, Fig. 5 (a), the maximum lateral 

force remains almost constant up to −4 𝑚/𝑠2. While the 

maximum lateral force decreases with the braking force, (due to 

the force coupling effect), the positive weight shift derived from 

the braking action increases the total force available (these 

effects cancel each other in gentle decelerations).  

 

 

Fig. 5 (a) Front axle adherence ellipse. (b) Rear axle adherence ellipse.  

On the other hand, the lateral force of the rear tires, Fig. 5 (b), 

diminishes abruptly with the longitudinal deceleration. In this 

case, apart from the lateral force reduction caused by the braking 

action, a negative load transfer occurs, and the maximum force 

available on the tire is reduced. The axle lateral forces are a 

function of the longitudinal acceleration 𝑎𝑥 and axle wheel slips 

𝛼. Thus, in this paper the expression (33) is reformulated as (36). 

 
𝐹𝑦 = 𝑓(𝐹𝑧, 𝛼, 𝜆) ≈ 𝑓(𝑎𝑥, 𝛼) (36) 

 

 

 

3.2.2. Neural Networks Training 

Several maneuvers were considered to train the NN structure, 

Table 2. Preferably, these tests should guarantee repeatability 

and be easy to perform.  

 

In addition, they should provide data from the tire nonlinear 

region. This is of vital importance to training the NN for accurate 

prediction during aggressive maneuvers. Based on the authors’ 

experience in chassis characterization and vehicle dynamics 

testing, steady-state maneuvers were avoided during the training 

stage due to the low range of rear axle wheel slip covered (-5, 5) 

deg. Closed loop maneuvers were avoided during the training 

stage due to the poor repeatability and reduced longitudinal 

acceleration range covered.  

 
Table 2. Handling Maneuvers 

Notation* Wheel slip range 

[Front / Rear] 
Longitudinal range 

[m/s2] 
Repeatability 

SIS High / Low (≈ 0) High 

SSR High / Low (≈ 0) High 

FR Low / Low (≈ 0) High 

ISO LC High / High (0, -2) Low 

SL High / Low (≈ 0) Low 

DS High / Low-High (0, -2) High 

SST High / Low-High (0,-2) High 
SST-Drv High/Low (0,4) High 

SST-Brk High/High (0,-10) High 

*SIS: Slow Increasing Steer, *SSR: SS const. radius, *FR: Frequency 

Response, * ISO-LC: ISO Lane change, *SL: Slalom, *DS: Sine with 
Dwell, *SST: Step steer, *SST-Drv: Power on Step steer, *SST-Brk: 

Braking Step steer. 

 

Finally, step steer tests including its longitudinal variants 

(Power on and Braking) were selected. These maneuvers can be 

performed manually or with a Steering Robot [31, 36], and can 

provide a wide range of data along the tire nonlinear region. 

Since these extreme maneuvers are hard to perform by a regular 

driver, the applicability of the proposed method is restricted. 

More specifically, the envisaged application domain is the 

automated development of estimators/ controllers using steering 

robots. The training datasets were generated using the vehicle 

dynamics simulation software IPG-CarMaker®. The vehicle 

model used and test conditions are specified in Table 3.  

 
Table 3. Car Maker model 

Vehicle Fiesta_exp 

Tires MF 6.1 205_65/R16 

Nominal tire pressure: 2.4 bar 

Max. SWR 200 deg/s 

Grip Low mu: 0.2 / Mid mu:0.6 / High-mu:1 

 

The maximum steering velocity during the generation of the 

training datasets was set to 200 deg/s. Despite a driver can 

achieve peak values as high as 1100 deg/s during an emergency 

maneuver [54], the steering frequency rarely exceeds the 0.4-0.5 

Hz threshold during normal driving situations [54]. Assuming a 

maximum rotation amplitude of 80-90 degrees at this frequency 

(160-180 degrees peak-to-peak), a maximum steering rate of 
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200 deg/s can be considered for regular driving situations. 

Accurate results were obtained during the evaluation of the 

observer under aggressive maneuvers involving faster steering 

inputs (up to 1000 deg/s), Section 5. 

 

The vehicle model Fiesta_exp was generated after 

characterizing the instrumented vehicle depicted in Fig. 6. The 

tire behavior was modeled using a state-of-the-art tire model 

(Magic Formula 6.1, [28]). The size of the tire model is detailed 

in Table 3. This tire model incorporates the influence of the tire 

inflation pressure on the friction forces and uses a relaxation 

length approach to model the tire dynamics. The tire model was 

characterized in a high adherence (𝜇 ≈ 1) surface. Tire 

experimental results in low adherence surfaces were not 

available for this specific tire model, and thus the training 

datasets in low mu conditions were generated employing the 

scaling approach described in [28]. Additional experiments to 

corroborate this scaling approach using experimental data from 

a sedan-like tire are included in Section 4.5. 

 

In order to corroborate the validity of the simulation model, 

steady-state and lane change maneuvers were executed with the 

experimental vehicle and results were compared to the 

simulation outputs. The steering inputs acquired through the 

CAN of the vehicle were fed into the simulation model, and a 

PID controller was used to regulate the vehicle reference 

velocity (acquired with GPS). 

 

 
Fig. 6 Ford Fiestainstrumented vehicle. 

 

The testing equipment used during the experimental tests is 

detailed in Table 4. A number of CAN signals are available 

including engine speed, engine torque, steering angle, throttle 

braking pedal position, wheel speeds, yaw rate, longitudinal and 

lateral acceleration. All measurements were post-processed 

offline. The lateral acceleration was translated from the IMU 

position to the center of gravity, and the signals were low-pass 

filtered using an 8th order Butterworth filter with a cut-off 

frequency of 8Hz.  

 
Table 4. Vehicle instrumentation 

GPS: RaceLogic Dual Antenna 

IMU: RaceLogic RLVBIMU04 

Acquisition Unit: RaceLogic VBOX 3i 

CAN: Connection through EOBD port 

Acquisition frequency: 100 Hz 

As can be observed in Figures 7 and 8, the experimental 

results correlate well with the outputs obtained from the 

simulation model.  

 

 

Fig. 7 Lane change test performed with the experimental vehicle.  
 

Once the simulation model was validated, the training 

datasets were generated. Lateral forces were saved after each 

simulation and concatenated forming the NN output vector. 

Alternatively, these can be reconstructed from other vehicle 

states [4]. The same process was followed with the longitudinal 

acceleration and axle sideslip angles in order to construct the NN 

input vector. Raw training datasets can be seen in Fig. 5 and Fig. 

11 (a). 

 

 
Fig. 8 Steady-state test performed with the experimental vehicle.  

 

The Neural Networks were constructed and trained in 

Matlab® using the Neural Network toolbox [37]. As mentioned 

in the previous section, a one-hidden-layer structure composed 

by ten neurons (1-10-1) and sigmoid activation functions was 

employed. In order to study the stability of the NN [35], the 

training process was repeated several times using different 

initial weights. Groups of 20, 50 and 100 Neural Networks were 

generated and the average output of these structures was used as 

the most probable value for the estimated lateral force [35]. As 

can be noticed in Fig. 9 (a), little difference is observed between 

the outputs of the three groups (𝑁 = 20,𝑁 = 50,𝑁 = 100). 

Different training methods were evaluated (Bayesian 

Regularization BR, and Levenberg-Marquardt LM) and three 

different dataset divisions were tested (70/15/15, 60/20/20, and 
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90/5/5). Almost identical values were obtained regardless of the 

training method or the dataset division, Fig. 9 (b).  

 

Fig. 9 (a) NN average output for groups of different size. (b) NN output for 

different training methods and dataset divisions.  

 

In order to minimize the training time, the Levenberg-

Marquardt Backpropagation algorithm was finally used 

(Bayesian Regularization may be better for challenging 

problems but requires higher computational resources [37].). 

The dataset division was set to the Matlab® Neural Network 

toolbox default (70/15/15), as no relevant differences were 

noticed when testing other dataset divisions.  

 

Finally, with the aim to have good accuracy but avoid high 

computational cost, an average was taken from the 20 structures 

and the structure showing minimum dispersion with respect to 

the average value was implemented in the final observer.  

 

 

Fig. 10 (a) Neural Networks output, Front axle. (b) Neural Networks output, 
Rear axle. 

In Fig. 10. outputs from the final Neural Networks under a  

combination of longitudinal acceleration and wheel slip inputs 

are depicted. Graphs show smooth and symmetrical surfaces. In 

addition, the characteristic ellipse shape described in the 

previous subsection can be noticed. 

 

3.2.3. Modeling tire forces in low adherence 

In order to provide a reliable estimation of the tire forces under 

low adherence conditions, it is necessary to capture the tire 

responses in these surfaces. A straightforward approach would 

suggest to include the estimated grip coefficient 𝜇̂ as an 

additional input to the Neural Network structure. This solution 

could provide accurate results for adherence coefficients close 

to those included in the training dataset, Fig 11 (a). 

Nevertheless, this could lead to unpredictable outputs as soon as 

the grip coefficient differs slightly from the original training 

dataset, Fig 11 (b).  

 

 

Fig. 11 (a) Neural Network output, (𝜇 = 1). (b) Neural Network output 

(𝜇 = 0.95). 

To avoid this, a divide and conquer approach is used. The 

training process described previously is repeated in two 

additional surfaces: mid mu (𝜇 = 0.6) and low mu (𝜇 = 0.2). 

The tire friction in these surfaces is simulated using the grip 

scaling approach employed by the Magic Formula 6.1 [28]. A 

comparison between the tire forces obtained using this scaling 

approach and those measured experimentally in low mu surfaces 

is included in Section 4.5.  

 

The outputs from the three structures (𝐹𝑦ℎ𝑖𝑔ℎ , 𝐹𝑦𝑚𝑖𝑑 , 𝐹𝑦𝑙𝑜𝑤) 

are interpolated according to the estimated grip coefficient (𝜇̂) 

using a linear relationship (39-44). The entire set of possible 

grip coefficients is considered a closed interval that goes from 

𝜇 = 1 to 𝜇 = 0.2. Despite higher grip coefficients may be 

present in some situations (e.g. motorsport), these are not 

covered in this paper, and thus the analysis of the state estimator 

is limited to the adherence coefficients included in this interval. 

A segmentation approach is employed and two interpolation 

intervals are defined (37-38): 

 

𝐼1  = {𝜇̂, 0.6 ≤ 𝜇̂ ≤ 1} (37) 

𝐼2  = {𝜇̂, 0.2 ≤ 𝜇̂ < 0.6} (38) 

 

If the estimated grip coefficient is higher than 0.6, the grip 

is located in the first interval (𝐼1), and the upper interpolation 

surfaces (high-mid mu) are used (39-41): 

 
𝐹̂𝑦𝑖 = 𝑐1𝐹𝑦𝑖,ℎ𝑖𝑔ℎ + 𝑐2𝐹𝑦𝑖,𝑚𝑖𝑑 (39) 

𝑐1 = 𝑎1𝜇̂ + 𝑎2 (40) 
𝑐2 = 𝑏1𝜇̂ + 𝑏2 (41) 

 

Otherwise, if 𝜇̂ is below the 0.6 threshold, the mid and low mu 

surfaces are employed (42-44): 

 
𝐹̂𝑦𝑖 = 𝑐3𝐹𝑦𝑖,𝑚𝑖𝑑 + 𝑐4𝐹𝑦𝑖,𝑙𝑜𝑤 (42) 

𝑐3 = 𝑎3𝜇̂ + 𝑎4 (43) 
𝑐4 = 𝑏3𝜇̂ + 𝑏4 (44) 

 

The coefficients are adjusted to satisfy the boundary 

conditions 𝜇 = 1, 𝜇 = 0.6 and 𝜇 = 0.2. 

 

Remark: In this paper, smooth surfaces are considered, i.e. 

asphalt, wet asphalt, ice, etc. Off-road surfaces such as sand or 
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deep snow present a high degree of complexity (e.g. bulldozing 

effects) and are out of the scope of this paper. For further details 

[38–40] can be reviewed. 

 

3.3. Recursive Least Squares 

The grip coefficient (𝜇̂) required to estimate the tire forces is 

obtained using a RLS module. RLS is often used in online 

identification tasks to minimize the error caused by different 

sensor noises [6, 14]. The measured output (𝑦𝑘) is related to the 

estimated parameter (𝜃𝑘) using the expression (45), where (𝜓) 

is the input regression term. 

 
𝑦𝑘 = 𝜓

𝑇𝜃𝑘 (45) 

 

At each time step, the difference between the current 

measurement and the last prediction is minimized (46). The gain 

and covariance terms are obtained through (47, 48). The 

exponential factor (𝜆) is used to diminish the relative weight of 

the last estimates on the predicted step. Smaller values are used 

to assign less weight to previous estimates [41]. By tuning the 

exponential factor, a good trade-off between noise filtering and 

parameter adaptation can be achieved (See subsection 3.3.1 for 

additional details regarding the tuning of the forgetting factor).  

 
𝜃𝑘+1 = 𝜃𝑘 + 𝐾𝑘+1(𝑦𝑘+1 −𝜓𝑘+1

𝑇 𝜃̂𝑘) (46) 
𝐾𝑘+1 = 𝑃𝑘𝜓𝑘+1[𝜆 + 𝜓𝑘+1

𝑇 𝑃𝑘𝜓𝑘+1]
−1 (47) 

𝑃𝑘+1 =
1

𝜆
[𝐼 − 𝐾𝑘+1𝜓𝑘+1

𝑇 ]𝑃𝑘 (48) 

 

In this work, the parameter to be estimated is the uncertain 

grip coefficient 𝜇̂, and the input regression term is simply the 

unity (49, 50).  

 
𝜃𝑘 = 𝜇 (49) 
𝜓 = 1 (50) 

 

The measured output (𝑦𝑘) is obtained solving the 

expressions (39-44) for the front axle forces. The front axle 

lateral force (𝐹𝑦𝑓) is calculated from the vehicle weight 

distribution (51) and the front axle lateral acceleration (𝑎𝑦𝑓). 

This last term is obtained by differentiating the yaw rate and 

translating the lateral acceleration measured at the center of 

gravity to the front axle, (52). 

 

𝐹𝑦𝑓 =
𝑚𝑙𝑟
𝑙𝑓 + 𝑙𝑟

𝑎𝑦𝑓 (51) 

𝑎𝑦𝑓 = 𝑎𝑦,𝐶𝑜𝐺 + 𝑟̇𝑙𝑓 (52) 

 

In order to determine the interpolation interval for the grip 

estimation, the estimated lateral force (𝐹𝑦𝑓) is compared to the 

output of the NN trained in the middle grip surface, 𝐹𝑦,𝑚𝑖𝑑  (𝜇 =

0.6). If the lateral force is above this threshold, the interval 𝐼1 is 

considered, and expressions (39-41) are solved, obtaining (53). 

 

𝑦𝑘 = (𝐹𝑦𝑓 −
(𝑎2𝐹̂𝑦𝑓ℎ𝑖𝑔ℎ,𝑘 + 𝑏2𝐹̂𝑦𝑓𝑚𝑖𝑑,𝑘 )

𝑎1𝐹̂𝑦𝑓ℎ𝑖𝑔ℎ + 𝑏1𝐹̂𝑦𝑓𝑚𝑖𝑑,𝑘
) (53) 

Conversely, if the lateral force (𝐹𝑦𝑓) is lower than 𝐹𝑦,𝑚𝑖𝑑 , 

expressions (42-44) are employed, and the output 𝑦𝑘  is 

calculated from expression (54).  

 

𝑦𝑘 = (𝐹𝑦𝑓 −
(𝑎4𝐹̂𝑦𝑓𝑚𝑖𝑑,𝑘 + 𝑏4𝐹̂𝑦𝑓𝑙𝑜𝑤,𝑘 )

𝑎3𝐹̂𝑦𝑓𝑚𝑖𝑑ℎ + 𝑏3𝐹̂𝑦𝑓𝑙𝑜𝑤,𝑘
) (54) 

 

Equation (45) is then solved recursively using the 

formulation (46-48). As it is typical from slip-based grip 

potential estimation strategies, expressions (53-54) present a 

singularity when the difference between forces is small. In other 

words, the grip identification is not reliable under straight-line 

or on-center driving. In order to avoid this singularity, a certain 

lateral dynamic threshold is introduced (55). 

 

𝜇̂𝑘 = {
𝜇̂𝑘 , 𝑎𝑦𝑓 > 1.5 𝑚/𝑠

2

1, 𝑎𝑦𝑓 ≤ 1.5 𝑚/𝑠
2  (55) 

 

Thus, grip estimation occurs only when some difference 

between high and low mu forces is present, Fig. 12. 

 

As can be noticed in Fig. 12, and has been mentioned by 

other authors [42], as long as the ground surface can be 

considered rigid with respect to the tire carcass, the tire has the 

same cornering stiffness regardless of the road grip coefficient. 

As is depicted in Fig. 12, this assertion is valid for on center 

driving (lateral acceleration below 1.5 m/s2). 

 

 

Fig. 12 NN outputs from the high, mid and low mu structures. 

 
3.3.1. Exponential factor tuning 

The exponential factor (𝜆) of the RLS block was tuned with the 

aim to achieve a good trade-off between noise filtering and 

quick parameter adaptation. The root mean square (RMS) of the 

grip error (56), and the grip consumption (57) required to pass 

the 10% road grip band were taken as indicators of these 

properties. 

 

𝑒𝜇,𝑅𝑀𝑆 =
√∑ (𝜇̂𝑘 − 𝜇𝑘,𝑟𝑜𝑎𝑑)

2𝑁
𝑘=1

𝑁
   (56) 
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𝑔𝑟𝑖𝑝𝑐𝑜𝑛𝑠 =
𝑎𝑏𝑠(𝑎𝑦𝑓)

𝜇𝑟𝑜𝑎𝑑 ∗ 9.81
   (57) 

 

As can be noticed in Fig. 13 (a), the grip error is the minimum 

for an exponential factor of approximately 0.995. Higher values 

introduce an offset between the real and estimated signals, and 

the RMS error increases abruptly. Expectedly, the grip 

consumption required to pass the 10% road grip band increases 

with the exponential factor. In conclusion, a high forgetting 

factor (e.g. 𝜆=0.99) reduces the signal error but requires a high 

lateral excitation to detect fast and abrupt changes in the road 

grip. On the other hand, a low forgetting factor (e.g. 𝜆 = 0.97), 

exhibits a faster response against abrupt changes in the road 

grip, but has poorer filtering capabilities. 

 

In order to select the forgetting factor that best satisfies both 

requirements, the cost function (58) was constructed by adding 

both metrics.  

 

𝑓𝑜𝑏𝑗(𝜆) = 𝑤1𝑒𝜇,𝑅𝑀𝑆 + 𝑤2𝑔𝑟𝑖𝑝𝑐𝑜𝑛𝑠,10% (58) 

 

For simplicity, the same value was assigned to the weighting 

factors (𝑤1, 𝑤2). The value (𝜆 = 0.97) was obtained after 

minimizing the cost function for an aggressive maneuver in 𝜇 =
0.7. Several simulations were performed in roads with lower 

grip coefficients and best results were obtained with this 

exponential factor. 

 

 
Fig. 13 (a) Grip consumption threshold and grip RMS error for different 

values of 𝜆. (b) Time history of estimated grip and grip consumption for 

different values of 𝜆. (Aggressive maneuver simulated in 𝜇 = 0.7) 
 

3.4. Observer implementation 

The observer was constructed in Simulink® and integrated into 

the “generic.mdl” model of IPG CarMaker®. The exchange 

between CarMaker® signals was accomplished using the 

CM4SL library. The “generic.mdl” was simulated using a 

default sample time of 1ms. The observer measurements were 

sampled at a frequency of 100 Hz using a zero-order hold block.  

 
𝑦𝑚𝑒𝑎𝑠 = 𝑦𝐶𝑀 +𝑤 (59) 

 

Noise was added to the simulation signals using an additive 

noise model (59), where 𝑤 represents a white Gaussian noise of 

variance 𝜎2. The yaw acceleration required to translate the 

lateral acceleration to the front axle was obtained using a first 

order discrete differentiation of the yaw rate signal. A moving 

average filter with an averaging period of 0.02s was used prior 

to the yaw rate differentiation. 

 
Table 5. Added noise properties 

Variable Noise density  Freq. range Variance 

𝑎𝑦, 𝑎𝑥 150 𝜇𝑔/√𝐻𝑧 50 Hz 1.08e-4  
𝑚2

𝑠4
 

𝑣𝑥 - - 7.71e-4  
𝑚2

𝑠2
 

𝑟 0.015 º/s/√𝐻𝑧 50 Hz 3.42e-6  
𝑟𝑎𝑑2

𝑠2
 

 

The noise properties detailed in Table 5 were extracted from 

[43] and correspond to the specifications of the experimental 

equipment used during the experimental validation of the 

simulation model, (Fig. 6). Finally, the Q and R matrices of the 

Kalman filter were tuned to improve the filtering capabilities of 

the observer. Different weighting factors [1, 0.1, 0.01] were 

associated with each diagonal term of Q and R. The covariance 

matrices were generated using a vector combination function in 

Matlab®. In total, 243 possible combinations were tested in a 

Slalom maneuver simulated in CarMaker®.  

 

𝑄 = (

𝑞𝑦𝑎𝑤𝑟 0 0

0 𝑞𝑣𝑥 0

0 0 𝑞𝑣𝑦

) , 𝑅 = (
𝑟𝑦𝑎𝑤𝑟 0

0 𝑟𝑣𝑥
) (60) 

 
𝑞𝑦𝑎𝑤𝑟 = 0.01, 𝑞𝑣𝑥 = 𝑞𝑣𝑦 = 0.1    , 𝑟𝑦𝑎𝑤𝑟 = 𝑟𝑣𝑥 = 0.1  

 

After computing the Normalized RMS estimation errors (61) it 

was observed that excessive low values of R tend to penalize the 

filtering performance of the state estimator while low values of 

the term 𝑞𝑣𝑦  resulted in poor estimation of the lateral velocity 

when uncertainty in the tire forces was present. Finally, matrices 

(60) were selected after exhibiting a good compromise between 

noise rejection and lateral velocity accuracy. 

 

𝑒 = 100 · √
∑(𝑦̂𝑘 − 𝑦𝑘)

2

𝑁
·

1

max (|𝑦|)
   (61) 

 

4. Simulation Results 

The state estimator described in the previous sections was 

tested under different aggressive maneuvers using IPG-Car 

Maker®. The first part of this section is intended to evaluate the 

performance of the observer in its “reference” configuration, 

that is, using the vehicle and tire model employed during the 
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training of the NN. Three catalogs of maneuvers were defined to 

cover a wide range of scenarios: Open Loop tests, Closed Loop 

tests and mu-jump tests [31, 36, 44–47]. These tests are often 

performed in proving grounds due to their execution simplicity. 

 
Table 6. Model configurations used during the simulations. 

Configuration Vehicle model Tire model 

Reference Fiesta_exp MF 205_65/R16 
Ref-A Fiesta_exp MF 185_65/R15 

Ref-B Fiesta_exp MF 215_50/R17 

Ref-C Fiesta_exp MF 205_65/R16-2bar 
Ref-D Fiesta_exp MF 205_65/R16-2.7bar 

Reference-Sedan Sedan MF 245_40/R19 

Sedan-Wet Sedan MF 245_40/R19 – Wet asph 
Sedan-Ice Sedan MF 245_40/R19 – Ice 

 

A robustness analysis is presented in the second part of the 

section. Simulations are carried out using tire models of 

different sizes (Ref-A, Ref-B), and modifying the tire operating 

pressure of the reference tire model (Ref-C, Ref-D). The 

purpose of these tests is to evaluate the suitability of the state 

estimator in more “realistic” scenarios, in which the 

uncertainties associated with the tire forces can increase due to 

tire replacement or lack of an adequate maintenance.  

 

Finally, all the results presented in this paper rely on the 

adherence coefficient scaling approach used by the Magic 

Formula 6.1 [28]. In order to study the validity of this scaling 

method, two additional tests are simulated. The state estimator 

is reconstructed using a Reference-Sedan vehicle model and a 

MF6.1 245_4/R19 tire model characterized in dry conditions 

(𝜇 ≈ 1). The NN training process is repeated following the steps 

described in Section 3, using the tire model characterized in dry 

conditions and using the MF scaling method to approximate the 

tire behavior in low mu. After that, the CarMaker® model is 

equipped with two additional tire models characterized in wet 

asphalt and ice (MF 245_40/R19 – Wet asph and MF 245_40/R19 –Ice) 

and thegood performance of the observer − trained using the MF 

scaling method − in predicting the tire forces on these surfaces 

was validated. 

 

4.1. Open loop aggressive maneuvers 

In order to evaluate the observer performance under high 

dynamic maneuvers, several Sine with Dwell tests were 

executed, Table 7. It must be mentioned that active safety 

systems such as ESC or ABS were not considered in this 

evaluation. 

 
Table 7. Open Loop catalog of maneuvers 

Test Speed/SWA/Brk*  Grip Configuration 

#1-Sine with Dwell 80/90/CD 1 Reference 
#2-Sine with Dwell 80/150/CD 1 Reference 

#3-Sine with Dwell 80/90/PB 1 Reference 
#4-Sine with Dwell 80/90/CD 0.7 Reference 

#5-Sine with Dwell 80/90/PB 0.7 Reference 

#6-Sine with Dwell 80/70/CD 0.3 Reference 
#7-Sine with Dwell 80/70/HB 1 Reference 

*CD: Coast Down, *PB: Partial Braking, *HB: Hard Braking, MS: Maintain 

speed 

Fig. 14 and Fig 15. show the results obtained after simulating 

the high mu tests. Tests (#1, #2) were performed in coasting 

down conditions, while a partial braking action was included in 

the first steering input of the third test (#3). Maneuvers 

involving longitudinal solicitations are not studied in the 

literature [3,7,9,10], where lateral dynamics estimation is 

restricted to constant speed situations.  

 

 

Fig. 14 Lateral velocity, tests (#1, 2). 

The inclusion of longitudinal dynamics in the observer 

extends considerably its operating range. Overall, the estimation 

of lateral forces and lateral velocity is very precise. Observer 

performs well in moderate (#1, #3) and aggressive (#2) steering 

inputs. As can be noticed in Fig. 15, the front tires saturate 

completely during the execution of the test (#2). Despite a large 

slide, the lateral velocity estimation is still very accurate. 

 

 

Fig. 15 Front axle lateral forces, tests (#1, 2, 3). 

The same maneuvers were repeated in low mu situations (#4, 

#5, #6). Fig. 16 portrays the results obtained in 𝜇 = 0.7 for a 

coast down and partial braking sine with dwell test. 
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Fig. 16 (a) Longitudinal deceleration, (b) Lateral velocity. Tests (#4, 5). 

In both cases (CD and PB), the vehicle exhibits an abrupt 

lateral slide. In the former case (#4), the front tires saturate after 

the second input, Fig. 17 (b), while in the latter case (#5) a large 

slide occurs after the first input, derived from the partial braking 

action, Fig. 16 (a). The RLS module identifies accurately the 

road grip potential (0.7). The first transition through the 10% 

road grip band occurs for a grip consumption level of 30% 

approximately. Despite some overshoot, the road grip 

estimation converges quickly to the true value, Fig. 17 (a). 

 

Fig. 18 depicts the vehicle response after the Sine with Dwell 

test (#6) performed in an extreme low adherence surface (𝜇 =
0.3). As occurred in the previous case (#4), the vehicle slides 

laterally after the second steering input, Fig. 18 (b). The road 

grip estimation is remarkable, and the RLS module identifies the 

road grip potential within a 10% of accuracy for a grip 

consumption level of approximately 70%, Fig. 18 (a). 

 

 
Fig. 17 (a) Estimated road grip potential, (b) Front axle lateral forces, 

tests (#4, 5). 
 

The state estimator overestimates the rear axle force 

momentarily (around t=7s) due to the time delay between the 

front and rear axles (the front axle acceleration goes below the 

RLS excitation threshold and 𝜇̂ switches to the default unity 

value while the rear axle is still generating lateral force). Despite 

this, the EKF is able to provide an accurate estimation of the 

lateral velocity.  

 

 
Fig. 18 (a) Estimated road grip potential, (b) Front axle lateral forces, tests 

(#6). 
 

To conclude with this subsection, results from the Sine with 

Dwell with emergency braking (#6) are exhibited in Fig. 19. 

Although the driving maneuver represents a limit situation in 

which the full longitudinal region is covered (peak deceleration 

of −9.7 𝑚/𝑠2), and despite some inaccuracies in the front 

lateral force estimation, the state observer provides an 

acceptable estimation of the lateral velocity. 

 

 

Fig. 19 (a) Longitudinal deceleration, (b) Front and (c) Rear axle lateral 

forces. Test (#7) 
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4.2. Closed loop aggressive maneuvers 

Open Loop maneuvers are often interesting from a chassis 

characterization perspective. They are easy to perform in a 

proving ground and if performed with the right equipment [47] 

repeatability can be guaranteed. Unfortunately, real driving 

conditions require the interaction between the driver and the 

vehicle, (Closed Loop maneuvers). In order to test the 

algorithms proposed in this paper under more realistic and 

demanding conditions, the catalog of closed loop maneuvers 

defined in Table 8 was simulated. 

 
Table 8. Closed Loop catalog of maneuvers 

Test Speed/SWA/Brk*  Grip Configuration 

#8-ISO LC 100/-/MS 1 Reference 

#9-ADAC LC 100/-/CD 1 Reference 

#10-ADAC LC 95/-/CD 0.7 Reference 

#11-ADAC LC 90/-/CD 0.5 Reference 

#12-Slalom 36m 80/-/MS 1 Reference 
#13-Slalom 36m 65/-/MS 0.4 Reference 

*CD: Coast Down, *PB: Partial Braking, *HB: Hard Braking, MS: Maintain 

speed 

 

Fig. 20 depicts the results corresponding to the ISO Lane 

change test in high mu conditions. As can be noticed, the lateral 

velocity estimation is excellent, Fig. 20 (a). The axle cornering 

stiffnesses predicted by the state estimator are illustrated in Fig. 

20 (b). Expectedly, the maximum rear wheel slip (minimum 

cornering stiffness) occurs when the vehicle enters the third gate 

of the Lane change (instant of maximum lateral velocity). 

 

Fig. 20 (a) Lateral velocity, (b) Estimated Cornering Stiffness, Test (#8). 

Fig. 21 illustrates the lateral force trajectory of the front (a) 

and rear axle (b) over the three-dimensional space defined by 

the axle sideslip, longitudinal acceleration, and axle lateral 

force. As can be observed in these graphs, low longitudinal 

acceleration is experienced during the execution of this 

maneuver. The forces predicted by the NN structure 

approximate well the real forces obtained in the simulation. 

 

 

Fig. 21 NN surface estimated and simulated axle lateral forces. (a) Front 

axle Fy. (b) Rear axle Fy. Test (#8). 
 

The following graphs illustrate the results obtained from the 

ISO ADAC (Allgemeiner Deutscher Automobil-Club) test, 

simulated in high and low mu surfaces, (#8, #9, #10). In this 

maneuver, the driver avoids an obstacle at high speed. The 

combination of low yaw damping (due to the high speed) and 

the phase shift between the front and rear lateral forces leads to 

a high yaw moment that compromises the vehicle stability [50]. 

The results obtained in the low mu ADAC tests (#9,#10) are 

presented in Fig. 22 and Fig. 23. The performance of the state 

estimator in these scenarios is of vital importance in order to 

guarantee an early recognition of a low adherence situation. In 

the first test (𝜇 = 0.7), the RLS block detects an abrupt change 

in road grip potential and passes the 10% threshold for a grip 

consumption of 40% approximately, Fig. 22 (a).  

 

 

Fig. 22 (a) Estimated road grip potential, (b) Lateral velocity. Test (#10). 

Fig. 23 portrays the results obtained simulating the vehicle 

in a surface with an adherence coefficient of 0.5. In this case, 

the grip potential is recognized within a 10% accuracy for a grip 

consumption level of roughly 50%. The state estimator 

approximates precisely the lateral velocity obtained in the 

simulation model, Fig. 23 (b). These results are promising, 

evidencing the ability of the observer to estimate the lateral 

velocity in aggressive maneuvers executed over low mu 

surfaces. 

 



M. Acosta, S. Kanarachos 

 

14 

 

 

Fig. 23 (a) Estimated road grip potential, (b) Front and (c) Rear axle lateral 

forces, Test (#11). 

To conclude with this subsection, Slalom tests are simulated 

in high and extremely low friction surfaces (#10, 11). This 

maneuver (either 18 or 36m) is often used to evaluate the vehicle 

agility and does not represent a serious stability issue. However, 

zero force transitions occur continuously and the mu recognition 

algorithm can be affected by the singularities described in 

Section 3.3. Thus, it is a good scenario to test the performance 

of the observer. Fig. 24 shows the grip (a), axle lateral forces (b, 

c), and lateral velocity (d) estimated by the state estimator and 

RLS block. Overall, the performance of the observer is good. 

Some peaks above the unity are observed in the estimated grip 

after each steering cycle completion. In order to avoid 

extrapolation issues, a saturation block is employed to keep the 

grip input (𝜇̂) within the limits defined in Section 3.2.3. 

 

 

Fig. 24 (a) Estimated road grip potential, (b, c) axle lateral forces, (d) 

lateral velocity. Test (#13). 

 

 

 

 

4.3. Mu-jump maneuvers 

The tests described in the previous subsections share a 

common point: the grip coefficient of the road does not vary 

during the maneuver execution. Thus, in order to evaluate the 

state estimator response under grip transitions (often called mu-

jump situations) two additional scenarios were simulated (Table 

9).  
Table 9. Mu-jump catalog of maneuvers 

Test Speed/SWA/Brk*  Grip Config. 

#14-Straight Line 

𝜇-jump 
100/-/MS 0.8-0.6-0.4-0.2 

Reference 

#15-Circle 𝜇-jump 50/R50/MS 0.8-0.4 Reference 

*CD: Coast Down, *PB: Partial Braking, *HB: Hard Braking, MS: Maintain 
speed 

 

The first test (#14) consists of a set of mu transition (0.8-0.6-

0.4-0.2) executed at a constant speed. Low frequency (0.2Hz) 

sine steering inputs are applied continuously during the test.  

 

 
Fig. 25 (a) Front axle lateral forces. (b) Rear axle lateral forces, Test 

(#14). 
The interpolation surfaces of the axle lateral forces are 

showed in Fig. 25. As can be appreciated in Fig.26 (a), the 

performance of the observer is remarkable during the 

consecutive surface transitions, and the grip potential of the road 

is well identified at each surface.  

 
Fig. 26 (a) Estimated road grip potential, (b, c) axle lateral forces, (d) lateral 

velocity. Test (#14). 
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The probability distribution of the grip estimated at each 

surface is presented in Fig. 27. 

 

 
Fig. 27 Probability distributions computed from the road estimated grip. Test 

(#14). Bins limits [0.05 1], Bin width 0.02. 
 

The average grip consumption levels required to pass the 

10% road grip potential band are summarized in Table 10.  

 
Table 10. Grip consumption levels for a detection of the road grip 

potential with an accuracy of the 10%. 

Mu 
coefficient 

0.8 0.6 0.4 0.2 

Grip cons. 

level 10% 

25% 40% 50% 85% 

 

Overall, the grip consumption values remain below the 85% -

90% levels required by pure lateral force-slip regression 

methods [52]. Other grip identification methods (Moment-slip 

regression) can provide accurate estimates for excitation levels 

of 30, 40% [52], but their suitability under longitudinal 

excitation has not been covered in detail in the literature [22,24]. 

The approach presented in this paper lies between these 

excitation levels and presents a certain robustness against 

longitudinal solicitations. Thus, this state estimator is proposed 

as an efficient way to infer the road grip potential under 

intermediate driving situations. A hybrid structure such as 

introduced in [53], can be employed to achieve a continuous 

grip potential identification, combining pure longitudinal and 

lateral slip-based observers with this state estimator.  

 

Finally, to conclude with the observer evaluation in its 

reference configuration, a constant radius mu-jump test (#15) is 

simulated. The estimation of the vehicle states during this 

maneuver is often difficult due to the low dynamics involved 

(slow body-slip estimation). Any mismatch in the state 

estimation can lead after some seconds to large drifts in the 

estimated signals. During each turn, the vehicle passes through 

three low mu segments Fig.28. The vehicle moves counter-

clockwise, and a negative increase in the lateral velocity is 

expected caused by the abrupt grip reduction (vehicle slides 

towards the outer hard shoulder due to the centripetal force). 

 

 

Fig. 28 Mu-split circle modeled in Car Maker. Test (#15). 

The estimated lateral velocity is depicted in Fig. 29 (b). 

Expectedly, the vehicle slides to the outer track limit at each low 

mu transition (negative lateral velocity). Abrupt changes in the 

road grip are well identified by the RLS block at each transition, 

Fig. 29 (a).  

 

 

Fig. 29 (a) Estimated road grip potential, (b) Lateral velocity. Test (#15). 

The axle cornering stiffnesses estimated by the state 

estimator are depicted in Fig. 30. At each high-to-low mu-jump, 

the cornering stiffness drops to almost zero, and the tires 

saturate, Fig. 30.  

 

 

Fig. 30 (a) Estimated road grip potential, (b) Estimated axle cornering 
stiffness. Test (#15). 

Estimates of the yaw rate and longitudinal velocity are 

showed in Fig. 31. The peaks in the yaw rate after each mu 

transition are provoked by the low-to-high mu-jump. The front 

axle recovers grip first and creates a positive yaw moment on 

the chassis.  
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Fig. 31 (a) Longitudinal velocity, (b) Yaw rate. Test (#13). 

The same peaks are observed in the axle forces Fig. 32, each 

time the front axle recovers grip. 

 

Fig. 32  (a) Estimated front axle force, (b) Estimated rear axle force, Test 
(#13). 

 

4.4. Observer Robustness analysis 

Up to now, the state estimator has performed well when the 

reference configuration has been employed (the same tire model 

used to train the NN has been employed during the simulations). 

In the following subsection, the robustness of the observer 

against variations in the tire size and tire operating pressure is 

tested. The tests presented in Table 11 were performed using the 

vehicle configurations detailed in Table 6. The first 

configurations (Ref-A, Ref-B) correspond to variations in the 

tire size (R15, R17 respectively) and the third and fourth 

configurations (Ref-C, Ref-D) indicate variations in the tire 

operating pressure of the reference tire. In order to have a 

precise simulation of the tire forces, the pressure variations are 

kept within the limits imposed by the tire model (∓0.4 𝑏𝑎𝑟). 

Pressure values out of this range are not considered in this paper, 

assuming a fault detection of the Tire Pressure Monitoring 

System (TPMS) and the subsequent reestablishment of the 

nominal pressure. 

 
Table 11. Catalog of maneuvers to evaluate the robustness of the observer. 

Test Speed/SWA/Brk*  Grip Configuration 

#16-Sinus with Dwell 80/150/CD 1 Ref-A 
#17-Sinus with Dwell 80/150/CD 1 Ref-B 

#18-Sinus with Dwell 80/90/CD 0.7 Ref-A 

#19-Sinus with Dwell 80/90/CD 0.7 Ref-B 
#20-ADAC LC 70/-/CD 0.5 Ref-C 

#21-ADAC LC 70/-/CD 0.5 Ref-D 

*CD: Coast Down, *PB: Partial Braking, *HB: Hard Braking, MS: Maintain 

speed 

 
Fig. 33 (a). Estimated front axle force, (b) Estimated rear axle force, Test 

(#16, #17). 
 

The results concerning the high mu tests (#16, #17) are 

presented in Fig. 33. As occurred in the evaluation of the 

reference model, the tires saturate after the second steering 

input. The accuracy of the observer is remarkable in spite of the 

use of a tire model of different size.  

 
Fig. 34 (a). Estimated road grip potential, (b) front axle force, (c) rear axle 

force, Test (#18, #19). 
 

Fig. 34 depicts the results obtained after performing the 

simulations on a road with an adherence coefficient of 0.7. The 

RLS block identifies an abrupt change in road grip potential 

during the first steering input for an approximate excitation level 

of 30%. The estimated grip presents a slight offset due to the 

different characteristics of the new tires, but the estimation of 

the axle lateral forces is still very accurate. 

 

 
Fig. 35 (a). Estimated road grip potential, (b) Estimated lateral velocity, Test 

(#20, #21). 
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Finally, results concerning the variations in tire operating 

pressure (#20, #21) are shown in Fig. 35. In both cases, the low 

mu condition is identified by the RLS block during the first 

steering input (𝑡 ≈ 21.5), Fig. 35 (a). In addition, the lateral 

velocity predicted by the state estimator approximates very well 

the values obtained in the simulation. 

 

The results provided in this section are promising in what 

concerns the robustness of the state estimator against 

modifications in the reference configuration. Although more 

tests are to be performed to fully determine the operating limits 

of the observer, it seems that the flexibility of the approach 

presented in this paper may be suitable to predict the behavior 

of a certain number of vehicle configurations, thus avoiding the 

observer re-calibration and NN training for each individual 

vehicle variant.  

 

4.5. Validation of the Magic Formula grip scaling 
approach 

To conclude with this section, two additional tests are 

presented with the aim to validate the low mu scaling approach 

used in the MF tire model [28]. A tire of size 245_40/R19 was 

characterized in three different surfaces (dry-𝜇 ≈ 1, wet 

asphalt-𝜇 ≈ 0.9 and ice-𝜇 ≈ 0.35) and a MF 6.1 model was 

obtained for each adherence condition.  

 
Table 12. Catalog of maneuvers to evaluate the validity of the Magic 

Formula grip scaling approach. 

Test Speed/SWA/Brk*  Grip Configuration 

#22-Sinus with 

Dwell 
80/120/CD 0.90 

Sedan-Wet 

#23-Sinus with 

Dwell 
80/40/CD 0.35 

Sedan-Ice 

*CD: Coast Down, *PB: Partial Braking, *HB: Hard Braking, MS: Maintain 
speed 

A comparison between the curves scaling the model 

parameterized in dry conditions and the curves determined after 

testing the tire in wet asphalt and ice is presented in Fig. 36. 

 

 
Fig. 36 (a). Pure lateral force, (b) pure longitudinal force from wet asphalt 

and ice surfaces. Tire size: 245_40/R19. 
 

Due to the new limitations imposed by the tire data available, 

the state estimator was updated taking the parameters of a sedan 

vehicle model and the NN structure was retrained using the tire 

model characterized in dry conditions. (Additional details 

regarding the tire and vehicle model employed during the 

simulations are omitted for confidentiality reasons.) 

The tests presented in Table 12 were simulated to evaluate 

the suitability of the MF grip scaling approach. This time, 

instead of modifying the road grip coefficient in IPG-Car 

Maker®, the tire models obtained experimentally were used.  

 

 
Fig. 37 (a). Estimated road grip potential, (b) front axle force, (c) rear axle 
force, (d) lateral velocity. Tests (#22, #23). 

 

The results of these simulations are depicted in Fig. 37. In 

both cases (wet asphalt, #22 and ice, #23) the performance of 

the state estimator is good. The estimated forces follow 

accurately the simulation forces Fig. 37 (b, c) and the road grip 

potential is identified correctly, Fig. 37 (a).  

 

4.6. Metrics 

In order to evaluate the performance of the proposed observer, 

a set of metrics were defined and calculated after each 

simulation completion. Table 13 contains the metrics 

corresponding to the tests presented during this section, Tables 

7, 8, 9, 11, and 12. The normalized root mean square error [7] 

defined in expression (61) was chosen to evaluate the error of 

the estimated states. In total, 5 metrics were defined: 

longitudinal velocity 𝑒𝑣𝑥, yaw rate 𝑒𝑟, lateral velocity 𝑒𝑣𝑦, front 

axle lateral force 𝑒𝐹𝑦𝑓 and rear axle lateral force 𝑒𝐹𝑦𝑟  estimation 

error. Overall, small errors are observed in the states estimated 

by the EKF (in majority of tests values are kept below a 5% error 

threshold). Lowest errors are found in the states that are 

measured directly by the EKF (yaw rate and longitudinal 

velocity). Concerning lateral velocity, a maximum error of 

6.80% is obtained in test #23 due to the low lateral excitation 

observed in icy conditions. Nevertheless, this value remains 

well below the 10% threshold and can be considered acceptable.  
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Table 13. Error metrics 

Test  𝑒𝑣𝑥 𝑒𝑟 𝑒𝑣𝑦 𝑒𝐹𝑦𝑓 𝑒𝐹𝑦𝑟  

#1 1.19 2.45 2.83 2.78 5.05 

#2 1.19 1.63 2.98 3.27 5.14 

#3 1.18 2.84 5.30 3.68 9.11 

#4 1.20 1.56 1.14 2.79 5.24 

#5 1.18 1.51 4.46 2.88 5.75 

#6 1.20 2.25 0.63 8.99 23.60 

#7 1.20 0.99 4.95 11.27 6.41 

#8 0.94 2.76 1.56 1.92 2.86 

#9 0.94 3.22 2.44 1.94 3.14 

#10 1.00 1.55 0.86 3.14 5.01 

#11 1.05 2.52 1.19 3.81 9.23 

#12 1.18 5.89 4.85 2.80 4.41 

#13 1.32 6.29 5.12 5.55 6.87 

#14 1.16 3.55 6.47 4.91 3.90  

#15 1.32 2.63 7.50 4.27 6.54 

#16 1.19 1.76 9.53 5.82 7.44 

#17 1.19 1.51 5.87 4.47 6.44 

#18 1.19 2.78 3.28 2.52 4.16 

#19 1.20 2.41 2.10 2.77 4.27 

#20 1.05 1.35 1.00 6.85 16.58 

#21 1.06 3.82 2.48 3.40 6.37 

#22 1.36 2.43 5.37 3.18 4.30 

#23 1.39 7.10 8.73 8.77 14.49 

 

Finally, axle lateral force errors kept within reasonable limits 

during the majority of the simulations. Large errors are found in 

the rear axle forces during the execution of tests #6 and #20. 

These tests correspond to aggressive maneuvers executed in low 

mu conditions. As was observed in Fig. 18, the delay between 

the front and rear axle can cause a momentary overestimation of 

the rear axle forces, which contributes to increasing 

significantly the estimation error. Despite this, the EKF is able 

to correct these inaccuracies and the vehicle states are predicted 

with high accuracy.  

 

5. Conclusions 

 

An innovative tire model-less method to estimate with high 

accuracy the vehicle lateral dynamics and tire-road friction 

forces under aggressive maneuvers has been proposed. The 

main advantage of this method is that it avoids the complex and 

costly tire modeling task, bypassing this step by training a 

Neural Network structure using repeatable data from Step Steer 

maneuvers. An important contribution of this work is that partial 

and hard braking events have been included in the training 

dataset with the objective to cover a wide range of critical 

driving scenarios. In addition, the Feedforward structure is 

trained with data from full-vehicle level tests. These data already 

contain information regarding the tire-chassis interaction, e.g. 

suspension kinematics, so it is not necessary to model these 

suspension effects in the state estimator and the model 

complexity can be kept low.  

 

The vehicle dynamic equations and first order tire model 

have been integrated forming a hybrid structure composed of an 

Extended Kalman Filter and a Neural Network structure. A 

Recursive Least Squares block completes the state estimator 

with the aim to monitor the road grip potential and corrects the 

tire forces predicted by the Neural Network structure. The 

observer has been modeled in Simulink® and simulations have 

been carried out using the vehicle dynamics software IPG Car 

Maker® using a parameterized experimental vehicle. White 

Gaussian Noise based on the specifications of the testing 

instrumentation has been added to the simulation signals in 

order to evaluate the filtering capabilities of the EKF. A wide 

range of objective testing maneuvers (open loop, closed loop, 

and mu-jump) have been simulated in different vehicle 

configurations, including tire size variations and modifications 

in the tire operating pressure. In addition, the validity of the grip 

scaling approach employed by the MF 6.1 has been evaluated 

using tire models parameterized in dry, wet asphalt and ice 

surfaces. 

 

The graphs and metrics presented in the previous section 

demonstrate the remarkable performance of the state estimator 

under aggressive maneuvers in high and low adherence 

conditions. Discussion regarding the grip consumption levels 

required to detect abrupt changes in the road grip potential has 

been provided. The experimental validation of the state 

estimator in a Proving Ground will be pursued during the next 

steps of this research. Additionally, the integration of the 

observer with pure longitudinal and lateral slip-based grip 

estimators will be studied in the future. 
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Nomenclature 

 
𝑇𝑠 Discretization time  

𝑣𝑥 Longitudinal velocity  

𝑣𝑦 Lateral velocity  

𝑟 Yaw rate  

𝑚 Vehicle total mass (Sprung + unsprung) 

𝛿 Average normalized steering angle  

𝐹𝑦𝑓,𝑟 Axle lateral forces  

𝐹𝑥𝑓,𝑟 Axle longitudinal forces  

𝐼𝑧 Yaw inertia  

𝑙𝑓,𝑟 Longitudinal distance to center of gravity  

𝑈 Vector of inputs 

𝑌 Vector of outputs 

𝑋 Vector of states 

𝛼𝑓,𝑟 Axle wheel slip  

𝜆𝑓,𝑟 Axle longitudinal slip 

𝐹𝑦0 Equilibrium lateral force  

∆𝛼 Axle wheel slip increment 

∆𝜆 Axle longitudinal slip increment 

𝐶 Axle Cornering stiffness 

∆𝛼𝑡 Axle wheel slip differentiation increment 

𝑎𝑥 Longitudinal acceleration 

𝑎𝑦𝑓 Front axle lateral acceleration 

𝐹𝑦𝑓,𝑟ℎ𝑖𝑔ℎ NN High mu lateral force estimate  

𝐹𝑦𝑓,𝑟𝑙𝑜𝑤 NN Low mu lateral force estimate 

𝜇 Road adherence coefficient 

𝑤 Process white gaussian noise 

𝑣 Measurement white gaussian noise 

𝑓(·) State evolution vector 

ℎ(·) Observation vector 

𝐴 State vector Jacobian 

𝑃 Covariance matrix (Kalman filter, RLS) 

𝑄 Process noise covariance matrix 

𝑅 Measurement noise covariance matrix 

𝐻 Observation vector jacobian 

𝐿𝑓
𝑟  𝑟 − 𝑡ℎ Lie derivative of vector field 𝑓 

𝑥0 Equilibrium state 

𝑍 Vector of system parameters 

𝑎𝑖 Artificial neuron inputs 

𝑎𝑗 Artificial neuron output 

𝑊𝑖,𝑗 Artificial neuron weights 

𝑆𝑗  Artificial neuron output, previous to activation function 

𝐹𝑧 Axle vertical load 

ℎ𝐶𝑜𝐺  Center of gravity height 
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𝑟̇ Yaw acceleration 

𝑎𝑦,𝐶𝑜𝐺 Lateral acceleration at the center of gravity 

𝜆𝑒 Forgetting factor, RLS 

𝜓 Vector of Input regressors, RLS 

𝜃 Vector of estimated parameters, RLS 

𝑦𝑚𝑒𝑎𝑠 Measured variable 

𝑦𝐶𝑀 CarMaker variable 

𝑁 Length of time-history 

 


