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world transportation. While slow steaming is widely used as best practices for liner shipping companies,
they are also under the pressure to maintain service level agreement (SLA) with their cargo clients. Thus,
deciding optimal speed that minimizes fuel consumption while maintaining SLA is managerial decision
problem. Studies in the literature use theoretical fuel consumption functions in their speed optimiza-
tion models but these functions have limitations due to weather conditions in voyages. This paper uses
weather archive data to estimate the real fuel consumption function for speed optimization problems. In
particular, Copernicus data set is used as the source of big data and data mining technique is applied to
identify the impact of weather conditions based on a given voyage route. Particle swarm optimization, a
metaheuristic optimization method, is applied to find Pareto optimal solutions that minimize fuel con-
sumption and maximize SLA. The usefulness of the proposed approach is verified through the real data
obtained from a liner company and real world implications are discussed.

© 2017 The Author(s). Published by Elsevier Ltd.
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1. Introduction

Speed optimization in liner shipping has significant economic
and environmental impact for reducing fuel cost and Green House
Gas (GHG) emission as the shipping over maritime logistics takes
more than 70% of world transportation (UNCTAD, 2010; Psaraftis
and Kontovas, 2013). While slow steaming is widely used as best
practices for liner shipping companies, they are also under the
pressure to maintain service level agreement (SLA) with their cargo
clients (Lee et al., 2015; Parthibaraj et al., 2016). Thus, deciding op-
timal sailing speed which minimizes fuel consumption while main-
taining SLA is an important managerial decision problem for liner
companies.

Sailing speed decision mainly depends on the vessel schedule
and it is a challenging problem due to the uncertainties imposed in
maritime logistics such as stochastic port times and weather condi-
tions. Port time uncertainty significantly affects the time that ves-
sels spend at ports in anchorage, berthing, unberthing or drifting
status. Increased port congestion and delays can negatively affect
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service level of shipping lines to their customers and put pressure
on schedule reliability and might incur logistics costs to the cus-
tomer (Notteboom, 2006). On the other hand, weather conditions
including current and wind affect journey times and the routing
decisions (Kontovas, 2014).

The majority the literature work on the speed optimization
problem based on a theoretical fuel consumption function. For ex-
ample, Fagerholt et al., (2010) and Yao et al., (2012) propose a fuel
consumption function which is based on the empirical data from a
shipping company. However, these functions do not reflect the ac-
tual fuel consumption of vessels that are affected by weather con-
ditions. In reality, certain routes may encounter harsher weather
conditions than others and speed optimization needs to consider
such different voyage environments.

In Fig. 1, we compare the theoretical fuel consumption based
on the empirical model proposed by Yao et al., (2012) with the his-
torical fuel consumption data obtained from a liner shipping com-
pany. The data belongs to a Turkish liner service with 10 ports-of-
call operated in the Mediterranean region. 15 voyages performed
by the same vessel of this service in 2013 are analyzed. Fig. 1 il-
lustrates the change in total fuel consumption with respect to time
in sea in terms of day. Although fuel consumption mainly depends
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Fig. 1. The actual and theoretical fuel consumption levels with respect to time in sea.

on the vessel sailing speed, there are other affecting factors such
as the weather conditions (winds, currents, etc.). The differences
between the estimated consumption and the actual one illustrate
the effect of these factors. In particular, fuel consumption differ-
ence becomes larger when the time in sea is longer. In this study,
we focus on the speed optimization problem by considering the
effect of weather conditions on fuel consumption.

Different vessel routes have different weather conditions hence,
it is difficult to have unified weather adjustment functions to cor-
rect the differences between actual and theoretical fuel consump-
tion. The impact of current and winds on fuel consumption varies
depending on the routes due to the geographical characteristics.
Thus, it is more realistic to identify different impacts of weather
conditions in different routes based on historical voyage data and
weather data. The analysis of weather archive big data which is
publicly available on the Internet in comparison with actual fuel
consumption data from liner companies provides an opportunity
to measure different impacts of weather conditions on fuel con-
sumption of vessels.

Despite the opportunity, using weather archive big data in ves-
sel speed optimization requires overcoming following challenges.
Firstly, weather archive data provides an opportunity to apply big
data analytics to estimate the degree of the impacts of weather
conditions on fuel consumption of vessels in different routes based
on its huge volume of historical data. However, most of such
archive data is not easy to use due to the format, volume, and
velocity of data. Secondly, the relationship between weather con-
ditions and fuel consumption is different for different routes and
difficult to model as a single mathematical formula. In this study,
we apply a data mining technique to explore such non-linear rela-
tionships based on historical weather and voyage big-data from a
liner company.

This paper proposes a decision support system (DSS) that uses
weather archive big data in vessel speed optimization overcom-
ing above challenges. To the best of our knowledge, the impact
of weather conditions on fuel consumption in liner shipping has
not been explicitly considered in the literature. This paper aims to
fill this research gap. In particular, we focus on speed optimiza-
tion problem in liner shipping by considering the weather impact.
The speed decision affects the transit time between ports, and in
turn, affects the service level. Hence, we also study the trade-off
between minimizing fuel cost and maximizing service level. A par-
ticle swarm optimization (PSO) technique based solver is proposed
to solve this multi-objective problem. Based on a real shipping
data, we analyze the impact of weather conditions on the fuel con-
sumption.

The remainder of the paper is organized as follows.
Section 2 reviews related studies with regard to speed opti-
mization in maritime logistics. Section 3 then formulates the
target problem as a multi-objective optimization problem. The
details of the decision support system are given in Section 4. In
Section 5, experiment results based on data obtained from a real
liner shipping company are provided to verify the usefulness of
the proposed decision support system. Finally, Section 6 concludes
the paper.

2. Literature review

Optimization techniques have been widely applied to mar-
itime operations including ship routing and scheduling, fleet man-
agement, disruption handling, and bunkering. Christiansen et al.,
(2013) provide a survey of studies on ship routing and scheduling.
The literature on bunker optimization methods in maritime ship-
ping has been summarized by Wang et al., (2013). Tran and Haa-
sis (2015) review the literature on container liner shipping with re-
spect to container routing, fleet management and network design.
Recently, Mansouri et al., (2015) have reviewed existing studies in
maritime operations from sustainability and decision support per-
spective.

Speed optimization is one of the important problems for sus-
tainable maritime operations as the CO, emission is directly af-
fected by the fuel consumption which is determined by vessel
speeds. Early studies on the speed optimization problem assume
deterministic port times and strict time windows (Fagerholt et al.,
2010; Hvattum et al., 2013; Norstad et al., 2011; Andersson et al.,
2015). The proposed models restrict vessels to arrive at the con-
tracted time windows to meet 100% service level agreement. How-
ever, in reality such assumption is too strong and it is reported that
only 55% to 89% vessels arrive on time at ports (Drewry, 2016). Port
and travel times can be highly variable due to congestion, handling
and weather conditions (Notteboom, 2006). Thus, recent studies in
this field extend the speed optimization problem by considering
uncertainties at ports and voyage routes (Qi and Song, 2012; Ay-
din et al., 2017). Qi and Song (2012) propose a vessel scheduling
model to minimize the total fuel cost by considering uncertain port
times and frequency requirements. In their formulation, they relax
the port time window constraint and allow vessels to arrive at any
time. On the other hand, Aydin et al., (2017) extend the problem
by considering the time windows and bunkering decisions.

The speed optimization models generally assume that fuel con-
sumption solely depends on the vessel speed (Psaraftis and Kon-
tovas, 2013). Yao et al., (2012) propose optimal bunker manage-
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ment strategy by solving an integrated mathematical model that
includes decision variables with regard to bunkering port selec-
tion, bunkering amount decision, and vessel speeds between ports.
They discuss that different fuel consumption functions need to
be considered for different vessel size based on empirical data
obtained from Asia-Europe and Asia-Pacific services. Wang and
Meng (2012) work on deterministic speed optimization problem
for container routing problem. By using historical data, they ana-
lyze the relation between sailing speed and fuel consumption. The
authors discuss that the fuel consumption depends on voyage legs
as weather conditions can be different at different legs. In this
study, we focus on the speed optimization problem by considering
the effect of weather conditions.

While above studies are aiming at developing optimization
models, the application of decision support systems in maritime
logistics are rare compared to other industries in the literature
and this is attributed to unique culture of maritime industry
(Mansouri et al., 2015). In practice, commercial software solutions
(for example, SPOS! and NETPAS?) are being adopted by liner ser-
vices. The supporting functionalities of these systems are limited
to provide weather and voyage data management rather than au-
tomatically finding the optimal sailing speeds by considering the
environmental variables including weather and port conditions. A
DSS proposed by Besikci et al., (2016) is one of few efforts to sup-
port vessel speed optimization problem using various factors in-
cluding weather condition, trim, cargo quantity, and vessel speeds.
Artificial Neural Network (ANN) is applied to learn the impacts
of those factors on fuel consumption based on historical data ob-
tained via Noon Data reports which are recorded by the crews
of vessels. However, the rules identified by the DSS is applicable
to only one vessel and they cannot be applied to other vessels
that have different specifications and providing services in differ-
ent routes. As highlighted by Mansouri et al,, (2015), the majority
of the previous studies in sustainable ship scheduling problem pay
attention to only mathematical modelling and algorithms to solve
the problem. Existing literature on DSS for vessel scheduling is rel-
atively scarce and therefore this paper seeks to fill this gap in the
literature.

Kim and Lee (1997) propose one of the pioneer studies for
the use of optimization-based DSS for scheduling vessels. The pro-
posed DSS assigns bulk cargoes to a schedule in tramp shipping.
LINDO optimizer is used as a tool in scheduling process in order to
maximize the profit obtained from the transportation of cargoes.
Another similar bulk cargo scheduling problem in tramp shipping
is proposed by Bausch et al., (1998). The authors aim to assign
cargoes into the vessel schedules so that all loads are transported
at a minimum cost and satisfy all constraints such as time win-
dows and compatibility between ports and vessels. The output of
this optimization process is presented as a schedule on a spread-
sheet for the users. Since the study by Bausch et al., (1998), there
has been a lack of literature related to the use of DSS in vessel
scheduling problem. Later, Fagerholt (2004) argues that one of the
main reasons why managers in marine shipping are not willing to
use DSS is because of its limitations to consider all of the con-
straints in the scheduling process. To address this problem in the
industry, a DSS called TurboRouter was introduced for vessel fleet
scheduling. Fagerholt and Lindstad (2007) extend TurboRouter to
meet all the requirements for vessel scheduling problem in indus-
trial and tramp shipping. Time windows, vessel capacities, compat-
ibility between port and vessel, bunker consumption rate, bunker-
ing port calls are taken into account for planning the vessels to
arrive at port within specific time period and with the maximum

1 Ship performance optimization system, http://www.meteogroup.com/
2 http://www.netpas.net/

profit. As a result, the decision maker can easily see the sched-
ule through user interface. TurboRouter also receives satellite posi-
tions from ships in real time and computes the estimated arrival
times to given ports. Apart from industrial and tramp shipping,
Lam (2010) focused on designing DSS for scheduling liner shipping
problem. The proposed integrated approach first selects the ports
of call and then schedules vessels with respect to given time win-
dows and finally analyzes the financial factors. In scheduling pro-
cess, a planner can edit the service route manually and then the
system updates the optimal schedule automatically.

Due to the recent environmental concerns in maritime ship-
ping, later studies on DSS for vessel scheduling have focused on
minimizing CO, emissions. Ballou et al., (2008) presented a DSS
called Voyage and Vessel Optimization Solutions (VVOS) in order
to schedule vessels to reach ports of call with minimum CO, emis-
sions within a given time window. The system makes ship schedul-
ing decisions based on the wind, wave and current data. VVOS
is considered to be user friendly as it is flexible for the user to
choose whether they would like to use optimization module. Sim-
ilarly, Windeck and Stadtler (2011) also focused on developing DSS
for network design problem to minimize cost and CO, emission by
considering weather factors.

While studies on big data are common in computer science and
information systems (Agarwal and Dhar, 2014 for example), the
application of big data analytics are gaining popularity in opera-
tions research field recently. Choi et al., (2017) proposes a novel
method to integrate a qualitative decision model with open big
data available on the Internet to support public procurement pro-
cesses. Fang et al., (2016) applies random forecast regression to big
data obtained from insurance companies to forecast the profitabil-
ity of insurance customers. Song and Wang (2016) find that enter-
prises that are participating to global value chain tend to have the
higher green technology level via regression analysis on difference-
in-difference panel data on Chinese enterprises. Psaraftis et al.,
(2016) review the literature on dynamic vehicle routing problem.
They discuss the importance of using big data in vehicle routing
problems to enhance decision making. They also point out that
the literature should focus on how to make use of big data. While
these studies are processing large amount of data, the nature and
size of the data used in this paper is more complex and huge.
Weather archive big data in this paper contains vast amount of ob-
servation data on weather in different points of Sea. In addition,
the format of the archive data is usually not directly accessible
by general purpose programming tools therefore pre-processing is
required. This paper shows a systematic method to process the
archive data to build weather information for chosen vessel routes
from the vast amount of archive.

3. Problem formulation

The objective of the problem is to minimize fuel consump-
tion for a vessel that travels through a predefined route while
maximizing the total service level. Since these two objectives are
conflicting, we have a multi-objective optimization problem. De-
cision makers are interested in learning the trade-off relationship
between vessel operation cost and service level for a given liner
route.

We use the problem structure defined by Aydin et al., (2017).
They use a single objective function to minimize the total opera-
tion cost by synthesizing the fuel cost with penalty cost incurred
from missing required service level. However, in reality normaliz-
ing the scale of penalty cost with the fuel cost is very difficult.
Therefore, finding Pareto optimal solutions that show the trade-off
relationships between two components can make more sense for
decision makers. Thus, we define a bi-criteria model to solve the
multi-objective optimization problem.
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We consider a vessel providing a liner shipping service over a
route that is a predefined sequence of ports of call denoted by set
N= {0, 1, 2, ..., n}. Port 0 denote the starting node of the route.
Leg i represents a trip from port (i—1) to port i. We assume that
the vessel has a contracted time window for each port and port
service can start within the specified time window. If the vessel
arrives earlier than the contracted time, then it needs to wait until
the starting point of the time window. We assume that the ves-
sel consumes a fixed amount of fuel per hour during waiting and
service time at each port. In particular, vessels usually use more
expensive fuel when they are waiting at ports, therefore we dis-
tinguish the waiting cost from sailing cost. We also assume that
a vessel has a minimum and maximum speed limit and operates
within the capacity. We will use the following notation in the pa-
per to explain the structure of the optimization model.

N: set of ports

M average service time in hour at port i

ti: arrival time of vessel at port i

tid: departure time of vessel at port i

[e;,Bi]: contracted time window at port i

d;: length of leg i in nautical mile

¢: fuel cost per hour during waiting and service time at a port

15: price of fuel per ton consumed during sailing

rp: price of fuel per ton consumed at ports

v;: average speed at leg i (nautical mile per hour), which is lim-
ited by [Viin, Vmax]

The vessel operational cost consists of two major components:
sailing cost and port cost. Sailing cost corresponds to the fuel
cost incurred during sailing. Yao et al., (2012) present an em-
pirical model to reflect the relation between fuel consumption
rate and the sailing speed by considering the size of the vessels.
The estimated fuel consumption rate is given by k; ui3 + ky, where
ki and k; are constants and their values depend on the size of
the vessel. Multiplication of fuel consumption rate by the tran-
sit time between ports yields the total fuel consumption. We ex-
tend Yao et al., (2012)’s fuel consumption model by considering the
weather factor at each leg. The fuel consumption function for leg i
is represented by fi(g(v;), w;) where g(v;) = (d,-/24v,-)k1v? + ko and
w; denote the weather factor at leg i. The fuel consumption func-
tion is convex and increasing with v; and adjusted by the weather
factor (w;) at let i.

Port cost also corresponds to a fuel cost which is incurred while
a vessel waits for berthing or receives a service from a port. We
assume that port cost is proportional to the entire time spent at
the port including waiting time and service time. If we let x be
the average amount of fuel (tons) consumed per hour, then the
fuel cost per hour (¢) at a port is given by ¢ =rp«. Finally, the total
vessel fuel cost is defined as in Eq. (1).

n
Cr=>_ (rsfi(gw). wi) + o(t! — t7)) + @10 (1)
i=1

Given the vessel speed v; and average service time t; at port
i, the arrival and departure times at each port are defined by the

following system dynamics equations:
t=td  +di/v;

td = max {t¢, o} + i, i=1,....n.

i =

(2)

Since port O denote the starting node of the route, we assume
that t§ = 0 and t§ = jo.

Our second objective is to maximize service level. When a ves-
sel arrives at the port before or within the time window, such port
is satisfied 100%. However, the service level starts to decrease if
the vessel arrives later than the contracted time window. On time
delivery of the containers is very important for liner shipping com-
panies since delayed cargo may result in high cost by customers.

Stepwise function is suitable for representing the increasing mar-
gin of delay effect, where ports may tolerate a small delay but a
large delay will result in deviation from the planned schedule and
will have a large negative impact on the service level. The service
level at port i is computed as follows;

1 if tf < x;y
s(t7) = Mi(xia) i X < 6 < X

1

3)

hi(Xim) — if Xim—1 <t < Xi,

where x;; =f; and x;; < Xp <--- < Xy, Function hy(x;) returns a
service level value according to the time points X;1, X, -+ Xip,.
The first time point corresponds to the latest start time of the ser-
vice, B;. Therefore, if the vessel arrives before the first time point,
the port is satisfied 100%. Through conversation with a major liner
company, it was realized that missing contracted time windows at
busy ports results in higher delay than the idle ports due to the
difficulty of finding alternative service time slots. Therefore, we as-
sume that the function h;(x;) can take different form for different
ports. For example, a function for a busy port may return lower
service level compared to idle ports for the same amount of de-
lay. The multi-objective speed optimization problem is formulated
as:

n
minimize ) (rs fi(g). wi) + ¢ (¢! —tf')) + @ to (4)

i=1

Lo
maximize 1:20: ms,-(tlF’) (5)
subject tot! =t +di/v;, i=1,....n, (6)
t8 = max {tf, o} + pi. i=1.....1, ™)
Uminfvifvrnax, i:l,...,n, (8)

where t§ =0 and tg = [4g. Constraints (6) and (7) correspond to
the system dynamics equations for arrival and departure time.
Constraints (8) ensure that the vessel sailing speed is within
the lower and upper limits in all legs. While objective function
(4) minimizes the total fuel cost incurred during sailing and ser-
vice at ports, objective function (5) maximizes the average service
level at all ports. These objectives conflict with each other, i.e., in-
creasing one objective deteriorates the other.

4. Decision support system for big data based speed
optimization

The overall architecture of the decision support system is
shown in Fig. 2.

The DSS consists of four major components: user interface,
weather archive data parser, weather impact miner, and PSO solver.
User interface is a web-based system for effective and platform in-
dependent interaction with end users. Weather archive data parser
has interface with weather archive data source and it converts
original archive data into data format that can be interpreted by
other components of the DSS. Weather impact minor aims at find-
ing rules with respect to weather impact, w;, on fuel consumption
function f;(g(v;),w;) for each leg. PSO solver use the weather im-
pact data to generate Pareto optimal solutions that show trade-off
relationships between fuel consumption and service level for speed
solutions.

Please cite this article as: H. Lee et al., A decision support system for vessel speed decision in maritime logistics using weather archive
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Table 1
Data types in the NetCDF file.

Wave number (number of waves that exist for a specified distance)
Meridional-stokes drift velocity at surface (m/s) (in the north - south direction)

Zonal-stokes drift velocity at surface (m/s) (in the west - east direction)

sowavenu
somestdy

vomecrty Meridional velocity (current in the north - south direction)
sozastdx

vozocrtx Zonal velocity (current in the west - east direction)
wind_speed  Wind speed (m/s)

wind_to_dir ~ Wind direction (degree)

Weather
archive
data

Weather
User
' PSO Solver Archive Data
interface
Parser
Weather T
Impact Miner Database

Fig. 2. The architecture of the decision support system for multi-objective speed
optimization.

4.1. Weather archive data parser

In this section, our aim is to estimate the effect of the sea
state on the vessel creating either drag or forward push depend-
ing on the direction. We use real time marine condition data
provided by Copernicus Maritime Environment Monitoring Service
(Copernicus, 2016). We analyze the marine data for 3 years (ob-
tained from 2012 to 2014) for the Mediterranean Sea. We follow
several steps before applying data analytics techniques. Next, we
explain our data processing steps.

The data is stored as a segmented (i.e. quarterly data pack-
ages) NetCDF (network common data form) file. NetCDF file is a
set of software libraries that support a machine-independent for-
mat to represent scientific data (Rew and Davis, 1990). We access
the data by using Matlab 2016a programming language. This file
includes several data types including temperature, salinity, drift ve-
locity, current and wind speed. Fig. 3 illustrates the content of a
quarterly data package and Table 1 presents the explanation of the
terms in this file.

Each data point for a given latitude and longitude presents 24-h
mean value of the corresponding data type. Meridional and zonal
directions correspond to the north-south and west-east orienta-
tions, respectively. In this section, we define how to extract current
data along the vessel route. Other data types (e.g. wind speed and
wind direction) in NetCDF file can also be extracted in the same
way. Fig. 4 presents the average current for a given day. The colour
differentiates the direction and magnitude of the current in the
north-south and west-east directions.

To compute the net effect of the current on the vessel, both the
vector (direction and magnitude) of travel and the vector of the
current should be considered. By making use of the NetCDF file,
the vector of the current can be computed along the vessel route.
The coordinates of the vessel route are provided by the liner ship-
ping company. The traversed grids on each day can be identified
by the route coordinates, vessel sailing speed and the port service
time. The distance between two geographical coordinates is com-
puted by using Haversine formula (Sinnott, 1984).

The coordinates of the vessel route can include either the
route diversion points or ports. At the diversion points the ves-
sel changes the direction intravenously whereas at ports it waits
for berthing and service. Considering this information, the trav-
elled route for each day is computed as illustrated in Fig. 5. Interim
points marking the end of the day on the route are also captured
and computed. The traversed grids along the path are then deter-
mined by using the Bresenham’s line algorithm (Bresenham, 1965).
In this analysis, the sailing time of the vessel is computed by only
considering the vessel speed. For more realistic approximation, the
effect of the current can be recalculated iteratively. As it is seen
from the marked green grids travelled on the first segment by the
vessel (Fig. 5), each grid is traversed in different durations. In or-
der the calculate the average net effect of current, the weighted
average of the resultant current vector is computed as follows;

) %(cjﬁ—f—cjﬁ) (9)

N
j=

1

where D; is the distance travelled at segment i (between two co-
ordinates), y; is the distance travelled in grid j, N is the number of
grids travelled in segment i and (c;i, c;D) denote the vector com-
ponents of the current in zonal and meridional directions, respec-
tively.

Fig. 6 illustrates the variation in the magnitude of current along
the vessel route for different days. The colour map in each graph
corresponds the resultant magnitude of the current velocity in m/s.
Traveled route for different days is presented by coloured lines on
the map. As it is seen in Fig. 6, significant changes in current are
observed at each different day.

4.2. Weather impact miner

The role of weather impact miner is to identify important fac-
tors that can affect the fuel consumption of vessels. We use the
data passed from Weather Archive Data Parser, which provides the
weather data for given routes including current vectors and wind
speed/direction information. By combining weather data extracted
from Copernicus dataset and service history of the liner shipping
company, we can identify the important weather factor. We ana-
lyze the fuel consumption of the same route for specific dates by
using the extracted weather data. The service data or voyage ab-
stract covers the information including arrival and departure ports,
running distance between two ports, average speed, arrival and de-
parture time, fuel consumption at sea, route coordinates, etc. Based
on this data, weather impact miner considers the average fuel con-
sumption (total fuel consumption between ports divided by the
distance) as a dependent variable to find important factors that
may affect to fuel consumption.

Weather impact miner mainly investigates the impact of the
wind and current data. The direction and magnitude of wind can
affect the fuel efficiency with respect to the date and time. To
identify the impact of wind on the fuel consumption, weather im-
pact miner extracts the rule prioritizing the direction and magni-
tude combination. Since the wind magnitude may not show a lin-
ear impact on the fuel consumption due to its direction, weather
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Str 'ﬁl DimID AttArray Eﬂ Type Eﬂ VSize EE Begin @ Data
|'time' 0 1x8 struct 4 476 3752|1191 int32
‘len’ 2 1x7 struct 5 2708 4228|677x1 single
‘'sowavenu' [0;1;2] 1x7 struct 5 81529756 6936|119%253x67...
‘'somestdy’  [0;1;2] 1x7 struct 5 81529756 81536692 119x253x67...
‘vomecrty'  [0;3;1;2] 1x7 struct 5 81529756 163066448 4-D single
'sozostdyx’ [0:1:2] 1x7 struct 5 81529756 244596204 119x253x67...
'depth ' 3 1x9 struct 5 4 3261259601.4721

‘lat" 1 1x7 struct 5 1012 326125964 253x1 single
‘vozocrtx!' [0:3:1;2] 1x7 struct 5 81529756 326126976 4-D siqgle

(a) Current data
fioe] Str 7 DimiD [ AttAray [ Type HH vsize HH Begin & Data
Ton’ 3 \1x9 struct 4 1364 7020 341x1 int32
‘measurement_time' _[0;1,'2;3] |1x7 struct 4 175956 83844-D int32
‘eastward_wind ' [123] 1x9 struct 3 87980 2723201x129x341int16 |
‘wind_speed ' [01;2;3] 1x9 struct 3 87980 448280 4-D int16
‘'wind_to_dir* 02:23]  1x8struct 3 87980  5362604-D int16
'northward?wind ' ‘[1;2;37]7 ‘1x9 struct 3» 87980_ 1064148_1x129x341 int16
lat ' 12 1x9 struct 4 516 1152128129x1 int32
(b) Wind data

Fig. 3. Data types captured from the NetCDF data in Matlab.

a2

Latitude
8

1

15
Longitude

Fig. 4. Illustration of current in Mediterranean for a given day.

impact miner collects all data for given routes and then compares
multiple voyage histories by controlling the wind directions. Then,
the prioritized wind direction can be obtained and weather im-
pact miner calculates the relative weight of each wind direction
and magnitude combinations and returns the rule accordingly us-
ing statistical rule mining. Regarding the wind data, we have wind
direction and wind force variables, which are both categorical. The
direction and magnitude have 5 and 7 levels, respectively. The
wind force is coded as ordinal scale (1 to 7) where the highest
scale corresponds to the strongest wind force. Wind direction code
indicates relative direction of wind with respect to the sailing di-
rection as shown in Fig. 7.

In case we do not have enough voyage data for a given route,
bootstrapping method can be applied to derive meaningful statisti-
cal rule mining results. To develop the preference rule for reducing
fuel consumption, based on the fuel consumption record, we de-
fine the average fuel consumption rate function (N2—R) between
ports A and B with respect to wind force i and wind direction j

AFR4 (i, j), 1<i<7, 1<j<5.

This function returns the mean value of fuel consumption be-
tween ports A and B for given period. Using this function, weather
impact miner conducts pairwise comparison to derive the prefer-
ence rule, which can be defined as

(i, j) > (k,1) if AFRy_p(i, j) < AFRs_g(k, 1)

where (i, j)— (k, I) means (i, j) is preferred over (k, I). This pair-
wise comparison returns all preferences between 35 possible wind
direction and force combination. Using this result and the overall
mean of fuel consumption between two ports (AFR,_p), the rela-
tive weights can be calculated and assigned to all combination. If
the AFR,_p(i, j) do not show the statistically significant difference
comparing to overall mean of fuel consumption, the (i, j) combi-
nation between ports A and B will have no weight. Otherwise, we
will use Ratio of Mean values (RoM) for the weight of (i, j) combi-
nation, by dividing AFR4_p(i, j) with AFRs_p.

The impact of current can vary from the geographical locations
of the routes. To estimate the accurate impact of current data,
weather impact miner requests the current vector data for all the
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Fig. 6. Change in the current along the vessel route.

past voyage data to weather big data parser. Using the date and
route information such as trajectory coordinates and route sched-
ule (i.e., time and date on each coordinates), weather impact miner
can match the current information of each route in voyages and
then, create historical records regarding to current. By controlling
wind effect, weather impact miner estimates the net impact of cur-
rent on the fuel consumption using regression analysis and identi-
fies which voyages are easily affected by the current magnitude in
terms of fuel consumption. The standardized coefficient with sta-
tistical significance will be the current weight for given route on

the sailing period and 1 will be assigned to the route which was
not affected by current.

4.3. Particle swarm optimization solver

Particle swarm optimization (PSO) is one of the successful
metaheuristic algorithms which has been applied to many real-
world applications (Ai and Kachitvichyanukul, 2009a; Ai and Ka-
chitvichyanukul, 2009b). It is a population-based search method
developed by Kennedy and Eberhart (1995). It mimics the social
behaviour of a group of birds or a school of fish in foraging their
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food. The searching algorithm is motivated by the movements of
the individuals or particles in the swarm. There are L particles in
a swarm and each particle is characterized by its current position,
velocity, personal best position and fitness value. While the current
position represents the current location of each particle, the veloc-
ity specifies the direction that the particle moves. At each PSO it-
eration, every particle move to new position according to its veloc-
ity. The position of each particle represents a solution of the prob-
lem. The personal best position can be considered as a metaphor
of cognitive learning of each particle. It keeps the best location of
a particle which gives the best objective function value compared
to its previous positions. In addition, each particle can also learn
from other particles in the swarm. Thus, the best location in the
swarm can be found as well. This location is called as the global
best location.

The PSO proposed by Kennedy and Eberhart (1995) consid-
ers only single objective and hence, it cannot be directly applied
to the multi-objective problems. In this study, we utilize multi-
objective PSO (MOPSO) framework presented in Nguyen and Ka-
chitvichyanukul (2010). We adapt one of the proposed movement
strategy and conduct experiment to fine-tune the PSO parameters
for suitability to our model. The MOPSO framework is illustrated
in Fig. 8 (Nguyen and Kachitvichyanukul, 2010).

It should be noted that we apply the direct encoding scheme to
represent the decision variables (average vessel speed v; at leg i)
in the position of the particle in the swarm. The position of par-
ticle [ is represented by a H-dimensional vector 0,(t) where [=1,
..., L, h is the dimension of the vector and 7 denote the iteration
number. The corresponding velocity is given by wy,(7) and the per-
sonal best position of particle [ is represented by ¥ j,(7). The steps
of MOPSO framework are given as follows.

Step 1: Initialize the particles in the swarm and specify the
maximum number of iterations T for the stopping criterion. Po-
sitions of two particles in the swarm are set by the minimum
and the maximum sailing speeds in all legs in order to guarantee
the lower and upper bound solutions in the initial Pareto frontier.
These two positions are denoted by #™" and §™, respectively. For
the remaining particles, the position 6(1) at iteration 1 is ran-
domly generated by setting the average speed v; at leg i between
the range of minimum and maximum sailing speed [Vin,Vmax]. Ve-
locity wj,(1) is set to O for every particle in the swarm.

Step 2: Calculate the fuel consumption and the service level by
using the Eqs. (4)-(5) presented in Section 3 for each particle in
the swarm.

Step 3: Evaluate both objective functions computed in step 2 for
the non-dominated front (Pareto front). The non-dominated front
is stored in the external archive called elite group. To choose parti-
cle I for the elite group, it should satisfy one of the following three
criteria;

(1) Both objective function values of particle [ should be better
than the objective function values of the compared particles in
the swarm.

(2) While one objective function value of particle [ is better than
the one of the other particles, its other objective function value
is equal to the objective function value of any particle.

(3) While one objective function of particle I is better than the one
of the other particles, its other objective function value is worse
than the objective function of any particle.

Step 4: Check whether the stopping criterion is met or not. If it
is not satisfied (t < T), go to step 5; otherwise, the process stops
and the final non-dominated front is obtained.

Step 5: Select some particles from the elite group to guide the
direction of movement for all particles by following the move-
ment strategy proposed by Nguyen and Kachitvichyanukul (2010).
The aim of this strategy is to identify the gaps in the elite group
and move particles to the space that has a high gap in the elite
group. The advantage is that it helps to improve the distribution
of the elite group. For the details of particle selection criteria, we
refer to the second movement strategy proposed by Nguyen and
Kachitvichyanukul (2010). Basically, this movement strategy checks
the gap between particles in the elite group. If the gap is higher
than the predefined percentage, then the corresponding particles
are added to the unexplored position set as a pair. Then, the
movement is performed by randomly choosing a pair of particles
(P1p, Pop) from the unexplored position set to be a global guide in
the search.

Step 6: Update velocity and position for particles to move to the
next position. Velocity of a particle at iteration 7 +1 is updated by
considering three main components which are velocity at iteration
T, its personal best position and the global best position. The ve-
locity of particle [ at iteration 7 +1 is computed as follows:

op (T +1) = 0 (D)pR(T) 4+ apU (Yir(T) — O (7))
+ ag[U(Pyp — Qi (7)) +U(Pyp — Pop)] (10)

where o(7) is the inertia weight at iteration 7, ap and ag denote
the acceleration constants for its personal best and the global best
position and U is a uniform random variable in the interval [0, 1].
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Fig. 9. Service route.

The inertia weight at iteration t is computed as follows:
T-T
o(m)= o)+ 3—lod)-a@] (11)

After updating the velocity, the position of a particle is com-
puted based on its new velocity and previous position as demon-
strated in Eq. (12).

On(t+1) = Op(t) +op(t +1) (12)

However, the new position can correspond to an infeasible so-
lution where the vessel speed at each leg does not satisfy the sail-
ing speed constraints. Therefore, we introduce the following con-
ditions to force the position of a particle to be in minimum (§™i")
and maximum (6™%) position value.

i) If th(f'i‘]) > @M then th(f-‘r]):@max and a),h(t-i-l):O.
(i) If Op(T +1) < ™" then G;,(t +1)=0™" and wy,(t +1)=0.

The iterative process repeats from Step 2 until it reaches the
termination criterion.

5. Computational study

In this section, we test the usability of the proposed DSS against
the data obtained from a liner shipping company that provides ser-
vices in Mediterranean and Black Sea regions. The operations team
of the company makes the decision on vessel speeds for their ser-
vices. This team is largely responsible for the scheduling of the
vessels and the planning cargo loading on the vessels. Through pri-
vate conversation with the case liner company, it was realized that
speed decision is influenced by several factors and the most sig-
nificant factor is port situation reports. These reports are usually
dispatched through daily emails. The port authority publishes the
port status data and forwards it to liner companies through the
subscribed agents. These reports are one of the major data sources
for the speed decision as they provide information on preferred ar-
rival time at each port.

For the experiment, we choose one of the services operated by
the liner company in the Mediterranean region. This service starts
from port Salerno in Italy and visits ports La Spezia and Genoa in
Italy and ports Gemlik, Yilport, Marport and Izmir in Turkey. After
completing the route, the vessels return to the port Salerno for the
next voyage. This service covers 2790 nautical miles on average by
staying 7.9 days in the sea. The service route is depicted in Fig. 9.

We first show how accurately the fuel consumption function
adjusted by weather impact miner. We collect the actual voyage
abstract data between 2012 and 2014 from the company. Table 2
presents a part of the sample abstract data for the selected service.
The abstract data shows the time stamp on each port arrival and
departure with general operation statistics such as average sailing
speed, sea days, and fuel consumption for between ports.

As we described in Section 4, we combine the service abstract
data with weather information parsed from Copernicus Maritime
Environment Monitoring Service. The size of the extracted weather
data for this experiment is 43 GB covering three years of nautical
data for the Mediterranean and the Black Sea region.

5.1. Weather impact on fuel consumption

We compare our fuel consumption estimation with the theo-
retical estimation obtained by the empirical model in Yao et al.,
(2012) and the actual fuel consumption for the given service route.
We set the constants in the empirical model as k; =0.004595 and
k,=16.42. The selected service for the experiment had been op-
erated 43 times between 2012 and 2014. The service is divided
into 11 legs that correspond to the sea legs between ports and/or
straits. Table 3 presents the list of legs and the detail information
of each leg including distance and average sailing speed. The table
also presents the estimation error in percentage in the right two
columns. The estimation error indicates the root mean squared er-
ror (RMSE) calculated based on past 43 voyages. In Table 3, the
legs are sorted by distance. Fig. 10 illustrates the estimation error
for each leg. We refer our weather dependent fuel consumption
function and the empirical model proposed by Yao et al., (2012) as
WEFC and EM, respectively.

As depicted in Fig. 10 and discussed in Fig. 1, estimation error
of the empirical model (EM) tends to increase dramatically for the
legs with longer distances while the fuel consumption estimations
for short legs are relatively accurate. The results show that our pro-
posed fuel consumption model with weather weights can decrease
the estimation error for the voyage legs with long distances. For
instance, for the longest leg (leg no 11, between two straits), our
model (WFC) gives 7.5% error whereas EM has an error of 9.3%.

As depicted in Fig. 9, legs 10 and 11 cross the Mediterranean
Sea and hence, these legs are exposed to stronger current com-
pared to the other legs, which lie in the Tyrrhenian Sea and the
Aegean Sea. In addition, the impact of weather is more significant
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General information

Voyage No.
Vessel name
Call sign TCLA
Port rotation
No Port name Distance  Avg. speed  Engine load  Avg. fuel C.  Sea (day)
EOSP CcosP
1 Salerno 02/01/2013 15:30  02/01/2013 21:40
2 Genoa 376.0 144 50 303 1.09 03/01/2013 23:50  04/01/2013 15:00
3 La Spezia 49.0 15.5 55 4.1 0.13 04/01/2013 18:10 11/01/2013 16:50
4 Genoa 42.0 15.8 55 3.8 0.11 11/01/2013 19:30  13/01/2013 00:15
5 Strait of Messina 475.0 143 55 43.0 1.39 14/01/2013 09:30 14/01/2013 10:15
6 Dardanelles Strait 648.0 143 55 58.4 1.89 16/01/2013 07:30 16/01/2013 10:30
7 Gemlik 106.0 15.0 55 8.8 0.30 16/01/2013 17:35 17/01/2013 10:30
8 Yilport 43.0 15.2 55 35 0.12 17/01/2013 13:20  18/01/2013 00:35
9 Marport 31.0 12.8 55 3.0 0.10 18/01/2013 03:00 19/01/2013 07:50
10 Dardanelles Strait 94.0 14.5 55 8.1 0.27 19/01/2013 14:20 19/01/2013 17:45
1 [zmir 131.0 14.4 68 1.4 0.38 20/01/2013 02:50  20/01/2013 23:40
12 Strait of Messina 666.0 15.3 82 64.2 1.82 22/01/2013 19:20  22/01/2013 20:10
13 Salerno 133.0 15.5 82 15.0 0.36 23/01/2013 04:45
Total 2794.0 7.94
Table 3
Fuel consumption estimation summary.
Leg no.  Port/Strait Distance  Avg. speed  Estimation error % (RMSE)
From To EM WEC

1 Yilport Marport 32.33 16.02 0.73 0.73

2 Gemlik Yilport 42.18 15.71 078 0.74

3 La Spezia Genoa 46.25 15.93 0.93 0.94

4 Marport Dardanelles Strait 90.08 16.32 1.52 146

5 Dardanelles Strait ~ Gemlik 106.24 15.92 1.47 1.27

6 Dardanelles Strait ~ Izmir 131.24 16.74 1.50 1.27

7 Strait of Messina Salerno 149.48 15.68 1.42 1.36

8 Salerno La Spezia 330.01 15.58 1.92 1.86

9 Genoa Strait of Messina 473.40 15.77 5.93 5.61

10 Izmir Strait of Messina 625.64 16.13 6.31 535

1 Strait of Messina Dardanelles Strait ~ 647.26 15.71 9.32 7.48

Table 4

MOPSO parameter setting.

Inertia weight
Acceleration constants

6(0)=04, o(T)=0.9
a,=0.05, a;=0.05

Percent of unexplored gap 5%
Swarm size 500
Number of maximum iterations 1000
Number of elites 100

in the long voyage legs compared to the short legs. Since our fuel
consumption function considers the impact of weather conditions
on the fuel efficiency, it performs better than the empirical model
(EM) especially for long sea legs. Considering intercontinental long
voyages where weather will be more severe and highly variable
than the exemplified closed seas, the proposed fuel consumption
function is anticipated to provide better estimates.

5.2. Numerical results on multi-objective speed optimization problem

In this section, we test the performance of our multi-objective
speed optimization model given by Egs. (4)-(8). MOPSO is used to
find the optimal sailing speed at each leg which minimizes the fuel
consumption and maximizes the average service level. The param-
eters used in the PSO solver are shown in Table 4. In our experi-
ments, we used a computer with 1.80 GHz Intel (R) Core (TM) and
8.00 GB of RAM. The solution algorithm is implemented in Visual
C# running under Windows 8.1 operating system.

In this experiment, we investigate three voyages of the same
liner service operated by the sane vessel between 2013 and 2014
and discuss the potential fuel savings by optimizing the vessel
sailing speed. In particular, we compare the fuel consumption ob-
tained by our multi-objective model with the actual fuel consump-
tion of the liner service. We also test the performance of our fuel
consumption function against the empirical model proposed by
Yao et al,, (2012).

The analyzed voyages include seven ports and two strait pas-
sages in the sequence following SAL (Salerno), LAS (La Spezia),
GEN (Genoa), ST1 (Strait of Messina), ST2 (Dardanelles Strait), GEM
(Gemlik), YIL (Yilport), MAR (Marport), ST2 (Dardanelles Strait),
[ZM (Izmir), ST1 (Strait of Messina), and back to Salerno. The dis-
tance between ports are given in Table 3. The start and end dates
of these three voyages are 12.08.2013 and 26.08.2013 for the first
voyage (V1), 6.03.2014 and 23.03.2014 for the second voyage (V2),
and 09.05.2014 and 24.05.2014 for the third voyage (V3).

According to the data obtained from the liner company, the ves-
sel has always arrived before the end of the contracted time win-
dow in these voyages. Therefore, we compare the results for the
target service level of 100%. As we discussed in Section 3, we as-
sume that the service level degradation for busy and idle ports are
different and it is given in Eqs. (13) and (14), respectively.

1 iff{lfﬂ,‘
S,‘(tia): 0.5 lfﬁl <tf513,'+1
0 iffi+1<to

(13)
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Table 5
Optimal sailing speeds and fuel consumption.
SAL  LAS GEN STl ST2 GEM  YIL MAR  ST2 1IZM ST1 SAL Total
w; - 1.07 1.00 0.97 0.97 100 120 1.02 1.00 1.00 1.10 1.00
ws - 1718 1623 1721 1709 1733 1740 1512 1536 1602 1322 1493
v, BS - 1766  13.03 1735 1674 1807 1638 1391 1842 1565 1320 13.24
Vi AD - 1805 1843 1748 1659 1742 1626 1680 1487 1517 1350  14.69
WS 381 4065 9.04 4446 6103 1349 764 1191 872 2153 6014 1257 2950
F, BS 381 3910 872 4613 6199 1384 665 1175 981 2012 5469 1210 2887
AD 393 3940 960 5190 7650 1470 930 1280 11.80 1820 5500 1090 3139
w; - 100  1.04 1.21 1.00 104 100 097 0.97 0.97 1.00 097
ws - 1324 1455 1612 1603 1561 1656 1438 1544 1477 1354 13.84
Vi BS - 13.34 13.67 15.66 16.25 15.88 16.77 16.35 14.68 14.89 13.51 13.98
V2 AD - 1346 12.84 1666 1596 1646 1312 1277 1361 1849 1762 18.06
WS 218 3652 1298 5370 6073 13.60  13.02 9.06 880 1974 5530 1194 2976
FF BS 218 3657 1233 4367 6123 1330 13.05 934 886 2013 5527 1240 2883
AD 510 3730 1232 5556 7863 1557 1725 1024 1573 2083 7284 1519 3566
w; - 0.97 0.99 100 098 097 099 097 0.98 1.02 1.00 1.00
ws - 1578 1604 1587 1604 1628 1626 1592 1594 1402 13.87 14.01
v, BS - 1673 1570 1568 1604 1531 1627 1552 1445 1448 1276  13.64
V3 AD - 1747 1292 1614 1596 1600 1330 1422 1548 1616 1478 1322
WS 393 3681 1072 4391 59.06 1390  6.22 7.92 867 1756 5490 1218 2758
F; BS 393  38.95 10.71 43.60 60.30 13.90 6.30 8.00 8.50 17.50  54.00 12.10 277.6
AD 591 4360 1060 5280 8140 17.10 920 940 13.80 2150 7240 1310  350.8
ing fuel consumption (F;) at each leg. Since our speed optimization
1 a . . .
1 if .ti < Bi model considers weather impact, we also provide the correspond-
03 llf Bi<ti<pi+1 ing weather weights (w;) for each leg in Table 5. These weather
s; (tg) _J06 ifBi+1 <t <pBi+2 (14) weights are obtained through the weather impact miner.
- 1 a . . . .
! 04 ifBi+2<t!<pBi+3 Comparing the sailing speeds, we observe that the empirical

02 ifBi+3<tl<pi+4
0 if Bi+4<tf

Lastly, we assume that the sailing speed ranges between 12.5
and 19.5 knots.

Table 5 presents the optimal sailing speeds and the correspond-
ing fuel consumption at sea legs. We use the emprical fuel con-
sumption function proposed by Yao et al, (2012) in our multi-
objective speed optimization model for benchmarking. Both mod-
els are solved by MOPSO with the same parameter set. In the se-
quel, we refer to our weather dependent speed optimization model
and the benchmarking model as WS and BS, respectively. The ac-
tual liner data (sailing speed and fuel consumption data) is de-
noted as AD. The first column of Table 5 denotes the voyages.
The next columns present the sailing speeds (v;) and correspond-

fuel consumption model provides slightly lower sailing speeds and
hence, the estimated fuel consumption is less than the one ob-
tained by WS. This difference can be attributed to the impact of
weather conditions on the sailing speed and fuel consumption. The
fuel consumption function in BS does not consider the weather
effect. As seen from Table 5, the differences are more significant
when the variability in the weather weights is high. We can de-
duce from this result that in long voyages where weather-sea con-
ditions can be highly variable and severe, vessel speed should be
determined by considering the impact on fuel consumption. On the
other hand, the gap between the total fuel consumption obtained
by WS and the actual fuel data shows the maximum potential fuel
savings that can be achieved through optimizing sailing speeds by
considering service level.

Please cite this article as: H. Lee et al., A decision support system for vessel speed decision in maritime logistics using weather archive
big data, Computers and Operations Research (2017), http://dx.doi.org/10.1016/j.cor.2017.06.005



http://dx.doi.org/10.1016/j.cor.2017.06.005

JID: CAOR

[m5G;June 16, 2017;11:55]

12 H. Lee et al./ Computers and Operations Research 000 (2017) 1-13

0.9

o
o0}
T

Service level
o
~

0.6
0.5
—0—V3-WS
—&—V3 - BS
0-4 | | | 1 1 1 |
260 265 270 275 280 285 290 295 300

Fuel consumption (tonne)

Fig. 11. Pareto front lines for the three voyages.

Fig. 11 illustrates the Pareto front-lines of the three voyages
for the Pareto optimal solutions of WS and BS models. The Pareto
front lines show the trade-off relationship between fuel consump-
tion and service level. As seen in the figure, achieving high ser-
vice level requires more fuel consumption. Comparing the Pareto
front lines of WS and BS, we observe that the estimated fuel con-
sumption for a given service level is generally higher when we use
weather dependent fuel consumption function. In voyage 3, vari-
ability in weather conditions is low and hence, Pareto front-lines of
WS and BS are closer. This observation is in line with the results
in Table 3. The slopes of the Pareto front-lines show how much
more fuel is required to achieve higher service level. The managers
can use the front-lines to decide required service level and fuel
consumption depending on different priorities coming from their
clients and operations teams.

6. Conclusion

This paper contributes to vessel speed optimization literature
by proposing a way to explore weather archive big-data. In par-
ticular, a novel method to parse weather archive data and ap-
ply data mining techniques to learn the impact of weather con-
dition on fuel consumption was proposed. Revised fuel consump-
tion function considers the impact of wind and current on fuel
consumption of vessels. We focus on speed optimization problem
in liner shipping by considering the trade-off between minimiz-
ing fuel cost and maximizing service level. PSO technique based
solver is used to solve this multi-objective problem. We conduct
a computational study by using real-life cases from a liner ship-
ping company. The numerical experiments demonstrate that the
revised fuel consumption function provides better fuel consump-
tion estimates compared to the benchmark method which ignores
the weather impact. The improvement on fuel estimation is more
significant in long voyage legs. Therefore, considering interconti-
nental long voyages where weather-sea conditions are highly vari-
able than the exemplified closed seas, the proposed DSS can bring
significant cost improvements. Moreover, the PSO solver of the DSS
generates Pareto optimal solutions that show trade-off analysis be-
tween fuel consumption and port service level. Liner operators can
decide sailing speeds of vessels for each leg considering the cus-
tomer requirements.

In spite of its merits, this study has limitations which provide
future research directions. Firstly, the source of the weather archive
data of the DSS is currently fixed to Copernicus Maritime Envi-
ronment Monitoring Service and the weather archive data parser
can be applied only to this data source. As different archive data
sources have different data format and contents, the parser needs
to be extended to be able to parse other data sources. Secondly,
though our method considers the variabilities in weather condi-
tions when computing fuel consumption, it does not address un-
certainties generated from ports. In reality, port side uncertainties
are common and can affect the actual service times at ports. A
promising research direction would be to include port side uncer-
tainties in the mathematical model and in the PSO solver.

Acknowledgements

This study was partially supported by Korea National Research
Foundation through Global Research Network Program (Project no.
2016S1A2A2912265) and an EU Marie Sktodowska-Curie action
funded project, MINI-CHIP, under grant number 611693.

References

Agarwal, R., Dhar, V., 2014. Big data, data science, and analytics: the opportunity
and challenges for IS research. Inf. Syst. Res. 25, 443-448.

Ai, TJ., Kachitvichyanukul, V., 2009a. A particle swarm optimization for the vehicle
routing problem with simultaneous pickup and delivery. Comput. Operat. Res.
36, 1693-1702.

Ai, TJ., Kachitvichyanukul, V., 2009b. A particle swarm optimization for vehicle rout-
ing problem with time windows. Int. ]. Operat. Res. 6, 519-537.

Andersson, H., Fagerholt, K., Hobbesland, K., 2015. Integrated maritime fleet deploy-
ment and speed optimization: cast study from RoRo shipping. Comput. Operat.
Res. 55, 233-240.

Aydin, N., Lee, H., Mansouri, A., 2017. Speed optimization and bunkering in liner
shipping in the presence of uncertain service times and time windows at ports.
Eur. J. Operat. Res. 259, 143-154.

Ballou, P, Chen, H., Horner, JD., 2008. Advanced methods of optimizing ship op-
erations to reduce emissions detrimental to climate change. In: Proceedings of
OCEANS 2008, Quebec Convention Centre, Quebec City, Canada, Sep 2008 Print
ISSN: 0197-7385.

Bausch, D.O., Brown, G.G., Ronen, D., 1998. Scheduling short-term marine transport
of bulk products. Maritime Policy Manage. 25, 335-348.

Besikci, E.B., Arslan, O., Turan, O., Olcer, A.L, 2016. An artificial neural network based
decision support system for energy efficient ship operations. Comput. Operat.
Res. 66, 393-401.

Bresenham, J.E., 1965. Algorithm for computer control of a digital plotter. IBM Syst.
] 4, 25-30.

Please cite this article as: H. Lee et al., A decision support system for vessel speed decision in maritime logistics using weather archive
big data, Computers and Operations Research (2017), http://dx.doi.org/10.1016/j.cor.2017.06.005



http://dx.doi.org/10.13039/501100003725
http://dx.doi.org/10.13039/100005536
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0009
http://dx.doi.org/10.1016/j.cor.2017.06.005

ARTICLE IN PRESS

JID: CAOR

[m5G;June 16, 2017;11:55]

H. Lee et al./Computers and Operations Research 000 (2017) 1-13 13

Choi, Y. Lee, H. Irani, Z, 2017. A big-data drive fuzzy cognitive maps for
public policy modelling and impact analysis. Ann. Operat. Res. doi:10.1007/
510479-016-2281-6, forthcoming.

Christiansen, M., Fagerholt, K., Nygreen, B., Ronen, D., 2013. Ship routing and
scheduling in the new millennium. Eur. J. Operat. Res. 228, 467-483.

Copernicus Maritime Environment Monitoring Service (Last accessed: 5 October
2016).

Drewry Schedule reliability insight (Last accessed: 1 August 2016).

Fagerholt, K., 2004. A computer-based decision support system for vessel fleet
scheduling—experience and future research. Dec. Support Syst. 37, 35-47.

Fagerholt, K., Laporte, G., Norstad, I., 2010. Reducing fuel emissions by optimizing
speed on shipping routes. ]. Oper. Res. Soc. 61, 523-529.

Fagerholt, K., Lindstad, H., 2007. TurboRouter: an interactive optimisation-based de-
cision support system for ship routing and scheduling. Maritime Econ. Logist. 9,
214-233.

Fang, K. Jiang, Y., Song, M. 2016. Customer profitability forecasting using big
data analytics: a case study of the insurance industry. Comput. Ind. Eng. 101,
554-564.

Hvattum, L.M., Norstad, 1., Fagerholt, K., Laporte, G., 2013. Analysis of an exact algo-
rithm for the vessel speed optimization problem. Networks 62, 132-135.

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, 4, pp. 1942-1948.

Kim, S., Lee, K, 1997. An optimization-based decision support system for ship
scheduling. Comput. Ind. Eng. 33, 689-692.

Kontovas, C.A., 2014. The Green Ship Routing and Scheduling Problem (GSRSP): a
conceptual approach. Transport. Res. Part D 31, 61-69.

Lam, J.S.L., 2010. An integrated approach for port selection, ship scheduling and fi-
nancial analysis. NETNOMICS 11, 33-46.

Lee, CY,, Lee, H.L, Zhang, J., 2015. The impact of slow ocean steaming on delivery
reliability and fuel consumption. Transport. Res. Part E 76, 176-190.

Mansouri, A., Lee, H., Aluko, O., 2015. Multi-objective decision support to enhance
sustainability in maritime shipping. Transport. Res. Part E 78, 3-18.

Nguyen, S., Kachitvichyanukul, V., 2010. Movement strategies for multi-objective
particle swarm optimization. Int. J. Appl. Metaheurist. Comput. 1, 59-79.

Norstad, 1., Fagerholt, K., Laporte, G., 2011. Tramp ship routing and scheduling with
speed optimization. Transport. Res. Part C 19, 853-865.

Notteboom, T., 2006. The time factor in liner shipping services. Maritime Econ. Lo-
gist. 8, 19-39.

Parthibaraj, C.S., Subramanian, N., Palaniappan, P.LK., Lai, K., 2016. Sustainable deci-
sion model for liner shipping industry. Comput. Operat. Res. forthcoming.

Psaraftis, H., Kontovas, C., 2013. Speed models for energy-efficient maritime trans-
portation: a taxonomy and survey. Transport. Res. Part C 26, 331-351.

Psaraftis, N.H., Wen, M., Kontovas, C.A., 2016. Dynamic vehicle routing problems:
three decades and counting. Networks 67, 3-31.

Qi, X,, Song, D.-P,, 2012. Minimizing fuel emissions by optimizing vessel schedules
in liner shipping with uncertain port times. Transport. Res. Part E 48, 863-880.

Rew, R., Davis, G., 1990. NetCDF: an interface for scientific data access. IEEE Comput.
Graph. Appl. 10, 76-82.

Sinnott, R.W., 1984. Virtues of the haversine. Sky and Telescope 68, 159.

Song, M., Wang, S., 2016. Participation in global value chain and green technology
progress: evidence from big data of Chinese enterprises. Environ. Sci. Pollut. Res.
doi:10.1007/s11356-016-7925-1.

Tran, N.K,, Haasis, H., 2015. Literature survey of network optimization in container
liner shipping. Flexible Serv. Manuf. J. 27, 139-179.

UNCTAD (2010). United nations conference on trade and development, Review of
Maritime Transport 2010, Geneva.

Wang, S., Meng, Q., 2012. Sailing speed optimization for containerships in a liner
shipping network. Transport. Res. Part E 48, 701-714.

Wang, S., Meng, Q., Liu, Z., 2013. Bunker consumption optimization methods in ship-
ping: a critical review and extensions. Transport. Res. Part E 53, 49-62.

Windeck, V., Stadtler, H., 2011. A liner shipping network design-routing and
scheduling impacted by environmental influences. In: Network Optimization.
Springer, pp. 574-576.

Yao, Z., Ng, SH.,, Lee, LH., 2012. A study on bunker fuel management for the ship-
ping liner services. Comput. Operat. Res. 39, 1160-1172.



http://dx.doi.org/10.1007/s10479-016-2281-6
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0028
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0028
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0028
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0028
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0028
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0029
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0029
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0029
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0030
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0030
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0030
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0030
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0031
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0031
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0031
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0032
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0032
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0032
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0033
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0033
http://dx.doi.org/10.1007/s11356-016-7925-1
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0035
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0035
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0035
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0036
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0036
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0036
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0037
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0037
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0037
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0037
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0038
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0038
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0038
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0039
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0039
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0039
http://refhub.elsevier.com/S0305-0548(17)30142-9/sbref0039
http://dx.doi.org/10.1016/j.cor.2017.06.005

	A decision support system for vessel speed decision in maritime logistics using weather archive big data
	1 Introduction
	2 Literature review
	3 Problem formulation
	4 Decision support system for big data based speed optimization
	4.1 Weather archive data parser
	4.2 Weather impact miner
	4.3 Particle swarm optimization solver

	5 Computational study
	5.1 Weather impact on fuel consumption
	5.2 Numerical results on multi-objective speed optimization problem

	6 Conclusion
	 Acknowledgements
	 References


