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Abstract 
A multiscale investigation was pursued in order to obtain the strain distribution and evolution during 

tensile testing both at the macro- and micro-scale for a diffusion bonded 316L stainless steel. The 

samples were designed for the purpose to demonstrate that the bond line properties were equal or 

better than the parent material in a sample geometry that was extracted from a larger component. 

The macroscopic stress-strain curves were coupled to the strain distributions using a camera-based 

2D - Digital Image Correlation system. Results showed significant amount of plastic deformation 

predominantly concentrated in shear bands which were extended over a large region, crossing 

through the joint area. Yet it was not possible to be certain whether the joint has shown significant 

plastic deformation. In order to obtain the joints’ mechanical response in more detail, in situ 

micromechanical testing was conducted in the SEM chamber that allowed areas of 1x1 mm2 and 

50x50 mm2 to be investigated. 

The size of the welded region was rather small to be accurately captured from the camera based DIC 

system. Therefore a microscale investigation was pursued where the samples were tested within an 

SEM chamber. Low magnification SEM imaging was utilised in order to cover a viewing area of 1mm 

x 1mm while high magnification SEM imaging was employed to provide evidence of the occurrence 

of plastic deformation within the joint, at an area of just 50 μm x 50 μm. The strain evolution over 

the microstructural level, within the joint and at the base material was obtained. The local strains 

were highly non-homogeneous through the whole test. Final failure occurred approximately 0.2 mm 

away from the joint. Large local strains were measured within the joint region, while SEM imaging 

showed that plastic deformation occurs via the formation of strong slip bands, followed by the 



activation of additional slip systems upon further plastic deformation which end up in additional slip 

bands to form on the surface. Plastic deformation occurred by slip and twinning mechanisms. Upon 

necking, significant out of plane deformations and slip deformation mechanisms were observed 

which suggested that plastic deformation was also happening at the last stages of damage evolution 

for the specific alloy. This was also evident from the large difference between the 600MPa UTS 

stress value and the low stress values before final failure (which in many cases was below 30MPa). 

1. Introduction 
Joining technologies have been intensively studied for over 70 years now, in many cases it is within 

the neighbourhood of the joints that engineering structures fail. It is due to the effect and 

alterations that these processes cause to the parent material that final failure may occur within, or 

close to the welded region. Microstructural changes to the parent material, such as grain growth and 

diffusion of elements to grain boundaries, as well as defects within the weld pool, like inclusions, 

porosity and lack of penetration, together with the development of residual stresses and (hot and 

cold) cracking; all these mechanisms can lead to final failure of the component [1-2]. 

Numerous joining processes have been developed due to the complex engineering geometries, the 

use of new materials and technological developments. Processes such as laser welding, electron-

beam welding, Gas Metal Arc Welding and Plasma Arc Welding as well as Diffusion Bonded, Self-

Pierce Riveting and Friction Stir Welding; as well as numerous others have been developed. All these 

processes allow engineers to join versatile types of materials, thicknesses and geometries [1-3]. In 

the first family of joining processes, considerable amount of heating is generated in the material 

with high heating rates, and due to the fast inhomogeneous cooling rates in the nearbourhood of 

the weld combined with the low temperature of the base metal lead to microstructural variations 

(such as grain growth), defects, distortions and residual stresses in the weld. In the later family of 

the processes relatively lower heating is generated at slower rates which decreases in return the 

cooling rates and minimises the residual stresses developed within the structure [1-2]. In this study 

the primary interest is on the joints made by diffusion bonding in thick sheets of stainless steel. This 

process has also the advantage of creating homogeneous microstructure between the base metal 

and the joint with minimum residual stress development due to the slow cooling rates. Also no 

metal melting is necessary which minimises the possibilities for the creation of microstructural 

defects, such as pores and inclusions. 

At the same time a lot of progress has occurred into assessing the mechanical properties of welded 

regions. Various authors have accessed the mechanical properties of the joints by means of hardness 

testing, Charpy V-notch, Crack Tip Opening Displacement, synchrotron and neutron diffraction, 



tensile, shear tests, bending tests, cyclic fatigue and creep [1-3]. However all these testing processes 

are limited to the size of the specimen. In welded structures, the corresponding regions of great 

interest, such as the Heat Affected Zone, weld centreline or diffusion bonded area have small 

thicknesses, so assessing their mechanical performance is not possible via standard macroscopic 

mechanical testing techniques (tensile, fatigue, shear or CTOD testing). The corresponding areas 

where observations need to be made are too small. Small-sized specimens haven’t been tested 

which could enable the characterisation of the mechanical performance of such small-sized welded 

regions. Within the last 10 years, significant progress has occurred in terms of in-situ measuring the 

strain fields on the specimens by means of Digital Image Correlation (DIC) [4]. The main advantages 

of this technique is that it is contactless and the resolution can be from kilometres down to the 

nanometre scale, depending on the image resolution and scale. DIC is a powerful technique which 

allows observations to be made down to the microstructural level; within individual grains, defects 

and interfaces. A lot of studies lately have progressed towards the direction of qualitatively and 

quantitatively measuring the strain fields at the microstructural level [5-12]. This is made possible by 

inserting a small sized mechanical testing machine within the chamber of a SEM. By using such an 

approach it is possible to see the evolution of the microstructure during (thermo-) mechanical 

testing, evaluate damage nucleation and propagation at the microstructural level. However all these 

studies are limited only in testing the parent material and not welded structures [5-12]. 

In this study a multiscale procedure is followed, where the strains in the welded region are 

measured by means of 3D DIC camera-based and 2D DIC SEM-based. 3D DIC procedure is followed 

to check for consistency in the mechanical properties of the joints. Three sets of samples are tested, 

in which the surface roughness for the two sheets varies: 1, 3 and 9 µm. This allows to evaluate the 

effect of the surface roughness for the two sheets on the mechanical performance of the 

corresponding joint. 13 tensile tests (7 along the Transverse Direction-Normal Direction and 6 along 

the Rolling Direction-Normal Direction) are performed for each surface roughness combination and 

the stress-strain curves are obtained, for all 39 tests. However it is not possible to measure whether 

final failure occurs away from the diffusion bond so in situ tensile testing is done in the SEM 

chamber. By doing tensile testing within the SEM chamber it is possible to define where final failure 

occurs. Interrupting also the test at various stages during the tensile test, and taking two images at 

each stage, a macroscopic one (1mm x 1mm) and a microscopic one (100µm x 100µm), it is possible 

to correlate the macroscale phenomena (elastic deformation, plastic deformation, work hardening 

and necking) to the occurring microstructural evolution and deformation. Thus the elastoplastic 

deformation and damage is evaluated down to the microstructural level. The strains are measured 



at the whole sample, and also within individual grains. By using such an approach it is possible to 

capture where exactly final failure occurs with respect to the joint.  

2. Experimental procedures 

Two commercial grade 316L stainless steel plates - which initially had three distinct surface 

roughness (1, 3 and 9 µm) - have been diffusion bonded at 10500 C and 120MPa, for 2 hours. The 

two sheets had the same thickness of 7mm. An optically microscopy image was taken at the joint 

area and is shown in Fig. 1a. The diffusion bond can be distinguished as one of the sheets has the δ-

ferrite precipitated along the Rolling Direction. The band contrast EBSD map is shown in Fig. 1b at 

the region of the diffusion bond, acquired via EBSD for 20kV and 240 mA aperture size. The phase 

shown with green colour is the δ-ferrite phase. The EBSD map was also used to obtain a better 

understanding of the microstructural features, such as grain size and shape, grain growth if occurred 

along the bond line and at the base steel sheets and grain orientation.  

Tensile specimens were EDM machined through the thickness of the joint in order to investigate the 

mechanical performance of the joint. 39 tensile tests were EDM machined in order to minimise the 

influence of machining on the actual microstructure of the supplied material. 21 samples were taken 

along the RD-ND plane and 18 samples along the TD-ND plane in order to establish if there was any 

in-plane variation in the joint properties as a function of surface roughness. The geometry and 

dimensions of the tensile samples is shown in Fig. 2. 

A 5kN capacity Gatan micro-mechanical tester, shown in Fig. 3 was used for all the tensile tests. A 12 

MP (MegaPixel) 2D DIC (Digital Image Correlation) system was employed to acquire images of the 

specimen during testing. The images were used to calculate the displacements and the strains upon 

testing at the central area of the sample. The samples were initially painted with a black spray paint 

and then white-sprayed to create a white speckles over a black substrate and thus maximise the 

contrast of the image. The displacement of these white speckles was then utilised to measure the 

local strains. The samples were spray painted only at the gauge area, as the areas at the jaws needed 

to be kept clean. All tensile tests were conducted at room temperature, strain rate controlled 

conditions at speeds of 0.002 per minute up to yield point. After proof stress determination, speed 

was increased to 0.005 per minute. The DIC technique was capable of measuring the strains up to 

the UTS point. During necking, the paint speckles and therefore the image pixels were highly 

distorted due to the occurrence of high strains (above 100%). Therefore the stress-strain curves 

were obtained from the relative movement of the clamps. The measured strains were obtained by 

placing a virtual strain gauge at the central area of the sample as shown in Fig. 4. And the actual 

strain values were obtained in a plot as shown at the bottom of Fig. 4. From the plot the average 

value could be output and the macroscopic stress-strain curve was acquired. 



A low magnification analysis (1500x) was initially used to ensure the selected area is a representative 

of the microstructure and evaluate the effect of phase distribution on local deformation and 

damage, followed by high magnification experiments (2800x) where the strain fields were acquired 

within the individual grains and phases. The corresponding micrographs cover an area of 

79 μm × 54 μm, and 41 μm × 28 μm, consisting of approximately 15x15 and 7x7 grains, respectively; 

with the average grain size of 8 μm. The micrographs were analysed using the commercial image 

analysis software, DaVIS 7.2, by LAVision [10] to determine the in-plane displacement field from 

which the plastic strain values were calculated. The microstructural features of the material have 

been directly used as the correlating patterns for the images between two successive loading steps. 

A sensitivity analysis on the grid size was carried out, and a grid with 32x32 pixels was finally 

selected in all the experimental results presented in this study. Yet the results were consistent with a 

smaller grid as well; i.e. 16x16. A multi-pass algorithm [10] with 25% overlap between windows has 

been used to make the correlation work. A displacement accuracy of 0.01 pixels was obtained with a 

strain resolution of about 0.1% [10]. 

3. Experimental results 

a. Macroscale characterisation of the mechanical performance of the joint 
The stress-strain curves for the three sets of tensile samples A, B and C can be seen in Fig. 5a-c. The 

curves for all the sets are similar for the elastic and plastic part. Deviations between the three sets of 

curves are observed only for the necking part of the curves. The surface roughness for the two 

sheets does not influence the elastic and plastic part for the curve in Fig. 5a-c; but there is a strong 

influence on the necking part of the curve. In general more deviations for the mechanical properties 

are expected during necking with respect to the elastic and plastic component, due to the effect of 

the initial distribution of voids and inclusions on damage evolution [13-20]. Furthermore the initial 

geometry of the crack formed in the sample varies depending on the location where it forms, the 

grain size, grain orientation within which it forms, the orientation of the neighbouring grains and the 

presence of micro-porosity (and micro-cracks) within the area of interest. All these effects cause 

alterations in the necking behaviour of the specimen and have been reported in literature [13-20]. 

Furthermore, in component design the application of such large strains should always be avoided. 

The applied stresses and strains are usually of the same order as the proof stress/strain. The 

deviations are negligible up to the UTS point. 

Table 1 shows the proof stress (0.2%), UTS point and total elongation for the three blocks; i.e. Block 

A, B and C. The average values for the proof stress, UTS point and total elongation are relatively 

close for all three blocks, with the standard deviation for the proof stress varying from 3 up to 10 



MPa, standard deviation for the UTS ranging from 4.1 up to 5.6 MPa and the standard deviation for 

the total elongation being from 0.0015 up to 0.0085.  

In this section the DIC results are shown for the case study of Block B, sample 3 and along the TD. 

The strain development at the central area of the sample is shown during tensile testing at yield 

point (Fig. 5a), during work hardening (Fig. 5b) and at the UTS point (Fig. 5c). The contour maps in 

Fig. 5 are not symmetric along the horizontal axis; this can be related to the relatively small length 

and width of the gauge area of the specimen which corresponds to 50 x 50 grains for the central 

area of the sample (1.5mm x 1.5mm). Fig. 5 shows the highly anisotropic behaviour of the material 

with the occurrence of high shearing as the strains have developed close to 45o angle with respect to 

the horizontal loading direction. Very high local strain values (0.9 at UTS point) were measured at 

the centre of the sample which provides evidence that the joints’ properties are equal or better that 

the properties of the base metal. However it was not possible to clarify whether failure occurred 

exactly at the centre, which corresponds to the joint. Therefore a micro-scale approach was pursued 

where an EBSD map was initially taken at the centre of the tensile sample. This was done to evaluate 

the microstructure of the material at the joint but also to relate the final fracture line with respect to 

the location of the joint. 

b. Meso- and micro-scale strain distribution 
An EBSD map was taken to fully reveal the microstructure (grain size and orientation) at the centre 

of the sample. The joint area is small in thickness as the two sample surfaces are joined together via 

grain nucleation and growth. The joint area is shown at the centre of the sample with black dotted 

lines in Fig. 6. The yellow and orange boxed areas are the two areas inspected by SEM imaging 

during in-situ testing. The two magnifications selected, one low (200x) and one high magnification 

(3300x) are shown in Fig. 7 and correspond to the yellow and orange boxed regions of Fig. 6 

respectively. The low magnification SEM imaging was selected in order to evaluate the strains at the 

‘macroscale’ within a region of 1mm x 1mm and see the location of final failure with respect to the 

welded region while the high magnification SEM imaging was selected in order to investigate 

whether the joint plastically deforms or has a brittle micro-mechanical behaviour with respect to the 

base metal. These two magnifications are shown in Fig. 7. 

Fig. 8 shows the stress-strain curve and the location (the corresponding stress and strain) upon 

which the test was interrupted to take SEM images in order to correlate the macroscopic boundary 

conditions with the evolution of the microstructure. At this stage the tensile test was interrupted 

after the elastic region of the stress-strain curve (Fig. 8a), at the beginning of plastic deformation. 

Once the test was interrupted, a low and a high magnification image were taken. In Fig. 8b, a high 



magnification image is shown (x3200) and on the surface it can be observed that slip bands have 

formed in some grains. The black, red and white arrows correspond to slip bands, twins and an 

inclusion site. Twins in some cases can be seen depending on the crystallographic rotation. Yet most 

twins cannot be seen by SEM imaging. In Fig. 8c the low magnification image (x200) is shown. The 

local strain distribution is shown over the microstructure, obtained by means of DIC. The occurrence 

of long shear bands can be seen at this stage. The angle of the shear bands vary depending on the 

local microstructure. All shear bands are close to 45o with respect to the loading direction. 

So at the macroscale, the sample has shear bands extended over several grains. At the same time at 

the microscale slip bands form within the grains, localising the strains. These slip bands are 

constrained within the individual grains. However the individual slip bands form within individual 

crystals and extended across the full length of the crystal matrix. The acting shear at the 

corresponding grain boundaries, activate the slip bands at the neighbouring grains forming the 

macroscopically observed shear bands. Fig. 9 corresponds to an applied strain of 0.45 

(approximately 65% of the total plastic deformation has been applied to the sample). New slip bands 

form within more grains than in Fig. 8b. The slip bands are wider with respect to Fig. 8, as more and 

more dislocations exit the sample at the free surface at higher global strains. In some cases the slip 

bands cross each other in a rather vertical angle as shown with the yellow arrow, reducing 

significantly dislocation slip. At the same time more twins (green arrows) have formed increasing the 

work hardening (and the stress levels of Figs. 8a and 9a), as the global strains increase. The excessive 

plastic slip has led to shear failure at the red-arrowed location. No void growth occurred at the 

inclusion site, suggesting that the presence of inclusions does not influence the macroscale and 

microscale mechanical performance of the alloy. Fig. 10 corresponds to the macroscopic UTS point. 

Stronger and wider slip bands form in Fig. 10d as the material work hardens. The spacing between 

parallel slip bands has also decreased significantly. Dislocations become blocked within the slip 

bands as the slip bands are crossed by other slip bands. Through the images of Figs. 8c, 9c (as well in 

Figs. 10c and 11c) there is no excessive void growth at the inclusion site, suggesting that damage is 

constrained at the inclusion site by the surrounding ductile matrix. 

The length of the shear bands decreases at higher global strain and this can be seen by comparing 

the lines drawn over the DIC strain maps in Figs. 8 and 9. However more shear bands have formed in 

Fig. 9. The strains are highly localised in both DIC strain maps. No strain partitioning is found in both 

maps that suggests that the micro-mechanical performance of the base metal and the joint-area are 

similar. 



A dense network of strong slip bands has formed in all grains for an applied strain corresponding to 

the macroscopic UTS point (see Fig. 10a and b). In several cases, the slip bands are tangled at a 

rather vertical angle, restricting significantly dislocation movement and glide. For the grain where 

the inclusion is also located, the distance between parallel neighbouring slip bands has decreased 

significantly, employing all the plastic deformation capabilities of the crystalline matrix within the 

heavily deformed grains. While other grains at the top and bottom of Fig. 10b, do not have the same 

density of slip bands and therefore do not have the same contribution to the macroscopic plastic 

deformation. This is due to the plastic anisotropy and local orientation of the individual crystals. At 

Fig. 10c, the highest values for the major strain are localised at the black circled area of the DIC 

strain map which provides an indication of the location where necking will occur. 

Fig. 11 corresponds to a macroscopic strain of 0.8, which lies within the necking area of the stress-

strain curve in Fig. 11a. The slip band distribution in Fig. 11b has not changed significantly with 

respect to Fig. 10b. This is because necking occurs far from the inspected/joint area. Necking 

occurred at the black-circled and red-circled regions of Figs. 10c and 11c. The strains have increased 

significantly within the necking area, while strain relaxation occurs at the right side of Fig. 11c (if 

compared with the right side of Fig. 10c). The DIC measured strain distribution (0.5 up to 2.25) is 

much higher than the average strain value at the stress-strain curve of Fig. 11a, which is due to the 

damage that has occurred within the necking area. Damage nucleation and evolution takes place 

and the DIC software is not capable to differentiate between plastic deformation and damage 

nucleation, crack formation and propagation [4, 5, 10].  

c. Assessment of final failure 
Initiation of necking and final failure was captured by means of low magnification SEM images. The 

final stress value just before final failure was reasonably low, with an engineering stress value of just 

25MPa, signifying the ductility and the amount of necking of the alloy. By comparing Fig. 12a and d, 

a total necking of 30% has occurred with respect to the original sample width. The final fracture line 

was obtained by observing the deformation of the microstructure throughout the test. Fig. 13 shows 

as a white-dotted line the fracture line and with black dotted lines the region of the joint. Both areas 

are shown on the EBSD map and it can be seen that the final fracture line is several hundreds of 

micrometres away from the joint area, varying between 150 and 400μm. The cracking had a 

transgranular nature due to the origins and the accumulation of plastic deformation which occurred 

along slip bands and individual crystal slip systems. 



4. Discussion 

Macroscopic DIC coupled tensile tests were performed to obtain the global and local stress-strain 

fields. Large strains were measured by means of DIC, signifying the ductility of the alloy. All the 

stress-strain curves were similar for all the specimens up to the UTS point while differences were 

found only for the necking part of the curve.  These differences can be attributed to the location 

where crack nucleation occurred, the grain size, grain orientations, local misorientations and crack 

growth resistance of the neighbouring grains within which the crack has to propagate. The presence 

of voids and inclusions and their distribution as well affect damage nucleation and evolution. All 

these factors have strong interactions, which lead to large variabilities in the necking component for 

the curve. However in this study, the interest lies primarily to the elastic and plastic part of the 

curve, and therefore the performance of the sample during necking was neglected. For the local DIC 

measured strain fields, no alterations or strain localisations were observed at the centre of the 

samples, where the joint is. Yet the joint area is too small to be able to observe any influences that 

the joint can impose to the local stress-strain fields. 

Therefore in situ micro-mechanical testing was performed at two distinct magnifications (Figs. 6 and 

7) in order to capture the global strains over a large area of 1mm x 1mm and the local strains within 

the joint. Furthermore the high magnification images revealed the microstructural deformation 

characteristics of this alloy, the formation of slip bands and twins. At the first stages of plastic 

deformation in Fig. 8 distinct slip bands formed within the grains, at the corresponding critical slip 

systems which were close to a 450 angle between the loading axis and the orientation of the slip 

bands. The spacing between these bands within the grain was large enough that any interaction can 

be ignored initially. Also the formation of twins was captured within some grains depending on the 

crystal orientations. Yet in situ EBSD measurements during tensile testing was not employed to 

accurately measure the evolution of twinning as the purpose of this study was to reveal the 

mechanisms of plastic deformation and the mechanical performance of the joint. So evaluating the 

local strain fields by means of DIC was set to be of great importance. 

Upon progressive straining of the sample, the number of slip systems and slip bands that are 

activated increases. Figs 8 and 9 show that the spacing between the initial slip bands within each 

grain decreases significantly and their interaction therefore starts to play a role. Cross linking occurs 

between the initial slip systems and the secondary ones. This in turn minimises significantly the 

distances upon which the dislocations can move, reducing the possibility for further plastic 

deformation of the alloy. 



The length of the shear bands which extend through several grains, decreases through Figs. 8c and 

9c. This is due to the fact that more slip systems are activated at different angles blocking further 

plastic deformation at the initially formed slip bands. Furthermore extensive work hardening has 

occurred within the initially formed strong slip bands. In Fig. 10c the number of shear bands has 

further increased but their corresponding lengths has reduced.  

In Figs. 10 and 11, the slip bands become wider and more and more slip bands are cross linked with 

other slip bands. The deformation and damage mechanisms in this alloy are governed by the 

activation and evolution of the corresponding slip systems and twins; and the behaviour of 

inclusions does not influence strongly the macroscopic mechanical performance of the alloy. 

 There are no significant differences between the high magnification images, as necking occurs but in 

a few micrometres away from the joint. The low magnifications images reveal the location where 

strain localisation occurs initially which leads to necking, crack nucleation which is captured in 

Fig.14b and final failure as the crack runs through the sample in Fig. 14c. 

The final failure is away from the joint, signifying the tolerance of the joint. Images were also taken 

at the area of failure throughout the test, where significant plastic deformation was found to occur, 

by means of slip bands formation. This suggests that final failure occurs at a location were initially 

significant plastic deformation occurs. All these observations made in this work show the sound 

mechanical properties of the joint, the significant work hardening of the sample at the joint area, 

neighbourhood of the joint and base metal. 

5. Conclusions 
The diffusion bond between two blocks of stainless steel 316L has been tensile tested for three 

blocks with the joint at the centre and to understand the stress-strain behaviour and the 

macro/micro deformation response. The central area of the samples containing the joint shows 

highly anisotropic behaviour which could be due to the formation of dislocations and twinning. 

Between the relatively low yield stress (~315MPa) and high UTS point (~626MPa), considerable work 

hardening occurs, which allows the material to be deformed up to very high strains (more than 90%) 

before necking starts. The extended deformation capabilities can also be seen by the low 

engineering stresses and the difference between the UTS stresses and the engineering stresses just 

before final failure.  

The strain evolution showed no strain localisation at the area of the joint with extensive shear 

straining and work hardening spread over all the gauge area of the sample, which is related to the 

material properties of stainless steel 316L. 
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Fig. 1. a) Optical microscopy image of the microstructure of the two sheets within the region of the 

diffusion bond, b) EBSD map at the area of the joint. 

 



 

Fig. 2. Specimen geometry for room temperature tensile testing and b) Microstructure at the centre 

of the sample. 

 

Fig. 3. 5kN capacity micro-mechanical tester, with a painted specimen clamped. 

 



 

Fig. 4. Schematic diagram showing the process of gaining the strains at the central area of the 

sample by placing a virtual strain gauge. At the left top the sample image is shown captured by the 

DIC camera, overlaid is the masked area upon which the correlation occurs and the strain are 

measured. Next at the top right is shown the measured strains of the masked area along with a 

central line which corresponds to the virtual strain gauge. At the bottom image the strains at each 

point along the virtual strain gauge are obtained. 
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Fig. 5. a) Tensile test results for 6 samples, 3 along the LD and 3 along the TD for: a) Block A which 

corresponds to 1micron surface finish, b) for Block C which corresponds to 3 micron surface finish 

and c) for Block B which corresponds to 9 micron surface finish. 
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Fig. 5. DIC strain maps at the central area of sample 3, Block B. a) At yield point, b) during strain 

hardening and at c) UTS point. 



 

Fig. 6. EBSD map at the centre of the tensile sample. The two yellow-boxed areas correspond to the 

two SEM (imaging) magnifications which were used during in-situ testing. The small yellow-boxed 

area corresponds to an area within the joint, while the large yellow boxed region corresponds to the 

whole gauge area at the centre of the sample. 



 

Fig. 7. Low and high magnification SEM images selected for this study. The low magnification image 

was selected to obtain the ‘macroscopic’ strain fields at the joint region and the high magnification 

image provides evidence of the ductility of the corresponding material at the joint. 

 



 

Fig. 8. a) Applied strain of 0.10; onset of plastic deformation. b) The deformed microstructure within 

the weld. c) The strain distribution for the sample for a nominal applied strain of 0.10. 

0

100

200

300

400

500

600

700

0 0.5 1 1.5 2

St
re

ss
 (

M
P

a)

Strain

Tensile testing

TDA-S3

0

100

200

300

400

500

600

700

0 0.5 1 1.5 2

St
re

ss
 (

M
P

a)

Strain

Tensile testing

LDA-S1

LDA-S2

TDA-S1

TDA-S2

TDA-S3

LDA-S1

LDA-S2

LDA-S3

TDA-S1

TDA-S2

TDA-S3

Applied strain: 0.10

Loading Direction

10 μma b

c

St
re

ss
 (

M
P

a)

700

600

500

400

300

200

100

0

Strain

0           0.2                 0.4        0.6   0.8           1 

St
re

ss
 (

M
P

a)



 

Fig. 9. a) Applied strain of 0.45. The location corresponds to allocation starts to saturate as it 

approaches the UTS point. b) The deformed microstructure within the weld. c) The strain 

distribution for the sample for applied strain of 0.45. 

 

0

100

200

300

400

500

600

700

0 0.5 1 1.5 2

S
tr

e
ss

 (
M

P
a

)

Strain

Tensile testing

TDA-S3

0

100

200

300

400

500

600

700

0 0.5 1 1.5 2

St
re

ss
 (

M
P

a
)

Strain

Tensile testing

LDA-S1

LDA-S2

TDA-S1

TDA-S2

TDA-S3

LDA-S1

LDA-S2

LDA-S3

TDA-S1

TDA-S2

TDA-S3

Applied strain: 0.45

Sheared plane

Newly formed twins

10 μm
a b

c



 

Fig. 10. a) Applied strain of 0.59; UTS point. b) The deformed microstructure within the weld. c) The 

strain distribution for the sample at the UTS point. The maximum strains are highly localised within 

the black-boxed area. 
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Fig. 11. a) Applied strain of 0.8; within the necking part of the stress-strain curve. b) The deformed 

microstructure within the weld. c) The strain distribution for the sample upon necking. Within the 

red circled area the maximum strains occur, indicating the location of final failure. 
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Fig. 12. Necking, crack initiation and final failure during tensile testing. 



 

Fig. 13. a) The necked sample is shown at the onset of crack nucleation. The location of the fracture 

line is superimposed as a red dotted line, b) the position of the fracture line is overlaid on the EBSD 

map for the undeformed sample. The fracture line is 150-400μm away from the joint. 



Table 1. Average Material properties for the 3 Blocks. 

Average 
Proof Stress (0.2%) 

MPa 
UTS 
MPa 

Total Elongation 

Block A 312 (STD: 10) 627 (STD: 5.6) 0.82 (STD: 0.0085) 

Block B 322 (STD: 8) 630 (STD: 4.8) 0.80 (STD: 0.0028) 

Block C 315 (STD: 3) 620 (STD: 4.1) 0.79 (STD: 0.0015) 

 

 




