

Cylindrical Algebraic Sub-
Decompositions

Wilson, DJ, Bradford, RJ, Davenport, JH & England, M

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Wilson, DJ, Bradford, RJ, Davenport, JH & England, M 2014, 'Cylindrical Algebraic
Sub-Decompositions' Mathematics in Computer Science, vol 8, no. 2, pp. 263-288
https://dx.doi.org/10.1007/s11786-014-0191-z

DOI 10.1007/s11786-014-0191-z
ISSN 1661-8270
ESSN 1661-8289

Publisher: Springer

The final publication is available at Springer via http://dx.doi.org/10.1007/s11786-
014-0191-z

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

https://dx.doi.org/10.1007/s11786-014-0191-z
http://dx.doi.org/10.1007/s11786-014-0191-z
http://dx.doi.org/10.1007/s11786-014-0191-z

Cylindrical Algebraic Sub-Decompositions

D. J. Wilson, R. J. Bradford, J. H. Davenport and M. England

Abstract. Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry,
used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this
paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of
CADs containing all the information needed to specify a solution for a given problem.

We define two new types of sub-CAD: variety sub-CADs which are those cells in a CAD lying
on a designated variety; and layered sub-CADs which have only those cells of dimension higher than
a specified value. We present algorithms to produce these and describe how the two approaches
may be combined with each other and the recent theory of truth-table invariant CAD.

We give a complexity analysis showing that these techniques can offer substantial theoretical
savings, which is supported by experimentation using an implementation in Maple.

Keywords. Cylindrical Algebraic Decomposition, Real Algebraic Geometry, Equational Constraints,
Symbolic Computation, Computer Algebra.
MSC Code: 68W30 (Symbolic Computation and Algebraic Computation).

1. Introduction

1.1. Motivation

A cylindrical algebraic decomposition (CAD) is a decomposition of Rn into cells arranged cylindrically
(meaning the projections of any pair of cells onto the first k coordinates are either equal or disjoint)
each of which is a semi-algebraic set (and so may be described by polynomial relations). They are
traditionally produced sign-invariant with respect to a list of polynomials meaning each polynomial
has constant sign on each cell. CAD was introduced by Collins in [17], and has become a key tool in real
algebraic geometry for studying semi-algebraic sets and eliminating quantifiers over the reals. Other
applications include robot motion planning [38], parametric optimisation [27], epidemic modelling [12],
theorem proving [36] and programming with complex functions [21].

CAD usually produces far more information than required to solve the underlying problem.
Often a problem will be represented by a formula and we thus require a CAD such that the formula
has constant truth value on each cell. This can be achieved by building a CAD sign-invariant for
the polynomials in the formula, but that may introduce cell divisions not relevant to the formula
itself. Many techniques have been developed to try and mitigate this, some of which we discuss later.
However, even then algorithms may produce thousands of superfluous cells which are not part of
the solution set. The key focus of this paper is the development of methods to return a subset of a
CAD sufficient to solve a given problem. We show that such subsets can often be identified from the
structure of the problem, motivating the following new definitions.

Definition 1.
Let D be a CAD of Rn (represented as a set of cells). Then a subset E ⊆ D is a cylindrical algebraic
sub-decomposition (sub-CAD).

2 D. J. Wilson, R. J. Bradford, J. H. Davenport and M. England

Let F ⊂ Q[x1, . . . , xn]. If D is a sign-invariant CAD for F then E is a sign-invariant sub-CAD. We
define sub-CADs with other invariance properties in an analogous manner, such as truth-invariance
for a Tarski formula ϕ(x1, . . . , xn). If D is a truth-invariant CAD for ϕ and E contains all cells of
where ϕ is satisfied then we say that E is a ϕ-sufficient sub-CAD.

As an example of when sub-CADs may be applicable, consider quantifier elimination, the original
motivation for CAD. Given a quantified formula ϕ we want to derive an equivalent quantifier-free
formula. For a formula over the reals this is achieved by constructing a sign-invariant CAD for the
polynomials in ϕ and testing the truth of ϕ at a sample point of each cell. This is sufficient to draw a
conclusion for the whole cell due to sign-invariance and thus an equivalent quantifier free formula can
be created from the algebraic description of the cells on which ϕ is true. Such an application makes
no use of the cells on which ϕ is false and so a ϕ-sufficient sub-CAD is appropriate.

Of course, for a given problem we would like the smallest possible ϕ-sufficient sub-CAD. It is not
usually possible to pre-identify this, but we have developed techniques which restrict the output of the
CAD algorithm to provide sub-CADs sufficient for certain general classes of problems. These will offer
savings on any subsequent computations on the cells (such as evaluating polynomials or formulae) and
in some cases also offer substantial savings in the CAD construction itself. We will introduce these
techniques and demonstrate how they can be combined with each other and additional existing CAD
theory, but first remind the reader of the necessary background theory.

1.2. Background to CAD

Collins’ original algorithm is described in [1]. While there have been many improvements and refine-
ments to this algorithm the structure has remained largely the same. In the first phase, projection,
a projection operator is repeatedly applied to a set of polynomials, each time producing another set
in one fewer variables. Together these sets contain the projection polynomials. These are then used
in the second phase, lifting, to build the CAD incrementally. First R is decomposed into cells: points
corresponding to the real roots of the univariate polynomials, and the open intervals defined by them.
Then R2 is decomposed by repeating this process over each cell using the bivariate polynomials (eval-
uated at a sample point). The output for each cell consists of sections (where a polynomial vanishes)
and sectors (the regions between). Together these form a stack over the cell, and taking the union of
these stacks gives the CAD of R2. This is repeated until a CAD of Rn is produced. To conclude that
the CAD is sign-invariant we need delineability. A polynomial is delineable over a cell if the portion
of its zero set over that cell consists of disjoint sections. Then a set of polynomials is delineable over
a cell if each is delineable and the sections of different polynomials over the cell are either identical
or disjoint. The projection operator used must ensure that over each cell of a sign-invariant CAD for
the projection polynomials in r variables, the polynomials in r + 1 variables are delineable.

All cells include a cell index and a sample point. The index is an n-tuple of positive integers that
corresponds to the location of the cell relative to the rest of the CAD. Cells are numbered in each
stack during the lifting stage (from most negative to most positive), with sectors having odd numbers
and sections having even numbers. Therefore the dimension of a given cell can be easily determined
from its index: simply the number of odd indices in the n-tuple. Our algorithms in this paper will
produce sub-CADs that are index-consistent, meaning a cell in a sub-CAD will have the same index
as it would in the full CAD. Further, we will assume that cells are stored lexicographically by index.

Important developments to CAD include: refinements to the projection operator [28, 33, 7], re-
ducing the number of projection polynomials and hence cells; partial CAD [18], where the structure
of the input formula is used to simplify the lifting stage; the theories of equational constraints and
truth-table invariance [34, 4] where the presence of equalities in the input further refines the pro-
jection operator; the use of certified numerics in the lifting phase [41, 29]; and CAD via triangular
decomposition [16] which constructs a decomposition of complex space and refines this to a CAD.

Constructing a CAD is doubly exponential in the number of variables [22]. While none of the
improvements described above (or introduced in this paper) circumvent this they do make a great
impact on the practicality of using CAD. Note that CAD can depend heavily on the variable ordering

Cylindrical Algebraic Sub-Decompositions 3

used (from linear to doubly-exponential [11]). In this paper we work with polynomials in Q[x] with
the variables x = x1, . . . , xn in ascending order (so we first project with respect to xn and continue
until we reach univariate polynomials in x1). The main variable of a polynomial (mvar) is the greatest
variable present with respect to the ordering. Heuristics to assist with selecting a variable ordering
(and other choices) were discussed in [23, 6] and are equally applicable to sub-CADs.

1.3. New Contributions

In Section 2 we present new algorithms to produce sub-CADs, as well as surveying the literature to
identify other examples of sub-CADs. To the best of our knowledge the concept of a sub-CAD has
never been formalised and unified before.

We start in Section 2.1 by defining a Variety sub-CAD (V-sub-CAD). This idea combines the
ideas of: equational constraints [34], where the presence of an equation implied by the input formula
improves the projection operator; and partial CAD [18], where the logical structure of the input allows
one to truncate the lifting process when the truth value can already be ascertained. We observe that
if the input formula contains an equational constraint then all valid cells must lie on the variety it
defines and hence it is unnecessary to produce cells not on this variety.

In Section 2.2 we define a Layered sub-CAD (L-sub-CAD) as the cells in a CAD of a specific
dimension or higher. It has been noted previously that a problem involving only strict inequalities
would require only the cells in a CAD of full-dimension [31, 40]. We generalise this idea and explain
when it may be of use, for example to solve problems whose solution sets are of known dimension or
in applications like robot motion planning where only cells of certain dimensions are of use.

These new ideas improve the practicality of using CAD and their effect can be increased by
combining them, as discussed in Section 3.1. For example, consider formulae of the form f = 0 ∧ ϕ
where ϕ involves only strict inequalities. Then a Layered Variety Sub-CAD (LV-sub-CAD) can provide
the cells of full dimension on the variety and thus the generic families of solutions.

These new ideas may also be combined with many existing aspects of CAD theory. It is of course
sensible to combine the restricted output of a variety CAD with the theory of reduced projection with
respect to an equational constraint. However, it is also possible to combine with the projection operator
for truth-table invariant CAD (TTICAD) recently presented in [4]. A TTICAD is one for which each
cell is truth invariant for a list of formulae, utilising equational constraints in the individual formulae
to reduce the number of projection polynomials. We discuss when and how truth-table-invariant sub-
CADs can be produced in Section 3.2. In Section 5.2 we examine a problem where a LV-sub-TTICAD
can be used to identify almost all the solutions (the set of missing solutions has measure zero). This
approach produces 88% fewer cells than using TTICAD alone and takes seconds rather than minutes
(while trying to tackle the problem with a traditional CAD is infeasible). This and two other case
studies demonstrating the benefit of the new algorithms are presented in Section 5.

In Section 4 we give a complexity analysis of certain sub-CADs. Although none of the new theory
allows us to avoid the doubly exponential nature of CAD they do allow for improved asymptotic
bounds. The improvement is a drop in the constant term of the double exponent, and we note that

22
n 6= O(22

n−1

) so such savings can have a substantial effect. This is reflected by experimental results
in Section 5 where substantial increases in efficiency due to sub-CAD technology are demonstrated.

2. Sub-CADs

We aim to return only those cells necessary to solve the problem at hand: a φ-sufficient sub-CAD.
However, trying to identify the minimal φ-sufficient sub-CAD for a problem would mean essentially
solving the problem itself and so we instead explain how to identify sets of valid or invalid cells during
the lifting stage at minimal cost. Indeed, the two new approaches to sub-CAD we present require only
simple checks on cell-dimensions (easily obtained via the cell-index). We present theory and algorithms
for variety and layered sub-CADs in Sections 2.1 and 2.2, and then in Section 2.3 we put our work
into context by surveying the CAD literature for relevance to sub-CADs.

4 D. J. Wilson, R. J. Bradford, J. H. Davenport and M. England

2.1. Variety sub-CADs

Recall the definition of an equational constraint.

Definition 2.
Let ϕ be a Tarski formula. An equational constraint is an equation, f = 0, logically implied by ϕ.

Equational constraints may be given explicitly (as in f = 0 ∧ φ), or implicitly (as f1f2 = 0 is in
(f1 = 0 ∧ φ1) ∨ (f2 = 0 ∧ φ2)). The presence of an equational constraint can be utilised in the first
projection stage by refining the projection operator [34] and also in the final lifting stage by reducing
the amount of polynomials used to construct the stacks [25]. If more than one equational constraint
is present then further savings may be possible [35, 13]. We restrict ourselves to a single equational
constraint, and if multiple equational constraints are present we assume that one has been designated.

Definition 3.
Let ϕ be a Tarski formula with equational constraint f = 0. A truth-invariant sub-CAD for ϕ
consisting only of cells lying in the variety defined by f = 0 is a Variety Sub-CAD (V-sub-CAD).

Partial CAD [18] describes how the logical structure of the input formula is used to truncate
lifting when possible in CAD. For example, if the truth of an expression on a cell c can already be
determined then there is no need to lift over it. Algorithm 1 combines the ideas of utilising equational
constraints and partial lifting to build variety sub-CADs in the case where all factors of the equational
constraint have the main variable of the system.

In Algorithm 1 A is a square-free basis for the polynomials defining ϕ and E the subset of those
defining f . ProjOp refers to an algorithm implementing a suitable CAD projection operator. Then
CADAlgo and GenerateStack respectively implement compatible algorithms for CAD construction,
and stack generation over a cell with respect to the sign of given polynomials. By compatible we
mean using the same projection operator and checking for any necessary conditions of its use. This is
required as some CAD algorithms may return FAIL if the input does not satisfy certain conditions.
These are checked for during stack construction and usually referred to as the input being well-
oriented (see for example [33]). In these cases Algorithm 1 must also return FAIL. A sensible choice of
projection operator is one which utilises the equational constraint to minimise the number of projection
polynomials, such as PE(A) from [34]. We verify the correctness of Algorithm 1 for this choice.

Theorem 1. When the sub-algorithms are chosen to implement McCallum’s algorithm to produce

CADs with respect to an equational constraint [34], then Algorithm 1 satisfies its specification, with

the outputted sub-CAD consisting of cells on which the input formula has constant truth value.

Proof. The algorithm in [34] applies a projection operator PE(A) and then incrementally constructs
CADs of increasing real dimension, checking for well-orientedness when building each stack. In [34]
the authors proved that the CAD returned was truth-invariant for the equational constraint and sign-
invariant for any other polynomials involved on cells where the equational constraint was satisfied.

The first difference in Algorithm 1 is in step 8 where the final lift is performed with respect to E
rather than A. In fact, this improvement follows directly from Theorem 2.2 in [34], although it was not
realised until [5]. This reduces the size of the output, but not its invariance structure or correctness.

Next, in the final loop, only some of the cells generated in the final lift are included in the output.
The cells in question are a subset of what would have been produced otherwise and thus certainly a
sub-CAD with the same invariance property. It remains to prove that they are a variety sub-CAD (in
which case we can conclude ϕ has constant truth value on each cell).

The selected cells are those with even index (the sections). If the polynomial f is not identically
zero over a cell in D then these must together define its variety. If any of the polynomials in E were
nullified then part of the variety may be in the sectors, but in this case the input would have failed
the well-orientedness condition in [34] and thus Algorithm 1 would return FAIL. �

Remark 1. As the operator from [34] can return FAIL in situations where others do not, we now
consider how Algorithm 1 may be adapted to use alternative CAD projection operators.

Cylindrical Algebraic Sub-Decompositions 5

Algorithm 1: VarietySubCAD(ϕ, f,x): Algorithm to produce variety sub-CADs.

Input : A formula ϕ, a declared equational constraint f = 0 from ϕ and variables
x = x1, . . . , xn. ϕ is in x and all factors of f have main variable xn.

Output: A (truth-invariant) variety sub-CAD of Rn for (ϕ, f), or FAIL.

1 Extract from ϕ the set of polynomials A and from f the subset E ⊂ A;

2 P← output from applying ProjOp to (A,E) once ; // First projection stage

3 D′ ← CADAlgo(P, [x1, . . . , xn−1]) ; // Computation of a CAD of Rn−1

4 if D′ = FAIL then
5 return FAIL ; // P is not well oriented

6 D ← [];

7 for c ∈ D′ do
8 S ← GenerateStack(E, c); // Final lifting stage

9 if S = FAIL then
10 return FAIL ; // Input is not well oriented

11 if |S| > 1 then
12 for i = 1 . . . (|S| − 1)/2 do
13 D.append(S[2i]) ; // Cells with even index included

14 return D;

First, if a polynomial in E is nullified on a cell of D then [34] returns FAIL while McCallum’s
operator to produce sign-invariant CADs in [33] is still applicable (because then the nullification is
in the final lift where only sign-invariance and not order invariance is required). However, we cannot
simply apply Algorithm 1 with the alternative projection operator as it will now be the case that
some of the variety is contained in the sectors over the cell in question. In this case we would need
the GenerateStack algorithm to check for nullification of E, and then if it occurs have Algorithm 1
include all cells from that stack in the output.

Second, if some other polynomial is nullified causing failure then the original algorithm of Collins
(or its improvement by Hong [28]) is still applicable. As with the previous case we must still check for
nullification over a cell in the final lift, including the whole stack when nullification occurs.

In these cases there would still be output savings from building a variety sub-CAD since the
inclusion of the full stack only needs to happen over those cells where nullification occurs.

We demonstrate the savings in output size offered with a simple example.

Example 1.
Assume variable ordering x ≺ y and define the polynomials

f := x2 + y2 − 1, g := x

which are graphed with solid curves in each of the images in Figure 1. This first of these images
visualises the simplest sign-invariant CAD for the polynomials, which has 23 cells (each indicated by
a solid box). If the box is at the intersection of two curves (including the dotted lines) then the cell it
represents is a point. Otherwise, if the box is on a curve then the cell represented is that portion of
the curve and if the box is not on a curve then the cell represented is that portion of the plane.

Suppose these polynomials originated from a problem involving the formula ϕ1 := f = 0∧g < 0.
Then 3 of the cells describe the solution (those on the circle to the left of the y-axis). Using Algorithm
1 a V-sub-CAD would be returned with all 8 of the cells on the circle. The other cells have been
recognised as not being on the variety to which all solutions belong and hence have been discarded.
The image on the right in Figure 1 identifies the cells returned in the sub-CAD with solid boxes.

6 D. J. Wilson, R. J. Bradford, J. H. Davenport and M. England

Figure 1. Images representing the CADs described in Example 1. The solid boxes
represent cells inR2, (with the empty boxes cells that were constructed but discarded).

The cell counts in this example were modest, but we will see later in Section 5 that for more
complicated examples the savings offered by using a V-sub-CAD can be substantial. Using Algorithm
1 clearly reduces the output size of CAD but it will save little CAD computation time since most of
the work required to define the discarded cells (such as root isolation) had to be performed. These
computed but discarded cells are shown as empty boxes in Figure 1. There would, however, be savings
in computation time for any further work, such as only having to evaluate polynomials on 8 cells
instead of 23 in order to describe the solutions.

If a formula has an equational constraint with factors not in the main variable of the system
(parts of the corresponding variety have lower dimension) then building a V-sub-CAD would mean
even more potential cell savings, but also savings in computation time since some stacks would never
be built at all. Suppose each factor of the equational constraint has main variable xk where k < n.
To adapt Algorithm 1 we must perform the restriction when lifting to a CAD of Rk, instead of Rn.
Thus we would first build a CAD of Rk−1, then perform the restricted lifting to a sub-CAD of Rk,
and continue lifting to a sub-CAD of Rn. However, verifying this approach is a little more subtle. We
cannot follow Theorem 1 and use McCallum’s reduced projection at the start (as the set E is empty
[34]) but if we were to use it to build a sub-CAD of Rk then we would need to take care in how we
lift over it (ensuring the projection polynomials above are delineable). We see two possibilities:

(a) Use the tools of McCallum’s sign-invariant algorithm from [33] throughout. In particular, we
must perform the restricted lifting with respect to the full set of projection polynomials of main
variable xk rather than just those defining the equational constraint. This is because to continue
lifting with respect to projection polynomials provided by McCallum’s operators we need to
conclude that the sub-CAD of Rk is order invariant on the cells, rather than just sign-invariant.
Thus the outputted sub-CAD is not a variety sub-CAD but a superset of cells containing one.
Algorithm 2 demonstrates this approach.

(b) Use Collins-Hong projection [28] for the first (n − k) projection stages. Then apply Algorithm
1 with McCallum’s reduced projection operator for equational constraints to build a variety
sub-CAD of Rk (as verified by Theorem 1) before continuing lifting to a variety sub-CAD of Rn.

The latter approach is still a variety sub-CAD and allows for a smaller CAD of Rk but these benefits
may be overshadowed in the final sub-CAD of Rn due to lifting with respect to a larger set of polyno-
mial in the later stages. Of course both cases may return FAIL in which case having all sub-algorithms
implement [28] would be the only way forward. However, it is worth noting that when the equational
constraint is not in the main variable we may actually avoid unnecessary failure: if the input is not
well-oriented but the problematic nullification only occurs on cells that are not on the variety then
the outputted sub-CAD will still be valid. It is interesting to note that this sub-CAD is now a subset
of a CAD we do not know how to produce algorithmically.

Cylindrical Algebraic Sub-Decompositions 7

Algorithm 2: Algorithm to produce sub-CADs with respect to a variety of lower dimension.

Input : A formula ϕ, a declared equational constraint f = 0 from ϕ and variables
x = x1, . . . , xn. ϕ is in x and all factors of f have the same main variable.

Output: A sub-CAD D on which ϕ is truth invariant and which is the superset of a variety
sub-CAD for (ϕ, f), or FAIL.

1 Extract from ϕ the set of polynomials A;

2 Set k to be the index of mvar(f) ;

3 Perform the first n− k projection stages using ProjOp and starting with A.

4 Set P1 to be the projection polynomials with main variable xi

5 if k 6= 1 then
6 Dk−1 ← CADAlgo(Pk−1, [x1, . . . , xk−1]) ; // Computation of a CAD of Rk−1

7 if Dk−1 = FAIL then
8 return FAIL ; // Pk−1 is not well oriented

9 Dk ← [] ;

10 if k = 1 then
11 Set S to be the CAD formed by decomposing R according to the roots of P1.;

12 if |S| > 1 then
13 for i = 1 . . . (|S| − 1)/2 do
14 Dk.append(S[2i]) ; // Cells with even index included

15 else
16 for c ∈ Dk−1 do
17 S ← GenerateStack(Pk, c); // kth lifting stage

18 if S = FAIL then
19 return FAIL ; // Pk is not well oriented

20 if |S| > 1 then
21 for i = 1 . . . (|S| − 1)/2 do
22 Dk.append(S[2i]) ; // Cells with even index included

23 for i = k + 1, . . . n do
24 Di ← [];

25 for c ∈ Di−1 do
26 S ← GenerateStack(Pi, c); // ith lifting stage

27 if S = FAIL then
28 return FAIL ; // Pi is not well oriented

29 Di.append(S) ; // All cells included

30 return Dn;

Example 2 demonstrates the savings offered by a variety of lower dimension, but also the difficulty
in obtaining an actual V-sub-CAD.

Example 2.
Consider again the polynomials from Example 1 (with the same variable ordering) but this time with
the formula ϕ2 := f < 0 ∧ g = 0. There is only one cell where this is true (the y-axis inside the
circle). A minimal V-sub-CAD truth-invariant for ϕ2 would contain only the 5 cells shown on the left
of Figure 2. However, if we use Algorithm 2 then we would produce 11 cells, as shown on the right.
Algorithm 2 first builds a CAD of R1 with respect to all the univariate projection polynomials. This
has 7 cells (the points −1, 0, 1 and the intervals in-between). It discards the intervals and lifts over the

8 D. J. Wilson, R. J. Bradford, J. H. Davenport and M. England

three points with respect to f obtaining the 11 cells shown. No lifting (and hence real root isolation)
was performed over the other 4 cells in R1 since we could conclude they were not part of the variety.

Figure 2. Images representing the CADs described in Example 2. The minimal
variety sub-CAD is on the left with the output from Algorithm 2 on the right.

To allow factors of the equational constraint with different main variable would require a further
extension to perform multiple stages of restricted lifting (steps 9− 22 of Algorithm 2) when lifting to
Ri where xi is a main variable of a factor, and full lifting (steps 23− 29) otherwise.

Finally, note that we have only discussed using a single (designated) equational constraint. In
the case of two or more (as in f1 = 0∧f2 = 0∧ . . .) we need the theory of bi-equational constraints and
beyond. Although there has been some work on this [35, 13] we have not investigated its interaction
with variety sub-CADs yet.

2.2. Layered sub-CADs

The idea of returning CAD cells of certain dimensions was first discussed in [31] and revisited in
[40, 10]. All these papers discuss the idea of returning only CAD cells of full-dimension, noting that
this is sufficient to solve problems involving only strict polynomial inequalities. This idea was extended
in the technical report [45] to the case of returning cells with dimension above a prescribed value. We
reproduce some of that unpublished work here, including the key algorithms.

Definition 4.
Define the set of cells in a CAD of a given dimension as a layer. Let ℓ be an integer with 1 ≤ ℓ ≤ n+1.
Then an ℓ-layered Sub-CAD (ℓ-L-sub-CAD) is the subset of a CAD of dimension n consisting of all
cells of dimension n− i for 0 ≤ i < ℓ. We refer to a CAD consisting of all cells of all dimensions as a
complete CAD.

Remark 2.

1. An ℓ-layered CAD consists of the top ℓ layers of cells in a CAD. The dimensions of these cells
will depend on the dimension of the space the CAD decomposes.

2. In the literature the set of cells of full-dimensional has been referred to as an open CAD, a full
CAD and a generic CAD. We prefer layered CAD as it is less open to misinterpretation and
allows us to generalise the idea beyond the top dimension. The set of cells of full dimension is
then a 1-layered CAD. Note also that a complete CAD of Rn has (n+ 1)-layers.

3. When building a 1-layered CAD it was pointed out in [40] that a simplified projection operator
could be used. Instead of taking the full set of coefficients for a polynomial only the leading
coefficient is required (since the others are there to ensure delineability if the first vanishes,
but this could only happen on a cell of less than full dimension). In this paper we focus on
improvements to the lifting phase, but if only a 1-layered CAD is required then this further
saving in the projection phase is available.

Cylindrical Algebraic Sub-Decompositions 9

Algorithm 3 describes how an ℓ-layered CAD may be produced. The main idea is that during the
lifting process we check cell dimension before each stack construction. If a cell has too low a dimension
to give cells in Rn of dimension ℓ or higher then it is discarded. We give a general algorithm which
can be used with any suitable (and compatible) projection operator and stack generation procedure.

Algorithm 3: LayeredSubCAD(ϕ, ℓ,x): Algorithm to produce ℓ-layered sub-CADs.

Input : A formula ϕ, an integer 1 ≤ ℓ ≤ n+ 1 and variables x = x1, . . . xn. ϕ is in x.
Output: An ℓ-layered sub-CAD for ϕ, or FAIL.

1 P← output from applying ProjOp repeatedly to ϕ ; // Full projection phase

2 for i = 1, . . . , n do
3 Set P[i] to be the projection polynomials with mvar xi;

4 Set D[1] to be the CAD of R1 obtained by isolating the roots of P[1];

5 for i = 2, . . . , n do
6 D[i]← [];

7 for c ∈ D[i − 1] do
8 dim←∑

α∈c.index (α mod 2) ; // Lift over suitable dimension cells

9 if dim > i− ℓ− 1 then
10 S ← GenerateStack(P[i], c);

11 if S =FAIL then
12 return FAIL ; // Input is not well oriented

13 else
14 D[i].append(S)

15 D ← [];

16 for c ∈ D[n] do
17 dim←∑

α∈c.index (α mod 2);

18 if dim > n− ℓ then
19 D.append(c); // Remove cells of low dimension from final lift

20 return D;

Theorem 2. Algorithm 3 satisfies its specification.

Proof. The output being a subset of a valid CAD follows from the correctness and compatibility of the
sub-algorithms used (as proven in [17, 28, 33, 34, etc.]). It remains to verify that the cells discarded
could not contribute cells in the top ℓ layers of the outputted sub-CAD.

When lifting over a cell of dimension d in a sub-CAD of Ri it can contribute cells in the sub-CAD
of Rn of dimension at most d+ n− i. If these are required for an ℓ-layered sub-CAD they must have
dimension at least n− ℓ, and so we can discard them if d ≤ i− ℓ− 1 (step 9).

When performing the final lift we must build stacks over cells of dimension n− ℓ− 1 or greater,
but of course some of the cells in those stacks may not have dimension n− ℓ. Hence we check for this
at the end (step 18) only keeping those of the required dimension. �

Example 3.
Consider once again the polynomials introduced by Example 1 (with variable ordering x ≺ y). The first
image in Figure 1 demonstrated that the simplest sign-invariant complete CAD for the polynomials
would have 23 cells. Figure 3 shows the same CAD, this time with the dimensions of each cell indicated.

Suppose that the polynomials arise from a problem involving the formula ϕ3 := f < 0 ∧ g < 0.
The solution is then given by the single cell inside the circle to the left of the y-axis. In this case we
know the solutions must all be cells of full-dimension and thus that a 1-layered CAD would suffice.
Algorithm 3 would return only the 8 cells of dimension 2 (the boxes in Figure 3).

10 D. J. Wilson, R. J. Bradford, J. H. Davenport and M. England

Figure 3. Image representing the CAD described in Example 3. The boxes indicate
cells of dimension 2, the diamonds dimension 1 and the spheres dimension 0.

In Example 3 a 1-layered sub-CAD is ϕ-sufficient. This was a case where the problem consisted
of strict inequalities meaning the solutions have full-dimension (as noted previously in [31, 40]). More
generally there are classes of problems with known solution dimension for which the layered sub-CAD
technology will be beneficial. For example, recall the cyclic n-polynomials (the set of n symmetric
polynomials in n variables). In [2] it is shown that if there exists m > 0 such that m2|n then there
are an infinite number of roots and they are, at least, of dimension (m − 1). A sub-CAD containing
cells of dimension (m − 1) and higher would therefore be sufficient to identify the largest families of
solutions, and so a layered sub-CAD could be an appropriate tool.

Layered sub-CADs will also be useful when, although a sub-CAD may not be ϕ-sufficient, the
underlying application only requires generic families of solutions. For example, when robot motion
planning we need only identify paths through cells of full-dimension, and so a 1-layered sub-CAD may
be enough. We consider a motion planning example later in Section 5.3. In that example we actually
need the full-dimensional cells on a variety, which are part of the 2-layered sub-CAD. We find that
the 1-layered variety sub-CADs developed in Section 3.1 are also appropriate.

We now explain how Algorithm 3 may be adapted to a recursive procedure. Our general principle
when constructing layered sub-CADs is to stop lifting over a cell if it cannot lead to cells of sufficient
dimension in Rn. This occurs when the cell in question was produced as a section, rather than a sector.
Let us call these terminating sections. Instead of discarding these sections after they are produced,
the recursive algorithm stores them in a separate output variable for use later if required.

For example, when constructing a 1-layered CAD these terminating sections will have dimension
m − 1 where m is the number of variables lifted at the level the section is constructed (i.e. they are
deficient by one dimension). So at the final lifting stage the terminating sections will have dimension
n−1. Now suppose we wish to extend to a 2-layered CAD. If we take one of these terminating sections
of any dimension and construct successive stacks over it we will obtain cells that are of dimension n−1
and terminating sections that are deficient (with respect to their level) by two dimensions. Combining
these n− 1-dimensional cells with the 1-layered CAD produces a 2-layered CAD. If we again store the
remaining (and new) terminating sections then they can be used later to construct a 3-layered CAD
if desired. In this manner we can recursively produce ℓ-layered CADs, useful if the numbers of layers
required is not known at the start of the computation. The method is described by Algorithm 4.

Theorem 3. Algorithm 4 satisfies its specification.

Proof. As with the proof of Theorem 3 the correctness mostly follows from the correctness of the
sub-algorithms used and it remains only to verify that the correct layers are produced. We see that
if LD is empty then a CAD of the real line is produced and the sections and sectors are separated.
Otherwise, each of the cells in the existing terminating sections are lifted over. The stacks constructed
consist of sectors, which together with LD form a layered sub-CAD with one extra layer, or new
terminating sections which could be lifted over to gain the complete CAD. �

Cylindrical Algebraic Sub-Decompositions 11

Algorithm 4: LayeredSubCADRecursive(ϕ,x, C,LD): Algorithm that may be applied recur-
sively to produce layered sub-CADs with increasing numbers of layers.

Input : A formula ϕ, variables x = x1, . . . , xn, a list of cells of Rn labelled LD, and a list of
lists of cells, C (ordered by increasing dimension). The formula ϕ is in x. The lists C
and LD may be empty. Otherwise the list LD must contain a layered sub-CAD for ϕ
and C the corresponding terminating sections.

Output: Either FAIL or a layered sub-CAD D′ for ϕ. If LD was empty then D is a 1-layered
sub-CAD and otherwise it is a layered sub-CAD with including cells of dimension
one layer lower than LD. Also, an updated list of lists of cells containing the
terminating sections sufficient to construct the complete CAD.

1 global P ; // To avoid recomputing projection polynomials

2 if P is undefined then
3 P← output from applying ProjOp repeatedly to ϕ ; // Full projection phase

4 for i = 1, . . . , n do
5 Set P[i] to be the projection polynomials with mvar xi;

6 C′ ← [];

7 if C == ∅ then
8 D ← [] ; // Base case - construct R1

9 Set Base to be the CAD of R1 obtained by isolating the roots of P[1];

10 for i = 1, . . . , length(Base) do
11 if (i mod 2) == 1 then
12 D[1].append(Base[i]) ; // Sectors only (odd index) for the 1-layered CAD

13 else
14 C′[1].append(Base[i]) ; // Sections (even index) added stored

15 D′ ← [];

16 else
17 D ← C ; // Use previously computed terminating sections

18 D′ ← C[n];
19 for i = 2, . . . , n do
20 for c ∈ D[i − 1] do
21 S ← GenerateStack(P[i], c);

22 if S = FAIL then
23 return FAIL ; // Input is not well oriented

24 for j = 1, . . . , length(S) do
25 if (j mod 2) == 1 then
26 D[i].append(S[j]) ; // Sector (odd index) so add to output CAD

27 else
28 C′[i].append(S[j]) ; // Section (even index) so store

29 D′ ← D′ ∪ LD ; // Combine new cells with those previously computed

30 return [D′, C′];

Algorithm 4 has been implemented in Maple. It uses a global variable to avoid recalculation of
projection polynomials, and Maple’s unevaluated function call syntax (prefixing the command with
%) allowing it to be repeatedly evaluated to return sub-CADs with an increasing number of layers.

12 D. J. Wilson, R. J. Bradford, J. H. Davenport and M. England

We finish this subsection by noting the following interesting property of certain layered CADs.

Theorem 4 ([45]).
Let F ⊂ Z[x1, . . . , xn] and D be a 1- or 2-layered CAD of Rn sign-invariant for F . Then D is order-

invariant with respect to F , meaning each polynomial has constant order of vanishing on each cell.

Order-invariance is a stronger property than sign-invariance, but the extra knowledge it gives
allows for the validated use of smaller projection operators (see for example [33]). Hence this property
allows for the avoidance of well-orientedness checks during stack generation when building 1 or 2-
layered sub-CADs. This means not just a savings in computation time but the avoidance of unnecessary
failure declarations that can sometimes follow from such checks (as discussed in [9, 24]).

2.3. Other sub-CADs in the literature

We note that other ideas from the CAD literature could be described as, or be easily adapted to
produce, sub-CADs. We list these for completeness.

In [32], whilst trying to solve a motion planning problem in the plane described by a formula ϕ,
the author identifies a subset of cells in the decomposition of R1 for which any valid cell for ϕ must
lie over. Lifting over only these cells only gives a ϕ-sufficient sub-CAD. Similar ideas are in [29].

In [10] an algorithm is presented which given polynomials F and a point α, returns a single cell
containing α on which F is sign-invariant. The cell belongs to a CAD (although not necessarily one
that could be produced by any known algorithm) and hence this is an extreme example of a sub-CAD.

Partial CAD [18] works by avoiding the splitting of cylinders into stacks when lifting over cells
where the truth value is already known. If cells over which the truth value is false were instead simply
discarded then what is left would be a sub-CAD sufficient to analyse the input formula.

In [39] an algorithm is described which takes polynomials F and returns a CAD D and theory
Θ (set of negated equations). The CAD is sign-invariant for F for all points which satisfy Θ. Rather
than a sub-CAD of Rn this is actually a CAD of Rn

Θ : all those points in Rn except the set of measure
zero which do not satisfy Θ.

In [43], an algorithm is given for solving systems over cylindrical cells described by cylindrical
algebraic formulae. This allows cells produced from a CAD to be used easily in further computation,
which may implicitly be used to produce either sub-CADs or CADs of a sub-space.

3. Extending the use of sub-CAD

Layered and variety sub-CADs can offer significant savings individually but this can be increased by
combining them with each other, as discussed in Section 3.1. We then consider how they may interact
with the recent theory of truth-table invariant CAD in Section 3.2.

3.1. Combining layered and variety sub-CADs

The idea behind sub-CADs is simple: we wish to filter out only those cells of relevance to us. A variety
sub-CAD does this in one step during a single stage of the lifting phase, whereas a layered sub-CAD
stratifies the cells throughout the whole lifting process. There is no reason why these two ideas cannot
be combined. We discuss this in the case where all factors of the equational constraint defining the
variety have main variable xn and are not nullified on a low-dimensional cell. (It may be generalised
but this would require caution as discussed in Section 2.1.) The key is the following simple result.

Lemma 1.
Let D be a CAD of Rn−1 for some formula ϕ and let c be a cell in D of dimension k. Further, suppose
f = 0 is an equational constraint of ϕ, each factor of f has main variable xn, and f is not nullified

on c. Then any section of the stack lifted over c with respect to f will have dimension k.

The lemma shows that lifting over a cell onto a variety gives cells with the same dimension. Hence
when lifting over an ℓ-layered sub-CAD of Rn−1 (which contains cells of dimension n − ℓ, . . . , n− 1)

Cylindrical Algebraic Sub-Decompositions 13

we produce a sub-CAD containing all the cells of dimensions n− ℓ, . . . , n− 1 on the variety. We may
think of this as an ℓ-layered sub-CAD of the variety.

Definition 5.
Let ϕ be a Tarski formula with equational constraint f = 0 which has main variable xn in all its
factors, and let 1 ≤ ℓ ≤ n. A truth-invariant sub-CAD for ϕ whose cells have dimension n− i− 1 for
0 ≤ i < ℓ and rest on the variety defined by f = 0 is an ℓ-Layered Variety Sub-CAD (ℓ-LV-sub-CAD).

Remark 3.
Note that in general an ℓ-layered variety sub-CAD consists of the top ℓ layers of cells on the variety.
This can be thought of as the intersection of an (ℓ + 1)-layered CAD of Rn with the variety (as the
layer of n-dimensional cells is discarded when lifting to the variety).

Lemma 1 leads to Algorithm 5 for producing ℓ-LV-sub-CADs.

Algorithm 5: LayeredVarietySubCAD(ϕ, f, ℓ,x): Algorithm for ℓ-layered variety sub-CADs.

Input : A formula ϕ, a declared equational constraint f = 0 from ϕ, an integer 1 ≤ ℓ ≤ n+1
and variables x = x1, . . . , xn. ϕ is in x and all factors of f have main variable xn.

Output: An ℓ-layered variety sub-CAD D for ϕ, or FAIL.

1 Extract from ϕ the set of polynomials A and from f the subset E ⊂ A ;

2 P← output from applying ProjOp to (A,E) ; // First projection stage

3 D′ ← LayeredSubCAD(P, ℓ) ; // Computation of a sub-CAD of Rn−1

4 if D′ = FAIL then
5 return FAIL ; // P is not well oriented

6 D ← [];

7 for c ∈ D′ do
8 S ← GenerateStack(E, c); // Final lifting stage

9 if S = FAIL then
10 return FAIL ; // Input is not well oriented

11 if |S| > 1 then
12 for i = 1 . . . (|S| − 1)/2 do
13 D.append(S[2i]) ; // Cells with even index are sections

14 return D;

Theorem 5. When the sub-algorithms are chosen to implement McCallum’s algorithm to produce

CADs with respect to an equational constraint [34], then Algorithm 5 satisfies its specification with the

outputted sub-CAD consisting of cells on which the input formula has constant truth value.

Proof. As with Theorem 1 the sub-CAD structure and invariance property follow from the results in
[34]. Theorem 1 verifies that D is an ℓ-layered sub-CAD of Rn−1 and Lemma 1 concludes that the
lifting in the final loop results in an ℓ-layered sub-CAD of Rn. The case where Lemma 1 does not hold
is a case where the input is not-well oriented and thus FAIL is returned. �

We now give a simple example which uses both the layered and variety sub-CAD ideas together,
as well as illustrating the difference variable ordering can make.

Example 4.
Consider a final time the polynomials from Example 1 and this time the formula ϕ1 := f = 0∧g < 0. In
Example 1 we saw that with variable ordering x ≺ y a variety sub-CAD could be produced with 8 cells,
3 of which described the solutions. Instead let us build a 1-layered variety sub-CAD as represented in
the first image of Figure 4. The output would now be only 4 cells (those indicated with solid boxes).

14 D. J. Wilson, R. J. Bradford, J. H. Davenport and M. England

Two of these describe the generic solution sets {x ∈ (−1, 0), y = ±
√
1− x2} but the third and final cell

in the solution set {x = −1, y = 0} has been lost. Note that in this case (unlike the variety sub-CAD)
there will be a reduction in CAD computation time as there will be no lifting over cells of dimension
zero in the CAD of R1. The cells which have been computed but discarded are shown by empty boxes.

Figure 4. Figure representing the CADs described in Example 4. The solid boxes
represent cells returned and the empty boxes cells computed but discarded. The first
image uses variable ordering x ≺ y and the others y ≺ x (axes labelled accordingly).

Consider now the alternative variable ordering y ≺ x. In this case a minimal complete sign-
invariant CAD must have 19 cells, as represented by the second image in Figure 4. A variety sub-CAD
would return the 4 cells describing the circle and a 1-layered variety sub-CAD only the 2 cells of these
which have full-dimension on the variety. This sub-CAD is represented by the final image in Figure 4.
Again, there has been a saving in CAD construction time but in this case the cells returned include
the full solution set (the single cell describing the upper half of the circle).

3.2. Truth table invariant sub-CADs

The new ideas of variety and layered sub-CADs can be further adapted by combining with other
CAD techniques. We shall discuss here the interaction with the idea of truth table invariant CAD
(TTICAD) introduced recently by [4]. We recall the definition of a TTICAD.

Definition 6 ([4]).
Let Φ := {φi}ti=1 be a list of quantifier-free formulae (QFFs). We say a cylindrical algebraic decompo-
sition D is a Truth Table Invariant CAD for Φ (a TTICAD) if the Boolean value of each φi is constant
(either true or false) on each cell of D.

In [4] an algorithm was given to build TTICADs in the case where each φi contained an explicit
equational constraint. This has recently been extended to allow for any φi [25]. The algorithms involve
a new projection operator which encapsulates the interaction between the equational constraints of
the φi’s whilst ignoring interactions between polynomials that have no effect on the truth value of φi.

Truth table invariance is very useful. Given a problem defined by a parent formula Φ built by
a boolean combination of {φi}ti=1, a TTICAD is both sufficient to determine where Φ is true, and

Cylindrical Algebraic Sub-Decompositions 15

more efficient than any other projection operator. Further, there are classes of problems for which
a TTICAD is exactly the desired structure, such as the problem of decomposing a complex domain
according to the branch cuts of multivariate functions [3, 37, 26].

In the case where there is a parent formula Φ and all the φi have their own equational constraint
there exists a variety on which the solution rests. It is defined by the product of the individual
equational constraints (an implicit equational constraint for Φ). Hence in this case it makes sense
to build a Variety Sub-TTICAD (V-sub-TTICAD). For simplicity, we assume that each equational
constraint has factors which all have main variable xn. We can then use Algorithm 1 on Φ with the
declared equational constraint the product of the individual ones. ProjOp should be the TTICAD
projection operator from [4] applied to the sequence of bases of polynomials appearing in the formulae
and GenerateStack an algorithm which checks for the TTICAD well-orientedness properties. A proof
of the validity of Algorithm 1 using these sub-procedures to give a V-sub-TTICAD would follow
analogously to the proof of Theorem 1. Although the variety considered is an implicit equational
constraint the TTICAD projection theory is more efficient that the equational constraint theory
applied to this case (as described in [5]).

Creating a Layered Sub-TTICAD (L-sub-TTICAD) is also possible, by applying Algorithm 3
(or 4) with the TTICAD projection operator and a GenerateStack algorithm which checks for its
well-orientedness condition. The validity is proven by Theorem 2 (using results from [4]).

Similarly, we can combine TTICAD with the ideas of Section 3.1 to produce layered variety
sub-TTICADs as defined below.

Definition 7.
Let {φi}ti=1 be a list of QFFs with each φi having equational constraint fi whose factors all have main
variable xn. Let 1 ≤ ℓ ≤ n. A sub-CAD of a TTICAD for {φi}ti=1 containing all cells of dimension

n − 1 − i for 0 ≤ i < ℓ resting on the variety defined by
∏t

i=1 fi = 0 is called a Layered Variety
Sub-TTICAD (LV-sub-TTICAD).

Remark 4.
As with ML-sub-CADs, a ℓ-layered variety sub-TTICAD consists of the top ℓ-layers of cells on the

variety
∏t

i=1 fi = 0. Again, this can be thought of as the intersection of an (ℓ + 1)-layered CAD of
Rn with the variety (as the layer of n-dimensional cells is discarded when lifting to the variety).

We can construct LV-sub-TTICADs by using Algorithm 5 with the sub-algorithms implementing
TTICAD. As noted, the correctness of the approaches from this subsection follow analogously to the
proofs of Theorem 1 - 3 and 5 (noting that the exceptional cases where part of a variety is nullified
would have meant the input was not well-oriented for TTICAD and thus triggering an output of
FAIL). The example in Section 5.2 demonstrates the use of a LV-sub-TTICAD and the benefits of
choosing to do so. See the technical report [45] for some further details and examples.

4. Complexity analysis

We provide a complexity analysis of the algorithms to compute sign-invariant variety sub-CADs and
1-layered variety sub-CADs in the case where the equational constraint has all factors with main
variable xn. We need to study three parts of the complexity:

Projection. The complexity of the equational constraint projection set needs to be analysed. In
particular the number of polynomials, the maximum degree and size of their coefficients.

Calculation of (n− 1) dimension CAD. These values then can be used to estimate the complexity
of the (n− 1)–dimensional CAD.

Lifting. Finally the complexity of the lifting stage can be combined with the previous step to
describe the complexity of the variety CAD.

We recall the previous comprehensive work on CAD complexity by Collins [17] and McCallum [31].
We first standardise some notation for a CAD with respect to a set of polynomials A: let n be

the number of variables, m the number of polynomials in A, d the maximum degree in any variable

16 D. J. Wilson, R. J. Bradford, J. H. Davenport and M. England

of the polynomials in A, and l the maximum norm length of the polynomials in A (where the norm
length, |f |1, is the sum of the absolute values of the integer coefficients of a polynomial).

Let A1 := A and let Ai+1 = Proj(Ai). In general the projection operator used will be clear:
most of the following is with respect to Collins’ projection operator and, therefore, is a ‘worst case
scenario’ compared to the improved operators of McCallum [33] and Brown [7] (which are subsets of
the Collins operator). Let mk be the number of polynomials in Ak, dk the maximum degree of Ak,
and lk the maximum norm length.

4.1. Collins’ algorithm

Collins [17] works through the original CAD algorithm in great detail to analyse the complexity, and
this methodology is followed in [31]. We recall some key results, noting they could all be uniformly
improved with ideas from papers such as [14, 19] (but that is not the aim of this paper).

In the projection stage we can bound the properties of the projection sets as follows:

mk ≤ (2d)3
k

m2k−1

; dk ≤
1

2
(2d)2

k−1

; lk ≤ (2d)2
k

l.

By combining these bounds Collins shows the projection phase is dominated by

(2d)3
n+1

m2n l2.

The base case and lifting algorithm requires the isolation of real roots of univariate polynomials. Collins
bounds this procedure as follows. Let A be a set of univariate polynomials with degree bounded by d

and norm length bounded by l. Then for a given f ∈ A with d̂ := deg(f) and l̂ := |f |1 a lower bound
on the distance between two roots is given by

1

2

(√
ed̂

3
2 l̂
)−d̂

. (1)

Collins uses his analysis of Heindel’s algorithm for real root isolation to show that isolating the roots
is dominated by

d̂8 + d̂7 l̂3. (2)

Therefore the operations needed to isolate all roots in A, with m := |A|, is dominated by:

md8 +md7l3. (3)

For a given h, refining a root interval to 2−h is dominated by d2h3 + d2l2h. Collins multiplies all
polynomials in A and uses (1) to show that all roots are separated by:

δ :=
1

2

(√
e(md)

3
2 lm

)−md

.

If we take h to be log(δ) we can refine all intervals of the polynomials in

md(d2(m2dl +md log(md))3 +md3l3) = O(m7d7l3 +m2d4l3).

Combining this with (3) tells us that the necessary refinement of intervals for all the polynomials is
dominated by

md8 +m7d7l3. (4)

Combining (4) with the size of the full projection set concludes the base phase is dominated by

(2d)3
n+3

m2n+2

l3.

We also need to consider the polynomials involved in the lifting stage. This involves looking
at the univariate polynomials created after substituting sample points, along with the polynomials
required to define the algebraic extensions of Q that those sample points are contained in.

We follow [17, 31] in using primitive elements to calculate the costs of operations, even though
implementers are extremely unlikely to use them. For each sample point β = (β1, . . . , βk) ∈ Rk there
is a real algebraic number α ∈ R such that Q(β1, . . . , βk) = Q(α). Let Aα be the polynomial in Q[x]
that, along with an isolating interval Iα, defines α (so A(α) = 0). Let d∗k be the maximum degree of

Cylindrical Algebraic Sub-Decompositions 17

these Aα, and l∗k the maximum norm length. Each coordinate βi is represented in Q(α) by another
polynomial. Let l′k be the maximum norm length of these polynomials. Then

d∗k ≤ (2d)2
2n−1

, and l∗k, l
′
k ≤ (2d2)2

2n+3

m2n+1

l.

Let uk be the number of univariate polynomials (after substitution) and ck the number of cells at
level k. Then

uk, ck ≤ 22
n

n
∏

i=1

midi, and uk, ck ≤ (2d)3
n+1

m2n . (5)

Collins combines all these results to give a complexity bound for the full algorithm of

(2d)4
n+4

m2n+6

l3. (6)

4.2. McCallum’s Cadmd algorithm

In [31], McCallum gives a complexity bound, using the same methodology as [17], for his Cadmd

algorithm which produces a 1-layered CAD. Thanks to the avoidance of algebraic numbers (all sample
points in a 1-layered CAD can be produced directly in Q) the exponents are lower than in (6). The
complexity is dominated by

(2d)3
n+4

m2n+4

l3. (7)

4.3. Analysis of PE(A) and (n− 1)-dimensional CADs

To have an accurate complexity we must consider some properties of the projection set: the size,
maximum degree, and maximum norm length. Let E be the subset of A containing the factors of the
designated equational constraint. Let mA := |A|, mE := |E|, mA\E := |A \ E|, and let dA, dE , dA\E ,
lA, lE , and lA\E be defined similarly.

Since we are constructing a CAD with respect to equational constraints, we assume use of the
projection operator, PE(A), defined by McCallum [34] as

PE(A) := P (E) ∪ {resxn
(f, g) | f ∈ E, g ∈ A \ E}

where P (E) is an application of the operator defined in [33] (giving the coefficients, discriminants and
cross resultants of E). We will denote the resultant set, PE(A) \ P (E), by ResSetE(A).

The size of P (E) is bounded by the number of coefficients (mEdE), discriminants (mE), and

resultants (
(

mE

2

)

= mE(mE−1)
2). Therefore we have

|PE(A)| ≤ mEdE +mE +
mE(mE − 1)

2
+mEmA\E =

mE

2

(

2dE + 2mA\E +mE − 1
)

=
mE

2

(

2dE +mA\E +mA − 1
)

. (8)

The maximum degree of PE(A) is the greater of the maximum degrees of P (E) and the resultant
set. We also have a bound on the degree of a resultant with respect to x:

deg(resx(f, g)) ≤ (degx f + degx g) · (max(degy f, degy g)).

Using our overall degree bounds gives

max deg(ResSetE(A)) ≤ (dE + dA\E) ·max(dE , dA\E) = max(d2E + dEdA\E , d
2
A\E + dEdA\E)

≤ max(2d2E , 2d
2
A\E). (9)

We also have
maxdeg(P (E)) ≤ max(dE , 2d

2
E, 2d

2
E) = 2d2E . (10)

Combining (9) and (10) gives a degree bound for PE(A):

max deg(PE(A)) ≤ max(2d2E , 2d
2
A\E) ≤ d2A. (11)

Finally, if we denote the maximum norm length of PE(A) by l, then we know l ≤ l2 (since PE(A) ≤
Proj(A)) and so

l ≤ l2 ≤ (2dA)
22 lA = 16d4AlA. (12)

18 D. J. Wilson, R. J. Bradford, J. H. Davenport and M. England

Substituting the bounds from (8), (11) and (12) into (6) and (7) gives an estimate on the
complexity of a complete (n− 1)-dimensional PE(A)-invariant Collins CAD dominated by

≤
(

2 · 2d2A
)22(n−1)+8

(

mE(2dE +mA +mA\E − 1)

2

)2n−1+6

(

16d4AlA
)3

≤ 163
(

4d2A
)22n+6

(

mE(2dE + 2mA − 1)

2

)2n+5

l3Ad
12
A . (13)

Similarly, the complexity of a 1-layered (n− 1)-dimensional PE(A)-invariant CAD is dominated by

≤
(

2 · 2d2A
)3n−1+4

(

mE(2dE +mA +mA\E − 1)

2

)2n−1+4

(

16d4AlA
)3

≤ 163
(

4d2A
)3n+3

(

mE(2dE + 2mA − 1)

2

)2n+3

l3Ad
12
A . (14)

4.4. Overall complexities

So far, we have computed the complexities of the (n− 1)-dimensional CADs. The final step is to lift
over these cells with respect to the equational constraints. From (5) we can bound the number of
univariate polynomials and so know from (4) the isolations will be dominated by:

(2dE)
3n+1

m2n

E d8E +
(

(2dE)
3n+1

m2n

E

)7

d7E l
3
E. (15)

By combining (15) with (13) and (14) we are now in a position to describe the overall complexities
of our algorithms. Note that (15) will be a large overestimation for the 1-layered case.

Theorem 6.
The complexity for computing a variety sub-CAD using Collins’ algorithm is dominated by:

212
(

22d2A
)4

n+3

(

mE(2dE + 2mA − 1)

2

)2
n+5

l3Ad
12
A +

(2dE)
3n+1

m2n

E d8E +
(

(2dE)
3n+1

m2n

E

)7

d7E l
3
E . (16)

The complexity for computing a 1-layered variety sub-CAD is dominated by:

212
(

22d2A
)3

n+3

(

mE(2dE + 2mA − 1)

2

)2
n+3

l3Ad
12
A +

(2dE)
3n+1

m2n

E d8E +
(

(2dE)
3n+1

m2n

E

)7

d7E l
3
E . (17)

In Theorem 6 we have emboldened the exponents to highlight the difference between (16) and
(17). To help visualise the comparison we have plotted the double logarithm of the complexities against
n in Figure 5 (for some specific parameter values). The diagram shows the drop in the constant in
the exponents of (16) and (17), whilst the scaling factor of the exponent remains the same between
variety and non-variety versions of each algorithm.

5. Examples and Implementation

We provide some case studies showing the benefit of our new algorithms, which have all been imple-
mented in the Maple package ProjectionCAD [24, 25, 45].

We also compare to some competing CAD implementations: the CAD procedures in Maple’s
RegularChains Library, the command line programQepcad [8], and the algorithm in Mathematica

[42] (which produces a cylindrical algebraic formula). We tested two RegularChains routines: the one
following [16] (distributed with Maple), and the one following [15] which can make use of equational

Cylindrical Algebraic Sub-Decompositions 19

Figure 5. A plot of n (horizontal axis) against the double logarithm of the complex-
ities of algorithms (vertical axis). The complexities were evaluated with parameter
choices dA = 3, dE = 2, mA = 3, mE = 1, mA\E = 2, lA = 2, lE = 2. From top to
bottom: CAD, variety sub-CAD, 1-layered sub-CAD and 1-layered variety sub-CAD.

constraints. With Qepcad we ran it first on with its default settings (implementing [33]) and also
when an equational constraint is designated (where it follows [34]).

Qepcad also has the option measure-zero-error which produces a CAD with only the full-
dimensional cells of the free variable space guaranteed to satisfy the invariance condition (see [8]).
Although this is a CAD rather than a sub-CAD of the free variable space it is only sufficient to ensure
the full dimensional solutions are correct, like a 1-layered sub-CAD, meaning the solutions have an
error of measure zero in the free-variable space. For the three case studies below this command was
not of use because the problems were unquantified and each have an equational constraint, meaning
their formulae can only be satisfied on cells of less than full-dimension (in the free variable space).
So although we could produce an output from Qepcad using measure-zero-error, the only cells
guaranteed to be correct are not of interest. This contrasts with a 1-layered variety sub-CAD which
does provide valid solutions. Here the layer is with respect to the variety, not free variable space, and
so the solutions provided have an error of measure zero in the solution space.

Experiments were run on a Linux desktop (3.1GHz Intel processor, 8.0Gb total memory). Tests
for Mathematica used V9 and for Qepcad used Qepcad-B 1.69 with the options +N500000000 and
+L200000 (initialisation times included). The tests in Maple used the development version (similar to
Maple 18) in command line interface, using the development version of the RegularChains Library1.

5.1. Example: Making use of a 1-layered variety sub-CAD

Assume variable ordering x ≻ y ≻ z and consider the following formula involving 3 random polyno-
mials of degree 2 (generated using Maple’s randpoly function) which are plotted in Figure 6:

Φ := −50xy + 56yz + 41z2 + 67x− 55y − 21 = 0

∧ 36xy + 76xz − 58yz + 69z2 + 75y + 27 > 0

∧ −55x2 + 10xy − 88x+ 80y + z − 39 > 0.

We wish to describe the regions of R3 in which Φ is satisfied. Figure 6 shows there are multiple inter-
sections between the two non-equational constraints away from the variety defined by the equational

1Available from www.regularchains.org.

20 D. J. Wilson, R. J. Bradford, J. H. Davenport and M. England

Figure 6. Intersection of the three surfaces from Section 5.1. The red surface (the
darkest in black and white) is the equational constraint.

constraint. This suggests that V-sub-CAD could be beneficial. Further, if only generic solution sets
are of interest then a 1-layered variety sub-CAD could offer further savings.

To show the relative benefits of the individual theories we solved the problem by constructing:
a full sign-invariant CAD for the three polynomials (following [33]); a CAD invariant with respect to
the equational constraint (following [34]); a variety sub-CAD (following Algorithm 1 implementing
sub-procedures from [34]) and layered variety sub-CADs (following Algorithm 5 implementing sub-
procedures from [34]).

Full sign-invariant CAD. 17,047 cells, 178.277 seconds.
CAD invariant with respect to EC. 1315 cells, 11.520 seconds.
Variety sub-CAD. 422 cells, 10.723 seconds.
2-Layered Variety Sub-CAD. 348 cells, 7.149 seconds.
1-Layered Variety Sub-CAD. 138 cells, 0.475 seconds.

We see that making use of the equational constraint in the projection stage dramatically reduces the
computation involved. A variety sub-CAD further reduces the size of the output which will lead to
time savings on any future work. The variety sub-CAD is sufficient to describe exactly where Φ is
true, but if we are only concerned with the generic solution sets then a 1-layered variety sub-CAD
can be used to achieve further time-savings. Note that this means an output of over 17,000 cells can
be replaced with one of only 138. If solutions of lower dimension are also needed then the 2-layered
variety sub-CAD (348 cells) or the complete variety sub-CAD (422 cells) also offer great savings.

We now consider competing CAD implementations:

Maple: Algorithm from [16]. 9841 cells, 112.460 seconds.
Maple: Algorithm from [15]. 559 cells, 1.999 seconds.
Qepcad. 17,047 cells, 385.679 seconds.
Qepcad EC. 5271 cells, 26.614 seconds.
Mathematica. 0.533 seconds

We see that those algorithms taking advantage of the equational constraint offer smaller quicker CADs.
Qepcad does comparatively worse here (perhaps due to the lack of improved lifting described in [5]).

Cylindrical Algebraic Sub-Decompositions 21

If we did use Qepcad with its measure-zero-error option here it would return (in under 5
seconds) a CAD with 822 cells, but Φ would not be satisfied on any of them (as expected) and hence
Qepcad gives an equivalent quantifier free formula False. For the Qepcad outputs above Φ is only
valid on a small fraction of cells (290/17047 and 106/5271). The false cells that are constructed (and
on which Φ is evaluated) will make a significant contribution to the computation time. We can evaluate
Φ on all the cells produced in the 1-LV-sub-CAD almost instantly to find that there are 36 of 138
cells on which Φ is satisfied (the equation is by definition satisfied for all of them but the truth of the
other constraints varies).

Mathematica does not produce CAD cells, and so we cannot compare cell counts. Instead it
produces a cylindrical formula, from which the solutions can be derived. This is done very quickly,
(probably due to the symbolic-numeric techniques discussed in [41]).

Consider a general problem of the form f = 0 ∧ Ψ(gi) where f = 0 defines a variety of real
co-dimension 1 and Ψ is a quantifier-free formula involving only f = 0 and strict inequalities. We
expect that a 1-layered variety sub-CAD will usually be sufficient to describe the generic solutions.
We may find that there are no solutions of full dimension on the variety, and can use the recursive
approach for layered CAD to incrementally build extra layers as required.

5.2. Example: Making use of 1-layered variety sub-TTICAD

We now consider a problem suitable for both our new sub-CAD approaches and TTICAD. Define the
following quantifier free formulae:

ϕ1 := x2 + y2 + z2 = 1 ∧ xy + yz + zx < 1 ∧ x3 − y3 − z3 < 0,

ϕ2 := (x− 1)2 + (y − 1)2 + (z − 1)2 = 1 ∧ (x − 1)(y − 1) + (y − 1)(z − 1)

+ (z − 1)(x− 1) < 1 ∧ (x− 1)3 − (y − 1)3 − (z − 1)3 < 0.

The surfaces defined by the polynomials in ϕ1 are shown in Figure 7, while those in ϕ2 are the same
but shifted. Assume the variable ordering x ≻ y ≻ z and consider the problem of finding all regions
of R3 satisfying Φ := ϕ1 ∨ϕ2. It would be näıve to tackle this problem with a sign-invariant CAD for
the 6 polynomials in Φ, (the default CAD in Maple 16 could not produce one when left overnight
while Qepcad gives a “prime list exhausted” error (a memory constraint) after two hours).

Instead we should make use of the equations present in the formulae. We can do this with
Qepcad by declaring the implicit equational constraint (the product of the two equations) to give a
CAD with 6165 cells in 35,304 seconds (around 10 hours). Mathematica can produce a cylindrical
formula in 1.805 seconds. This problem is well suited for TTICAD and applying the ProjectionCAD

implementation on the two formulae ϕ1 and ϕ2 produces 4861 cells in 170.515 seconds. A substantially
lower cell count than Qepcad is achieved because the TTICAD projection set is smaller than the one
using the implicit equational constraint (see [4, 5]).

We now consider how the TTICAD can be improved upon using the new theory. Each formula
ϕi contains an equational constraint and so the formula Φ is only true on the variety defined by
their product. Suppose further that we only want to obtain the generic solutions. Then we may apply
the TTICAD operator to ϕ1 and ϕ2 and construct a 1-layered sub-CAD of R2 with respect to this
projection set. This takes 0.947 seconds and produces 249 cells in R2. We then lift with respect
to both of the equational constraints onto the variety defined by their product. This takes a further
1.191 seconds and produces 528 2-dimensional cells on the 2-dimensional variety in R3. So the 1-layered
variety sub-TTICAD saves 88% of the cells and 99% of the computation time of the TTICAD.

The 1-layered variety sub-TTICAD obtains all the cells of full dimension (with respect to the
variety) on which Φ is true, and so is sufficient up to a set of measure zero. If solutions of lower
dimension are needed then the theory in this paper allows for a 2-layered variety sub-TTICAD or the
full variety sub-TTICAD which contain 1514 cells and 1976 cells, respectively. The former takes under
a minute and the latter just less than three to compute. So we see that the variety sub-TTICAD takes
about the same time as a TTICAD, but gives a cell saving, while the layered variety sub-TTICADs

22 D. J. Wilson, R. J. Bradford, J. H. Davenport and M. England

Figure 7. Intersection of the surfaces from ϕ1 in Section 5.2 – the sphere defined
by the equational constraint is in red (the darkest surface in black and white).

also offer time savings. Note that over half the cells in the complete TTICAD do not lie on either of
the varieties defined by the equational constraints.

To magnify the issues consider a third formula (a different shift of the original surfaces)

ϕ3 := (x+ 1)2 + (y + 1)2 + (z + 1)2 = 1 ∧ (x + 1)(y + 1) + (y + 1)(z + 1)

+ (z + 1)(x+ 1) < 1 ∧ (x+ 1)3 − (y + 1)3 − (z + 1)3 < 0,

and a new overall formula, Φ∗ := ϕ1 ∨ ϕ2 ∨ ϕ3.

Given the above results for Φ we do not attempt to solve this problem without utilising the
equational constraints. This time to build a 1-layered variety sub-TTICAD takes 5.003 seconds and
produces 1104 cells. The full TTICAD takes 432.210 seconds and produces 10063 cells; around 10
times as many. Although the TTICAD will contain all valid cells for Φ, the 1-layered variety sub-
TTICAD will provide descriptions of the generic families of solutions. If solutions of lower dimensions
are needed then a 2-layered variety sub-TTICAD or the complete variety sub-TTICAD would both
be preferable to the full TTICAD. The former contains 3166 cells and took 145.898 seconds, and the
latter contains 4130 cells and took 429.083 seconds.

5.3. Example: A “Piano Movers” problem

An application of CAD of great interest is motion planning. Given a semi-algebraic object, an initial
and desired position, and semi-algebraic obstacles, a CAD can be constructed of the valid configuration
space of the object. The connectivity of this space can then be used to determine if a feasible path
from the initial position of the object to the desired endpoint is possible [38].

A well-studied problem in this area is the movement of a ladder through a right-angled corridor,
as proposed in [20]. The problem consists of a ladder of length 3 inside a right-angled corridor of width
1 with the aim of moving from from position 1 to position 2 in Figure 8.

Although in 2-dimensional real space, the problem lies in a 4-dimensional configuration space (as
usually the problem is described using 4 variables specifying the endpoints of the ladder) making it far
more difficult to describe using CAD. The original formulation given in [20] proves particularly difficult
but recently in [44] a reformulation beneficial to CAD was given. A CAD of the configuration space
was built using Qepcad with 285,419 cells in around 5 hours. This used the equational constraint

Cylindrical Algebraic Sub-Decompositions 23

1

2

Figure 8. The piano movers problem considered in [20]

[34] and partial CAD techniques [18] (without these it increases to 1,691,473 cells and over 24 hours
computation time).

A representation of the 2-dimensional CAD produced on route to the full 4-dimensional CAD is
given in Figure 9. Mathematica can produce a cylindrical formula in 558.721 seconds, but for this
application such a formula is not sufficient to deduce paths (since that will require knowledge of cell
adjacencies and thus the boundary cells which can not always be inferred from the formula).

In the formulation the length of the ladder is an explicit equational constraint, and so the problem
is suited to treatment with a V-sub-CAD. Indeed, we can see from Figure 9 that there is a great deal
of information computed which is of no use in describing the suitable paths. Ideally we would restrict
to a CAD or sub-CAD of just the corridor highlighted.

Within this three-dimensional variety (embedded within R4) the important cells are those that
are three-dimensional, since cells of lesser dimension correspond to physically infeasible situations (i.e.
one dimensional subspaces of R2). Therefore a LV-sub-CAD would give an overview of the problem.

Constructing the 1-layered sub-CAD of R3 produces 64,764 cells in around 124.22 seconds, and
lifting to the variety takes a further 196.672 seconds, producing 101,924 cells, so offering substantial
savings. Since this example has several constraints which do not contain all variables it is likely that
partial CAD techniques (not yet implemented in our Maple package) would offer further savings.
Adjacency information will have to be computed for a full solution to the motion planning problem
(which may require a 2-layered variety sub-CAD).

6. Conclusions and further work

We have formalised the idea of a cylindrical algebraic sub-decomposition. Whilst a simple idea, it
can be hugely powerful and the examples presented show that massive cell reductions are possible.
In some cases time reductions are also available, and since most problems using CAD will require
some further computation on the cells (such as polynomial evaluation) more time savings will follow
and applications involving complicated calculation on the cells will benefit even more. For example,
the calculation of adjacency information for use in motion planning or the evaluation of multi-valued
functions at (possibly algebraic) sample points for branch cut analysis.

We provided examples of sub-CADs in the literature, along with two new approaches (and
algorithms to produce them): variety sub-CADs and layered sub-CADs. We find that their individual
savings may be magnified by combining them with each other and the recent theory of truth table
invariance. The savings are large enough to tackle problems previously infeasible.

There is great scope for future work, with some important questions as follows:

• Can we identify further classes of problems where the various types of sub-CAD are sufficient?
• What is the best way to build V-sub-CADs for lower dimensional varieties?
• How can we best adapt existing techniques (such as partial CAD) to output sub-CADs?

24 D. J. Wilson, R. J. Bradford, J. H. Davenport and M. England

Figure 9. A representation of the 2-dimensional induced CAD produced for the new
formulation of the piano movers problem in [44].

• Can we develop heuristics (or adapt existing ones [23, 6]) for when to use different sub-CAD
approaches?
• Can we keep track of where cells arise when constructing a variety sub-TTICAD so that over
each cell we lift only to the varieties for relevant φi? This can be thought of as an analogue of
partial CAD for TTICAD. This may alter the output significantly (it may not be a sub-CAD of
a CAD that can be constructed by current technology) but could allow for even smaller output
for suitable problems.
• Can we parallelise the algorithms? The idea mentioned in [32] of lifting over sets of cells inde-
pendently could be generalised. (Preprocessing CAD problems to allow for parallelisation was
discussed in [30] but this involved only the boolean logic of the problem).

There are also interesting questions around which properties of CADs transfer over to their sub-CADs.
For example, any existing adjacency algorithms require CADs to be particularly ‘well-behaved’, and it
may be possible to avoid problematic cells through sub-CADs, extending the use of such algorithms.
Also, well-orientedness conditions for CAD algorithms [33, 7] may be failed for the CAD but not the
sub-CADs. These ideas need further investigation.

An overarching aim is to develop a general CAD framework to identify when applying each
technique is appropriate, automatically combining appropriate methods when possible and making
choices automatically when required based on heuristic information. This would identify, for a given
problem, an efficient way to produce a φ-sufficient sub-CAD and thus describe the solution set.

Acknowledgements

This work was supported by the EPSRC grant: EP/J003247/1. The authors would also like to thank
Professor Gregory Sankaran for his thoughts and feedback on the topic, and Professor Scott McCallum
for many stimulating conversations on TTICAD. Finally, they would like to thank the anonymous
referees for helpful comments which improved the paper.

Cylindrical Algebraic Sub-Decompositions 25

References

[1] D. Arnon, G.E. Collins, and S. McCallum. Cylindrical algebraic decomposition I: The basic algorithm.
SIAM Journal of Computing, 13:865–877, 1984.

[2] J. Backelin. Square multiples n give infinitely many cyclic n-roots. Matematiska Institutionen Reports
Series, Stockholms Universitet, 1989.

[3] R. Bradford and J.H. Davenport. Towards better simplification of elementary functions. In Proc. ISSAC
’02, pages 16–22. ACM, 2002.

[4] R. Bradford, J.H. Davenport, M. England, S. McCallum, and D. Wilson. Cylindrical algebraic decompo-
sitions for boolean combinations. In Proc. ISSAC ’13, pages 125–132. ACM, 2013.

[5] R. Bradford, J.H. Davenport, M. England, S. McCallum, and D. Wilson. Truth table invariant cylindrical
algebraic decomposition. Submitted. Preprint: http://opus.bath.ac.uk/38146/, 2014.

[6] R. Bradford, J.H. Davenport, M. England, and D. Wilson. Optimising problem formulations for cylindrical
algebraic decomposition. In J. Carette, D. Aspinall, C. Lange, P. Sojka, and W. Windsteiger, editors,
Intelligent Computer Mathematics, (LNCS 7961), pages 19–34. Springer Berlin Heidelberg, 2013.

[7] C.W. Brown. Improved projection for cylindrical algebraic decomposition. Journal of Symbolic Compu-
tation, 32(5):447–465, 2001.

[8] C.W. Brown. An overview of QEPCAD B: A program for computing with semi-algebraic sets using CADs.
SIGSAM Bulletin, 37(4):97–108, ACM, 2003.

[9] C.W. Brown. The McCallum projection, lifting, and order-invariance. Technical report, U.S. Naval Acad-
emy, Computer Science Department, 2005.

[10] C.W. Brown. Constructing a single open cell in a cylindrical algebraic decomposition. In Proc. ISSAC
’13, pages 133–140. ACM, 2013.

[11] C.W. Brown and J.H. Davenport. The complexity of quantifier elimination and cylindrical algebraic
decomposition. In Proc. ISSAC ’07, pages 54–60. ACM, 2007.

[12] C.W. Brown, M. El Kahoui, D. Novotni, and A. Weber. Algorithmic methods for investigating equilibria
in epidemic modelling. Journal of Symbolic Computation, 41:1157–1173, 2006.

[13] C.W. Brown and S. McCallum. On using bi-equational constraints in CAD construction. In Proc. ISSAC
’05, pages 76–83. ACM, 2005.

[14] M.A. Burr. Applications of continuous amortization to bisection-based root isolation.
Preprint: http://arxiv.org/abs/1309.5991 , 2013.

[15] C. Chen and M. Moreno Maza. An incremental algorithm for computing cylindrical algebraic decompo-
sitions. Proc. ASCM ’12, (to appear, Springer). Preprint: arXiv:1210.5543, 2012.

[16] C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing cylindrical algebraic decomposition via
triangular decomposition. In Proc. ISSAC ’09, pages 95–102. ACM, 2009.

[17] G.E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In Proc.
2nd GI Conference on Automata Theory and Formal Languages, pages 134–183. Springer-Verlag, 1975.

[18] G.E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier elimination. Journal
of Symbolic Computation, 12:299–328, 1991.

[19] J.H. Davenport. Computer algebra for cylindrical algebraic decomposition. Technical Report TRITA-NA-
8511, NADA KTH Stockholm. Reissued as Bath Computer Science Technical report 88-10. Available at
http://staff.bath.ac.uk/masjhd/TRITA.pdf, 1985.

[20] J.H. Davenport. A “Piano-Movers” Problem. SIGSAM Bulletin, 20(1-2):15–17, 1986.

[21] J.H. Davenport, R. Bradford, M. England, and D. Wilson. Program verification in the presence of complex
numbers, functions with branch cuts etc. In Proc. SYNASC ’12, pages 83–88. IEEE, 2012.

[22] J.H. Davenport and J. Heintz. Real quantifier elimination is doubly exponential. Journal of Symbolic
Computation, 5(1-2):29–35, 1988.

[23] A. Dolzmann, A. Seidl, and T. Sturm. Efficient projection orders for CAD. In Proc. ISSAC ’04, pages
111–118. ACM, 2004.

[24] M. England. An implementation of CAD in Maple utilising McCallum projection. Department of Com-
puter Science Technical Report series 2013-02, University of Bath.
Available at http://opus.bath.ac.uk/33180/, 2013.

http://opus.bath.ac.uk/38146/
http://arxiv.org/abs/1309.5991
http://staff.bath.ac.uk/masjhd/TRITA.pdf
http://opus.bath.ac.uk/33180/

26 D. J. Wilson, R. J. Bradford, J. H. Davenport and M. England

[25] M. England. An implementation of CAD in Maple utilising problem formulation, equational constraints
and truth-table invariance. Department of Computer Science Technical Report series 2013-04, University
of Bath. Available at http://opus.bath.ac.uk/35636/ , 2013.

[26] M. England, R. Bradford, J.H. Davenport, and D. Wilson. Understanding branch cuts of expressions. In
J. Carette, D. Aspinall, C. Lange, P. Sojka, and W. Windsteiger, editors, Intelligent Computer Mathe-
matics, (LNCS 7961), pages 136–151. Springer Berlin Heidelberg, 2013.

[27] I.A. Fotiou, P.A. Parrilo, and M. Morari. Nonlinear parametric optimization using cylindrical algebraic
decomposition. In Decision and Control, 2005 European Control Conference. CDC-ECC ’05., pages 3735–
3740, 2005.

[28] H. Hong. An improvement of the projection operator in cylindrical algebraic decomposition. In Proc.
ISSAC ’90, pages 261–264. ACM, 1990.

[29] H. Iwane, H. Yanami, H. Anai, and K. Yokoyama. An effective implementation of a symbolic-numeric
cylindrical algebraic decomposition for quantifier elimination. In Proc. SNC ’09, pages 55–64, 2009.

[30] H.K. Malladi and A. Dukkipati. A preprocessor based on clause normal forms and virtual substitutions
to parallelize cylindrical algebraic decomposition. Preprint: http://arxiv.org/abs/1112.5352v3, 2013.

[31] S. McCallum. Solving polynomial strict inequalities using cylindrical algebraic decomposition. The Com-
puter Journal, 36(5):432–438, 1993.

[32] S. McCallum. A computer algebra approach to path finding in the plane. In J. Harland, editor, Proceedings
of Computing: The Australasian Theory Symposium (CATS), pages 44–50, 1997.

[33] S. McCallum. An improved projection operation for cylindrical algebraic decomposition. In B. Caviness
and J. Johnson, editors, Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts & Mono-
graphs in Symbolic Computation, pages 242–268. Springer-Verlag, 1998.

[34] S. McCallum. On projection in CAD-based quantifier elimination with equational constraint. In Proc.
ISSAC ’99, pages 145–149. ACM, 1999.

[35] S. McCallum. On propagation of equational constraints in CAD-based quantifier elimination. In Proc.
ISSAC ’01, pages 223–231. ACM, 2001.

[36] L.C. Paulson. Metitarski: Past and future. In L. Beringer and A. Felty, editors, Interactive Theorem
Proving, (LNCS 7406), pages 1–10. Springer, 2012.

[37] N. Phisanbut, R.J. Bradford, and J.H. Davenport. Geometry of branch cuts. ACM Communications in
Computer Algebra, 44(3):132–135, 2010.

[38] J.T. Schwartz and M. Sharir. On the “Piano-Movers” Problem: II. General techniques for computing
topological properties of real algebraic manifolds. Adv. Appl. Math., 4:298–351, 1983.

[39] A. Seidl and T. Sturm. A generic projection operator for partial cylindrical algebraic decomposition. In
Proc. ISSAC ’03, pages 240–247. ACM, 2003.

[40] A. Strzeboński. Solving systems of strict polynomial inequalities. Journal of Symbolic Computation,
29(3):471–480, 2000.

[41] A. Strzeboński. Cylindrical algebraic decomposition using validated numerics. Journal of Symbolic Com-
putation, 41(9):1021–1038, 2006.

[42] A. Strzeboński. Computation with semialgebraic sets represented by cylindrical algebraic formulas. In
Proc. ISSAC ’10, pages 61–68. ACM, 2010.

[43] A. Strzeboński. Solving polynomial systems over semialgebraic sets represented by cylindrical algebraic
formulas. In Proc. ISSAC ’12, pages 335–342. ACM, 2012.

[44] D. Wilson, J.H. Davenport, M. England, and R. Bradford. A “piano movers” problem reformulated. In
Proc. SYNASC ’13, IEEE, 2013.

[45] D. Wilson and M. England. Layered cylindrical algebraic decomposition. Department of Computer Science
Technical Report series 2013-05, University of Bath. Available at http://opus.bath.ac.uk/36712/, 2013.

D. J. Wilson, R. J. Bradford, J. H. Davenport and M. England
Department of Computer Science, University of Bath, Bath, BA2 7AY, England
e-mail: {D.J.Wilson, R.J.Bradford, J.H.Davenport, M.England}@bath.ac.uk

http://opus.bath.ac.uk/35636/
http://arxiv.org/abs/1112.5352v3
http://opus.bath.ac.uk/36712/

	1. Introduction
	1.1. Motivation
	1.2. Background to CAD
	1.3. New Contributions

	2. Sub-CADs
	2.1. Variety sub-CADs
	2.2. Layered sub-CADs
	2.3. Other sub-CADs in the literature

	3. Extending the use of sub-CAD
	3.1. Combining layered and variety sub-CADs
	3.2. Truth table invariant sub-CADs

	4. Complexity analysis
	4.1. Collins' algorithm
	4.2. McCallum's Cadmd algorithm
	4.3. Analysis of PE(A) and (n-1)-dimensional CADs
	4.4. Overall complexities

	5. Examples and Implementation
	5.1. Example: Making use of a 1-layered variety sub-CAD
	5.2. Example: Making use of 1-layered variety sub-TTICAD
	5.3. Example: A ``Piano Movers'' problem

	6. Conclusions and further work
	Acknowledgements
	References

