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Abstract. In order to assess to what extent regional climate models (RCMs)

yield better representations of climatic states than general circulation mod-

els (GCMs) the output of each is usually directly compared with observa-

tions. RCM output is often bias-corrected and in some cases correction meth-

ods can also be applied to GCMs. This leads to the question of whether bias-

corrected RCMs perform better than bias-corrected GCMs. Here, the first

results from such a comparison are presented, followed by discussion of the

value added by RCMs in this setup. Stochastic postprocessing, based on Model

Output Statistics (MOS), is used to estimate daily precipitation at 465 sta-

tions across the United Kingdom between 1961-2000 using simulated pre-

cipitation from two RCMs (RACMO2 and CCLM) and, for the first time,

a GCM (ECHAM5) as predictors. The large-scale weather states in each sim-

ulation are forced toward observations. The MOS method uses logistic re-

gression to model precipitation occurrence and a Gamma distribution for the

wet-day distribution, and is cross-validated based on Brier and quantile skill

scores. A major outcome of the study is that the corrected GCM-simulated

precipitation yields consistently higher validation scores than the corrected

RCM-simulated precipitation. This seems to suggest that, in a setup with

postprocessing, there is no clear added value by RCMs with respect to down-

scaling individual weather states. However, due to the different ways of con-

trolling the atmospheric circulation in the RCM and the GCM simulations,

such a strong conclusion cannot be drawn. Yet, the study demonstrates how

challenging it is to demonstrate the value added by RCMs in this setup.
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1. Introduction

It is widely acknowledged that future climates will be associated with changes in global

precipitation. While such changes act at all spatial scales, it is at local and and regional

scales where changes in daily precipitation characteristics, including extreme events, are

most important for impact assessment. General Circulation Models (GCMs) are the most

important tool for estimating precipitation for climate change scenarios but do not resolve

small spatial scales. The production of high resolution scenarios from Regional Climate

Models (RCMs), nested into GCMs over a limited area, is computationally expensive and

is only justified if RCMs improve the representation of regional climate simulated by the

driving GCMs. The value added by RCM simulations can be difficult to quantify and

has been addressed in a number of recent studies [e.g., Castro et al., 2005; Feser , 2006;

Prömmel et al., 2010; Diaconescu and Laprise, 2013], including those focusing specifically

on precipitation [e.g., Lucas-Picher et al., 2012; Di Luca et al., 2012; Zou and Zhou, 2013].

As RCMs typically contain some degree of bias, RCM output is often subject to statistical

bias correction [e.g., Engen-Skaugen, 2007; Graham et al., 2007; Lenderink et al., 2007;

Piani et al., 2010a; Themessl et al., 2011]. In recent literature, this has been referred to

as Model Output Statistics (MOS) [Maraun et al., 2010], a term originally coined in the

context of numerical weather prediction [Glahn and Lowry , 1972; Klein and Glahn, 1974;

Wilks , 2006]. Such statistical corrections may also be applied to GCM output but the

extent to which MOS-corrected RCMs outperform MOS-corrected GCMs remains unclear.

While RCMs are able to resolve atmospheric processes at sub-GCM grid scales, postpro-

cessing using MOS to correct systematic bias is important in improving the usefulness of
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model output to impact modellers and other end-user groups. This two-step approach to

downscaling is restricted by the availability of RCM simulations and their associated com-

putational expense. An alternative is to calibrate statistical corrections and downscaling

directly for precipitation simulated by the driving GCM, thus removing the requirement

for an RCM step [e.g., Schmidli et al., 2006]. Statistical correction of GCM-simulated

precipitation has been applied in the context of hydrological modelling [Sharma et al.,

2007; Piani et al., 2010b] and crop yield [Ines and Hansen, 2006] simulations but has

been almost entirely limited to ‘distributionwise’ calibration; that is, the statistical rela-

tionship underpinning the correction is derived between long-term means or distributions

of precipitation intensity. In fitting a distributionwise correction, the predictor distribu-

tion is mapped directly onto that of the predictand meaning that the calibration appears

to be perfect. Additional validation is required in order to demonstrate the predictive

power of the predictors and thus to justify the correction itself. In the case that cali-

bration is based on a simulation in which the day-to-day evolution of large-scale weather

states matches that of the real world, it is possible for statistical relationships to be de-

rived between sequences of simulated and observed precipitation events; this is referred

to as pairwise correction. This setup provides information about predictive power of the

statistical correction either directly from the cost function considered for calibration or

by analysis of skill scores. Although this is not a direct measure for how skillful postpro-

cessed climate change simulations are, this type of validation yields information on how

well local states are predicted given correct large-scale states, which is a key aspect of

statistical downscaling.
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When driven by reanalysis fields and thus forced to the temporal evolution of large-scale

weather, RCM simulations provide a basis for pairwise correction. However, for GCMs

used for climate change scenarios, there are usually no historical simulations available

that include assimilation of observational data, meaning the sequences of simulated and

observed day-to-day weather are independent and therefore fitting of pairwise MOS is

not possible. Following a feasibility study for GCM MOS based on the NCEP-NCAR

reanalysis [Widmann et al., 2003], Eden et al. [2012] demonstrated that it is possible to

force the sequence of weather into temporal phase with reality using a simulation of the

ECHAM5 atmospheric GCM in which the prognostic variables describing circulation and

temperature are nudged towards corresponding reanalysis fields. The simulated precip-

itation field, which was not nudged and solely calculated by model physics, was shown

to capture well the temporal variability of observed precipitation in many parts of the

extra-tropics. Eden and Widmann [2014] then showed that pairwise MOS correction of

monthly mean precipitation from ECHAM5 outperforms traditional statistical downscal-

ing (so-called perfect-prog) methods across large parts of Europe, North America and

Australia.

The majority of MOS methods that have been applied to RCM output are determin-

istic and do not account for any noise that is not explained by the predictors [Maraun,

2013]. Such methods thus correct only systematic bias. Wong et al. [in review] recently

proposed a stochastic MOS model for simultaneously correcting and downscaling simu-

lated precipitation. The stochastic model, which was fitted pairwise between sequences of

observations and precipitation from an RCM simulation driven with observed boundary

conditions, included two regression-based components: a logistic regression for estimating
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wet day occurrence; and a vector generalised linear model (VGLM) that estimates distri-

bution parameters as linear combinations of a set of predictors. This method was shown

to perform generally well across a sample of eight UK stations.

Here, we apply a stochastic MOS correction to both RCM- and GCM-simulated pre-

cipitation across the whole of the UK. We follow the approach of Wong et al. [in press]

using a MOS model based on logistic regression and a VGLM to estimate gamma distri-

bution parameters. The model is first of all applied to two RCM simulations driven by

observed boundary conditions and, in the case of the second, by spectral nudging within

the domain. Secondly, we apply the model to precipitation from the nudged simulation of

the ECHAM5 GCM, described by Eden et al. [2012]. This paper thus represents the first

development of a probabilistic correction for GCM-simulated daily precipitation. Our ap-

proach provides in principle a basis to compare RCM- and GCM-MOS and to assess value

added by postprocessed RCMs relative to postprocessed GCMs. As mentioned, several

studies have addressed the question of added value given by RCMs, finding in general that

RCMs yield better representation of regional scale climate, defined by climate indices and

other statistics (e.g. precipitation quantiles), than the data used to drive them and par-

ticularly so in regions associated with complex physiographic features [e.g., Feser , 2006;

Di Luca et al., 2012]. However, in regions where large-scale forcings are dominant, an

RCM may deteriorate the simulated climate of a strongly performing GCM [De Sales and

Xue, 2011; Di Luca et al., 2012] and there are subsequent examples of low-lying regions

where RCMs add no noticeable value, or even weaken the skill of a simulation [Winterfeldt

and Weisse, 2009]. Some studies have found that RCMs specifically require some form

of bias correction in order to add value to precipitation simulations [e.g., Halmstad et al.,
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2013], but no focus has yet been given to a comparison of RCM- and GCM-simulated

precipitation following statistical postprocessing. Such a comparison is potentially an im-

portant aspect of validating precipitation downscaling and the approach used here offers

a platform on which to begin a discussion on this topic.

The remainder of the paper is structured as follows. Section 2 describes the RCM and

GCM simulations and the observational data to be used, in addition to the statistical

model. The performance of the statistical model when applied to RCM and GCM precip-

itation is evaluated in section 3. A discussion is given in section 4 with conclusions drawn

regarding the added value of the additional RCM step in the downscaling and correction

process.

2. Data and methods

2.1. Data and setup of simulations

In its most simple form, MOS involves a bias correction of the mean or distribution

of precipitation simulated by a free-running numerical model. Such a simulation does

not assimilate observations and thus does not match the temporal evolution of atmo-

spheric states in the real world. In this case, fitting a statistical model can only be done

distributionwise. Likewise, the sequence day-to-day weather from an RCM driven by a

free-running GCM will not be synchronised with observations and again only a distri-

butionwise correction is possible. An alternative approach is to drive an RCM with an

atmospheric reanalysis in order to approximately synchronise the sequence of simulated

and observed time series. Such a setup provides the basis for fitting pairwise corrections,

including regression-based models.
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Wong et al. [in press] noted that driving an RCM at its boundaries alone allowed the

RCM the freedom to generate internal variability, the extent of which negatively impacted

on the predictive skill of their MOS model. Instead, Wong et al. [in press] fitted their MOS

model on a simulation of COSMO-CLM version 4.8 [Rockel et al., 2008] that is driven by

the NCEP-NCAR reanalysis at its boundaries and also incorporates spectral nudging [von

Storch et al., 2000] of the large-scale upper level (above 850-hPa) horizontal wind speed

components within the model domain [Geyer and Rockel , 2013; Geyer , 2014]. Perfect

boundary RCM simulations are readily available from the data archives of international

projects such as ENSEMBLES. Spectrally-nudged RCM simulations have been used in the

production of climate change projections as part of the North American Regional Climate

Change Assessment Program (NARCCAP) [Mearns et al., 2013] but are less common

across the European region and are rarely made available in the public domain. The extent

of the benefit of fitting MOS against a spectrally-nudged simulation is unclear, and Wong

et al. [in press] acknowledged that there may be regions of the UK where the performance

of stochastic MOS is sufficiently strong when calibrated on a perfect boundary simulation.

For these reasons, our MOS model was fitted on precipitation from both the spectrally-

nudged COSMO-CLM simulation [Geyer and Rockel , 2013; Geyer , 2014] used by Wong et

al. [in press] and KNMI-RACMO2 [van Meijgaard et al., 2008] boundary driven by ERA-

40. The simulations were carried out over similar Europe-wide domains (see van Meijgaard

et al., 2008 and Geyer , 2014 for full details) and output was available at resolutions of

approximately 18 x 18-km and 25 x 25-km respectively. Additionally, the MOS model

was fitted on precipitation from the nudged ECHAM5 simulation described by Eden

et al. [2012] in which the prognostic fields (divergence, vorticity, temperature and surface
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pressure) are forced to corresponding daily fields from ERA-40 [Uppala et al., 2005]. Model

output is on a T63 Gaussian grid, at an approximate resolution 200-km latitude x 150-km

longitude at 45◦. Further details about the simulation, including setup and analysis of

bias, can be found in Eden et al. [2012].

Ideally the forcing of large-scale weather to reanalysis fields should be undertaken such

that the internal variability of the large-scale states is the same in all cases. This is

not trivial and would require ensemble simulations and extensive testing of nudging con-

stants. While this complex approach is not possible here, it is nevertheless important

to understand what effect the respective nudging technique has on precipitation in each

simulation. Eden et al. [2012] demonstrated that the nudged ECHAM5 simulation is able

to reproduce the interannual variability of monthly and seasonal geopotential height and

temperature, but also that the skill is spatially dependent and far weaker in the Trop-

ics. A broadly similar pattern exists for precipitation. Figure 1 shows the correlation

of observed and simulated seasonal precipitation and sea level pressure from RACMO2,

CCLM and ECHAM5. Correlation in both fields is generally high across all simulations.

It is unsurprising that the the greater freedom in the boundary-forced KNMI-RACMO2

simulation results in weaker correlation, particularly in eastern and central parts of Eu-

rope. COSMO-CLM and ECHAM5 produce fairly similar correlation patterns in spite of

the different nudging setups used for each simulation. The higher resolution of CCLM is

better able to represent temporal variability in mountainous regions than ECHAM5.

Overall, the strength of the correlation patterns in Figure 1 associated with each model

is high, justifying the application of our MOS correction model to both RCM- (KNMI-

RACMO2 and COSMO-CLM) and GCM- (ECHAM5) simulated precipitation (hereafter
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referred to as RCM- and GCM-MOS). All RCM and GCM output is taken for the period

1961-2000 and the MOS model was fitted and validated separately for winter (December,

January and February; DJF) and summer (June, July and August; JJA). For fitting, local-

scale daily precipitation observations were taken from the Meteorological Office Integrated

Data Archive System (MIDAS). A total of 465 stations were chosen based on at least 90%

completeness for each season and each ten year period between 1961-2000. Fitting was

made between station observations and precipitation from the RCM or GCM grid cell that

resides over each station. To account for spatial discrepancies between observed and RCM

precipitation, we also fitted our MOS model on averages of simulated precipitation across

the three-by-three and five-by-five grid cells centred on the station of interest. The MOS

model was cross validated using a leave-one-out framework. A MOS correction is derived

separately for each decade based on fitting data for the remaining three decades. For

instance, when the validation period is 1991-2000, observed and simulated precipitation

from for 1961-1990 is used for model fitting.

2.2. Stochastic MOS model

Statistical representation of daily precipitation characteristics requires modelling of the

probability density function (PDF). The gamma distribution is a good fit for wet day pre-

cipitation intensities, at least up to the high quantiles [e.g., Katz , 1977]. In a stationary

context, a gamma distribution fitted on observed precipitation for a given period provides

an estimate for distribution of real world precipitation. By contrast, downscaling requires

the distribution to be estimated as a function of a given predictor. In the context of a

pairwise stochastic approach, the family of generalised linear models (GLMs) offers an im-
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portant framework that allows a time-dependent probability distribution to be estimated

as a function of a time series of predictors [McCullagh and Nelder , 1989; Dobson, 2001].

Our method uses two models belonging to the GLM class to downscale precipitation

occurrence and intensity as part of a two-step process. First of all, the probability of pre-

cipitation occurrence is estimated using a logistic regression [e.g., Chandler and Wheater ,

2002]. To model the probability pi of greater than 1mm of precipitation on a day i,

conditional on simulated precipitation xi, we use

log

(
pi

1− pi

)
= αxi + β, (1)

where α and β are coefficients to be estimated.

Secondly, precipitation intensity is estimated using a Vector Generalised Linear Model

(VGLM). VGLMs were developed as an extension to the GLM framework [Yee and Wild ,

1996; Yee and Stephenson, 2007] and allow for multiple distribution parameters to be

estimated from the same set of predictors. In our case the rate parameter λ and shape

parameter γ of the observed precipitation depend linearly on the simulated precipitation

x(t) and the model has the form:

λi = λ0 + βλxi (2)

γi = γ0 + βγxi (3)

where the regression parameters βλ and βγ are determined by Maximum Likelihood

Estimation (MLE).
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The probability that observed precipitation on a given day(Ri) is less than or equal to

a particular precipitation intensity (r) is given by:

Prλ,γ(Ri ≤ r) = Γλ,γ(Ri ≤ r|W )× pi + (1− pi), (4)

where Γλ,γ(Ri ≤ r|W ) is the gamma cumulative distribution function and pi is the prob-

ability of that given day being wet.

3. Results

To assess the predictive power of our approach across the UK, we use skill scores that

have originally been applied in the verification of weather forecasts [Joliffe and Stephenson,

2003; Wilks , 2006]. The four ten-year validation periods are merged to produce a forty-

year continuous, independently-estimated series for which skill scores are calculated.

The two components of our method, the logistic model and the VGLM, are evaluated

separately in terms of their ability to estimate precipitation occurrence and intensity

respectively. The Brier score (BS) [e.g., Wilks , 2006] is used to assess the performance

of the logistic model to estimate dry and wet (i.e. precipitation greater than 1mm),

measuring the mean squared error between N pairs of forecast probabilities fi and actual

observations oi, where i = 1, . . . , N :

BS =
1

n

N∑
i=1

(fi − oi)2 (5)

The forecasts fi are given as probabilities between 0 and 1; the observations oi are given

as 0 and 1 for observed dry and wet days respectively. Thus, the closer the forecast to

observations, the lower the Brier score. The Brier skill score (BSS) gives the improvement

over the Brier score of a reference model BSref , in this case the climatology:
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BSS = 1− BS

BSref
(6)

The quantile score (QS) [Friedrichs and Hense, 2007; Thorarinsdottir and Johnson,

2012] is used to assess the performance of the VGLM to estimate specific quantiles of

precipitation. The QS for the α-quantile qα is defined as the weighted average distance

between n pairs of observations oi and forecasts qα(fi):

QSα =
N∑
i=1

ρα(oi − qα(fi)), (7)

where

ρα(u) =

{
αu for u ≥ 0;
(α− 1)u for u < 0.

(8)

Similiarly to the BSS, the quantile skill score (QSS) quantifies the improvement over

the estimate from reference model QSSref , which in this case is the stationary gamma

model:

QSSα = 1− QSα
QSα,ref

. (9)

3.1. Application to RCM precipitation (RCM-MOS)

First of all, the dependence of the model performance on the size of the predictor domain

was assessed. Climate models typically suffer from location bias due to a large degree of

random spatial variability, which, on a daily time scale, may result from misrepresentation

of topographical features or the divergence of a simulated weather system from an observed

trajectory. This results in poor temporal correlation between precipitation observed at
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a given station and simulated precipitation at the grid cell over that station. One way

of dealing with this when fitting pairwise statistical corrections is to define the predictor

as precipitation within a multiple grid cell domain rather than at a single grid cell. For

instance, Wong et al. [in press] took as a predictor the average of simulated precipitation

across an area of 3×3 grid cells centred on a given station. We compared the skill of our

method associated with three different predictor domain sizes: single grid cell in addition

to 3×3 and 5×5 centred grid cells. Table 1 details the UK average Brier and quantile

skill scores associated with different predictor domain sizes. The 3×3 and 5×5 predictor

domains perform slightly better than the single cell. For consistency with previous work,

the remainder of our analysis of RCM precipitation uses a 3×3 predictor domain.

Secondly, focus was given to how model performance is influenced when precipitation is

taken from an RCM simulation that includes spectral nudging. RCMs are able to produce

their own random day-to-day weather and, while nesting an RCM within a reanalysis will

force the large-scale weather states into temporal phase with the real world, the random

component may become more dominant with distance from the simulation boundaries

and at smaller scales. In principle, the addition of spectral nudging forces the large-scale

weather state throughout the RCM’s spatial domain, thus reducing the mismatch between

simulated and observed day-to-day weather. Figure 2 shows observed and simulated daily

winter (DJF) precipitation at two locations with contrasting precipitation climatologies:

Kinlochewe in north-west Scotland and Dover in south-east England. At Kinlochewe, for

the example period shown (1991-1995), both simulations capture the variability in day-

to-day precipitation reasonably well and there is little notable difference between them.

Winter precipitation in north-west Scotland is dominated by westerly weather systems,
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the temporal evolution and trajectory of which is likely to be sufficiently represented

by the boundary-driven RACMO2 simulation. By contrast, at Dover there are notable

differences in the time series of simulated precipitation between RACMO2 and CCLM.

In many cases, peaks in observed daily precipitation are matched by CCLM but not

RACMO2. Additionally, there are several dry spells that are not correctly simulated by

RACMO2. This mismatch in sequence and magnitude of precipitation events is likely to

be expected in regions of the UK that are (a) further from the boundaries of the model’s

domain, and (b) influenced to a greater extent by non-westerly weather systems.

The distribution of skill scores across the UK allows us to quantify the differences

between the two RCMs when used for fitting our downscaling model. Brier skill scores

are shown in Figure 3. The positive BSS values indicate that the estimation of wet day

occurrence from our logistic model is stronger than an estimate simply based on the

climatology. Skill scores are generally higher in winter (DJF) than in summer (JJA).

During winter, skill scores for both RACMO2 and CCLM are as high as 0.3 in large

parts of the western UK with the exception of Northern Ireland. In the central and

eastern parts of the UK, skill scores are lower but generally around 0.1 greater for CCLM

than RACMO2. This west-east difference reflects the topopgraphical influence on UK

precipitation, with daily precipitation occurrence along the wetter west coast proving far

easier to estimate compared to rest of the country. The advantage of spectral nudging in

CCLM is clear in central and eastern UK but there is little skill to be gained along the

west coast. During summer, CCLM produces higher skill scores throughout the UK.

A summary of quantile skill scores is presented in Figure 4; results for the 50th, 75th,

90th and 95th percentiles are shown. Again, the skill scores for all quantiles are almost
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always positive across the whole of the UK, indicating that the VGLM has greater predic-

tive power than a stationary gamma model. The improvement over the stationary model

is in general smaller for the median than for the higher percentiles (90th, 95th and partic-

ularly 75th). During winter, the west-east pattern in the BSS results is most noticeable

for the median but also present at higher percentiles. The VGLM performs strongly even

in estimating the 95th percentile, suggesting that our method is capable of predicting

events that lead to heavy precipitation. The improvement in predictive power added by

spectral nudging is again most apparent in central and eastern UK. The difference in skill

scores between RACMO2 and CCLM in these areas is fairly consistent at all quantiles.

During summer, skill scores are in general a lot lower. CCLM offers greater predictive

power although few stations exhibit scores of greater than 0.25.

As mentioned earlier, winter precipitation along the west coast is dominated by westerly

weather systems. The proximity of such systems to the edge of the RCM domain means

that their day-to-day variability is sufficiently represented in an RCM with a boundary-

driven setup. The influence of the RCM’s own internal variability on the position of

precipitation-bearing weather systems can be expected to become greater with distance

from the domain boundary. For this reason, the addition of spectral-nudging in CCLM

produces noticeably higher skill scores in central and eastern UK. During summer (JJA),

the dominance of westerlies on precipitation is lesser than during winter and the addition

of spectral nudging produces stronger skill scores across all parts of the UK.

3.2. Application to ECHAM5 precipitation (GCM-MOS)

With our method shown to exhibit good predictive power when applied to RCM pre-

cipitation, we now evaluate its skill when applied to precipitation from a nudged GCM
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simulation. Brier skill scores, presented in Figure 5, are greater than 0.25 across the ma-

jority of the UK during winter, and particularly high across southern England and Wales.

Skill scores are in general lower during summer, with only a small number of coastal sta-

tions associated with skill scores greater than 0.25. Quantile skill scores calculated for the

same four percentiles (median, 75th, 90th and 95th) are presented in Figure 6. During

winter, the higher quantiles show stronger skill in the south and east of the UK, and par-

ticularly so along the south coast (QSS up to 0.35). For the median, the skill is stronger

in the west of the UK with skill scores in the east not much higher than 0.2. During

summer, it is in central England and Wales that the VGLM performs most strongly. The

results shown in Figures 5 and 6 clearly demonstrate the good potential of our method

when applied to ECHAM5 precipitation. The high skill indicates that ECHAM5 suffi-

ciently resolves the weather events leading to precipitation events of different magnitudes,

despite a much coarser resolution than that used in RCM simulations.

A natural next step is to compare the performance of RCM- and GCM-MOS. The results

in Figures 3-6 show that, in general, the skill scores are higher when fitted on ECHAM5

precipitation, but there are notable exceptions. Table 2 shows the average Brier and

quantile skill scores for models fitted on CCLM and ECHAM5 precipitation within nine

regions of the UK. In Scotland, particularly during winter, there is very little difference in

skill. In Northern Scotland, CCLM actually performs slightly better than ECHAM5. The

dominance of frontal and orographic processes on precipitation in the northern parts of the

UK may lead to it being well-captured by both nudged simulations. ECHAM5 produces

higher skill scores in Northern Ireland, possibly due to the smaller role of topography in

determining precipitation distribution. ECHAM5 consistently produces Brier and quantile

D R A F T August 8, 2014, 7:30pm D R A F T



X - 18 EDEN ET AL.: STOCHASTIC POSTPROCESSING OF SIMULATED PRECIPITATION

(above the median) skill scores of 7-10% greater than CCLM in southern, central and

eastern parts of the UK during winter. In summer, the difference is smaller and only

apparent in South West England and Central and Eastern England; both models are

indistinguishable in South East England. Interestingly, there is little difference in Brier

skill scores between models during summer (except in Northern Ireland). It is important

to note that the smaller number of wet days during summer is likely to be more difficult

to estimate and the stronger nudging setup used in ECHAM5 does not appear to produce

a better performance.

4. Discussion and conclusions

We have applied a stochastic model output statistics (MOS) method to simultaneously

correct and downscale RCM- or GCM-simulated precipitation to the point scale across the

United Kingdom. In contrast to deterministic MOS methods that only correct systematic

bias, the stochastic approach explicitly accounts for unexplained variability and produces

probabilistic estimates for precipitation at the point scale. A similar approach has been

previously applied to downscale RCM-simulated precipitation at eight stations in the UK;

our work assesses skill over a dense network of stations and represents the first application

of this approach to precipitation from a GCM simulation. Furthermore, comparison of

MOS corrected output from each class of numerical model provides a basis to assess the

added value of RCMs in this setup.

Our method includes two component models: a logistic regression for estimating daily

precipitation occurrence; and a VGLM for estimating precipitation intensity. Both models

required pairwise fitting between temporally coherent sequences of simulated and observed

precipitation events. To achieve this, we used two simulations (RACMO2 and CCLM)
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driven by reanalysis fields using a perfect boundary setup and spectral nudging respec-

tively, and a GCM simulation (ECHAM5) nudged to ERA-40. The predictive power of

our method for the period was assessed in a leave-one-out cross validation framework

for the period 1961-2000 using verification skill scores, which have been developed in the

context of weather forecasting.

When applied to RCM output, our method performs substantially better when fitted on

a simulation that includes spectral nudging, which corroborates the findings of Wong et al.

[in press]. The CCLM simulation used here is nudged only to upper level winds; it is un-

certain to what extent nudging to other variables would improve model performance. For

instance, nudging to atmospheric circulation at different (particularly lower) levels would

limit the random variability of the RCM at the surface. The application of our method to

RCM output provides important clarification of the potential impact of simulation setup

and predictor domain size on model performance. However, the strong performance of our

method when applied to GCM output constitutes a potentially more important finding of

this study. Previous work demonstrated that deterministic MOS performs well for down-

scaling monthly mean precipitation from a simulation of ECHAM5 nudged to ERA-40

[Eden and Widmann, 2014] and our results show that a strong performance also exists in

a stochastic framework for downscaling daily precipitation. GCMs are known to generally

underestimate high intensities of daily precipitation, particularly in comparison to RCMs

[e.g., Jacob et al., 2014]. The fact that our method represents precipitation events up to

the 95th percentile suggests that given realistic large-scale circulation and temperature,

ECHAM5 is able to simulate grid cell precipitation that contains useful information about

actual episodes of heavy precipitation. It is possible to optimise the approach for extreme
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precipitation. The VGLM developed by Wong et al. [in press] was used to estimate six

parameters of a mixture distribution [Frigessi et al., 2002; Vrac and Naveau, 2007] that

combined both gamma and generalised Pareto distributions in order to represent both

the core and extreme tail of the distribution. This method has not yet been applied to

GCM-simulated precipitation and is an avenue for future research.

Although GCM-MOS has previously been implemented, a direct comparison has not yet

been made with RCM-MOS by other work seeking to quantify the added value of RCMs.

For the setup used in this study, GCM-MOS generally produces higher Brier and quantile

skill scores than RCM-MOS and particularly so across central and southern parts of the

UK. This leads to an important question: does applying a stochastic correction to higher-

resolution output from an RCM produce better results and, if so, to what extent? More

specifically, precisely what value is added by the additional RCM step in the downscaling

process? Our approach permits, at least in principle, a comparison of RCM and GCM

following MOS correction but the lesser performance of RCM-MOS is perhaps contrary to

what might be expected: that calibrating a statistical model on high-resolution simulated

output would produce better results.

It is important to highlight that the differences in skill between RCM- and GCM-MOS

may be partly due to the different degree of internal variability in each simulation, i.e. to

how much the simulated weather states can deviate from those in the driving reanalyses.

Different degrees of internal variability are likely because of the different ways of how

the simulated weather states are brought in agreement with the reanalyses. RACMO2 is

only constrained to the reanalysis at the lateral boundaries of the model domain, whereas

CCLM and ECHAM5 are nudged to the reanalysis everywhere. Moreover, the nudging
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techniques used in CCLM and ECHAM5 are different; in CCLM only the upper-level

winds are nudged, while circulation and temperature fields throughout the troposhere

are nudged in ECHAM5. The more comprehensive nudging in ECHAM5 is likely to

allow less internal variability than in the RCM simulations. In addition the variability

that is not controled by the reanalyses can be expected to be larger on smaller spatial

scales, thus it is likely to be larger in RCM than in GCM simulations even if the internal

variability on the same spatial scales was similar. As shown in Figure 1, correlations

between simulated and observed precipitation and sea level pressure are indeed marginally

stronger in ECHAM5 across Europe with the exception of regions of complex topography.

In general however, it appears that the internal variability in all simulations is fairly

similar, at least on monthly and seasonal timescales. In order to fully quantify the internal

variability ensemble simulations are required, which are beyond the scope of this paper.

Although we cannot exclude that the potential differences in the similarity of simulated

and observed weather states affect the performance of the MOS models to some extent

in our setup, our study demonstrates that the predictive power of GCM precipitation

for estimating point-scale daily precipitation is high and similar to that of RCM precip-

itation. Whether this predictive power extends to other regions, particularly to those

characterised by complex topography that are known to be poorly represented in GCMs,

is an important question for subsequent research. Our findings also highlight the difficul-

ties of demonstrating the value added by RCMs in terms of predictive power. As discussed

in previous work addressed the concept of added value [e.g., Di Luca et al., 2012], it is

clear that added value should not simply be defined by greater detail at local scales. We

have shown that such detail can be added stochastically; GCMs have potentially high
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predictive value at local scales, and the predictive skill of an RCM must be greater in

order to add value.

This work has clearly demonstrated that stochastic MOS is a useful tool for downscaling

simulated precipitation from both RCM and GCM simulations to the point scale. The

method used here performs well during both winter and summer in large parts of the UK

with different precipitation climatologies. In the context of application to climate change

studies, a key benefit of precipitation downscaling with MOS is that the simulated precip-

itation, in principle, comprehensively captures the different factors that might contribute

to precipitation changes. As for all statistical correction and downscaling methods the

usefulness of applying MOS in a future climate depends on the stationarity of the un-

derpinning statistical relationships. The extent to which MOS may be transferable to

climate change scenarios is an important question although results from a pseudo-reality

study indicate that MOS relationships for precipitation might indeed be stationary un-

der climate change [Maraun, 2012]. Future application of pairwise models needed for

stochastic MOS is constrained by the availability of multiple climate simulations that are

forced to reanalyses. The constraint is a particular issue for GCM-MOS; the majority

of GCM simulations made available for phase 5 of the Couple Model Intercomparison

Project (CMIP5) are free-running meaning that pairwise fitting of statistical correction

models is not possible. It is likely that nudged simulations could be undertaken using

the CMIP5 suite of models without great additional effort and we believe that the results

here highlight the potential value that such simulations would bring.
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Table 1. UK average seasonal Brier and quantile skill scores when fitted on CCLM-simulated

precipitation with different predictor domain sizes (1961-2000).

BSS QSS50 QSS90

DJF JJA DJF JJA DJF JJA

Single grid cell 0.15 0.11 0.10 0.04 0.14 0.13

3×3 predictor domain 0.16 0.13 0.10 0.04 0.15 0.14

5×5 predictor domain 0.16 0.14 0.10 0.05 0.16 0.16

Table 2. Differences in regionally-averaged seasonal Brier and quantile skill scores for models

fitted on CCLM and ECHAM5 precipitation (1961-2000).

Season BSS QSS25 QSS50 QSS75 QSS90 QSS95

Northern Scotland DJF -0.03 -0.01 -0.02 -0.01 0.00 -0.03

JJA 0.00 0.01 0.00 0.00 0.01 0.01

East Scotland DJF 0.02 0.01 0.03 0.03 0.04 0.05

JJA 0.04 0.02 0.04 0.03 0.05 0.05

South Scotland DJF 0.03 0.03 0.03 0.03 0.02 0.02

JJA 0.02 0.01 0.02 0.02 0.03 0.04

North West England DJF 0.04 0.03 0.04 0.04 0.04 0.05

JJA 0.02 0.01 0.02 0.02 0.04 0.05

North East England DJF 0.05 0.02 0.04 0.05 0.06 0.06

JJA 0.03 0.02 0.03 0.02 0.04 0.04

Northern Ireland DJF 0.09 0.05 0.08 0.08 0.09 0.09

JJA 0.09 0.04 0.06 0.07 0.07 0.06

South West England DJF 0.08 0.04 0.07 0.08 0.09 0.09

JJA 0.02 0.01 0.02 0.03 0.05 0.07

Central and Eastern England DJF 0.09 0.03 0.07 0.08 0.10 0.10

JJA 0.04 0.01 0.03 0.03 0.06 0.07

South East England DJF 0.10 0.03 0.07 0.08 0.10 0.09

JJA 0.02 0.00 0.01 0.02 0.03 0.03
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Figure 1. Correlation between observed (E-OBS) and simulated seasonal mean precipitation

(a-f) and sea level pressure (g-l) from two RACMO2, CCLM (specrally-nudged to reanalysis

fields) and ECHAM5 (nudged to reanalysis fields) for the period 1961-2000.
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Figure 2. Winter (DJF) observed (black), CCLM (red) and RACMO2 (blue) precipitation at

Kinlochewe (top; -5.308, 57.613) and Dover (bottom; 1.322, 51.130) (1991-1995).
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Figure 3. Cross validated Brier skill scores for MOS fitted on precipitation from RACMO2

and CCLM for winter (DJF) and summer (JJA) for the period 1961-2000.
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Figure 4. Cross validated quantile skill scores for MOS fitted on precipitation from RACMO2

and CCLM for winter (DJF) and summer (JJA) for the period 1961-2000. Quantile skill scores

are presented for the 50th (p50), 75th (p75), 90th (p90) and 95th (p95) percentiles.
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Figure 5. Cross validated Brier skill scores for MOS fitted on precipitation from ECHAM5 for

winter (DJF) and summer (JJA) for the period 1961-2000.
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Figure 6. Cross validated quantile skill scores for MOS fitted on precipitation from ECHAM5

for winter (DJF) and summer (JJA) for the period 1961-2000. Quantile skill scores are presented

for the 50th (p50), 75th (p75), 90th (p90) and 95th (p95) percentiles.
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