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Abstract. New mathematical tools and approximations developed for the analysis of
automotive fuel droplet heating and evaporation are summarised. The approach to modelling
biodiesel fuel droplets is based on the application of the Discrete Component Model (DCM),
while the approach to modelling Diesel fuel droplets is based on the application of the recently
developed multi-dimensional quasi-discrete model. In both cases, the models are applied
in combination with the Effective Thermal Conductivity/Effective Diffusivity model and the
implementation in the numerical code of the analytical solutions to heat transfer and species
diffusion equations inside droplets. It is shown that the approximation of biodiesel fuel by a
single component leads to under-prediction of droplet evaporation time by up to 13% which can
be acceptable as a crude approximation in some applications. The composition of Diesel fuel was
simplified and reduced to only 98 components. The approximation of 98 components of Diesel
fuel with 15 quasi-components/components leads to under-prediction of droplet evaporation
time by about 3% which is acceptable in most engineering applications. At the same time, the
approximation of Diesel fuel by a single component and 20 alkane components leads to a decrease
in the evaporation time by about 19%, compared with the case of approximation of Diesel fuel
with 98 components. The approximation of Diesel fuel with a single alkane quasi-component
(C14.763H31.526) leads to under-prediction of the evaporation time by about 35% which is not
acceptable even for qualitative analysis of the process. In the case when n-dodecane is chosen
as the single alkane component, the above-mentioned under-prediction increases to about 44%.

1. Introduction
Modelling of the processes inside internal combustion engines is a challenging task. It includes
modelling of coupled fluid dynamics and heat/mass transfer processes in a complex geometry.
To take into account the complexity of this geometry, the internal combustion engine chambers
should be split up into millions of cells. The parameters of the continuous phase in each of
these cells are constant, but they change in time and from one cell to another. Moreover, the
dynamics of the dispersed phase (fuel droplets) and chemical reactions in each cell need to be
taken into account. The number of these droplets and chemical reactions in each cell can be
many thousands in the general case [1, 2].

The above-mentioned features of the modelling of the engine processes make it impossible
to perform their rigorous quantitative analysis. Two main approaches have been developed
to deal with the complexities of this modelling. The first approach, most widely used in
the engineering community, is based on the application of rather simplistic physical models
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of individual processes, but the geometry of the enclosure is approximated as accurately as
possible. This approach is used in most commercial Computational Fluid Dynamics (CFD)
codes. The second approach is focused on in-depth development of the physical models of
individual processes, ignoring the complexities of the geometry and details of interactions
between various processes. These two approaches do not contradict each other; rather, they
are complementary.

In a series of our previous papers, an attempt has been made to develop the third approach
to this modelling. This approach is focused on establishing a hierarchy of the processes involved
(recognising multiple scales in time and space) and finding a compromise between the accuracy
of the models and their CPU efficiency. This allowed us to develop models which were more
advanced than those used in the conventional CFD codes, but simple enough to enable their
implementation in the above-mentioned codes [3]. Various aspects of this approach were reported
at the previous MURPHYS workshops and published in [4]-[8].

In the current paper, the latter approach is illustrated by our modelling of biodiesel and
Diesel fuel droplet heating and evaporation, which is an integral part of the spray ignition
process in Diesel engines. There will be some overlap with the previously published journal
papers [9, 10]. In contrast to these papers, we focus more attention on the mathematical tools
and approximations used in our analysis. Also, the models will be illustrated using examples
which are different from those given in [9, 10].

2. Basic Equations
The simplest approach to modelling multi-component automotive fuel droplets, widely used in
commercial CFD codes, is based on the assumptions that the thermal conductivity of droplets is
infinitely large, and the diffusion of species is infinitely fast. The first assumption is commonly
justified by the fact that thermal conductivity of droplets is larger than that of ambient air. In
the transient processes, typical for internal combustion engines, however, the main parameter
describing droplet heating is their diffusivity rather than conductivity. The former is much
larger for air than for liquid, which allows us to question the above-mentioned widely used
assumption about the droplet’s infinitely large thermal conductivity. Regarding the second
assumption, it can be questioned based on the estimate of the characteristic time of species
diffusivity. This is generally much larger than the characteristic time of thermal diffusivity.
Thus, the assumption that multi-component automotive fuel droplets can be approximated by
single component droplets (infinitely slow species diffusivity) has more solid physical grounds
than the assumption of infinitely fast species diffusivity. In what follows we will show how both
these approaches can be relaxed, but in such a way that the model remains simple enough for
possible implementation in CFD codes (commercial or research).

The process of heating mono- and multi-component droplets is described by the following
transient one dimensional (1D) heat conduction equation for the temperature T ≡ T (t, R) in
the liquid phase [11, 12]:

∂T

∂t
= κ

(
∂2T

∂R2
+

2

R

∂T

∂R

)
, (1)

where κ = keff/(clρl) is the effective thermal diffusivity, keff , cl, and ρl are the effective thermal
conductivity, specific heat capacity, and density respectively, R is the distance from the centre of
the droplet (assumed to be spherical), t is time. keff is linked with the liquid thermal conductivity
kl via the following equation:

keff = χkl, (2)

where the coefficient χ is approximated as [13]:

χ = 1.86 + 0.86 tanh
[
2.225 log10

(
Ped(l)/30

)]
. (3)
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This coefficient varies from 1 (at droplet Peclet number Ped(l) = Red(l)Prl < 10) to 2.72 (at
Ped(l) > 500). Liquid fuel transport properties and the liquid velocity just below the droplet
surface are used for calculating Red(l).

Equation (1) is solved for t > 0 and 0 ≤ R < Rd, where Rd is the droplet radius, with the
following boundary condition, assuming that the effects of evaporation can be ignored:

h(Tg − Ts) = keff
∂T

∂R

∣∣∣∣
R=Rd−0

, (4)

and the initial condition T (t = 0) = Td0(R), where Ts = Ts(t) is the droplet’s surface
temperature, Tg = Tg(t) is the ambient gas temperature, h is the convection heat transfer
coefficient, linked with the Nusselt number Nu via the following equation Nu = 2Rdh/kg, kg is
the gas thermal conductivity.

To take into account the effect of droplet evaporation, gas temperature is replaced with the
effective temperature defined as:

Teff = Tg +
ρlLṘde
h

, (5)

where L is the latent heat of evaporation, Ṙde is the rate of decrease of droplet radius
due to evaporation (see Equation (13)). Rd is updated at the end of each time step ∆t:
Rd(new) = Rd(old) + Ṙd∆t, where Ṙd = Ṙde + Ṙds, Ṙds is the change of droplet radius due
to swelling (see Equation (13)).

Equations for mass fractions of liquid species Yli ≡ Yli(t, R) inside moving but spherically
symmetric droplets are presented in the following form [14]:

∂Yli
∂t

= Deff

(
∂2Yli
∂R2

+
2

R

∂Yli
∂R

)
, (6)

where i = 1, 2, 3, ...., Deff is the effective mass diffusivity, linked with the liquid diffusivity Dl

via the following equation
Deff = χYDl, (7)

the coefficient χY varies from 1 to 2.72 and can be approximated as:

χY = 1.86 + 0.86 tanh
[
2.225 log10

(
Red(l)Scl/30

)]
, (8)

Scl = νl/Dl is the liquid Schmidt number, νl is the liquid kinematic viscosity. As in the case
of keff , liquid fuel transport properties and the liquid velocity just below the droplet surface
were used for calculating Red(l). The model based on Equations (7) and (8) is known as the
Effective Diffusivity (ED) model. The model, based on the assumption that species diffusivity
is infinitely fast (Deff =∞) is referred to as the Infinite Diffusivity (ID) model. The combined
ITC/ID model is sometimes known as a well-mixed model. In the opposite limiting case, when
there is no species diffusivity (Deff = 0), the multi-component fuel can be dealt with as a
mono-component one.

Equation (6) is solved with the following boundary condition [14]:

α(εi − Ylis) = −Deff
∂Yli
∂R

∣∣∣∣
R=Rd−0

, (9)

and the initial condition Yli(t = 0) = Yli0(R), where Ylis = Ylis(t) are liquid components’ mass
fractions at the droplet’s surface,

α =
|ṁd|

4πρlR
2
d

, (10)
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ṁd is the droplet evaporation rate. In the case of mono-component droplets, their evaporation
rate is estimated from the following equation [15]:

ṁd = −2πRdDvρtotalBMSh, (11)

where Dv is the binary diffusion coefficient of vapour in air, BM is the Spalding mass transfer
number defined as:

BM =
ρvs − ρv∞

ρgs
=
Yvs − Yv∞

1− Yvs
, (12)

Yvs and Yv∞ are the vapour mass fractions near the droplet surface and in the ambient gas, Sh
is the Sherwood number (equal to 2 for an isolated stationary droplet).

When calculating the value of Ṙd we took into account both droplet evaporation during the
time step, and the change in liquid density during this time step (see Equation (20) in [16]):

Ṙd = Ṙde + Ṙds =
ṁd

4πR2
dρl

+
Rd(T 0)

∆t

(ρ(T 0)

ρ(T 1)

)1/3

− 1

 , (13)

where T 0 and T 1 are average droplet temperatures at the beginning t = t0 and the end of the
time step t = t1, ∆t = t1 − t0.

To calculate the species mass evaporation rate ṁdi, we calculate first the values of Yvsi. The
latter depend on the partial pressure of species i in the vapour state in the immediate vicinity
of the droplet surface [17]:

pvsi = Xlsiγip
∗
vsi, (14)

where Xlsi is the molar fraction of the ith species in the liquid near the droplet surface, p∗vsi
is the partial vapour pressure of the ith species in the case when Xlsi = 1, γi is the activity
coefficient. In the limit when γi = 1, Equation (14) describes Raoult’s law. This law is assumed
to be valid in our analysis.

3. Approximations
The rigorous coupled numerical solutions of the equations described in the previous section
would not only require substantial computer power, but would be unnecessary for practical
engineering applications. In what follows we discuss the approximations which can substantially
simplify the analyses of these equations, almost without sacrificing the accuracy of engineering
modelling.

Firstly, we can assume that h = const. This assumption would not be acceptable for the
whole period of heating of evaporating droplets, but its application for a short time step cannot
be questioned except for at the very last stage of droplet evaporation. This assumption allows
us to obtain the analytical solution to Equation (1), subject to the earlier mentioned boundary
and initial conditions [18]:

T (R, t) =
1

R

∞∑
n=1

{
qn exp

[
−κRλ2

nt
]
− R2

d sinλn
|| vn ||2 λ2

n

µ0(0) exp
[
−κRλ2

nt
]

− R2
d sinλn

|| vn ||2 λ2
n

∫ t

0

dµ0(τ)

dτ
exp

[
−κRλ2

n(t− τ)
]

dτ

}
sin

[
λn

(
R

Rd

)]
+ Tg(t), (15)

where λn are solutions to the equation:

λ cosλ+ h0 sinλ = 0, (16)
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|| vn ||2=
Rd
2

(
1− sin 2λn

2λn

)
=
Rd
2

(
1 +

h0

h2
0 + λ2

n

)
,

qn =
1

|| vn ||2
∫ Rd

0
T̃0(R) sin

[
λn

(
R

Rd

)]
dR, κR =

keff

clρlR
2
d

, µ0(t) =
hTg(t)Rd
keff

,

h0 = (hRd/keff) − 1, T̃0(R) = RTd0(R). The solution to Equation (16) gives a set of positive
eigenvalues λn numbered in ascending order (n = 1, 2, ...). The trivial solution λ = 0 is not
considered.

Solution (15) is valid for h0 > −1, which is satisfied, remembering the physical background
of the problem (h > 0). In the limit keff → ∞ the prediction of Expression (15) is identical
to the one which follows from the model based on the assumption that keff = ∞ [19] (Infinite
Thermal Conductivity (ITC) model).

The value of Nu for an isolated moving droplet is estimated based on the following equation
[13]:

Nu = 2
ln(1 +BT )

BT

1 +
(1 + RedPrd)

1/3 max
[
1,Re0.077

d

]
− 1

2F (BT )

 , (17)

where BT =
cpv(Tg−Ts)

Leff
is the Spalding heat transfer number, F (BT ) = (1 + BT )0.7 ln(1+BT )

BT
,

Leff = L+ QL
ṁd

=
∑
i εiLi + QL∑

i
ṁdi

, QL is the power spent on droplet heating, cpv is the specific

heat capacity of fuel vapour, εi = εi(t) are the evaporation rates of species i, ṁi = εiṁd

(ṁd =
∑
i ṁdi). The effects of the interaction between droplets are ignored.

Similarly, assuming that Deff =const and the same for all species, the system of Equations
(6) can be decoupled (this is implicitly assumed in the format of these equations) and each of
these equations can be solved analytically as [14]:

Yli = εi +
1

R

{[
exp

[
Deff

(
λ0

Rd

)2

t

]
[qi0 −Q0εi] sinh

(
λ0

R

Rd

)

+
∞∑
n=1

[
exp

[
−Deff

(
λn
Rd

)2

t

]
[qin −Qnεi] sin

(
λn

R

Rd

)]}
, (18)

where λ0 and λn (n ≥ 1) are solutions to equations

tanhλ0 = − λ0

h0Y
and tanλn = − λn

h0Y
(n ≥ 1),

respectively, h0Y = −
(
1 + αRd

Deff

)
.

Qn =

 −
1

||v0||2
(
Rd
λ0

)2
(1 + h0Y ) sinhλ0 when n = 0

1
||vn||2

(
Rd
λn

)2
(1 + h0Y ) sinλn when n ≥ 1

(19)

qin =
1

||vn||2
∫ Rd

0
RYli0(R)vn(R)dR, (20)

n ≥ 0, where

v0(R) = sinh

(
λ0

R

Rd

)
, vn(R) = sin

(
λn

R

Rd

)
, n ≥ 1.

The validity of the assumption that Deff is the same for all species can be questioned.
However, if this assumption is relaxed then we would need to take into account that Deff becomes
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the function of local mass fractions of all species and the system of Equations (6) can no longer
be decoupled.

The Sherwood number for isolated droplets Sh can be approximated by the following
expression [13]:

Sh = 2
ln(1 +BM )

BM

1 +
(1 + RedScd)

1/3 max
[
1,Re0.077

d

]
− 1

2F (BM )

 , (21)

Scd = νair
Dv

is the Schmidt number, F (BM ) = (1 +BM )0.7 ln(1+BM )
BM

. BT and BM are linked by the

following equation [13]:
BT = (1 +BM )ϕ − 1, (22)

where

ϕ =

(
cpv
cpa

)(
Sh∗

Nu∗

)
1

Le
, (23)

Le = kg/(cpaρtotalDv) = Scd/Prd is the Lewis number,

Sh∗ = 2

1 +
(1 + RedScd)

1/3 max
[
1,Re0.077

d

]
− 1

2F (BM )

 , (24)

Nu∗ = 2

1 +
(1 + RedPrd)

1/3 max
[
1,Re0.077

d

]
− 1

2F (BT )

 . (25)

As follows from Equation (23), ϕ is a function of BT . Hence, the iteration process needs to be
performed to calculate BT from Equation (22). In our previous paper [20] it was shown that, in
some practically important cases, Formula (23) can be simplified assuming that Sh∗

Nu∗ = 1. This
assumption turned out to be too crude in our case.

In the case of multi-component droplets, the problem of modelling droplet evaporation is
complicated by the fact that different species diffuse in air at different rates, and the evaporation
rate of one of the species is affected by the evaporation rate of other species. Our analysis of
ṁd is based on Equation (11), assuming that the mixture of vapour species can be treated as
a separate gas, similar to treating the mixture of nitrogen, oxygen and carbon dioxide as air
(Yvs =

∑
i Yvis).

The approximations described above lead to the model of multi-component droplet heating
and evaporation known as the Discrete Component Model (DCM). In practical engineering
applications, this model is applicable to the cases when the number of components is relatively
small (about a dozen or so). The most widely used approach to modelling heating and
evaporation of droplets with large numbers of components is based on the probabilistic method of
analysis (e.g. Continuous Thermodynamics approach [21]-[23] and the Distillation Curve Model
[24]). In this approach, a number of additional simplifying assumptions were used, including
the assumption that species inside droplets mix infinitely quickly. Models containing features of
both approaches are described in [25, 26].

A new approach to modelling the heating and evaporation of multi-component Diesel fuel
droplets, suitable for the case when a large number of components is present in the droplets, was
suggested in [27]. In this approach it was assumed that the main contribution to automotive
fuels (Diesel and gasoline) comes from alkanes, and the contribution of various n-alkanes was
described by the distribution function fm(n) [27]:

fm(n) = Cm(n0, nf )
(M(n)− γ)α−1

βαΓ(α)
exp

[
−
(
M(n)− γ

β

)]
, (26)
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where n0 ≤ n ≤ nf , subscripts 0 and f stand for initial and final, Γ(α) is the Gamma function,
α and β are parameters that determine the shape of the distribution, γ determines the original
shift, M(n) = 14n+ 2 is the molar mass of alkanes,

Cm(n0, nf ) =

{∫ nf

n0

(M(n)− γ)α−1

βαΓ(α)
exp

[
−
(
M(n)− γ

β

)]
dn

}−1

. (27)

This choice of Cm assures that
∫ nf
n0
fm(n)dn = 1.

Assuming that the properties of hydrocarbons in a certain narrow range of n are close,
the continuous distribution fm(n) was replaced with a discrete one, consisting of Nf quasi-
components with carbon numbers

nj =

∫ nj
nj−1

nfm(n)dn∫ nj
nj−1

fm(n)dn
, (28)

(which are not integers in the general case) and the corresponding molar fractions

Xj =

∫ nj

nj−1

fm(n)dn. (29)

where j is an integer in the range 1 ≤ j ≤ Nf . Note that
∑j=Nf

j=1 Xj = 1. The new structures
with nj defined by Equation (28) are called quasi-components as they cannot be identified
with actual components, characterised by integer n, in the general case, but can be treated as
actual components in the analysis of heat and mass transfer processes in complex fuels, using
the Discrete Component Model (DCM). The DCM in which the quasi-components are used
alongside actual components was called the quasi-discrete model.

It was assumed that all nj−nj−1 are equal, i.e. all quasi-components have the same range of
values of n. For the case when Nf = 1, this approach reduces the analysis of multi-component
droplets to that of mono-component droplets. This model was generalised in [28] to take into
account the dependence of density, specific heat capacity, thermal conductivity and viscosity on
the values of carbon numbers. It is expected to be particularly useful when Nf is much less
than the number of actual species in the hydrocarbon mixture.

There are two main problems with the application of this approach to realistic Diesel fuels.
Firstly, even if we restrict our analysis only to alkanes, it does not appear to be easy to
approximate their distribution with a reasonably simple distribution function fm(n), given
by Expression (26). Secondly, the contributions of the other hydrocarbon groups, apart from
alkanes, cannot be ignored in any realistic model of Diesel fuels. In the model suggested in [10]
both of these issues were addressed.

In the new model suggested in [10] the focus is shifted from the analysis of the distribution
function to the direct analysis of molar fractions of the components. These are described by
the matrix Xnm, where n refers to the number of carbon atoms, and m refers to the groups
(e.g. alkanes) or individual components (tricycloalkane, diaromatic and phenanthrene). The link
between the values of m and the components is shown in Table 1.
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m Component

1 alkanes
2 cycloalkanes
3 bicycloalkanes
4 alkylbenzenes
5 indanes & tetralines
6 naphthalenes
7 tricycloalkane
8 diaromatic
9 phenanthrene

Table 1

For each m the values of njm of quasi-components can be introduced as

n1m =

∑n=n(ϕm+1)m
n=n1m

(nXnm)∑n=n(ϕm+1)m
n=n1m

Xnm
,

n2m =

∑n=n(2ϕm+2)m
n=n(ϕm+2)m

(nXnm)∑n=n(2ϕm+2)m
n=n(ϕm+2)m

Xnm
,

......................................

n`m =

∑n=nkm
n=n((`−1)ϕm+`)m

(nXnm)∑n=nkm
n=n((`−1)ϕm+`)m

Xnm
,


(30)

where n1m=nm(min) is the minimal value of n for which Xnm 6= 0, nkm=nm(max) is the maximal
value of n for which Xnm 6= 0, ` = integer ((km + ϕm)/(ϕm + 1)). Parameter ϕm is assumed to
be integer; ϕm + 1 is equal to the number of components to be included into quasi-components,
except possibly the last one in the group. ϕm is assumed to be the same for all quasi-components
within group m. If ϕm = 0 then ` = km and the number of quasi-components is equal to the
number of actual components. ϕm and km depend on m in the general case.

This approach to the generation of quasi-components is based on the selection of the number
of components in each quasi-component (ϕm+1 in most cases). An alternative approach to their
generation can be based on the selection of the number of quasi-components nqm. In this case
the number of components in each quasi-component, except possibly the last one, (ncm) is taken
equal to the nearest integer of the ratio km/nqm. If km/nqm is not an integer then the number of
components in the last quasi-component (nlcm) is either greater than ncm, if (km/nqm) > ncm,
or less than ncm, if (km/nqm) ≤ ncm. It was found that the second approach is more convenient
for practical applications and it was used in [10]. The values of nim were calculated using
the same approach as in the case presented in Equation (30). Due to the additional dimensions
introduced by the subscript m in Equation (30), the new model was called the multi-dimensional
quasi-discrete model.

The size of quasi-components controls the number of Solutions (18) to be used in the analysis
and ultimately the accuracy of calculations. Another factor affecting this accuracy is the time
step used for calculation of droplet heating and evaporation (the ranges of t over which Solutions
(18) are used for fixed values of input parameters). This time step is expected to be much shorter
than the time steps used for calculation of droplet trajectories. The latter in their turn are much
shorter than the time steps used to calculate the parameters of the carrier (gas) phase. Herein
lies the multi-rate nature of spray calculations used in computational fluid dynamics (CFD)
codes.
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4. Results
In this section, the models described in the previous sections are applied to the analysis of heating
and evaporation of biodiesel (Discrete Component Model (DCM)) and Diesel (multi-dimensional
quasi-discrete model) droplets.

The application of DCM to the analysis of biodiesel fuel droplets can be justified by the
presence of the relatively small number of components in these fuels. In [9], the analysis was
focused on five types of biodiesel fuels: Palm Methyl Ester (PME) produced from palm oil,
Hemp Methyl Esters, produced from hemp seed oil in the Ukraine (HME1) and European
Union (HME2), Rapeseed oil Methyl Ester (RME), produced from rapeseed oil in the Ukraine,
and Soybean Methyl Ester (SME) produced from soybean oil. These fuels contain up to 15
methyl esters and possibly small amounts of unspecified additives, which were treated as methyl
esters with average characteristics. Calculations were performed: (1) taking into account the
contribution of all components of biodiesel fuels; and (2) assuming that these fuels can be treated
as mono-component fuels with average transport and thermodynamic coefficients.

Following [9] it is assumed that a Butterfat Fatti Acid (BFA) (see Table 5 of [29] for the
composition of this fuel) fuel droplet of initial radius Rd0 = 12.66 µm and initial temperature
T0 = 300 K moves with a velocity Ud = 35 m/s [30] is considered. As in [9] it is assumed that the
gas temperature and pressure are equal to 880 K and 30 bars respectively. The values of droplet
surface temperature (Ts) and radius (Rd) versus time (t) for this case are shown in Fig. 1. The
calculations were performed: (1) taking into account the contribution of all 9 components of
the BFA fuel (multi-component model) and using the Effective Thermal Conductivity/Effective
Diffusivity (ETC/ED) model; and (2) replacing these components with a single component with
average transport and thermodynamic properties obtained as described in Appendix C of [9]
(single-component model) and using the Infinite Thermal Conductivity (ITC) model.

As follows from Fig. 1, the droplet temperatures and radii predicted by the multi- and
mono-component models are reasonably close. The single component model under-predicts the
evaporation time by about 13.4% and droplet surface temperature by up to about 12.0%. These
differences are larger than the ones reported in [9] for other types of biodiesel fuel. This implies
that biodiesel fuel droplets can be approximated by mono-component droplets with infinitely
large thermal conductivities if an accuracy of about 13% can be tolerated.

Following [30], the multi-dimensional quasi-discrete model was tested for the analysis of
heating and evaporation of a Diesel fuel droplet of an initial radius Rd0 =10 µm and initial
temperature T0 = 300 K moving at a velocity Ud = 35 m/s. As in the case of biodiesel fuel
droplets, it is assumed that the gas temperature and pressure are equal to 880 K and 30 bars
respectively. The analysis is based on the Effective Thermal Conductivity/Effective Diffusivity
(ETC/ED) model.

The plots of the droplet surface temperatures Ts and radii Rd versus time for six
approximations of Diesel fuel composition are shown in Fig. 2. These are the cases shown
in this figure: the contributions of all 98 components are taken into account (indicated as
(98)); the contribution of 98 components is approximated by 15 quasi-components/components
(indicated as (15)); the contribution of 98 components is approximated by 6 quasi-components
(corresponding to the 6 groups mentioned above) and 3 components (tricycloalkane, diaromatic
and phenanthrene) without taking into account the diffusion between them so that their
mass fractions remain equal to the initial mass fractions and they behave like a single quasi-
component (indicated as (S)), the contributions of only 20 alkane components are taken into
account (standard approximation used in the original quasi-discrete model [27, 28]) (indicated
as (20A)); the contributions of only 20 alkane components are taken into account and these
are approximated by a single quasi-component with the average value of the carbon number
(C14.763H31.526, indicated as (SA)), and the approximation of Diesel fuel by n-dodecane. The
latter approximation is the one which is most widely used in engineering applications. In the
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cases when only the contribution of alkanes was taken into account, the mass fractions of the
components were recalculated to ensure that the total mass fractions of all alkanes were equal
to 1.

As can be seen from Fig. 2, the values of Ts and Rd predicted by 98 and
15 quasi-component/component approximations are reasonably close. The 15 quasi-
component/component approximation under-predicts the evaporation time by about 3.2%. At
the same time the single component approximation under-predicts droplet evaporation time by
about 19.1% which cannot be accepted in most engineering applications. In the case when Diesel
fuel is approximated with 20 alkane components the predicted droplet surface temperatures
appeared to be higher and the evaporation time shorter by about 19.2% than in the case of
approximation of Diesel fuel with 98 components. This means that the approximation of Diesel
fuel with alkanes, a widely used assumption in the modelling of Diesel fuels (see [27, 28] and the
references therein), leads to results which are less accurate, compared with the approximation of
Diesel fuel by a single quasi-component. The approximation of Diesel fuel with a single alkane
quasi-component (C14.763H31.526) leads to under-prediction of the evaporation time by about
35.3% which is not acceptable even for qualitative analysis of the process. In the case when
Diesel fuel is approximated by n-dodecane, this error increases to about 44.2%. This leads us
to question the validity of the results of numerous papers where Diesel fuel was approximated
with n-dodecane (see [15, 3] for the details).

Figure 1. The plots of BFA droplet surface temperatures (Ts) and radii (Rd) versus time
predicted by the multi-component (M) and single-component (S) models. Gas temperature and
pressure are assumed to be equal to 880 K and 30 bar respectively. The initial droplet radius is
assumed to be equal to 12.66 µm and its velocity is assumed to be constant and equal to 35 m/s.
The analysis is based on the Effective Thermal Conductivity/Effective Diffusivity (ETC/ED)
model (E) and Infinite Thermal Conductivity (ITC) model (I).
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Figure 2. The plots of the droplet surface temperatures Ts and radii Rd versus time for
six approximations of Diesel fuel composition, taking into account the contributions of all
98 components (98); 15 quasi-components/components (15); treating Diesel fuel as a single
component (S); 20 alkane components (20A); single alkane components (SA) and n-dodecane.
Gas temperature and pressure are assumed to be equal to 880 K and 30 bar respectively. The
initial droplet radius is assumed to be equal to 10 µm and its velocity is assumed to be constant
and equal to 35 m/s. The analysis is based on the Effective Thermal Conductivity/Effective
Diffusivity (ETC/ED) model.

5. Conclusions
New mathematical tools and approximations developed for the analysis of automotive fuel
droplet heating and evaporation have been summarised. The approach to modelling biodiesel
fuel droplets is based on the application of the Discrete Component Model (DCM) in combination
with the Effective Thermal Conductivity/Effective Diffusivity model and the implementation in
a numerical code of the analytical solutions to heat transfer and species diffusion equations inside
droplets. It is shown that the approximation of BFA biodiesel fuel by a single component, using
the Infinite Thermal Conductivity model, leads to the under-prediction of droplet evaporation
time by about 13% which can be acceptable as a crude approximation in many engineering
applications.

The approach to modelling Diesel fuel droplets is based on the application of the recently
developed multi-dimensional quasi-discrete model. The application of this model has been
combined with the application of the Effective Thermal Conductivity/Effective Diffusivity model
and the implementation of the analytical solutions to heat transfer and species diffusion equations
inside droplets in the numerical code, as in the case of biodiesel fuel droplets.

The composition of Diesel fuel has been simplified and reduced to only 98 components. It
has been pointed out that in contrast to biodiesel fuel droplets, the approximation of Diesel
fuel by a single component leads to under-estimation of droplet evaporation time by more
than 19%, which is not acceptable in many engineering applications. The approximation of

MURPHYS-HSFS-2014 IOP Publishing
Journal of Physics: Conference Series 727 (2016) 012015 doi:10.1088/1742-6596/727/1/012015

11



98 components of Diesel fuel by 15 quasi-components/components leads to under-prediction of
this time by about 3% which is believed to be acceptable in most applications. At the same time,
the approximation of Diesel fuel with 20 alkane components leads to the prediction of higher
droplet surface temperatures and shorter evaporation time than in the case of approximation
of Diesel fuel with 98 components. This means that the approximation of Diesel fuel with
alkanes, a widely used assumption in the modelling of Diesel fuels, leads to results which are
less accurate, compared with the approximation of Diesel fuel by a single quasi-component.
The approximations of Diesel fuel with a single alkane quasi-component (C14.763H31.526) and n-
dodecane lead to under-prediction of the evaporation time by about 35% and 44% respectively,
which is not acceptable even for qualitative analysis of the process.
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