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Backpropagation Neural Network to estimate pavement 

performance: dealing with measurement errors  

   

Abstract  

The objective of this study is to apply the Backpropagation Neural Network (BPN) with 

Generalized Delta Rule (GDR) learning algorithm for reducing the measurement errors of 

pavement performance modeling. The Multi-Layer Perceptron (MLP) network and sigmoid 

activation function are applied to build the BPN network of Pavement Condition Index (PCI). 

Collector and arterial roads of both flexible and rigid pavements in Montreal City are taken as a 

case study. The input variables of PCI are Average Annual Daily Traffic (AADT), Equivalent 

Single Axle Loads (ESALs), Structural Number (SN), pavement’s age, slab thickness and 

difference of PCI between current and preceding year (∆PCI). The BPN networks estimates that 

the PCI has inverse relationships with AADT, ESALs and pavement’s age. The PCI has positive 

relationships with these variables for roads that have recent treatment operations. The PCI has 

positive relationships with SN and slab thickness that imply the increase of pavement condition 

with increasing structural strength and slab thickness. The ∆PCI significantly influences the 

estimation of PCI values. The AADT and ESALs have considerable importance, however, 

pavement’s age and structural characteristics of pavement have insignificant influence in 

determining the PCI values except in the case of flexible arterial roads. 

 

Keywords 

Pavement condition index; Backpropagation Neural network; measurement errors; annual 

average daily traffic; equivalent single axle loads; pavement’s age; structural strength.  

 

 

 

 



3 
 

1. Introduction 

An appropriate pavement performance curve is the fundamental component of pavement 

management system (PMS) and ensures the accuracy of pavement maintenance and 

rehabilitation (M&R) operations (Jansen and Schmidt, 1994; Johnson and Cation, 1992; Attoh-

Okine, 1999). The pavement performance models help PMS to optimize M&R operations and to 

estimate the consequences of M&R operations on the future pavement condition during the life 

span of pavement (George, Rajagopal and Lim, 1989; Li, Haas and Xie, 1997). Early PMSs did 

not have performance curves rather they evaluated only the current pavement condition. The 

simplified performance curves were later introduced based on engineering opinions on the 

expected design life of different M&R operations (Kulkarni and Miller, 2002). The only 

predictive variable of these performance curves was pavement’s age. The development of 

performance curve is explicitly complicated since the pavement performance depends on a large 

number of dynamic and static attributes (Amin, 2015).  

 

There are two streams of pavement performance modeling such as deterministic and stochastic. 

The major differences between deterministic and stochastic performance models are model 

development concepts, modeling process or formulation and output format of the models (Li, 

Xie, and Haas, 1996; Amin, 2015). Deterministic models include primary response, structural 

performance, function performance and damage models for pavements (George et al., 1989; 

Amin, 2015). Different methods of deterministic models are mechanistic, mechanistic-empirical 

and regression models (Saleh, Mamlouk, and Owusu-Antwi, 2000; AASHTO, 1985; George et 

al., 1989; De Melo e Siva, Van Dam, Bulleit, and Ylitalo, 2000). Mechanistic models draw the 

relationship between response parameters such as stress, strain, and deflection (Li et al., 1996). 
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Mechanistic-empirical models draw the relationship between roughness, cracking, and traffic 

loading. Regression models draw the relationship between a performance (e.g. riding comfort 

index) and predictive parameters (e.g. pavement thickness, pavement material properties, traffic 

loading, and age) (Li et al., 1996). A large number of deterministic models are developed for 

regional or local PMSs such as traffic related, time related, interactive-time related and 

generalised models (Attoh-Okine, 1999).  

 

Deterministic models cannot address some important issues such as (a) randomness of traffic 

loads and environmental conditions, (b) difficulties in quantifying the factors or parameters that 

substantially affect pavement deterioration, (c) measurement errors associated with pavement 

condition and (d) bias from subjective evaluations of pavement condition (Li et al., 1997; Amin, 

2015). These constraints of deterministic models open the application of stochastic modeling.  

 

Stochastic models recently have received considerable attentions from pavement engineers and 

researchers (Wang, Zaniewski, and Way, 1994; Karan, 1977). Typically, the Markov Decision 

Process (MDP) defines a stochastic model (Li et al., 1997). The Markov process predicts the 

‘after’ condition of pavement knowing the ‘before’ condition (George et al., 1989). The main 

challenges of these stochastic models are to develop the Transition Probability Matrices (TPMs) 

and to obtain and process a large amount of measured performance data for all pavement 

categories in a road network (Li et al., 1997). However, the main drawbacks of MDP approach 

are (a) it does not accommodate budget constraints along with condition state and (b) pavement 

sections are grouped into a small number of roughly homogeneous families based on pavement 

or road or traffic characteristics (Liebman, 1985; Li, Cheetham, Zaghloul, Helali, and Bekheet, 
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2006). The MDP suggests that pavement sections should be categorized into small numbers of 

families to avoid dealing with large number of pavement families. Similarly, the optimization 

programming of M&R strategies are estimates for a group of pavement sections rather than for 

each road section under a given budget. The optimization programming of M&R strategies are 

calculated using the steady state probabilities of pavement condition. In reality, pavements under 

a given maintenance policy usually take many years to reach the steady state and the pavement 

proportion under a particular state is changing every year. The application of steady state 

probabilities in the optimization objective function does not fully reflect reality (Li et al., 2006). 

 

2. Pavement Performance Models dealing with measurement errors  

Pavement performance models are associated with data collection and measurement errors. Ben-

Akiva et al. (1993) developed the latent performance approach dealing with forecasting 

uncertainties during condition data collection. A latent variable captures the ambiguity in 

measuring infrastructure condition (Durango-Cohen, 2007). This latent model suffers from 

computational limitations. Finding an optimal action for a given period requires estimating and 

assigning a probability to every possible outcome of data-collection process. Number of 

outcomes, probabilities and computational effort to obtain M&R policies increases exponentially 

with the number of distresses being measured (Durango-Cohen, 2007; Amin, 2015).    

 

Durango-Cohen (2007) applied the Polynomial Linear Regression (PLR) model to define the 

dynamic system of infrastructure deterioration process. The PLR model includes condition data 

and a set of exogenous (deterministic and stochastic) inputs. Durango-Cohen’s PLR model 
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cannot define the proportion of errors contributed by each of the factors to the distress outcome 

(Amin, 2015).  

 

Attoh-Okine (1994) proposed the Artificial Neural Network (ANN) for predicting the roughness 

progression in flexible pavements. However, some built-in functions of ANN such as learning 

rate and momentum term of ANN algorithm were not investigated properly. Inaccurate 

application of these built-in functions may affect the aptness of ANN (Attoh-Okine, 1999). 

Attoh-Okine (1999) analyzed the contribution of learning rate and momentum term in Back 

Propagation Neural (BPN) algorithm for the pavement performance prediction of Kansas 

pavement condition data during 1993. The BPN model estimates International Roughness Index 

(IRI) as a function of rutting, faulting distress, transverse cracking distress, block cracking and 

Equivalent Single Axle Loads (ESALs) (Attoh-Okine, 1999). Shekharan (1999) applied the 

partitioning of connection weights in ANN to estimate the relative contribution of structural 

number, age of pavement, and cumulative ESALs to the present serviceability rating (PSR) of 

pavement. The weights of output layer connection are partitioned into input node shares. The 

weights, along the paths from input to output nodes, indicate the relative predictive importance 

of input variables. These weights are used to partition the sum of effects on the output layer 

(Shekharan, 1999). However, Attoh-Okine (1999) and Shekharan (1999) models have not yet 

overcome the functional limitations of neural network algorithms (Amin, 2015).  
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3. Objective 

This study applies the Backpropagation Neural Network (BPN) method with Generalized Delta 

Rule (GDR) learning algorithm to reduce the measurement error of the pavement performance 

modeling. Collector and arterial roads of Montreal City are taken as a case study. 

    

4. Methodology  

 

4.1. Data Collection 

Data on pavement condition, age, traffic volume and road characteristics are collected from the 

Ville de Montréal. Pavement condition data in 2010 and 2009 are used in this study since the 

Ville de Montréal has complete pavement condition data only for these years. 

 

The AASHTO Design Guide (AASHTO, 1993) terms Average Annual Daily Traffic (AADT) as 

the 80-KN Equivalent Single Axle Loads (ESALs) that are the total damage of road pavement 

caused by commercial vehicles. The ESALs are calculated based on number, type and 

distribution of commercial vehicles, road characteristics and truck growth factor on the road 

network of Montreal City. Data on type and distribution of trucks on the road network of 

Montreal City and annual truck growth rate (2 percent) are adopted from the report prepared by 

the Cement Association of Canada (Cement Association of Canada, 2012). Truck distribution 

and truckloads on the collector and arterial roads are shown in Table 1.    

 

[Table 1] 
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Since data on the thickness of pavement’s layers are not available from the Ville de Montréal, 

thickness data for different layers of Portland Cement Concrete (PCC) and Hot Mix Asphalt 

(HMA) pavements in Montreal City are also adopted from the report prepared by the Cement 

Association of Canada (2012). The Structural Number (SN) of the flexible pavements is 

calculated from the thickness of pavement layers and climate condition of Montreal City.  

 

This study categorizes the road segments into four categories based on pavement types (e.g. 

flexible and rigid) and road hierarchies (e.g. arterial and collector). The predictive variable for all 

types of pavement is Pavement Condition Index (PCI). The input variables for the flexible 

pavements are AADT, ESALs, SN, pavement’s age (N) and difference of PCI between current and 

preceding year (∆PCI = PCI2009 – PCI2010). The ∆PCI helps to track the condition deterioration 

or application of treatment operations at the preceding year. The input variables for the rigid 

pavements are AADT, ESALs, slab thickness (T), N and ∆PCI. Since AADT and ESALs are log-

linearly related to PCI, Log10 (AADT) and Log10 (ESALs) are taken as input variables of PCI. 

 

4.2. Learning Process in the Backpropagation neural network 

The fundamental concept of BPN network for a two-phase propagate-adapt cycle is that input 

variables are applied as a stimulus to the input layer of network units that are propagated through 

each upper layer until an output is generated. This estimated output are compared with the 

desired output to estimate the error for each output unit. These errors are transferred backward 

from the output layer to each unit in the intermediate layer that contributes directly to the output. 

Each unit in the intermediate layer receives only a portion of the total error signal based roughly 

on the relative contribution to the original output. This process repeats layer-by-layer until each 

node receives an error representing its relative contribution to the total error. Based on the error 
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received, connection weights are updated by each unit to cause the network to converge toward a 

state allowing all the training patterns to be encoded (Freeman and Skapura, 1991). Diagrams of 

BPN networks for flexible and rigid pavements are shown in Figure 1 and 2 respectively. 

 

[Figure 1] 

[Figure 2] 

 

This study applies a GDR learning algorithm of BPN network. The learning process of BPN 

network for pavement performance modeling is described in this section. Let assume that we 

have a set of P vector-pairs in the training set {(x1, y1), (x2, y2)… (xp, yp)} and the functional 

mapping is 𝑦 = 𝜙(𝑥): 𝑥 ∈ 𝑅𝑁 , 𝑦 ∈ 𝑅𝑀. The processing function is {(x1, d1), (x2, d2)… (xp, dp)} 

with input vectors (xk) and desired output value (dk). The mean square error (𝜀𝑘
2) is defined by 

Equation 1 (Freeman and Skapura, 1991).  

  

𝜀𝑘
2 = 𝜃𝑘 = (𝑑𝑘 − 𝑦𝑘)2 = (𝑑𝑘 − 𝐰𝑡𝐗N)2         where 𝑦 = 𝐰𝑡𝐗    (1) 

 

The weight vector at time t is 𝐰𝑡. Since the weight vector is an explicit function of iteration (R), 

the initial weight vector is denoted w(0) and the weight vector at iteration R is w(R). At each 

step, the next weight vector is calculated following Equation 2 (Freeman and Skapura, 1991).  

 

𝐰(𝑅 + 1) = 𝐰(𝑅) + ∆𝐰(𝑅) = 𝐰(𝑅) − 𝜇∇𝜃𝑘(𝐰(𝑅)) = 𝐰(𝑅) + 2𝜇𝜀𝑁𝐗𝑁  ∀ ∇𝜃(𝐰(𝑅)) ≈

∇𝜃(𝐰)            (2) 
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Equation 2 is the Least Mean Square (LMS) algorithm, where ∆𝐰(𝑅) is the change in weight 

vector (w) at the Rth iteration, and 𝜇 is the constant of negative gradient of the error surface. The 

error surface is either hyperbolic tangent or sigmoid learning function. The constant variable (𝜇) 

determines the stability and speed of convergence of the weight vector toward the minimum 

error value (Freeman and Skapura, 1991).  

 

The input layer distributes the values to the hidden or intermediate layer units. Equation 3 

defines the output (𝑛𝑒𝑡𝑝𝑗) of input node (𝐼𝑝𝑗) assuming that the activation of input node is equal 

to the net input. Similarly, Equation 4 defines the output (𝑛𝑒𝑡𝑝𝑘) of output node (𝑂𝑝𝑘) (Freeman 

and Skapura, 1991). 

 

𝐼𝑝𝑗 = 𝑓𝑗(𝑛𝑒𝑡𝑝𝑗)      𝑛𝑒𝑡𝑝𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑝𝑖 + 𝜃𝑗
𝑁
𝑖=1        (3) 

𝑂𝑝𝑘 = 𝑓𝑘(𝑛𝑒𝑡𝑝𝑘)      ∀ 𝑛𝑒𝑡𝑝𝑘 = ∑ 𝑤𝑘𝑗𝐼𝑝𝑗
𝐿
𝑗=1 + 𝜃𝑘      (4) 

 

Where 𝑤𝑗𝑖 is the weight on the connection from ith input unit to jth hidden unit, 𝑤𝑘𝑗 is the weight 

on the connection from jth hidden unit to pth output unit, and 𝜃𝑗  and 𝜃𝑘 are errors at intermediate 

and output layers respectively. The weight is determined by taking an initial set of weight values 

representing a first guess as the proper weight for the problem. The output values are calculated 

applying the input vector and initial weights. The calculated output is compared with the correct 

output and a measure of the error is determined. The amount of change in each weight is 

determined. The iterations with all training vectors are repeated until the error in all vectors of 

training set is reduced to an acceptable value (Freeman and Skapura, 1991).  
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Equations 3 and 4 define the output of input and output nodes, respectively. In reality, there are 

multiple units in a layer. A single error value (𝜃𝑘) is not suffice for BPN network. The sum of 

error squares for all output units is shown in Equation 5 (Freeman and Skapura, 1991). 

𝜃𝑝𝑘 =
1

2
∑ 𝜀𝑝𝑘

2

𝑀

𝑘=1

=
1

2
∑(𝑦𝑝𝑘 − 𝑂𝑝𝑘)2

𝑀

𝑘=1

 

      

∆𝑝𝜃𝑝(𝐰) =
𝜕(𝜃𝑝)

𝜕𝑤𝑘𝑗
= −(𝑦𝑝𝑘 − 𝑂𝑝𝑘)

𝜕

𝜕𝑤𝑘𝑗
(𝑂𝑝𝑘) = −(𝑦𝑝𝑘 − 𝑂𝑝𝑘)

𝜕𝑓𝑘

𝜕(𝑛𝑒𝑡𝑝𝑘)

𝜕(𝑛𝑒𝑡𝑝𝑘)

𝜕𝑤𝑘𝑗
 

            (5) 

 

Change in weight of output layer is expressed in Equation 6 by combining Equations 3, 4 and 5 

(Freeman and Skapura, 1991).  

  

𝜕(𝜃𝑝)

𝜕𝑤𝑘𝑗
= −(𝑦𝑝𝑘 − 𝑂𝑝𝑘)

𝜕𝑓𝑘

𝜕(𝑛𝑒𝑡𝑝𝑘)

𝜕

𝜕𝑤𝑘𝑗
(∑ 𝑤𝑘𝑗𝐼𝑝𝑗

𝐿

𝑗=1

+ 𝜃𝑘) = −(𝑦𝑝𝑘 − 𝑂𝑝𝑘)𝑓𝑘
′(𝑛𝑒𝑡𝑝𝑘)𝐼𝑝𝑗 

                 (6) 

     

Where 𝑓𝑘
′(𝑛𝑒𝑡𝑝𝑘) is the differentiation of Equation 4. This differentiation eliminates the 

possibility of using a linear threshold unit, since the output function for such a unit is not 

differentiable at the threshold value. Equation 7 estimates the weights on the output layer 

following Equations 2 and 6 (Freeman and Skapura, 1991).   

 

𝑤𝑘𝑗(𝑅 + 1) = 𝑤𝑘𝑗(𝑅) + 𝜏(𝑦𝑝𝑘 − 𝑂𝑝𝑘)𝑓𝑘
′(𝑛𝑒𝑡𝑝𝑘)𝐼𝑝𝑗     (7) 
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Where 𝜏 is a constant and learning-rate parameter. There are two forms of activation functions 

such as hyperbolic tangent [𝑓𝑘(𝑛𝑒𝑡𝑗𝑘) = tan(𝑛𝑒𝑡𝑗𝑘) = (𝑒𝑛𝑒𝑡𝑗𝑘 − 𝑒−𝑛𝑒𝑡𝑗𝑘)/(𝑒𝑛𝑒𝑡𝑗𝑘 + 𝑒−𝑛𝑒𝑡𝑗𝑘)] 

and sigmoid or logistic function[𝑓𝑘(𝑛𝑒𝑡𝑗𝑘) = (1 + 𝑒−𝑛𝑒𝑡𝑗𝑘)−1]. The sigmoid or logistic function 

is for output units in a range of (0, 1) and the hyperbolic tangent function is for output units in a 

range of (-1, 1). Since the output of this model (e.g. pavement condition index) is positive value, 

sigmoid or logistic function is applied and can be expressed by Equation 8 (Freeman and 

Skapura, 1991).  

  

𝑤𝑘𝑗(𝑡 + 1) = 𝑤𝑘𝑗(𝑡) + 𝜏(𝑦𝑝𝑘 − 𝑂𝑝𝑘)𝑂𝑝𝑘(1 − 𝑂𝑝𝑘)𝐼𝑝𝑗 = 𝑤𝑘𝑗(𝑡) + 𝜏𝛿𝑝𝑘𝐼𝑝𝑗  (8) 

 

The errors, estimated from the difference between calculated and desired output, are transferred 

backward from the output layer to each unit in the intermediate layer. Each unit in the 

intermediate layer receives only a portion of the total error based roughly on the relative 

contribution the unit made to the original output. This process repeats layer-by-layer until each 

node in the network has received an error that represents its relative contribution to the total 

error. The connection weights are updated based on the error received by each unit. 

Reconsidering Equations 4, 5, and 8 for Backpropagation algorithm, Equation 9 expresses the 

change of weights in hidden layer (Freeman and Skapura, 1991). 

 

𝜃𝑝 =
1

2
∑(𝑦𝑝𝑘 − 𝑂𝑝𝑘)2

𝑀

𝑘=1

=
1

2
∑(𝑦𝑝𝑘 − 𝑓𝑘(𝑛𝑒𝑡𝑝𝑘))2

𝑀

𝑘=1

=
1

2
∑(𝑦𝑝𝑘 − 𝑓𝑘(∑ 𝑤𝑘𝑗𝐼𝑝𝑗

𝐿

𝑗=1

+ 𝜃𝑘))2

𝑀

𝑘=1
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𝜕𝜃𝑝

𝜕𝑤𝑗𝑖
= − ∑(𝑦𝑝𝑘 − 𝑂𝑝𝑘)

𝑀

𝑘=1

𝜕𝑂𝑝𝑘

𝜕𝑤𝑗𝑖
= − ∑(𝑦𝑝𝑘 − 𝑂𝑝𝑘)

𝑀

𝑘=1

𝜕𝑂𝑝𝑘

𝜕(𝑛𝑒𝑡𝑝𝑘)

𝜕(𝑛𝑒𝑡𝑝𝑘)

𝜕𝐼𝑝𝑗

𝜕𝐼𝑝𝑗

𝜕(𝑛𝑒𝑡𝑝𝑗)

𝜕(𝑛𝑒𝑡𝑝𝑗)

𝜕𝑤𝑗𝑖
 

𝜕𝜃𝑝

𝜕𝑤𝑗𝑖
= − ∑(𝑦𝑝𝑘 − 𝑂𝑝𝑘)

𝑀

𝑘=1

𝑓𝑘
′(𝑛𝑒𝑡𝑝𝑘)𝑤𝑘𝑗𝑓𝑗

′(𝑛𝑒𝑡𝑝𝑗)𝑥𝑝𝑖 

∆𝑝𝑤𝑗𝑖 =
𝜕𝜃𝑝

𝜕𝑤𝑗𝑖
= 𝜏𝑓𝑗

′(𝑛𝑒𝑡𝑝𝑗)𝑥𝑝𝑖 ∑(𝑦𝑝𝑘 − 𝑂𝑝𝑘)

𝑀

𝑘=1

𝑓𝑘
′(𝑛𝑒𝑡𝑝𝑘)𝑤𝑘𝑗 = 𝜏𝑓𝑗

′(𝑛𝑒𝑡𝑝𝑗)𝑥𝑝𝑖 ∑ 𝜕𝑝𝑘

𝑀

𝑘=1

𝑤𝑘𝑗 

            (9) 

 

Equation 9 explains that each weight update in hidden layer depends on the error terms (𝜕𝑝𝑘) in 

the output layer. The BPN network defines hidden layer error as 𝛿𝑝𝑗 = 𝑓𝑗
′(𝑛𝑒𝑡𝑝𝑗) ∑ 𝜕𝑝𝑘

𝑀
𝑘=1 𝑤𝑘𝑗 

to update weight equations analogous to those for the output layer (Equation 10). Equations 8 

and 10 have the same form of delta rule (Freeman and Skapura, 1991). 

 

𝑤𝑗𝑖(𝑡 + 1) = 𝑤𝑗𝑖(𝑡) + 𝜏𝛿𝑥𝑝𝑖         (10) 

 

 

5. Data analysis 

This study partitions the dataset into training (60 percent), testing (30 percent), and validation 

(10 percent) data to estimate the BPN models for all road categories. The BPN network uses the 

training and testing data to train the network and to track errors during training in order to 

prevent overtraining respectively. The BPN algorithm finally estimates the predictive ability of 

the BPN network by using the validation data.  
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5.1 Back Propagation Neural Network Performance 

This study evaluates the performance of BPN models to determine the statistically significance 

of BPN models. The Sum of Squares Error (SSE) and Relative Error (RE) defines the fitness of 

BPN models. The SSE is the cross-entropy error when the sigmoid activation function is applied 

to the output layer. The BPN model minimizes the SSE function during training. The RE is the 

percentage of incorrect predictions and is associated with dependent variable. In other words, the 

RE is the ratio of SSE for dependent variable and ‘null model’.  

 

Estimation of BPN models has insignificant difference between values implied by estimators and 

the true values of the output particularly for training data (Table 2). Testing data, used to track 

errors during training, also contain minor expected value of squared error loss (Table 2). 

Insignificant errors for validation data explain the accurate prediction ability of the constructed 

BPN networks (Table 2).  

 

[Table 2] 

 

The predicted-by-observed and residual-by-observed scatterplot are plotted to understand the 

relationship between predicted and observed data and residual and observed data respectively. 

The predicted and observed data of PCI for the combined training and testing samples are plotted 

on the y-axis and x-axis of the predicted-by-observed scatterplot respectively (Figure 3). Ideally, 

values should lie roughly along a 45-degree line starting at the origin. The scatterplots for 

flexible and rigid pavements of arterial and collector roads show that the BPN models do a 

reasonably good job of predicting PCI (Figure 3). 
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[Figure 3] 

 

The residual and predicted values of PCI are also plotted on the y-axis and x-axis of the residual-

by-observed scatterplot respectively. Figure 4(c) and 4(d) show that the residual-by-observed 

scatterplot for flexible and rigid collector roads are well-behaved and fit scatterplots. In case of 

rigid arterial roads, the residuals roughly form horizontal band and bounce randomly around the 

‘0’ line, however, there are few outliers (Figure 4(b)). These outliers do not have significant 

influence to estimate the BPN network for PCI values. The scattered distribution of residuals vs. 

predicted values of PCI questions the statistical significance or fitness of BPN network for 

flexible arterial roads (Figure 4(b)).   

 

[Figure 4] 

  

5.2 Parameter Estimation of Input Variables  

The predictive variables are initially applied as stimulus to the input layer of network units that is 

propagated to the hidden (intermediate) layers in the BPN network. This study applies the Multi-

Layer Perceptron (MLP) network that is a function of predictors minimizing the prediction error 

of outputs. The MLP procedure computes the minimum and maximum values of the range and 

find the best number of hidden layers within the range (IBM, 2010). The MLP estimates the 

number of hidden layers based on the minimum error in the testing data and the smallest 

Bayesian information criterion (BIC) in the training data (IBM, 2010). The MLP estimates that 

the best number of hidden layers is two. In the first hidden layer of network, the training and 

testing data are distributed into three sub-layers H (1:1), H (1:2) and H (1:3). The sigmoid 



16 
 

activation function is used for the hidden layers so that the activation of the hidden unit is a 

Gaussian ‘bump’ as a function of input units (IBM, 2010).  

  

In reality, the PCI has inverse relationships with AADT, ESALs and pavement’s age for both 

flexible and rigid pavements. Pavement condition deteriorates with increasing traffic volume, 

axle loads and pavement’s age. For the training and testing data of flexible arterial roads in sub-

layers H (1:1) and H (1:2), the PCI has inverse relationships with AADT, ESALs and pavement’s 

age. For example, a one-unit increase in log10 (AADT) will produce an expected decrease in PCI 

of 0.086 and 0.249 in the hidden sub-layers H (1:1) and H (1:2) respectively (Table 3). Similarly, 

in the same sub-layers, a one-unit increase in log10 (ESALs) and pavement’s age will produce an 

expected decrease in PCI of 0.077 and 0.325, and 2.765 and 1.207 respectively (Table 3). In 

contrary, the PCI has positive relationships with AADT, ESALs and pavement’s age in the H 

(1:3) sub-layer of BPN network for the flexible arterial roads. A one-unit increase in log10 

(AADT), log10 (ESALs) and pavement’s age will produce an expected increase in PCI of 0.069, 

0.005 and 0.415 respectively (Table 3). This may be because of the inclusion of training and 

testing data in this sub-layer that have recent treatment operations. The PCI has increased for 

treatment operations instead of high AADT, ESALs and pavement’s age (Figure 5). This 

assumption is strongly supported by the negative value of ∆PCI in the H (1:3) sub-layer of BPN 

network for flexible arterial roads (Table 3). A one-unit increase in ∆PCI will produce an 

expected decrease in PCI of 1.031 in  H (1:3) sub-layer, however, will increase 3.877 and 1.576 

unit of PCI in sub-layers H (1:1) and H (1:2) respectively (Table 3). The positive relationship 

between SN and PCI explains that better structural strength of pavement increases the pavement 

condition. A one-unit increase in SN will produce an expected increase in PCI of 0.020, 0.052 

and 0.622 in H (1:1), H (1:2) and H (1:3) sub-layers respectively (Table 3). 
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For flexible pavement of collector roads, a one-unit increase in ∆PCI will produce an expected 

decrease in PCI of 0.889 in  H (1:2) sub-layer, however, will increase 1.025 and 0.838 unit of 

PCI in sub-layers H (1:1) and H (1:3) respectively (Table 3). A one-unit increase in log10 

(AADT) will increase 0.253 unit of PCI in H (1:2) sub-layer and decrease 0.423 and 0.265 unit of 

PCI in sub-layers H (1:1) and H (1:3) respectively (Table 3). Similarly, a one-unit increase in 

log10 (ESALs) will increase 0.209 unit of PCI in H (1:2) sub-layer and decrease 0.176 and 0.201 

unit of PCI in sub-layers H (1:1) and H (1:3) respectively (Table 3). The relationship between 

PCI and pavement’s age shows that a one-unit increase in pavement’s age will produce an 

expected decrease in PCI of 0.092, 0.021 and 0.017 in the sub-layers H (1:1), H (1:2) and H (1:3) 

respectively (Table 3). The SN has positive relationship with PCI for flexible collector roads. A 

one-unit increase in the SN will produce an expected increase in PCI of 0.111, 0.368 and 0.946 

in sub-layers H (1:1), H (1:2) and H (1:3) respectively (Table 3). 

 

[Table 3] 

[Figure 5] 

 

For rigid pavements of arterial roads, a one-unit increase in ∆PCI will produce an expected 

decrease in PCI of 0.34 in  H (1:1) sub-layer, however, will increase 1.288 and 0.971 unit of PCI 

in sub-layers H (1:2) and H (1:3) respectively (Table 4). A one-unit increase in log10 (AADT) will 

increase 0.661 unit of PCI in H (1:1) sub-layer and decrease 0.059 and 0.097 unit of PCI in sub-

layers H (1:2) and H (1:3) respectively (Table 4). Similarly, a one-unit increase in log10 (ESALs) 

will increase 0.348 unit of PCI in H (1:1) sub-layer and decrease 0.121 and 0.059 unit of PCI in 
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sub-layers H (1:2) and H (1:3) respectively (Table 4). The relationship between PCI and 

pavement’s age shows that a one-unit increase in pavement’s age will produce an expected 

decrease in PCI of 0.286, 1.85 and 1.268 in sub-layers H (1:1), H (1:2) and H (1:3) respectively 

(Table 4). The slab thickness (mm) of rigid pavement has positive relationship with the PCI. A 

one-unit increase in slab thickness will produce an expected increase in PCI of 0.44, 0.282 and 

0.745 in sub-layers H (1:1), H (1:2) and H (1:3) respectively (Table 4). 

 

For rigid pavements of arterial roads, a one-unit increase in ∆PCI will produce an expected 

decrease in PCI of 0.496 in  H (1:1) sub-layer, however, will increase 0.511 and 0.522 unit of 

PCI in sub-layers H (1:2) and H (1:3) respectively (Table 4). A one-unit increase in log10 

(AADT) will increase 0.058 unit of PCI in H (1:1) sub-layer and decrease 0.046 and 0.241 unit of 

PCI in sub-layers H (1:2) and H (1:3) respectively (Table 4). Similarly, a one-unit increase in 

log10 (ESALs) will increase 0.296 unit of PCI in H (1:1) sub-layer and decrease 0.06 and 0.546 

unit of PCI in sub-layers H (1:2) and H (1:3) respectively (Table 4). The relationship between 

PCI and pavement’s age shows that a one-unit increase in pavement’s age will produce an 

expected decrease in PCI of 0.431, 0.266 and 0.323 in sub-layers H (1:1), H (1:2) and H (1:3) 

respectively (Table 4). Similar to the rigid pavements of arterial roads, the slab thickness (mm) 

has positive relationship with PCI in the rigid pavements of collector roads. A one-unit increase 

in slab thickness will produce an expected increase in PCI of 0.327, 0.157 and 0.23 in sub-layers 

H (1:1), H (1:2) and H (1:3) respectively (Table 4). 

 

[Table 4] 
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Each unit of the second hidden layer is a function of the units in the first hidden layer, and each 

response is a function of the units in the second hidden layer. For example, H (1:1), H (1:2) and 

H (1:3) sub-layers of hidden layer 1 contribute -3.553, -1.72 and -0.712 to H (2:1) sub-layer of 

hidden layer 2 for the training and testing data of flexible arterial roads respectively (Table 3). 

The H (1:1), H (1:2) and H (1:3) sub-layers of hidden layer 1 contribute -2.520, -1.303 and -

0.017 to the H (2:2) sub-layer of hidden layer 2 respectively (Table 3). The H (1:1), H (1:2) and 

H (1:3) sub-layers of hidden layer 1 contribute 1.367, 1.043 and -2.341 to the H (2:1) sub-layer; 

and contribute -0.676, -.879 and 1.579 to the H (2:2) sub-layer of hidden layer 2 for the training 

and testing data of flexible collector roads respectively (Table 3).  

 

For the training and testing data of arterial rigid roads, the H (1:1), H (1:2) and H (1:3) sub-layers 

of hidden layer 1 contribute 0.710, -0.930 and 1.380 to the H (2:1) sub-layer; and contribute 

0.685, 1.442 and -0.565 to the H (2:2) sub-layer of hidden layer 2 respectively (Table 4). The H 

(1:1), H (1:2) and H (1:3) sub-layers of hidden layer 1 contribute 1.686, -1.685 and -1.346 to the 

H (2:1) sub-layer; and contribute 2.079, -1.880 and -1.210 to the H (2:2) sub-layer of hidden 

layer 2 for the training and testing data of rigid collector roads respectively (Table 4).  

       

For the output layer, the activation function is the sigmoid function. The H (2:1) and H (2:2) sub-

layers have almost equal weight to output unit in the flexible arterial roads (e.g. 4.151 and 4.034) 

and rigid collector roads (e.g. 3.292 and 3.621) (Table 3 and 4). However, H (2:1) sub-layer has 

approximately double weight to output units comparing to H (2:2) layer in the flexible collector 

roads (Table 3). The H (2:2) layer has approximately triple weight to output units comparing to 

H (2:1) layer in the rigid arterial roads (Table 4). 
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The BPN network performs the sensitivity analyses to compute the importance of input 

variables in determining the PCI based on the combined training and testing samples. The 

importance of an input variable is a measure of how much the PCI value changes for different 

values of an input variable. The PCI values for flexible arterial roads are predominantly 

determined by ∆PCI (36.4 percent) and pavement’s age (36.3 percent) (Table 5). Other input 

variable such as log10 (AADT), log10 (ESALs) and SN have 13.8 percent, 12 percent and 1.5 

percent contributions in determining the PCI value (Table 5). The ∆PCI also significantly 

influence the PCI values of rigid arterial, flexible collector and rigid collector roads by 33.1 

percent, 33 percent and 32.9 percent respectively (Table 5). However, pavement’s age does not 

significantly influence the PCI values of rigid arterial (16.2 percent), flexible collector (12.3 

percent) and rigid collector (21.1 percent) roads (Table 5). 

 

 [Table 5] 

 

The log10 (AADT) and log10 (ESALs) have considerable importance to estimate the PCI values in 

BPN models for rigid arterial, flexible collector and rigid collector roads. For example, the log10 

(AADT) has 23 percent, 22.6 percent and 20.1 percent importance to estimate PCI values of rigid 

arterial, flexible collector and rigid collector roads respectively (Table 5). The log10 (ESALs) 

variable contributes 19.4 percent, 22.1 percent and 24.8 percent of PCI values for rigid arterial, 

collector flexible and collector rigid roads respectively (Table 5). The structural characteristics of 

pavement, SN and slab thickness, for flexible and rigid pavements do not have significant 

influence in determining the PCI values respectively (Table 5). The reason is that the categorical 

values of thickness of pavement’s layers for broader categories of AADT are applied in this study 
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both for flexible and rigid pavements from the report prepared by the Cement Association of 

Canada (2012). There is a strong potential that the BPN models might estimate the significant or 

considerable influences of SN and slab thickness on the PCI for flexible and rigid pavements 

respectively, if the actual data on thickness of pavement’s layers for each road segment can be 

accommodated into the BPN network.  

 

The PCI values for each segment of different road categories of Montreal are estimated by 

applying the developed BPN models during the period of 2009-2058 (Figure 6-9). 

 

[Figure 6] 

[Figure 7] 

[Figure 8] 

[Figure 9] 

 

The BPN methods with GDR learning algorithm overcomes the prevailing functional errors of 

pavement performance modeling such as stability and speed of convergence of the weight vector 

toward the minimum error value. The uncertainty is not only associated with the statistical 

analysis but also with uncertainty of the traffic data collection process. Future studies should 

analyze the reliability of the traffic data (e.g. AADT and ESALs) to overcome these uncertainties. 

In addition, a complete historic record on the pavement condition, pavements’ structural 

attributes, pavement age, traffic volume, and road characteristics will enable to estimate more 

accurate pavement performance model by applying BPN networks.  
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6. Conclusion  

The pavement performance models optimize treatment operations and estimate the consequences 

of treatment operations on the future pavement condition during the life span of pavement. The 

prevailing deterministic and stochastic models cannot overcome some key drawbacks such as 

measurement errors. The objective of this study is to apply the Backpropagation Neural Network 

(BPN) method with Generalized Delta Rule (GDR) learning algorithm to reduce the 

measurement errors of the pavement performance modeling. The Multi-Layer Perceptron (MLP) 

network and sigmoid activation function are applied to build the BPN networks of pavement 

condition index (PCI). Collector and arterial roads of both flexible and rigid pavements in 

Montreal City are taken as a case study.  

 

The BPN networks estimates that the PCI has inverse relationships with AADT, ESALs and 

pavement’s age for flexible and rigid pavements of arterial and collector roads. However, the 

positive relationships are observed for roads that have recent treatments. The PCI has positive 

relationships with SN and slab thickness that imply that the increase of pavement condition 

depends on the increase of structural strength and slab thickness.  

 

Difference between the PCI of consecutive years (∆PCI) significantly influence the PCI values 

of all category roads. The AADT and ESALs have considerable importance to estimate the PCI 

values in BPN models. However, pavement’s age does not significantly influence the PCI values 

except in the case of flexible arterial roads (36.3 percent). The structural characteristics of 

flexible and rigid pavements do not have significant influence in determining the PCI values. 

This is because of considering the categorical values of thickness of pavement layers. There is a 



23 
 

strong potential that the BPN models might estimate the significant or considerable influences of 

SN and slab thickness on the PCI for flexible and rigid pavements respectively, if the actual data 

on layer thickness can be included into the BPN network. Future studies should analyze the 

reliability of the traffic data (e.g. AADT and ESALs) to overcome these uncertainties. In addition, 

a complete historic record on the pavement condition, pavements’ structural attributes, pavement 

age, traffic volume, and road characteristics will enable to estimate more accurate pavement 

performance model by applying BPN networks. 
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