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Abstract: Sunitinib is an anti-cancer tyrosine kinase inhibitor 

associated with severe cardiotoxic adverse effects. Using rat Langendorff 

heart model and human acute myeloid leukemia 60 (HL60) cell line we 

detected the involvement of protein kinase C (PKC) α during Sunitinib-

induced cardiotoxicity and the effect of Sunitinib on cancer progression. 

The cardioprotective and anti-cancer properties of the A3 adenosine 

receptor agonist 2-chloro-N6-(3-iodobenzyl)-adenosine-5′-N-

methyluronamide (IB-MECA) were investigated.  

The cardiac effect of Sunitinib (1µM) and IB-MECA (1nM) treatment was 

measured through haemodynamic and infarct size assessment. The cytotoxic 

effect of Sunitinib (0.1 - 10 μM) and IB-MECA (10 nM - 10 μM) on HL60 

cells was assessed using the methylthiazolyldiphenyl-tetrazolium bromide 

(MTT) assay technique. Myocardial injury associated microRNAs (miR-1, 

miR-27a, miR-133a and miR-133b) and cancer associated microRNAs (miR-15a, 

miR-16-1 and miR-155) were profiled by qRT-PCR in the cardiac tissue and 

HL60 cells, while phosphorylated PKCα levels were measured by Western 

Blot analysis.  

Sunitinib treatment increased infarct size and decreased left ventricular 

developed pressure and heart rate. Co-treatment of IB-MECA reversed the 

myocardial injury produced by Sunitinib administration. IB-MECA did not 

jeopardize the anti-cancer effect of Sunitinib in HL60 cells. The 

expression signature of the specific microRNAs in cardiac tissue and HL60 

cells showed an altered expression profile when treated with Sunitinib 

and IB-MECA. pPKCα levels were increased by Sunitinib treatment in 

cardiac tissue and HL60 cells and co-administration of IB-MECA attenuated 

this increase in the cardiac tissue.  

This study reveals that A3 adenosine receptor activation by IB-MECA 

attenuates Sunitinib-induced cardiotoxicity through the involvement of 

PKCα. 
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Abstract 

Sunitinib is an anti-cancer tyrosine kinase inhibitor associated with severe cardiotoxic 

adverse effects. Using rat Langendorff heart model and human acute myeloid leukemia 60 

(HL60) cell line we detected the involvement of protein kinase C (PKC) α during Sunitinib-

induced cardiotoxicity and the effect of Sunitinib on cancer progression. The cardioprotective 

and anti-cancer properties of the A3 adenosine receptor agonist 2-chloro-N6-(3-iodobenzyl)-

adenosine-5′-N-methyluronamide (IB-MECA) were investigated.  

The cardiac effect of Sunitinib (1µM) and IB-MECA (1nM) treatment was measured through 

haemodynamic and infarct size assessment. The cytotoxic effect of Sunitinib (0.1 – 10 μM) 

and IB-MECA (10 nM – 10 μM) on HL60 cells was assessed using the 

methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay technique. Myocardial injury 

associated microRNAs (miR-1, miR-27a, miR-133a and miR-133b) and cancer associated 

microRNAs (miR-15a, miR-16-1 and miR-155) were profiled by qRT-PCR in the cardiac 

tissue and HL60 cells, while phosphorylated PKCα levels were measured by Western Blot 

analysis.  

Sunitinib treatment increased infarct size and decreased left ventricular developed pressure 

and heart rate. Co-treatment of IB-MECA reversed the myocardial injury produced by 

Sunitinib administration. IB-MECA did not jeopardize the anti-cancer effect of Sunitinib in 

HL60 cells. The expression signature of the specific microRNAs in cardiac tissue and HL60 

cells showed an altered expression profile when treated with Sunitinib and IB-MECA. pPKCα 

levels were increased by Sunitinib treatment in cardiac tissue and HL60 cells and co-

administration of IB-MECA attenuated this increase in the cardiac tissue.  

This study reveals that A3 adenosine receptor activation by IB-MECA attenuates Sunitinib-

induced cardiotoxicity through the involvement of PKCα. 

 

Keywords: 

Rat Langendorff heart model; tyrosine kinase inhibitor Sunitinib; PKCα pathway; HL60 cell 

line; microRNAs; A3 adenosine receptor agonist IB-MECA. 
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1 Introduction 

Sunitinib belongs to the tyrosine kinase inhibitor family and is used to treat various cancer 

forms, such as renal cell carcinoma, gastrointestinal stromal tumours and colorectal cancers 

(Le Tourneau et al., 2007). Sunitinib inhibits cancer specific cellular signalling by targeting 

the adenosine 5'-triphosphate (ATP) binding site of multiple receptor tyrosine kinases 

involved in tumour angiogenesis and tumour cell proliferation: these include receptors for 

platelet-derived growth factor and vascular endothelial growth factor. Attenuation of 

receptors for platelet-derived growth factor and vascular endothelial growth factor signalling 

by Sunitinib is a powerful tumour treatment as both tumour vascularisation is reduced and 

cancer cell apoptosis is initiated (Mendel et al., 2003). 

 

Sunitinib has displayed a lack of kinase selectivity resulting in the cardiotoxic adverse effects 

of Sunitinib (Hasinoff and Patel 2010; Hasinoff, et al., 2008; Krause and Van Etten 2005). 

Cardiotoxic adverse effects of tyrosine kinase inhibitor therapy range from asymptomatic QT 

prolongation, reduction in left ventricular ejection fraction, acute coronary syndromes, 

myocardial infarction and symptomatic congestive heart failure (Chu et al., 2007; Kerkelä et 

al., 2006; Force et al., 2007; Khakoo et al., 2008). Sunitinib inactivates the adenosine 

monophosphate-activated protein kinase, which is crucial for cell survival after hypoxia, 

causing cardiomyocyte death and hypertrophy (Force et al., 2007). Adenosine 

monophosphate-activated protein kinase has the potential to inhibit the activation of PKC 

(Ceolotto et al., 2007). PKC has been shown to have an important role on cardiac 

contractility (Braz et al., 2004). Braz et al. 2004 demonstrated that over expression of PKCα 

causes hypo-contractility which is associated with cardiomyopathy (Braz et al., 2004).  

 

The A3 adenosine receptor agonist IB-MECA has been shown to have powerful 

cardioprotective effects against cardiac damage caused by hypoxia, ischaemia/reperfusion 

injury and anti-cancer treatment with Doxorubicin (Carr et al., 1997; Tracey et al., 1997; 

Maddock et al., 2002a; Shneyvays et al., 2002; Maddock et al., 2003; Emanuelov et al., 

http://en.wikipedia.org/wiki/Gastrointestinal_stromal_tumor
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2010). IB-MECA has been shown to reduce the level of ischaemia and infarct size in the 

heart by reducing abnormal Ca2+ levels and the accumulation of free radicals. It has been 

suggested that the cardioprotection generated by IB-MECA is mediated through the PKC 

pathway (Auchampach et al., 1997), as inhibition of the PKC pathway has been shown to 

produce cardioprotective results by reducing apoptosis (Thuc et al., 2012; Rakkar and 

Bayraktutan, 2016). 

 

The expression of miRNAs miR-155 and the miR-15a-miR-16-1 cluster have been 

associated with cancer development (Calin et al., 2002; Faraoni et al., 2009), while miR-1, 

miR-27, miR-133a and miR-133b have been linked to myocardial injury (Sandhu and 

Maddock, 2014; Ai et al., 2010; D'Alessandra et al., 2010; Wang et al., 2010; Yang et al., 

2007). 

 

We investigated the ability of the A3 adenosine receptor agonist, IB-MECA to reduce the 

level of Sunitinib induced cardiotoxicity in Langendorff heart experiments. The intracellular 

signalling molecule PKCα levels were assessed to determine PKCα’s involvement in 

cardioprotection elicited by IB-MECA. The cytotoxic effect of Sunitinib ± IB-MECA was 

investigated in HL60 cells. Furthermore, microRNAs associated cardiotoxicity and cancer 

development were also profiled.  

 

2 Materials and methods 

2.1 Cell line and reagents  

The HL60 cell line were obtained from European Collection of Cell Culture (England). RPMI 

1640 medium and MTT was purchased from Sigma Aldrich (USA) and the medium 

supplements L-Glutamine, HEPES and antibiotics mix (100 U/ml penicillin and 100 µg/ml of 

streptomycin) were from Invitrogen (UK), while foetal bovine serum (FBS) was from Biosera 

(UK). Formaldehyde was bought from Fisher Scientific (USA).  Protease inhibitor cocktail 

was purchased from Roche (UK). Sunitinib malate and 2,3,5-triphenyltetrazolium chloride 
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(TTC) was purchased from Sigma Aldrich (USA) and IB-MECA was purchased from Tocris 

Bioscience (UK). Antibodies anti-PKCα (phospho T497) pPKCα and total PKC were from 

Abcam (UK), while glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (14C10) rabbit 

mAb and anti-rabbit linked IgG antibody conjugated to horseradish peroxidase were from 

Cell Signalling (UK). RNAlater, Ambion mirVana miRNA Isolation Kit, Applied Biosystems 

MicroRNA Reverse Transcription Kit, TaqMan Universal PCR Master Mix II (uracil N-

Glycosylase not included), Applied Biosystems primers assays (U6, hsa-miR155, hsa-miR-

15a, hsa-miR-16-1, rno-miR-1, hsa-miR-27a, hsa-miR-133a and hsa-miR-133b) were 

purchased from Life Technologies (USA). 

 

2.2 Animals and Ethics 

Adult male Sprague-Dawley rats (300-350 g in body weight); were purchased from Charles 

River UK Ltd (UK) and housed suitably, received humane care and had free access to 

standard diet according to “The Guidance on the Operation of the Animals (Scientific 

Procedures) Act of 1986”. Animals were selected at random for all treatment groups and the 

collected tissue was blinded for infarct size assessment. The experiments were performed 

after approval of the protocol by the Coventry University Ethics Committee. All efforts were 

made to minimize animal suffering and to reduce the number of animals used in the 

experiments.  

 

2.3 Langendorff perfused model using rat hearts 

Rats were sacrificed by cervical dislocation (Schedule 1 Home Office procedure) and the 

hearts were rapidly excised and placed into ice-cold Krebs Henseleit buffer (118.5 mM NaCl, 

25 mM NaHCO3, 4.8 mM KCl, 1.2 mM MgSO4, 1.2 mM KH2PO4, 1.7 mM CaCl2, and 12 mM 

glucose, pH=7.4). The hearts were mounted onto the Langendorff system and retrogradely 

perfused with Krebs Henseleit buffer. The pH of the Krebs Henseleit buffer was maintained 

at 7.4 by gassing continuously with 95 % O2 and 5 % CO2 and maintained at 37 ± 0.5 °C 

using a water-jacketed organ chamber. The left atrium was removed and a latex iso-volumic 
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balloon was carefully introduced into the left ventricle and inflated up to 5-10 mmHg. 

Functional recordings (left ventricular developed pressure and heart rate) were taken via a 

physiological pressure transducer and data recorded using Powerlab, AD Instruments Ltd. 

(UK). Coronary flow was measured by collecting and measuring the volume of perfusate for 

1 min, thereafter it was disposed of. Haemodynamic measurements were taken immediately 

after the 20 min stabilisation period (time point 0 min) and then at a 5 min interval up to 35 

min followed by measurements taken at 15 min interval until the drug exposure. 

Haemodynamic effects are presented as a percentage of the mean stabilisation period for 

each parameter to allow clear comparison across drug groups. 

 

Each Langendorff study was conducted for 145 min: a 20 min stabilisation period and 125 

min of drug or control perfusion in normoxic conditions. Hearts were included in the study 

with heart rate between 225-325 beats per min, left ventricular developed pressure between 

80-150 mmHg and a coronary flow between 3.5-12.0 ml/g (weight of the rat heart) during the 

stabilisation period. Sunitinib malate (1 µM) was administered throughout the perfusion 

period in the presence or absence of IB-MECA (1 nM). The concentration of 1 µM Sunitinib 

was chosen in line with the clinically relevant study by Goodman et al. 2007, where patients 

suffering from imatinib refractory or intolerant gastrointestinal stromal tumour, and patients 

with metastatic renal cell carcinoma where treated with Sunitinib. The steady state blood 

concentrations of Sunitinib was reported to be in the range of 0.1 – 1.0 μM (Henderson et 

al., 2013; Goodman et al., 2007). The dose of 1 nM IB-MECA was chosen in line with 

previous in vitro studies (Maddock et al., 2002b). 

 

Langendorff perfused hearts treated with dimethyl sulfoxide (DMSO) as vehicle were 

recorded as control group. The hearts were then weighed and either stored at -20 °C for 

TTC staining or the left ventricular tissue was dissected free and immersed in RNAlater for 

qRT-PCR or snap frozen by liquid nitrogen for Western blot analysis. 
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2.4 Infarct size analysis  

Frozen whole hearts were sliced into 4-6 transverse sections approximately 2 mm thick and 

incubated in 0.1 % TTC solution in phosphate buffer (2 ml of 100 mM NaH2PO4.2H2O and 8 

ml of 100 mM NaH2PO4, pH = 7.4) at 37 °C for 15 min and fixed in 10 % formaldehyde 

(Fisher Scientific, UK) for 4 h. The risk zone and infarct areas were traced onto acetate 

sheets.  The tissue at risk stained red and infarct tissue appeared pale. The acetate sheet 

was scanned and ImageTool from UTHSCSA (USA) software was used to measure the area 

of infarct and the area of risk. The infarct to risk size was calculated (Infarct size (%) = (Area 

of infarct / Total area of heart slice) X 100) for each individual slice, and an average was 

taken of all of the slices from each heart to give the percentage infarct size of the whole 

heart. The mean of infarct to risk ratio for each treatment group and the mean ± S.E.M. was 

plotted as a bar chart. The infarct size determination was randomised and blinded. 

 

2.5 Human acute myeloid leukaemia HL60 cell studies 

2.5.1 HL60 cell culture 

The HL60 cell line were maintained in RPMI 1640 medium supplemented with L-Glutamine 

(2 mM) and 10 % heat-inactivated FBS and antibiotics mix at 37 °C in a humidified incubator 

under 5 % CO2/95 % air. Cells were counted with nucleoCounter (Chemometec, Denmark) 

and split in a 1:5 ratio every 2-3 days. Cells were incubated with (i) vehicle (Control) or 

increasing concentrations of (ii) Sunitinib (0.1 – 10 μM), (iii) Sunitinib (0.1 – 10 μM) + IB-

MECA (1 nM) or (iv) IB-MECA (10 nM – 10 µM) for 24 h. The dose range for Sunitinib (0.1 – 

10 μM) and IB-MECA (10 nM – 10 µM) was based from cell viability studies, where these 

drugs were showing to have an apoptotic effect on HL60 cells. Sunitinib has shown to 

induced apoptosis in HL60 cells in the dose range of 1-9 µM through G1 cell cycle arrest 

(Teng et al., 2013), while the study by Kohno et al. 1996 showed that IB-MECA 

concentrations ≥ 10 µM caused apoptosis in HL-60 cells (Kohno et al., 1996). Sunitinib and 

IB-MECA were dissolved in DMSO and the DMSO concentration was < 0.05 % (v/v) during 

the in vitro studies.  
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2.5.2 Cell viability assessed by MTT assay 

HL60 cells were incubated in 100 µl of RPMI media in 96-well plates with the above 

indicated concentration of the drugs for 24 h at an initial cell density of 105 cells/ml. After 

each period of incubation 30 µl of MTT solution (5 mg MTT/ml H2O) was added and the 

HL60 cells were incubated for a further 24 h, thus to make sure that the HL60 cells in 

suspension had adequate time to interact with the diluted MTT solution. A volume of 100 µl 

of DMSO was added to each culture and mixed by pipetting to release reduced MTT crystals 

from the cells. Relative cell viability was obtained by scanning with an ELISA reader (Anthos 

Labtech AR 2001 Multiplate Reader, Anthos Labtec Instruments, Austria) with a 480 nm 

filter. Results were expressed as a percentage of viable cells relative to untreated 

cells/control. Experiments were performed in triplicates and repeated ≥ 4 times. Cells treated 

with drugs were normalised against untreated cells, and pEC50 values were calculated using 

the Matlab prism program. 

 

2.6 Real time PCR analysis of miRNA 

2.6.1 miRNA extraction of HL60 cells and Langendorff perfused heart samples  

The HL60 cells were cultured in 6-well plates - each well containing 106 cells - for 24 h with 

(i) Control, (ii) Sunitinib (7 μM), (iii)  Sunitinib (7 μM)+  IB-MECA (1nM) or (iv) IB-MECA 

(1nM). The 7 µM Sunitinib dose was based from the IC50 value from the 0.1 – 10 μM 

Sunitinib dose response curve on HL60 cell viability assay. Langendorff perfused hearts 

were treated for 125 min with (i) Control, (ii) Sunitinib (1 µM), (iii) Sunitinib (1 µM) + IB-MECA 

1nM or (iv) IB-MECA (1 nM). After treatment miRNA from cells/tissue was extracted with the 

mirVana miRNA Isolation Kit (Ambion, USA) according to the manufacturer´s instructions. 

The miRNA quantity and quality was detected by NanoDrop-1000 (NanoDrop Products, 

USA) measuring the absorbance at 260nm and 280 nm to ensure high RNA quality. 

 

2.6.2 Real time PCR of HL60 cells and Langendorff perfused samples 
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A total of 500 ng miRNA was reverse transcribed into cDNA using primers specific for 

housekeeping reference RNA U6 snRNA and target microRNAs: hsa-miR-155, hsa-miR-

15a, hsa-miR-16-1, hsa-miR-1, rno-miR-1, hsa-miR-27a, hsa-miR-133a or hsa-miR-133b (all 

human hsa-miR assays are compatible with rat samples as well) using the MicroRNA 

Reverse Transcription Kit according to the manufacturer's instructions. The reverse 

transcription PCR reaction was performed with the following setup: 1) 16 °C for 30 min, 2) 

42°C for 30 min, 3) 85 °C for 5 min and 4) ∞ at 4°C. The qRT-PCR was performed using the 

TaqMan Universal PCR Master Mix II (no UNG) protocol on the 7500 HT Real Time PCR 

sequence detection system from Applied Biosystems (USA). A 20 μl reaction mixture 

containing 100 ng cDNA, specific primer assays mentioned and the TaqMan Universal PCR 

Master Mix II (no UNG) was used in the qRT-PCR reaction in triplicates.  A non-template 

control was included in all experiments. The real time PCR reaction was performed using the 

program: 1) 2 min at 50°C, 2) 10 min at 95°C, 3) 15 s at 95°C, 4) 1 min at 60°C. Steps 3) 

and 4) were repeated 39 times. The microRNAs data analysis was calculated using the 

ΔΔCT method using the formula X0/R0=2CTR-CTX (Sandhu et al., 2010), where X0 is the 

original amount of target microRNAs (hsa-miR-155, hsa-miR-15a, hsa-miR-16-1, hsa-miR-1, 

rno-miR-1, hsa-miR-27a, hsa-miR-133a or hsa-miR-133b), R0 is the original amount of U6 

snRNA, CTR is the CT value for U6 snRNA, and CTX is the CT value for the target 

microRNAs (hsa-miR-155, hsa-miR-15a, hsa-miR-16-1, hsa-miR-1, rno-miR-1, hsa-miR-27a, 

hsa-miR-133a or hsa-miR-133b). Each individual primer set were calculated and bar charts 

were plotted with mean ± S.E.M.  The mean of the control group was set as 1 for the miRNA 

study. 

 

2.7 Western blot assay 

2.7.1 Protein preparation of HL60 cells  

5x106 cells were incubated for 24 h with (i) Control, (ii) Sunitinib (7 μM), (iii) Sunitinib (7 μM) 

+ IB-MECA (1 nM) or (iv) IB-MECA (1 nM). A concentration 7 µM Sunitinib was chosen to 

reflect the pEC50 value determined during the MTT assay. After treatment cells were 
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harvested and washed with ice-cold phosphate buffered saline. The cell pellet was dissolved 

in ice-cold Protein Lysis Buffer (25 mM HEPES, 100 mM NaCl, 1 mM EDTA, 10 % v/v 

Glycerol, 1 % (v/v) Triton X-100) and cells were lysed by homogenising with a syringe 

needle. After centrifugation at 14,000 rpm for 30 min at 4°C the supernatant was collected 

and the amount of protein extracted from cells was detected using NanoDrop-1000 

(NanoDrop Products, USA) measuring the absorbance at A260.  

 

2.7.2 Protein preparation of Langendorff perfused heart samples 

A total 45-55 mg of the frozen left ventricular tissue was lysed in lysis buffer (NaCl 0.1 M, 

Tris base 10 µM, EDTA 1 mM, sodium pyrophosphate 2 mM, NaF 2 mM, β-glycaophosphate 

2 mM, 4-(2-Aminoethyl, pH = 7.6) benzenesulfonyl fluoride hydrochloride (0.1 mg/ml, 1/1.5 

of protease cocktail tablet) using a IKA Overtechnical T25homogeniser (UK) at 11,000 RPM. 

The supernatants were measured for protein content using NanoDrop from Nanoid 

Technology (USA).  

 

2.7.3 Western blot analysis of HL60 cells and Langendorff perfused heart samples  

A total of 60 µg of protein was loaded to Any kDa Mini-Protean TGX Gel from BioRad (UK) 

and separated at 200 V for 60 min. After separation, the proteins were transferred to the 

Bond-P polyvinylidene difluoride membrane from BioRad (UK) by using the Trans-Blot Turbo 

transfer system from BioRad (UK) and probed for the phosphorylated form pPKCα and total 

form. The membranes were stripped by boiling and the PVDF membrane was used for total 

PKC. The relative changes in the pPKCα protein levels were measured and corrected for 

differences in protein loading as established by probing for total PKC. Phosphorylated 

antibody levels were normalised to total antibody levels in order to correlate for unequal 

loading of protein and differential blot transfer and to identify the level of active vs inactive 

protein levels. Results were expressed as a percentage of the density of phosphorylated 

protein relative to the density of total protein using Image Lab 4.1 from BioRad (UK). The 

phosphorylated antibody levels determination was randomised and blinded.  
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2.8 Statistical analysis 

Results are presented as mean ± S.E.M. Significance of all data sets was measured by one-

way ANOVA analysis with the Tukey post hoc test using the Matlab prism program. The 

following groups were compared during ANOVA analysis: Control versus Sunitinib, control 

versus Sunitinib + IB-MECA, control versus IB-MECA (statistical significance symbol: *) or 

Sunitinib versus Sunitinib + IB-MECA (statistical significance symbol: $). P-values <0.05 

were considered statistically significant. 

 

3 Results 

3.1 Sunitinib treatment injures the heart dramatically and results in decreased cardiac 

haemodynamic parameters heart rate and left ventricular developed pressure 

To characterise the levels of Sunitinib induced cardiotoxicity with and without the co-

administration of cardioprotective IB-MECA the Langendorff perfused heart model was used. 

Hearts were perfused with (i) Control, (ii) Sunitinib (1 µM), (iii) Sunitinib (1 µM) ± IB-MECA (1 

nM), or (iv) IB-MECA (1 nM) and haemodynamic data was collected: left ventricular 

developed pressure, heart rate and coronary flow measurements. The hearts were stabilised 

for a period of 20 min, followed by 125 min of drug perfusion.  

 

Haemodynamic assessment detected at significant decrease in left ventricular developed 

pressure in Sunitinib treated hearts compared to control at time points at time points: 15, 20, 

30, 35, 50, 65, 80, 95, 110, and 125 mins, while left ventricular developed pressure in the 

Sunitinib + IB-MECA group was significantly altered compared to Sunitinib at time point 20 

min (Fig. A.1 and Table 1). 
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Table 1: Left ventricular developed pressure (LVDP) values in Control, 1 µM Sunitinib, 1 µM 

Sunitinib = 1 nM IB-MECA, and IB-MECA treated hearts throughout the 125 min Langendorff 

perfusion. Statistics: Groups compared during One-Way ANOVA analysis: Control versus 

Sunitinib, Sunitinib + IB-MECA, or IB-MECA (a), or Sunitinib versus Sunitinib + IB-MECA (b). 

a or b = P<0.05 (n=6-9). 

LVDP  Control (n=6) Sunitinib (n=9) 

Sunitinib + 

IB-MECA (n=9) IB-MECA (n=9) 

Time / 

min  Mean S.E.M. Mean S.E.M. Mean S.E.M. Mean S.E.M. 

0 101.40 0.92 98.48 1.11 102.38 1.21 102.48 1.72 

5 111.19 4.16 120.61 4.24 108.98 2.62 108.72 1.77 

10 109.04 4.98 114.91 8.74 111.50 3.13 111.30 3.20 

15 109.62 5.69 99.01 a 4.96 105.66 2.97 107.36 3.30 

20 106.26 5.79 94.77 a 3.80 106.76 b 3.30 104.04 3.84 

25 102.62 4.33 96.53 4.06 98.37 5.41 101.35 4.93 

30 106.29 6.06 88.01 a 3.70 98.96 5.44 94.50 4.64 

35 101.69 5.88 90.44 a 3.21 96.76 6.44 97.01 3.68 

50 99.40 8.51 78.25 a 4.52 92.43 6.92 87.31 3.59 

65 92.04 6.98 76.32 a 3.55 87.35 6.35 84.99 4.38 

80 88.70 3.72 76.26 a 3.72 82.23 4.08 82.45 3.93 

95 90.98 4.52 76.68 a 4.89 82.38 5.04 82.97 7.16 

110 84.26 3.96 69.61 a 2.37 80.30 3.53 79.83 7.54 

125 86.08 2.60 65.63 2.37 78.36 4.84 76.16 8.40 

 

 

There was also a significant decline in heart rate in the Sunitinib treatment group compared 

to Control throughout the 125 min drug perfusion at time points: 15, 20, 30, 35, 50, 65, 80, 

and 125 mins. (Fig. A.2 and Table 2). 
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Table 2: Heart rate (HR) values in Control, 1 µM Sunitinib, 1 µM Sunitinib = 1 nM IB-MECA, 

and IB-MECA treated hearts throughout the 125 min Langendorff perfusion. Statistics: 

Groups compared during One-Way ANOVA analysis: Control versus Sunitinib, Sunitinib + 

IB-MECA, or IB-MECA (a), or Sunitinib versus Sunitinib + IB-MECA. a = P<0.05 (n=8-9). 

HR Control (n=8) Sunitinib (n=9) 

Sunitinib + 

IB-MECA (n=9) IB-MECA (n=9) 

Time / 

min  Mean S.E.M. Mean S.E.M. Mean S.E.M. Mean S.E.M. 

0 100.14 0.71 98.22 0.94 99.95 0.97 99.53 1.29 

5 96.74 2.79 100.15 4.50 98.63 2.27 98.51 1.98 

10 98.36 3.80 94.57 3.07 94.62 2.86 99.81 2.36 

15 97.76 4.95 89.78 a 2.33 95.66 1.13 99.87 3.26 

20 98.22 4.87 88.97 a 2.19 92.32 3.60 100.35 3.96 

25 96.92 5.73 91.41 3.13 92.08 1.80 100.06 4.54 

30 99.35 5.74 85.51 a 3.47 89.07 2.38 99.01 5.52 

35 101.60 5.59 88.83 a 3.98 88.72 2.09 101.00 5.07 

50 99.65 6.16 84.82 a 4.05 89.39 3.28 104.13 4.36 

65 96.78 6.27 85.58 a 4.26 88.09 3.42 105.96 4.24 

80 94.95 6.61 85.33 a 4.07 86.13 3.05 102.80 4.77 

95 93.00 3.55 86.34 3.62 87.19 4.14 97.90 6.92 

110 95.96 5.28 85.55 5.53 86.67 4.00 93.76 8.48 

125 95.97 5.51 82.53 a 5.11 86.37 5.55 96.97 8.60 

 

 

Coronary flow was not affected by Sunitinib, IB-MECA or Sunitinib + IB-MECA treatment 

compared to Control (Fig. A.3 and Table 3). 
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Table 3: Coronary flow (CF) values in Control, 1 µM Sunitinib, 1 µM Sunitinib = 1 nM IB-

MECA, and IB-MECA treated hearts throughout the 125 min Langendorff perfusion. 

Statistics: Groups compared during One-Way ANOVA analysis: Control versus Sunitinib, 

Sunitinib + IB-MECA, or IB-MECA, or Sunitinib versus Sunitinib + IB-MECA (n=8-9).  

CF Control (n=8) Sunitinib (n=9) 

Sunitinib + 

IB-MECA (n=9) IB-MECA (n=9) 

Time / 

min Mean S.E.M. Mean S.E.M. Mean S.E.M. Mean S.E.M. 

0 103.69 2.86 96.13 1.22 99.71 0.64 102.09 0.86 

5 97.35 2.20 104.43 2.08 100.08 2.75 99.38 2.39 

10 97.03 2.13 103.73 4.14 98.01 4.25 99.66 2.59 

15 96.99 4.78 98.15 5.25 100.92 3.86 98.71 2.32 

20 98.00 5.04 94.34 3.23 98.78 5.32 98.42 3.14 

25 97.02 6.44 92.72 3.71 94.73 5.10 96.50 4.15 

30 97.46 6.46 83.56 5.00 96.97 5.29 93.72 3.35 

35 96.79 6.41 85.63 4.29 94.91 5.54 93.43 4.49 

50 93.78 7.12 84.30 5.52 89.99 6.34 87.69 3.58 

65 92.54 10.56 80.40 4.24 85.33 6.61 88.71 4.48 

80 88.87 9.42 79.01 3.53 87.08 6.33 86.37 5.47 

95 86.70 6.67 78.76 4.75 87.94 8.36 80.77 5.77 

110 80.04 6.95 75.01 5.59 83.95 8.30 77.43 6.70 

125 79.89 8.23 72.54 5.24 77.92 7.40 71.20 4.93 

 

 

Administration of Sunitinib (1 µM) for 125 min resulted in a significant increase in infarct size 

compared with non-treated hearts (Control: 8.47 ± 0.67 %; Sunitinib: 43.02 ± 3.15 %, n=6, 

P<0.001) (Fig. A.4). This demonstrated that Sunitinib treatment resulted in a drastic increase 
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in cardiac injury and there is also an effect on the cardiac function of the heart as observed 

by a reduction in heart rate and left ventricular developed pressure. 

 

3.2 Sunitinib-mediated cardiotoxicity is reduced by A3 adenosine receptor agonist IB-

MECA 

The effect of the A3 adenosine receptor agonist on cardiac function and infarction was 

investigated. IB-MECA significantly counteracted Suntinib’s effect on left ventricular 

developed pressure and coronary flow, although it could not protect against the bradycardiac 

effect of Sunitinib. In addition, IB-MECA treatment alone did not induce any significant 

change in all studied parameters as compared to the control group (Fig. A.1, A.2 and A.3). 

  

Co-administration of Sunitinib with IB-MECA significantly decreased infarct size compared to 

Sunitinib treated hearts (Sunitinib: 43.02 ± 3.15 %; Sunitinib + IB-MECA: 20.46 ± 3.13 %, 

n=6, P<0.001). Administration of IB-MECA alone did not significantly affect infarct size 

compared to control (Control: 8.47 ± 0.67 %; IB-MECA: 13.80 ± 3.40 %, n=6, P<0.05) (Fig. 

A.4). This demonstrates that IB-MECA is effective in attenuating Sunitinib induced cardiac 

injury. 

 

3.3 IB-MECA does not jeopardize the anti-cancer property of Sunitinib 

To investigate the anti-cancer properties of Sunitinib in combination with the cardioprotective 

agent IB-MECA, HL60 cells were incubated with (i) Control or increasing concentrations of 

(ii) Sunitinib (0.1 – 10 μM), (iii) Sunitinib (0.1 – 10 μM) + 1 nM IB-MECA or (iv) IB-MECA (10 

nM – 10 µM). Cell viability was measured using the MTT assay method after 24 h of 

treatment. Addition of Sunitinib to the HL60 cells decreased cell viability in a dose dependent 

manner (Fig. B.1). The cell viability was decreased significantly from 102.0 ± 1.4 % in control 

to 43.2 ± 6.3 % (n=5-7, P<0.001) when 10 μM Sunitinib was added to the cell culture. Co-

administration of 1 nM IB-MECA did not significantly alter the Sunitinib treatment dose curve 

(pEC50 of Sunitinib = 8.4 ± 1.3 and pEC50 of Sunitinib + 1 nM IB-MECA = 7.0 ± 1.6, n=5-6). 
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Administration of IB-MECA by itself to HL60 cells did not have any impact on cell viability in 

the dose 10 nM – 1 µM, however, addition of a high dose of 10 µM IB-MECA did decrease 

the cell viability significantly. Cell viability decreased significantly from 102.0 ± 1.4 % in 

control to 72.1 ± 17.5 % (n=7, P<0.001) when treated with 10 µM IB-MECA (Fig. B.2). 

 

3.4 microRNAs associated with myocardial injury: miR-1, miR-27a, miR-133a and miR-

133b in heart tissue 

The expression of microRNAs associated with cardiac injury were analysed in left ventricular 

heart tissue, collected after Langendorff perfusion with Sunitinib in the absence or presence 

of IB-MECA. There was a tendency for a decrease in miR-1 (Fig. C.1) and miR-27a (Fig. 

C.2), while miR-133a (Fig. C.3) and miR-133b (Fig. C.4) tended to increase in the Sunitinib 

treatment group when compared to control (Table 4).   
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Table 4: Summary of miRNA expression of cardiotoxicity-linked miRNAs (miR-1, miR-27a, 

miR-133a and miR-133b) in cardiac tissue and cancer-linked miRNAs (miR-15a, miR-16-1 

and miR-155) in HL60 cells (↑=increase in expression, *=statistical significance when 

compare to Control, $=statistical significance when compare to Sunitinib, *=P<0.05, *** or 

$$$=P<0.001, n=5-6). 

 

 

Co-administration of IB-MECA in the presence of Sunitinib increased miR-27a 16.5 folds 

(n=5-6, P<0.001) (Fig. C.2) when compared to hearts treated with Sunitinib alone. The 

remaining three microRNAs also followed the trend with miR-1 (Fig. C.1), miR-133a (Fig. 

C.3) and miR-133b (Fig. C.4) showing a tendency to increase when IB-MECA was co-

administrated with Sunitinib treatment group when compared to Sunitinib treatment group. 

 

Co-administration of IB-MECA in the presence of Sunitinib significantly increased miR-133a 

5.07 folds (n=5-6, p<0.0001) (Fig C.3) and miR-133b 23.38 folds (n=5-6, p<0.0001) (Fig C.4) 

when compared to control hearts. The same pattern for an increase in miR-1 (Fig. C.1) and 

 

Cardiac tissue HL60 cells 

 

Cardiotoxicity-linked miRNAs Cancer-linked miRNAs 

 

miR-1 miR-27a miR-133a miR-133b miR-15a miR-16-1 miR-155 

Control versus  

Sunitinib - - - - - - - 

Control versus 

Sunitinib+IB-MECA - - ↑ *** ↑ *** - ↑ * - 

Control versus  

IB-MECA - - - - - ↑ *** ↑ *** 

Sunitinib versus  

Sunitinib+IB-MECA - ↑ $$$ - - - - - 
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miR-27a (Fig. C.2) was observed in the Sunitinib + IB-MECA group when compared to 

control group, however this increase was not significant. 

 

The miRNA levels were not altered in hearts treated with IB-MECA alone compared to 

control hearts in any of the microRNAs investigated.  

 

3.5 microRNAs associated with apoptosis and cancer development: miR-155, miR-15a 

and miR-16-1 

Treatment of HL60 cells with Sunitinib in the absence and presence of IB-MECA altered the 

expression of microRNAs associated with apoptosis and cancer development. The qRT-

PCR analysis of miR-15a showed a slight increase in miR-15a expression in HL60 cells 

treated with Sunitinib (1.4 folds) and Sunitinib + IB-MECA (1.5 folds) when compared to 

control, while IB-MECA treatment showed a 0.4 fold decrease, however, these changes 

were not significant (Fig. C.5). The expression of miR-15a’s cluster partner, miR-16-1 was 

slightly increased by 3.6 folds in Sunitinib treated HL60 cells when compared to control, and 

co-administration of IB-MECA significantly increased the miR-16-1 expression further 7.7 

folds (n=6, p<0.05) when compare to Sunitinib treated HL60 cells. Treatment with IB-MECA 

showed a significant 46.8 folds increase (n=6, P<0.001) in miR-16-1 expression compared to 

control treated HL60 cells (Fig. C.6). The expression of miR-155 was increased with 2.3 

folds in Sunitinib treated HL60 cells and co-administration of IB-MECA did not alter this 

increase. Treating the HL60 cells with IB-MECA showed a significant 82.2 folds increase 

(n=6, P<0.001) in miR-155 expression compared to control (Fig. C.7) (Table 4). 

 

3.6 IB-MECA protects against Sunitinib-induced cardiotoxicity in Langendorff 

perfused hearts through PKCα signaling pathway 

PKCα has been previously shown to have a major contribution to heart function (Braz et al., 

2004; Lange et al., 2016). We investigated whether PKCα signaling contributed to Sunitinib 

induced cardiotoxicity. PKCα phosphorylation was significantly increased 1.68 fold in the 
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Sunitinib (1µM) treatment group compared to control, and IB-MECA co-administration 

significantly attenuated the increase in PKCα by 0.9 fold (Fig. D.1). The pPKCα levels were 

normalised to total PKCα. The changes in PKCα phosphorylation correlate with the level of 

infarct size in each of the treatment groups (Fig. A.4). 

 

3.7 HL60 cell viability and PKCα signaling 

PKCα has been shown to have a crucial role in cancer progression (Antal et al., 2015). The 

level of pPKCα expression was determined after 24 h treatment of control, Sunitinib (7 µM) ± 

IB-MECA (1 nM) and IB-MECA (1 nM). The pPKCα levels in HL60 cells were significantly 

increased by administration of Sunitinib (7 µM) alone 1.7 fold and by IB-MECA (1 nM) alone 

2.67 fold compared to control. The co-treatment of Sunitinib with IB-MECA also 

demonstrated a significant increase in pPKC levels compared to control, however, the 

combination of Sunitinib and IB-MECA did not reduce the level of PKC phosphorylation 

compared to Sunitinib (Fig. D.2). 

 

4 Discussion  

Sunitinib has very effective antineoplastic activity; however in the clinic it has been shown to 

cause cardiomyopathy, in some patients, that can potentially lead to congestive heart failure 

or even sudden death (Khakoo et al., 2008; Uraizee et al., 2011). Sunitinib is known to 

cause adverse cardiovascular events (Telli et al., 2008) through both on-target inhibition of 

vascular endothelial growth factor, receptors for platelet-derived growth factor, c-KIT and 

fms-like tyrosine kinase-3, and also off-target inhibition of various other kinases essential in 

the maintenance of cardiac function (Ghoreschi et al., 2009; Force and Kolaja, 2011; de 

Jesus-Gonzalez et al., 2012).  

 

We determined the level of heart tissue apoptosis and necrosis caused by Sunitinib and the 

co-treatment of Sunitinib with IB-MECA. Infarct size was significantly increased in hearts 

treated with 1 µM Sunitinib compared to control hearts (Fig. A.4) and Sunitinib treatment 
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significantly decreased both left ventricular developed pressure and heart rate compared to 

control (Fig. A.1 and A.2). This is in accordance with other studies investigating the level of 

cardiotoxicity induced by Sunitinib and supports existing evidence that Sunitinib treatment 

could result in left ventricular dysfunction and even heart failure in patients (Henderson et al., 

2013; Mooney et al., 2015; Chu et al., 2007; Di Lorenzo et al., 2009).  

 

It is well known that A3 adenosine receptor stimulation produced cardioprotective results 

(Carr et al., 1997; McIntosh and Lasley, 2012). In rat hearts, IB-MECA has shown to be 

beneficial for ischaemia (Hochhauser et al., 2007) and IB-MECA has been shown to have 

powerful cardioprotective effects against cardiac damage caused by hypoxia, 

ischaemia/reperfusion injury and anti-cancer treatment with Doxorubicin (Shneyvays et al., 

2002).  We show the co-treatment of the A3 adenosine receptor selective agonist IB-MECA 

attenuated the Sunitinib-induced cardiac injury, as the infarct size was significantly 

decreased by the co-administration of IB-MECA (Fig. A.4). Interestingly, at time point 20 min, 

IB-MECA was shown to attenuate Sunitinib induced left ventricular developed pressure 

decline (Fig. A.1). For the remainder of the experiment, haemodynamic parameters left 

ventricular developed pressure and coronary flow were not significantly altered during the 

co-treatment of Sunitinib and IB-MECA compared to control. Haemodynamic parameters 

were not affected by IB-MECA treatment alone and infarct size was not changed by IB-

MECA compared to control (Fig. A.1-4), therefore, IB-MECA did not produce cardiotoxicity, 

when administered alone. 

 

The key cardioprotective functions mediated by IB-MECA to reduced ischaemia and infarct 

size are through (i) mitochondrial KATP activation: this increase the O2 consumption and ATP 

production in mitochondria (Lipshultz et al., 2013; Sandhu and Maddock, 2014), (ii) protect 

against myofibril damage, (iii) reduced ATP catabolism rate, (iv) reduced intracellular Ca2+ 

levels , (v) activation of PKC-δ, nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-κβ), inducible nitric oxide synthase, mitogen activated protein kinase/extracellular-
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signal-regulated kinase and Akt/ phosphoinositide 3-kinase (Hussain et al., 2014) and (vi) 

activation of mitochondrial permeability transition pore.  

 

Cardiac injury associated microRNAs miR-1, miR-27a, miR-133a and miR-133b have been 

linked to cardiotoxicity (Sandhu and Maddock, 2014). Both miR-1 and miR-133 regulate 

heart development (Chen et al., 2008) and are dysregulated in patients with cardiac 

hypertrophy and heart failure (Care et al., 2007).  The miR-133a has a partial complimentary 

target site in the 3’untranslated region region of ether-a-go-go gene and a reduction in ether-

a-go-go levels can cause the delayed myocyte repolarisation attributed to a long QT interval 

(Xiao et al., 2007). And miR-27a is important in the regulation of contractility within the heart 

(Nishi et al., 2011). On our study we see an increase in miR-27a expression in Sunitinib + 

IB-MECA treated hearts when compared to Sunitinib (Fig. C.2), and both miR-133a and 

miR-133b are increased in Sunitinib + IB-MECA treated hearts when compared to Sunitinib 

(Fig. C.3 and C.4).  The expression of miR-1 was not altered when the hearts were treated 

with Sunitinib or IB-MECA (Fig. C.1). The increase in miR-27a, miR-133a and miR-133b in 

the co-treatment group indicates that the combination of Sunitinib and IB-MECA induces 

stress at a cellular miRNA level, however, in the perfused heart tissue IB-MECA does 

attenuate Sunitinib induced cardiotoxicity. Further investigations unravelling miR-27a, miR-

133a and miR-133b expression levels during Sunitinib and IB-MECA treatment are required 

in order to clarify this.  

 

The tumour suppressor miR-15a/16 cluster is involved in proliferation and growth regulation 

of multiple myeloma cells by blocking protein kinase B serine/threonine-protein-kinase, 

ribosomal-protein-S6, mitogen activated protein kinase and NF-κβ activator MAP3KIP3 

(Roccaro et al., 2009). The role of miR-15a and miR-16-1 in HL60 cells during IB-MECA 

treatment seems complex as the miR-15a unaltered by Sunitinib and IB-MECA treatment 

(Fig. C.5), however, Sunitinib + IB-MECA and IB-MECA treatment significantly increases 

miR-16-1 expression when compared to control (Fig. C.6).  
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The oncogene miR-155 was the first miRNA transcript shown to possess tumour-promoting 

activity (Eis et al., 2005) and miR-155 have been linked to diverse tumour types including B-

cell lymphoma (Eis et al., 2005), and breast (Iorio et al., 2005), lung (Yanaihara et al., 2006) 

and pancreatic adenocarcinoma (Lee et al., 2007). A significant increase in miR-155 was 

detected in HL60 cells treated with IB-MECA alone (Fig. C.7). This is the same pattern 

identified for pPKCα in the HL60 cell western blot (Fig. D.2). A study by Kluiver et al. 2006, is 

in agreement with our findings. Their study showed the expression of mature miR-155 from 

primary miR-155 (pri-miR-155) in both Hodgekin’s lymphoma cell lines and normal lymphoid 

tonsillar B cells was strongly linked to activation by PKC (Kluiver et al., 2006). pri-miR-155 

have shown oncogenic abilities in lymphoma and leukaemia by associating with the 

oncogene c myc (Tam et al., 2002), and Sunitinib has shown to increase phosphorylated 

levels of PKC α/β, this interaction between miR-155 and PKC. This suggests that an 

increase in miR-155 and an increase in pPKCα could indicate anti-cancer properties of 

Sunitinib and IB-MECA. 

 

PKCα is fundamental in stress signalling and it has been shown to have a pro-apoptotic 

effect in the heart (Steinberg, 2004). Elevated levels of the protein PKCα in cardiomyocytes 

is an important contributor to cardiomyopathy which can lead to heart failure (Lange et al., 

2016). We identify an increase in pPKCα levels in hearts treated with Sunitinib (1 μM) 

compared to control (Fig. D.1). This shows a clear involvement of PKCα in Sunitinib-induced 

cardiotoxicity, as co-administration with IB-MECA (1 nM) attenuated this increase in 

phosphorylated PKCα. Previous studies have linked tyrosine kinase inhibitor Imatinib 

therapy of hearts with increases PKC phosphorylation (Steinberg, 2004). This pPKCα 

expression pattern was similar in HL60 cells, where there is a significant increase in PKCα 

phosphorylation by Sunitinib (7µM) (Fig. D.2). Our findings are in agreement with previous 

findings published in Teng et al. 2013 where treatment of HL60 cells with 0.1-1 μM Sunitinib 

resulted in increased phosphorylation of PKCα in a Sunitinib dose dependent manner (Teng 
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et al., 2013). Addition of 1 nM IB-MECA in HL60 cells does increase pPKCα expression 

significantly (Fig. D.2). Interestingly, a study by Nayeem and Mustafa  showed that PKCα 

phosphorylation was elevated by addition of 10 μM adenosine A1 receptor agonist (2s)-N 6-

[2-endo-norbornyl]adenosine in porcine coronary smooth muscle cells (Nayeem and 

Mustafa, 2002). In mice aortic smooth muscle adenosine A1 receptor activation inhibits large 

conductance Ca2+/voltage-sensitive K+ channel activity in a PKCα dependent manner 

(Kunduri et al., 2013). However, it remains to be investigated whether the adenosine A3 

receptor activation is directly correlated to elevated PKCα phosphorylation in 

cardiomyocytes. 

  

Many cardioprotective strategies fail to demonstrate beneficial effects in clinical or in vivo 

settings as they interfere or reduce with the anti-cancer effects and thereby reduce the 

clinical utility (Granger, 2006). Our findings show that co-treatment of HL60 cells with the A3 

adenosine receptor agonist IB-MECA can ameliorate the cardiotoxic effects of Sunitinib 

without affecting its anti-cancer properties. However, A3 adenosine receptor activation has 

shown to play a key role in adenosine-induced inhibition of various tumour cell proliferation 

(Fishman et al., 2000).  

 

This study reveals for the first time that A3 adenosine receptor activation improves 

myocardial survival by attenuating Sunitinib-induced myocardial injury without interfering with 

the anti-tumour efficacy of Sunitinib. Investigating the specific A3 adenosine receptor 

associated signalling pathways and microRNAs involved in Sunitinib-induced cardiotoxicity, 

as well as further investigating PKC signaling, could be important in the development 

of adjunctive cardioprotective chemotherapy treatment.  
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Figure legends for 

Attenuation of Sunitinib-induced cardiotoxicity through the A3 adenosine receptor 

activation 

 

Figure A: Representation of haemodynamic data collected during Langendorff experiments 

over time relative to the stabilisation (S) period and infarct size with the following groups 

(n=6 for all): (i)Control (black), (ii) Sunitinib (1µM) (red), (iii) Sunitinib (1µM) + IB-MECA 

(1nM) (blue) and (iv) IB-MECA (1nM) (green). (1) Change in LVDP (mmHg), (2) Heart Rate 

(HR) and (3) Coronary flow (CF) (ml). (4) Representation of infarct size. Data expressed as 

mean ± S.E.M. Statistics: Groups compared during One-Way ANOVA analysis: Control versus 

Sunitinib, Sunitinib + IB-MECA, or IB-MECA (*), Sunitinib versus Sunitinib + IB-MECA ($). * or $ 

= P<0.05 and *** or $$$ = P<0.001.  

 

Figure B: Cell viability in % of HL60 cells (105 cells/ml) incubated for 24 h with control 

(Control) (n=7) or with increasing concentrations of (1) Sunitinib (0.1 – 10 μM) (red) (n=5) or 

Sunitinib (0.1 – 10 μM) + IB-MECA (1nM) (blue) (n=6) or (2) IB-MECA (10 nM – 10 μM) 

(green) (n=7). Statistics: Groups compared during One-Way ANOVA analysis: Control versus 

Sunitinib or Sunitinib + IB-MECA (*), and Control versus IB-MECA ($). *** or $$$ = P<0.001. 

 

Figure C: qRT-PCR analysis of Langendorff hearts (n=5-6) treated with (i) Control (black), (ii) 

Sunitinib (1 μM) (red), (iii) Sunitinib (1 μM) + IB-MECA (1nM) (blue) or (iv) IB-MECA (1nM) 

(green), showing miRNA expression of (1) miR-1, (2) miR-27a, (3) miR-133a, (4) miR-133b, 

and qRT-PCR analysis of HL60 cells (n=6) treated with (i) Control, (ii) Sunitinib (7 μM) (iii)  

Sunitinib (7 μM) with IB-MECA (1 nM) and (iv) IB-MECA (1 nM), showing miRNA expression 

of (5) miR-15a, (6) miR-16-1 and (7) miR-155. Data expressed as mean ± S.E.M. Statistics: 

Groups compared during One-Way ANOVA analysis: Control versus Sunitinib, Sunitinib + IB-

Figure legends



MECA, or IB-MECA (*), Sunitinib versus Sunitinib + IB-MECA ($). * = P<0.05 and *** or $$$ = 

P<0.001. 

 

Figure D: Western blot analysis showing fold change in pPKCα (1) Langendorff perfused 

heart tissue samples of groups (n=6) (i) Control, (ii) Sunitinib (1 µM) (red), (iii) Sunitinib (1 

µM) + IB-MECA (1 nM) (blue) and (iv) IB-MECA (1 nM) (green) normalised to Total PKC. (2) 

pPKCα western blots of HL60 cell sample groups (n=5) (i) Control, (ii) Sunitinib (7 µM) (red), 

(iii) Sunitinib (7 µM) + IB-MECA (1 nM) (blue) and (iv) IB-MECA (1 nM) (green) normalised to 

Total PKC. Statistics: Groups compared during One-Way ANOVA analysis: Control versus 

Sunitinib, Sunitinib + IB-MECA, or IB-MECA (*), Sunitinib versus Sunitinib + IB-MECA ($). * = 

P<0.05, $$ = P<0.01 and *** = P<0.001. 
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