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Abstract:

The present studgiscusses the mechanical behaviour and modelling of a prototype
automotivemagneterheological MR) dampeywhich presents differeniscous
damping coefficiergtin jounce and reboundheforce generated by tHdR damper
ismeasured at differenelocities and electrical currentsnda modifieddamper

model is proposetb improvefitting of the experimental datdhe model is calibrated
by meansf paraméer identification and for thipurpose a new swarm intelligence
algorithm is proposedhatwe call thecontrastbasedrFruit Fly Optimisation
Algorithm(c-FOA). The performance af-FOA is compareavith that ofGenetic
Algorithms, Particle Swarm Optinsation, Differential Evolution andrtificial Bee
Colony. The comparien is made on the basis of agriori knowledgeof thedamper
modelparametesrange The results confirm the good performanée-6OA under
parametric range uncertain# sensitivityanalysisdiscusses-FOA' s per f or manc e
with respect to its tuningarametersFinally, aride comfortsimulation study
guantifiesthe discrepancies the resultsfor differentidentifieddampemodelsets

The discrepanciasnderline the importance atcurately describin§IR damper
nonlinear behavioyrconsideringhatvirtual sigroff processesire increasingly

gaining momentunn the automotive industry.
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1. INTRODUCTION

Magneterheological (MR) damperfind anincreasinghumber ofapplicationsn
civil, mechanicabnd automotivengineering1-4]. Regarding the latteDigital
Design and/irtual Modelling have been identified as key eleméatsignificantly
redueng development costs and spaegpup time to market5]. Concurrentlyvirtual
testing anchomologation is increasingly gaining moment[6h Pilot studiesn the
automotive industrghow that osts can be reduced up3dimes Thereforethere is
a need for toolthatcan model andccuratelydescrite MR damper behaviour.
InaccurateViR dampemaodellinghas been shown teadto undesirabldimit cycle
behavioursuboptimal energy dissipatioand insufficient contrdl7-8]. The
inaccuracyis mainly due taVIR dampes highly nonlineamechanicabehaviour

MR dampefforceis characterised bsignificant hysteresig9-10] anddelay in the
range of tens of millisecondswingto the inductance of the MR damper electro
magnetic circuif11-12]. Damping characteristics can be continuously adapted by
controlling the electrical current that paste®ugh the electromagnet315].
FurthermoreMR dampersanbemechanicallydesigned to haveifferent damping
coefficientin jounce and rebound6]. The later is particularly important for
automotive suspension contieherethe vehicleresponse iglifferentiatedwhen
hitting a potholeor a bump[17].

Themodelsproposed for describing MR damper behavi@mge fromanalytical
first-principle tophenomenologicadnes Cesmeci and Engin developed a theoretic
flow model based on the Bingham plastic constitutive model and comipaoete
modified BoueWendampemodel[18]. Guoet al developedch more detailegersion
of the previou®neby consideringalsothe compressibility of MRfluid and air [L9].
Both approaches awmdat developing an aocate physical model of damper
hysteretic behaviour. On the other hapothapproachedo nottake into account
dampemasg(inertia), while tests wereonductedn a relatively small range of
frequenciegless than 1 Hz)n [20] a lumped mass parameter moaels developed
as a response to acculgtdescrbing MR dampetbehaviourat different frequencies



In [21] a hyperbolic tangent model wpsoposedor approximatinghe hysteretic
behaviourwithout the need to employ a set of differential equatiBesently Zhang

et al [22] proposed a sigmoichodel for approximating the mechanical behaviour of

an MR damper and compared its performance to the BinginanBoueWen models.
Anotheralternativels to employdynamic neural network22]. The disadvantage of
using neural networks is that no insighgainedevenwhen the model parameters are
identified.In [23] the MR damper model is identified using the recursive lazy learning
method. In lazy learning, each time a prediction is required for a specific query point,
a set of local models is identified. The generalization ability of each model is assessed
througha local crossvalidation procedure. Finally, a prediction is obtained either by
combining or selecting different local models on the basis of some statistic of their
crossvalidation errors. The optimal combination of models is achieved using a
recursive érmula.

As far as it concernsmodelling inautomotiveapplicationsSilveiraet al idealisecthe
damperas a single viscous damping element with diffecemfficients in jounce and
rebound24]. The hystereticoehaviourof the dampewas not taken into account
Similar approaches were followed[2b] and [26] indicating current modelling
practice in automotive engineering [27]-[29] the modified BoueWen damper
modelwas used for developing a seamtive suspension controll@rhe modified
BoucWen model enhances with a spring and a damper the original one to simulate
more accuratelyhe roll-off effect at small velocitiedn that region the damper force

drops more rapidly due to the fluid shear thinning effect.

Suppliers of MR damperslo not provide informatiorelevant tahe hysteretic or roll
off behaviour.To this end experimental tests are necessary for deternatgngater
accuracythedampemechanical behavioyB0-32]. Engineers are left with the task
accurately fitting the experimental dataidgntifying the parameters of the models
employed For this purposéifferentoptimisationwere proposed in the past
including Particle Swarm Optimisation,CascadedEvolutionaryAlgorithms
RecursiveLazyLearning AdaptiveChargedsystem, an@eneticAlgorithms 33-39].
In [33] a radial basis function neural network (RBFNN) was employed to fit the data.
The parameters of RBFNN were determined by applying sequentially a g&w}ic
and differential evolutiodDE) algorithm.Differential evolution was employed as a
means to improve the population generated by G.RBFNN usedl13 neuronsAs

mentioned i{32] the choice of parameters in GA and Bproblemdependent and
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user experiecewas requiredTo this end dferent ruleshave been proposeéu the

literaturebut do not alwaygprovide theexpected performang&4, 35]. The

population size in DE was 100 and in GA 30. The crossover probability in DE was 0.6

andin GA 0.9.Themutation factor was 0.5 in both algorithnrs[36] the GA was

implemented to identify the parameters of a-spmmetrical BoudVen model. The
nonsymmetrical BoudVen model is a variation of the original BeWen model for

describing dampers with asymmetric hysteretic behaviour at near zero velocities. The

GA used realalue random numbers tepresenthe chromosome3he population

size was 50The selection operation was omitt€tossover wasealised by selecting

randomly two chromosomes and generating a child using a linear blending function.
Mutationis implemented by selecting randomly a chromosome and perturbing it

using a Gaussian kerndifter crossover and mutation, 2% of the chromosomes were

replaced by copies of the best chromosoG#® was terminated when the expectation

of improving the idenfication error was below a threshold valte. identify the

parameters of a modified BoWgen modethe Enriched Imperialist Competitive

Algorithm (EICA) was useth [37]. Themodel comprises fourteen variabléfe

utilized test datacoveredvelocities up to 30 mm/&ICA is an agenbased

optimisational gor i t hm. The agents of this algorit
two types of‘countrie$; those with the lower function value are selected to be the

“iI mperialist” nstngt e uaantd itetse froemait he “col o
imperialists. All the colonies of initial countries are divided among the imperialists

based anfluercd e i iffloebceof each*country isinverselyproportional

to its cost. The ChargedSystemSearchwas implemented if38] to identify the

parameters of the modified Bodden modelCh ar ged system search us

and Newton’ s | aws tstakimplace a grdue of pattidedAi nt er act
number of parameterged to be tuned fdmproving the tradeoff between

exploration and exploitation. The algorithm termirnkdaéier 200 iterations. The

authorspointed outhe importance of estimating correctly tlamgeof parameters
beforeoptimisationstarts In the particular study this washievedy a
comprehensivparametrianalysistestingdifferent search domains around the actual

values of the parameteiRarticle Swarn©Optimisation(PSO) was utilised ifi39] to

identify the parameters of an algebraic MR damper model. The algebraic model

included a hyperbolic tangent function to describe the hysteretic behdai®80

theinertia term was 0.6%and parameters p. The population comprised



50 membersThealgorithm terminated whetfie probability ofimproving the
objective functiorwas below a threshal@heutilized test datavere forvelocities up
to 50 mm/s.

The multitude oMR damper models indicatésat model selectiodependglirectly
onthetask In dynamicsandcontrol the most populamneis the modified BoudVen
model[40]. This modelemploys a set ofcoupleddifferential equationo
approximate th&R dampetysteretic behaviouConsequently, simulation of
damper force using BotM/en requiresongertime comparedo algebraic damper
models In the parameter identificatioprocesghe simulation routine mayetcalled
several thousand timesd thus requisealong time to completeA considerably
longer parameter identification procesay becoma significant disadvantader a
commercial product or a tool used by practicing enginéenthermore, the modified
BoucWen model isnot necessarily suitable for automotive MR damasiiscannot

approximatedampers with asymmetrndscous dampingehaviour.

In this paperthe mechanical behaviour opaototypeautomotiveMR dampey with
asymmetric viscous damping coefficient in jounce and reb@ipresentedThe MR
damper was testeat arelevantrange ofvelocities and curren@nda modified
algebraicddampemodelis proposedor improving the fitting of experimental data
An algebraic model is proposed as a mdanminimisingthetime required for
identification.For the parameter identificatiotihe contrasbasedrruit Fly
OptimisationAlgorithm (c-FOA) is employed41]. c-FOA is compared to th@enetic
Algorithm, Differential Evolution, Particle Swarm Optimisation, Artificial Bee
Colony and the mginal FOA The comparison is performeghder the assumptidhat
the initial range of model parameters is unknoWwme results show that the proposed
contrastbased FOA is suitable for identifying tharameters dfIR dampersA
sensitivity analysisvas performed anthefactors that influence-FOA’ s
performanceare discussed. Finally, a ride comfort simulation study quantifies the
discrepancies in the results, for different identified damper model sets. The
discrepancies underline the importanceadurately describing MR dampeonlinear
behaviourconsidering that virtual sigoff processes are increasingly gaining
momentum in the automotive industry.

The rest of the paper is structured as follows: in Seitwe experimental datand
the proposedsymmetridViR damper modehrepresented andiscussedin Sectior3



c-FOA is explained In Sectiod the performance af-FOA iscompared to Genetic
Algorithm, Differential Evolutia, Particle Swarm OptimisatioAytificial Bee
Colonyand the originaFOA. In Section 5ananalysiss carriedout forhighlighting
the tuning parameters offOA and the computational burden reduction when
processed in paralldFinally, Sectiorb gives conclusionsand future work is
proposed.

2. ASYMMETRIC MR DAMPER MODEL

TheprototypeMR damper concerrsmondube damper configuratipasymmetric in
terms of the magnitude of generated forcdsatih directiors of the piston motion.

The electromagnets aattached to the passagés.theMR fluid goesthrough the
passageand under the application of a magnetic fi¢he viscositychangesThe

par t i cdomtaned insthe MR fluidangesusuallybetweenl p and7 py mMs
shown in Figurd, in the absence @magnetic field thgarticlestakerandom

posiions in the presence of a magnetic field they align. The stronger the magnetic
field intensityd is, thegreater theparticles align[42]. The compressed length of the
damper i500 mm and the maximum stroisgl 70 mm. Thecoil resistance is
approximately 1.5n

Magnetic coil not activated @ —>

Figure 1 Alignment of iron particles contained in the MR fluid in the presence of a
magnetic field

2.1 Experimental setup and R damper force rgponse

Theexperimental setup consists of a selyalraulic tensile test machine and an
Electronic Control Unit that controls the current in the electromagnets, housed in the
MR damper, Figur@ [43]. The damper is driven by the setiwpdraulic tester and the
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load cdl measures the generated damping force. The tesderlisstron 8501, this is a
100 kN dynamic rated fram&he system is regulated by an Instron Festk 8800
control systemForce is measured usiag InstronlO kN loadcell. Displacement is
measured using an Instron 26093 linear variable displacement transdu@evDT).
To avoidextreme positionshe damper stroke was positioned at its centre before
startingthe testSampling rate was 250 Hz afmf@iload cycles were colleetl in each
test. The first and the lakstad cycle were omitted to avoid transient effects. The
velocity is obtained from the derivative of displacement with respect to time. The
maximum attainable velocity with thesedtesting machine is 0.1%/s

Load cell

T T
|
5 1 A |
- = = — 1 | LVDT sensor
H“i‘ Jacement Acquisition for ECU
JL P System
5 MR damper
£l
g
Zpe
b @ Electronic Control
H Unit (ECU)

Electronic —l
Control -
Unit

Data acquisition
unit

Figure 2. Experimental set up for testing the mechanical behaviour of the prototype
MR damper.

The damper was tested for sinusoidal &xrmhgle wavenputsw 0 described by

expressions (1) and (2) respectively:
w0 O0DEJI IO (1)
1] OEJJ 20¢JQ p 0

w0 0—0 3 o (2)

whered is theamplitude withd ¥ it vl , "Qs the frequencyf excitation with
" mie ( Gndois time.In the experiments the curré@vasvaried from 0 to 2

~ o~



Figure 3 illustrates thgiangle wavanput used for exciting the MR damperhere
6 mhd,Q p(U
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Figure 3. Triangle wavenput withd 18t d ,"Q p( U a)Positionversus time

b) Velocity versus time

Figure 4ashowsa response dhe damper forcéO to thetriangle wavanput withO

1, and Figure 4b fathetriangle wavanput with'O 1@ ! . As observegdthe
hysteresis loop increasausize when the curremtasincreasedThe inclination of

the forcevelocity curve is different in jounce and reboytite upper curve changes
by 300 N while the lower curve changes approximaté/M). Thesloperemaired
invariablewhenthe currenthangedFurthermoredamper force presents an offset at
zero velocity. The offset is caused by pressurised gas in the accumulator in the
damper.

Due to theoffset anddifference in inclination the damper behaves asymmetrically

with respect tdhe positive and negative axiBor example, in Figure 4a the maximum
positive force is approximately 200 N, while the maximum negative force is 630 N. In
Figure 4b, the maximum positive force is 390 N, while the maximum negative force is
720 N.

For the model identification phase, the MR damper force respongestedor
sinusoidal inputs witlh 18t d ,"Q T@ipfpdh; ( UandO

TSt pdtpdhcst | . Table 1 lists theerformedests. Figure 5 illustrates the MR
damper force responser sinusoidal input wittd 18t d ,"Q 1™ ( nd0

TSt hpdtpdhc st ! .
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Figure 4. MR damperforce response forteiangle wavedispacementvith a) 0
™id ,"Q p( YO mb)do mdrd ,"Q p( YO md!.

Table 1. Loading conditions of the tests on the MR damper

FrequencieXY Hz
Electric currentG A "&0.5 =1 "Q 15 =2
0 A=0.05m |A=0.05m |A=0.05m |A=0.05m
0.5 A=0.05m |A=0.05m |A=0.05m |A=0.05m
1 A=0.05m | A=0.05m |A=0.05m |A=0.05m
15 A=0.05m |A=0.05m |A=0.05m |A=0.05m
2.0 A=0.05m |A=0.05m |A=0.05m |A=0.05m

The MR damper force response is again asymmetric. The maximum positive forces
take lower values compared to the maximum negative forces. This is due to the offset
and slightlyasymmetric hysteretic behaviour. An additional reason for the asymmetry
is the dfferent slopeof theMR damperforceresponse for absolute velocities greater
than approximately 0.07 m/s. @darefulobservatiorrevealsthat the damper force
response for negative velocitiescisserto the horizontal compared to the one

achieved for positive velocitie$his is an indication of the different viscous damping
coefficientfor jounce and rebound.
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Figure 5. Experimental data used in the model identification phaseeHesponse
for sinusoidal inpuwith6 T8t d ,"Q ™ ( Wnd0 mEr@hpdtpdhcst ! .

2.2 Proposed asymmetric MR damper model

The proposed asymmetmicodel isdeveloped on the basis [d2]. A detailed analysis
of this model is provided in [39], where it was shawat it can accurately describe
the hysteretic and retff behaviour of MR damper#n order to minimize the time
required for simulation and parameter identificatioralyebraic model was selected
instead of one that is described by differential eguati Potentially, other algebraic
models could serve the same purpose.

The damper forcé is expressed bfpur elements

O a» 60® VL X® O O (©)]
whereO ando are the damping force and displacement oMiRedamper
respectively0 is the variable damping coefficient; is the variable stiffness

coefficient;a is the equivalent mass that representdMRadamperpiston rod inertial
effectand™O is the initialor preloadorce The hystereti¢orce™O is expressed as

O 0 BReWw (4
and
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® 106 _J Qb (5)

where O is the damping force related ttee magnetic fieldandr , _ are shape factors
that determine thdegree obmoothness dhe hysteretic curves

Parameter® , " Oandu are a function of currefi@12]:

6 0 0 6 J0 (6)
‘00 O "0 J0 (7
b O 0 v 00 (8)

Parameter§ h"Oandl depend linearlpn currentGecause the prototypéR
damper saturates at currents much laogieer known configurations of a dampEor
reliability purposesit is not intended to use théR damperat its limits.

The time response of the curré@inder a commanded inp@ is described by a
first order model 12]:

© -00° 9)

whered is a constant.

To account for the asymmetric damping forttesmodel described by Eq8)¢(9) is
refinedas follows:

O ad» 6D VL H»H O O (20
with

. 0 6 JEQ® m

0 6 JEQ® m (1)

As observeddr6 mthe damping force teri®willbe™O 6° 2 mand
thereforezero ordercontinuity C°is preserved

In conclusion, hefollowing thirteenparameterare used to describe the MR damper
I GROA hFO™OM W W M W N h.
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3. CONTRAST BASED FRUIT FLY OPTIMISATION

3.1 Objective functionformulation

The offset and noise in the experimental data were not removed, althoughsthis
possibleby balancingand lowpass filtering, respectivelyrhereason for thisvasour
aimto assess theptimisationalgorithnis perfornancein the presence @pistemic
uncertainty

In order to obtain the parametélthat best fit the experimental dathemodel
identification problem is formulated §#4]:

Findoptimal™,"l { i M H
that minimises

(12)
Q' Op D OW

wherevectorlis thedesign vectqr€ is the number ofample datdO ; is the'Q
measured damper forgalue "O is the'Q modelpredicted damper foroealue

3.2 The Contrastbased Fruit Fly Optimisation Algorithm(c-FOA)

Pan presentefdr thefirst time theFruit Fly OgtimisationAlgorithm (FOA) and

since then diferent versions were developgidhproving the efficiency and robustness
of theinitial FOA [45-48]. In this paper, theontrastbased Fruit Fly Optimisation
Algorithm (c-FOA), an extension of origindtOA, is presentedit is based on a recent
biological studywhereit was discovered that fruit flieevhensearcing for food, are
stimulatednot onlyby smell but alsdy visually-contrasting objectg19].

Additionally, it wasfound that fruit flycruising speed is dependent on stienulation
level: i.e., when the scent is strong fruit flies surge whileen it is weak they cadn
this studythe fruit fly behaviour isaccordinglyidealised, modelled and further
developed to addresise parameter identification problem of MR damper

The basic steps afFOA are summarised by the pseuttmde shown in Figuré,
while aflowchart is provided in Figur@.

Contrastbased Fruit FNOptimisationAlgorithm (c-FOA)
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20:
21:

22.
23.
24.
25:
26:
27.

begin
Selectinitial design vector v, m /s the number ofdesignvariables
Generate initial fruit fly swarm ¥:'Q pltf8 hj in the vicinity of so using
auniform discrete distribution ph)
Calculate smell concentratior(objective function) 3 | at™l,3 1  /Fl
2 AT E OE A peEO@dance andEfing theo@stperforming one
3i* &r TEBI
If31° 31 thenv="T
while (Q 1)
Increment k
Reposition the fruit fly swarm v "Q, near v "Qusing uniform
discrete distribution ph)
Calculate smell concentratior8 | Q="Qv Q
Rank the fruit flies and find the best:
3"E ATE 1TEBIE
f3FE 31 Ethenv™Q p V¥71Q
Increment response timed Q@ 0 @p p
if(0Q QQUEOH Q
f(3IFE 31 E [)
reduce the searchradius E p AD E
(surging phase)
elseifGI"E 31 E [) ,
the worst performing candidate,"I° E ,
3I“E AEFE | A@I1 E hbecomes the new
attractonpoint v Q p  ¥Q
(contrast based vision phase)
elseifGI"E 31 E [)
return to the previous best,ty Q p v Q |
(casting phaseand memory function)
end if
Initialise response timed ™ Q 1
end if
end while
Post process results and visualisation
end

Figure 6. Pseudecode of theContrastbased Fruit Optimisation Algorithifc-FOA).

3.3 Swarm localisationnormalisationand termination

A coordinate system is defined and the position of a fruit fly with coordif@tes))

is defined. TheemainingN-1 fruit flies are located, randomly, in the vicinity (@ ,
) according t&Eq. (13).
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Yes

Swarm Generation
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Fruit Fly localization
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Smell concentration
calculation

v
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v

Current average
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v

Decision delay phase

Surge phase

Contrast phase

Cast phase

Figure 7. Flowchart of proposed-FOA algorithm



® Q ® Qop 0209¢cA ®EQ p,j=1, nandi=1, .N
®Q ® Qop 02¢d ®¥&EQ p,j=1, mandi=1, .N (13)
wherek= 1 , 2K isthe iteration numbemis the number of optimisation variables,
N is the size of the swarm ahd® ¢ ‘Qis a random number from a uniform discrete
distribution defined in the interval [Nred. The use of a discrete distribution is not
observed in nature, but is a fead introduced to improviaea | gor i t hm’ s per f or
in multi-parameter problemM is a scaling parameter that defines how coarse or fine

the search strategy is.

To eachfruit fly a smell concentratio® “Ois assignedbased on how close each fruit

fly parameter® "Q, & Q) is to the origin of the coordinate system:

0 Q O &0 (14)
000 i Q& Q J Q&Q :)—O pTQ (15)

Each fruit fly is as¥%da@atdddeermiredbythée concen:
objective function valu&yad 'Q  "Q"1 "Q . A small objective function value
corresponds to a position with high smell concentratigmosition that is closer to the

“ f o sodrte or the optimized value
The fruit flies are ranked on the basis of their smell concentration, and the fruit fly
"' "Q that achieves the highest smell concentratitii "Q at position " Q, & Q)

is identified. In caséhesmell concentratiofiY @ "Q is beter than that of the current
point of attractiolY Q, then"Y& "Q becomes the new point of attraction.

1 1= S (16)
D& Q dFQHehQQ dQ

The algorithm terminates when the maximum nunhkbef iterations is reached.
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3.4 Response @lay, castsurge and visual contrast phases

Fruit flies do not respond immediatebyvingto sensorymotordelayswhen the
stimulation change#\s presented indpP], the delay is constant and independent of
other parameters. Thikelayis idealised and modelled the c-FOA algorithm as

follows.

In the case thdestobjective functiorvalueimproves ovethe last iterations,where
arepresents the delathes war m ent &'r sp ht ehsee ,“ sdiufmgi flieg
move towards the attraction poiht Q atgreater speex

ity Y )
lg 'y

Therequirement fothe completion oé iterationsbefore a decision is made

(17)

inspiredby fruit flies’ food search behaviour. Fruit fliedsso present a delay in
decisionmaking most probably for compensatitite chaotianovemenof smell
outdoorg49].

In case théestobjective functiorvaluedoes not change ovtre last iterations the

whi ch

swarm enters t he duingvwhichahe fruitfoen dre attracted byp h as e,

the point® "Q that achievethe lowest smell concentrationA @va Q@ Y& Q:

ifC'Ya'Q “Ya Q |

60 deptan &0 (18)
wherek is the current iteration.
if(Ya™ @ “Ya™Q II)
(19

O QI oegQQ oI

This resembles the memory function of fruit fli&§)]f

4. DAMPER MODEL IDENTIFICATION

The model identificatioproblem was solved using the Genetic Algorithm,
Differential Evolution, Particle Swarm Optimisation, Artitat Bee Colony, original
FOA andc-FOA. All algorithms were implementdd MATLAB , versionl6a The
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algorithmswereterminated after 4000, 8000 ah@C00 function evaluations

("Q6 £ 0 ¢).80 independent repetitions were condudtednalyse statistically the
performance oéach algortim. The reason for this is thstochastic behaviour of the
optimisationalgorithms.The onlyoptimisationparameterariedwas the population
size.The resof theoptimisationparametersvere notvaried However
recommendedtandardralues were useld1-55]. It was assumed thétere isno a
priori knowledge of thelampemodel parameterange Therefore, he design space
wasconsideredinbounded

The Genetic Algorithm(GA) versionutilisedin this studyis the one provided in the
Global Optimisation ToolbgXMATLAB . Three differentpopulationsizes were
testedcomprisng 50, 100 and 15@embersA uniform distributiongenerates

randomly the members using the floatimgint representatioi.o eachmember

objective function valueare assignednd sorted according ta 80% of the new
generation is created by crossover and 5% progresses from tpenelction. A
stochastic uniform algorithm is used for the parent selection. The crossover operator
uses a weighted average of the paréortsreating the new generatidv utationis

used to create temainingmembersin mutationthenewdirectionsare mandomly

picked up GA terminat& when the maximum number of function evaluations
generations is reached, unless it stalled. This happens when for over 200 generations
the objective function does not change significantly.

The Differential Evolution(DE) versionemployed in this study isom [56] and is the
standard DE augmented with dither. This is a more robust version compared to the
standard oneThe populatiocomprisedb0, 100 and 15nembersThe mutation
operator wasO 1@ v The crossover probability in the crossover operatorovas

p. A uniform distribution creatkthe individualsDE internally treats all variables as
floating-point values regardless of their tyE terminatel when the maximum
number of functiorevaluationsvas reached

The Particle Swarm OptimisatigRSO)version employed is the one available in

MATLAB, versionl6a. The initial swarm was generated randomly. The algorithm
chooses the new member positions based on
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o 0Py ¥ I Jmx oz ¥ 0 Jmp o

(20)
W @ U
The inertia term 7 Tfp® is calculated in relation to the number of stéils
Q@ 1 62 &

Qai ©QIAT 1?

In the case the objective function does moprove between two consecutive
iterations the neighbourhood siZ€Qis changed according to:

60 1 EVQ 6Q W (22)

wherel v fp mandp v iEthe total number of particlesyd Q T® Uus the
minimum number of particle§ he parameters ande weresetase .

p& wPSOterminatel when the maximum number of function evaluatiozs
reached

The Atrtificial Bee Colony algorithnii-ABC) versionwasusedin this comparison

[57]. The total number of employed bees wias v 1p T andp v.The greedy

selection mechanism was employed as the selection operator. The upper bound of the
acceleration coefficient wds  p. I-ABC terminated when the maximum number

of function evaluationsvas reached

The original Fruit FlyOptimisation Algorithm(FOA) employed in this study is
detailed in $8]. The population size was set equalito v tp 1 andp v members.
Forc-FOA the following parameters are selectéd: v il VD T O

p mAl A m8a FOA terminated wheithe maximum number of function
evaluationavas reached
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4.1 Data fit performance

In Table2 theresults of the statistical analysis for the 30 repetitions are |iShe.
results correspond to the setoptimisationparameters that achieved the best average
value. A detailed analysis of the algorithms performance is provided in Appendix A,
Tables10-14. The mean value of the optimized values is denbted the standard
deviationSD and the best optimized val®/. As observed®SOand e¢FOA achieve

the best performance compared to the rest algoritR®@achieves a slightly better
objective function value, while-EOA reaches slightly better average value. The
result of the KruskaWallis test is shown in Figui& The probability for the null
hypothesis is p=0.03.

The authors also investigatedw well cFOA fits the data when symmetric model

is employed, wheré 6 ho 0 (refer to Eqg. 11)As observedin Table 3,

the asymmetric model hieves a better fit compared to the symmetric dinerefore,

it is possible to conclude that an asymmetric model is more suitable than a symmetric
one, at least for theroposedype of MR dampemodel.

Table 2. Statistical analysis of the optimisation results obtained by appi$thg
independent timeshe Genetic Algorithm, Differential Evolution, Particle Swarm

Optimisation, Artificial Bee Colony, standard FOA arBf©A. BV: Best valueMV:
Mean valueSD: Standard deviation

Objective function valuéQ’l

0 "Qé BV MV SD

Genetic Algorithm 100 16000 4.14-10 4.67-10 |3.11-16
Differential Evolution | 50 16000 3.76:16 |9.31-1G | 4.66-16
FENHE STl 100 ) 16000 33910 |5.44-10 |1.40-1G
Optimisation

Artificial Bee Colony | 50 16000 2.96-10 |1.14-13°|6.39-10
FOA 0 | 16000 2.00-167 | 2.00-167 | 3.40-10°
c-FOA 50 16000

3.4010° 453-10 | 1.44-10
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Figure 8. KruskalWallis test output and box plots for the optimisation results

obtained fronPSO( “ 1" ¢-FOAQ Y 2 7 )

Table 3. Statistical analysis of the optimisation results obtained by appi$thg
independent times-FOA using an asymmetric and a symmetrniodel BV: Best
value,MV: Mean value SD: Standard deviation

c-FOA Objective function valuéQ’l

0 "Qé BV MV SD
Asymmetric model
5 & 50 16000 34010 | 45310 |1.44-10
0 0
Symmetric model
5 5 50 16000 6.39-10 |7.73-10 |1.70-10
0 0

The model parameters that produced the best fit usi@A, are listed in Tabld.

An example ot-FOA convergence rates illustrated in Figur®.

Table 4. Optimised model parameter values usiFigOA

Parameter | c-FOA

No. Q1 o8 mp T
1 a 3.83

2 O —270.00
3 i 144.00

4 _ 1.41
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5 O 5.56

6 O 238.00
7 0 2278.00
8 0 98.00

9 0 46.00
10 0 178.00
11 0 3.70

12 0 1.07

13 — 25.00
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Figure 9. Convergence rate example witli-OA (a) Overall view(b) Detailed view

The modelbased and measured damper foresus speefibr a sinusoidal input

m8td HQ 1@ ( Gre illustratedn Figure 10 Figure 10a corresponds to

an input withO T, Figure 10b t6O T@® ! , Figure 10c tcO p®&! and Figure 10d
to'O ¢! .As observed there is a good match between the two curves, however the

with 0

match is not identicalt is observed thainly for ‘'O ¢! at low speedhe damper
force curvesuddenlychangegheslope This behaviour is not observed in the rest
casesThecorresponding damper forcksplacement diagrams are providedrigure
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4.2 Damper modebentification and ride comfortCAE analysis

A proper parameterization of théR damperglays an important role inde comfort
Computer Aided Engineering (CAE) analygi#®]. The importance of virtual testing
and virtual sigroff gainsareincreasing momentum in treitomotive industry. In
several cases it was demonstrated that virtualsigoan reduce costs up to 5 times.

A ride comfort scenario was investigated tturee different model parameter fits. The
model parameters correspond to the best solution feehlly c-FOA, GA and PSO

The corresponding model parameters are listed in Eable

For the simulation a sport utility vehicl8(V) vehicle of total mass 1963 kg is
considered. Compliance and kinematics of the suspension are validated according to
thereal prototypeRange Rover Evoquimvestigated in th&uropearprojectEVE,
(http://eveproject.eu). All-season 225/55R19resareparameterizedccordingly.

In the scenario, theehicle isassumed to bequipped witithe modelledVIR dampers
The corresponding foreeelocity diagrams are shown in Figur2 The characteristic

represented as solid line shetlhie besparameter fit

Table 5. Model parameter values obtained ustAgOA, GA and PSO

Parameter Fit 1 (c-FOA) Fit 2 (GA) Fit 3(PSO)
No. Q7 Q7 Q7
o8 ¢pm TRTPT o QP T
1 a 3.83 21.48 18.79
2 O —275.00 —203.00 —201.00
3 f 144.00 929.00 5926
4 _ 1.41 20.00 0.53
5 O 5.56 88.00 30.42
6 O 238.00 221.00 235.00
7 0 2278.00 13.00 537.00
8 0 98.00 0.80 816.00
9 0 46.00 834.00 347.00
10 0 178.00 87.00 119.00
11 0 3.70 4.64 5.33
12 0 1.07 0.43 0.17
13 - 25.00 25.00 25.00
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Figure 12. Forcevelocity diagrams for three differeMR damper model parameter
setsgiven inTable2.

In the scenari@an outof-phase sinsweep test with variable amplitutdeassumed to
excite the vehicleThis is a standard test for evaluating ride comfort in the automotive
industry. Inthistest the peakto-peak amplitud®f the road profile is progressively
reducedrom 0.004 toT®t Tt b andits frequency conterihcreases up tp Y U
Figurel3d. This test allows assessing ride comfort charatiesiin terms of heave

@ , pitch— and roll motiors  in the frequency domaiitt is assumed that the
vehicle is moving at a constavelocity of¢ U 7O As observed from Figures3a -

13c the frequency response is not identical between the three parameter fits. In the
critical — for ride comfort—frequency range-8 Hzthe differences are up toA ",

while at higher frequencies the discrepancy raises ppg®".
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5. c-FOA ANALYSIS

5.1 Parallel computing

c-FOA is a simpleSwarm Intelligencalgorithmthat, with only a few code changes,
can be processed in parallalcomputational burdestudy was conducted on a PC
running Windows 7 Enterprise, 64 bit opangtsystem, with an Intel Core i5
processor running at 3.20 GHz and 4 GB installed memory (RAM).purpose of
the study was to compare thienulation time requiretbr c-FOA to completeo
iterations("Q@é p 1t 1, with and without parallgbrocessing

Table 6. Computational cost of the data fit problem ustAgOA: serial
implementation; parallel implementation with 2 processors; and parallel

implementation with 4 processors foriterations [Qé PTIT
Computational Serialcomputing | Parallelcomputing| Parallelcomputing
burden with 2 processors| with 4 processors
s 201 154 103

From theresults listed in Table 6it is evident thatvith parallel processinthe
computational burdeaf c-FOA can be significantly reduce8pecifically, it was
reduced by 42% and 62.5% using 2 and 4 parallel processors respectively.

5.2¢c-FOA tuning i Sensitivity analysis

c-FOA performance depends on a number of paramigteligding the number of
iterationsu , the fruit fly populatiord) and the resolution . The parameteis
vlQ T®owandd Ty were kept constar this analysis. Tis is becauseheir
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optimum values were easy to determif®r example whethedelay parametdk is
too small therthe algorithmis not robustigainst noiseBy contrastif the delay
parametet is too largehenthesearch stratggis switchednot quickly enoughand
the algorithmbecomesnuch slowerValuesll ¥ vfp Ttgive robust results, when is
in the range of a few hundred generati@imilarly, Q derotes the search range
radius.For Q =0.95a significantly large area is exploremnsideringhe inverse
square dependency of the fruit fly position in tieOA algorithm, Eqatiors (13}
(15). This is also the default value for the stand@@A The contraction parametér
determines how quickly the search radius is rededdr to Egqiation(17)) and
thereforeis linked tothe number of generatioms In thecase isin the range of a
few hundredsthenc® Tm®@oprovides a good trageff between explorationral
exploitation.If qis too small the search raditesducesyuickly (geometric

progressionand might lead-&OA to premature convergence.

On the other handhémaximum number aterationsy hthe population sizé and
resolution”  arelessintuitive to chooseFor this reasothreeparametricstudies
wereconducted.

In the first parametric study thmpulation sizearied 6 v fip Tandp v.fThe
maximum number of iteratiorand resolution were kept constamt, p v and

p midthe results are listed in TableAn increase in the population size does
not improve considerably the best valud producebetter results statistically, as the
mean value and standard deviation are reduced.

Table 7. Statistical analysis of the optimisation results obtained by apptyf@QA
30 independent timeBest value BV), Mean valueV) andStandard deviatiorSD)
for puvgd v tp mandp v, p mhit v T vandw T

c-FOA Objective function valu&'l
BV MV SD
O uvm |3.6510 5.87-10 3.22:10
0 p mm 3.60-10 4.96-10 1.3510
O pum 3.4610 4.61.10 1.47-10

In the second parametric study the maximum number of generatamvaried U
p vhg mandc v.7The population size and resolution were kept congfant,u Tt
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and’ p midthe results are listed in TalBeAs observed an increase in the

number of iterations does not provide any clear benefit.

Table 8. Statistical anaisis of the optimisation results obtained by applha#eOA
30 independent timeBest value BV), Mean valueV and Standard deviatiosD)

for0 pufgnigu® v p it uvQ Tovand®d T
c-FOA Objective function valuéQ’l
BV MV SD
O pum 3.65-10 5.87-10 3.22.10
O ¢ T 3.46-10 4.94.10 2.17-10
0 ¢ vl 3.4510 4.76-10 4.36-10’

p tp ntendp 1 ™ The
maximum number of iterations apdpulationsizewere kept constant p v and

In the third parametric study the resolution varied:

0 v BThe results are listed in TaleAs observed for a very small resolution the
results are significantly worse. For a very large resoldtion the results are slightly
worse.A large resolutiori  does notllow the algorithm to explore quickly the
different combinationsf parameterfor such a multparametric problem

Table 9. Statistical analysis of the optimisation results obtained by apptying

FOA30 independent timeBest value BV), Mean valueMV and Standard
deviation 8D)forvt pu,@ UL T p ml00and 10061 vhQ

o vand® T
c-FOA Objective function valuéQ’l
BV MV SD
p T | 6.33:10 1.99-16 2.01-16
p 1t 1 3.65-10 5.87-10 3.22.10
p 1t 11| 3.65-10 7.45-10 6.99.-10

6. CONCLUSIONS

In this studyan automotive magnetorhedajcal (MR) damper with asymmetric
viscous damping coefficiemt jounce and rebounaas studiedmodelledand
designedFor the parameter identification of tMR damperanew swarm
optimisationalgorithm the contrastbased Fruit Fly Optimisatioft-FOA) is
proposedThe algorithmwas compared to populaptimisationalgorithms and the

results show the-EOA is robust and requires minimum tunirig.particular
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The mechanicabehaviour of a prototype automotive magnetorheological

(MR) damper was presented. Unique experimental data were generated using a
set of sinusoidal and triangular input profiles for different currets.

analysis of the mechanical behaviour was conduamedshown that the MR

damper present different viscous behaviour in jounce and rebound.

A modified algebraic model is proposed for modelling the MR damper. As
explainedthis is preferred compared to differential equation based MR
dampers because in parasradentification several thousand function
evaluations may be requiredl.comparison between a symmetric (original)
and asymmetric (proposed) model shows that the latter is potentially more
suitable.

Contrastbased Fruit Fly Optimisation Algorithm-gOA) is employed for
identifying thedampemodel parameters. It is the first time tR&QA, or a
version of it is used to identify the parameters of a magnetorheological
damper. The results confirm the suitability eF©A for identifying the
parametersfahe damper.

c-FOA is compared to the Genetic Algorithm, Differential Evolution, Particle
Swarm Optimisation, Artificial Bee Colony and the original FOA. The
comparison is performed on the basis ofrqriori knowledge of the model
parameters' range. Th@alysis shows that Particle Swarm Optimisation and
c-FOA achieve the best performance. Particle Swarm Optimisation achieves a
slightly better objective function value, whiled=FOA achieves a slightly better

average objective function value.

The computatinal burden of -¢=OA cansignificantly improveby parallel
computing The analysis showed that by using four processors the
computational burden was approximately halved.

A parametic analysis ot-FOA parametersn particular thenumber é
iterationsLhpopulation size! and resolutior » g Was conductedlhe
analysis showethat the best results were achieved for A

and¥, v . An increase in resolutiondinot offer any benefithor dd
anincreag inthe number ofterations.

The proposed damper model was implemented on a vehicle nuelel
comfortComputer Aided Engineering analysior this purpose, three
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different damper parameter sets were chosen: the optimised parameter fit
using e¢FOA, the Genetic Algorithmral the Particle Swarm Optimisation.
The simulation study quantified how much MR damper model uncertainty
influences the metrics used in ride comfort studies.

A For astandard sine sweep test significant differences were observed among
the different parametesets.In the critical- for ride comfort-frequency range
4-8 Hz the differences are limited to up to 5 dB, while at higher frequencies
the discrepancy raises up to 12 dmis result is particularly important for
virtual signoff purposes, currentlytaend in automotive industry and which
will potentially lead to significant reduction of development time and costs.

In the futureit is foreseen to investigate the hybridisatiort-6fOA with local search
method andusingthe identifiedMR damper models for the development of a
distributed predictive suspension control concept
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Appendix A

Table 10. Statistical analysis of the optimisation results obtained by applying Genetic
Algorithm, 30 independent times. BV: Best value, MV: Mean veii&,Standard

deviation

Genetic Algorithm Objective function valuéQ’l

BV MV SD
0 =50, 1.25.16 8.35.10 1.02-16
"Q6 £ 0 4000 ' ' '
0 =50,
Q6 B EB000 4.62-10 3.12.16 7.50-16
0 =50,
"Q6 )0 6000 3.70-10 9.98-10 3.20-16
0 =100, 2.98-16 1.39-16 5.88-1¢
"Q6 £ U 4000
0 =100, 6.12-10 2.95.16 6.92-16
"Q6 £ 0 8000
0 =100, 4.14-10 4.67-10 3.11-16
"Q6 £ v k6000
0 =150, 1.20-10 2.67-101 1.45-10°2
"Q6 £ 0 Fd000
0 =150, 6.78-10 3.89:16 2.42-1¢
"Q6 £ 0 8000
0 =150, 4.40-10 1.35-10 4.63-16
"Q6 £ 0 Fh6000

Table 11. Statistical analysis of the optimisation results obtained by applying

Differential Evolution, 30 independent times. BV: Best value, MV: Mean v&De,
Standard deviation

Differential Objective function valuéQ’l
Evolution BV MV SD
0 =50, 1630 130 130
Q6 00 4000 1.97-16 4.18-16 1.42-16
0 =50,
06 00 EB000 3.97-106 7.61-16 3.83.160
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0 =50,

"06 ©0 46000 3.76-1¢ 9.31-16 4.66-16

0 =100, 5.52.106° 1.28-101 4.83-14°
"Q6 © U (4000

0 =100, 1.45.13° 4.16-16° 1.5-109

"Q6 © 0 8000

0 =100,

"06 €0 46000 2.64-10 7.28-10 2.25.10

0 =150, 7.72-10° 1.98-101 6.95-13°
"Q0 © U (4000

0 =150, 1.58-13° 6.86-10° 2.12-14°
"Q6 © 0 8000

0 =150, 8.85.10 2.18-13° 7.54-10

"Q6 0 &h6000

Table 12. Statistical analysis of the optimisation results obtained by applying, 30
independent times, Particle Swarm Optimization. BV: Best value, MV: Mean value,
SD: Standard deviation

Particle Swarm Objective function valuéQ’l

Optimization BV MV SD
0 =50,
"Q6 B0 GA000 3.83-10 1.53-1¢ 9.80-10
0 =50,
Q6 B 000 3.46-10 6.94-10 2.68-10
0 =50,
"Q6 0 (6000 3.39-10 5.57-10 1.05-10
0 =100, 4.12-10 4.92-1¢ 5.45.1¢
"Q6 £ 0 xd000
0 =100, 3.45.10 8.59.-10 4.88-10
"Q6 £ 0 ¢¥8000
0 =100,
"06 €0 46000 3.39-10 5.44-10 1.40-10
0 =150, 1.19-16 9.35.10 1.12-10
"Q6 £ 0 xd000
0 =150, 4.14-10 1.42-16 1.32-10
"Q6 £ 0 68000
0 =150, 3.36-10 5.87-10 1.63-10
"Q6 £ 0 Fh6000

Table 13. Statistical analysis of the optimisation results obtained by applying, 30
independent times, Artificial Bee Colony. BV: Best value, MV: Mean veie,
Standardieviation

Artificial Bee Obijective function valué&’l
Colony BV ] MV ] SD
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0 =50,

0 0 0
"Q6 © 1 (=400 2.58-16¢ 6.39-16¢ 2.25-16
U :50, 0 0
"06 £ (=000 5.89-10 2.80-106 1.12-16
0 =50, q
"06 00 (FHE000 2.96-10 1.14-16 6.39-10
0 =100, 4.12-106° 1.08-131 4.13-16°
"Q6 © 0 4000
0 =100, 1.85-13° 5.15-16° 1.96-109°
"Q0 © U 8000
0 =100, 0 0
"06 ©0 6000 9.35-10 2.29.16 1.16-16
0 =150, 4.64-10° 1.2-101 5.36-13°
"Q6 © 0 4000
0 =150, 2.15-106° 5.63-16° 2.82:14°
"Q6 © U 8000
0 =150, 8.55-10 3.45.16° 1.40-109°
"Q6 £ 0 h6000

c-FOA Objective function valuéQ’l

BV MV SD
0 =50, 41416 1.43-16 1.38-16
"Q6 £ 0 4000 ' ' '
0 =50,
"Q6 ©0 (8000 3.65-10 5.72-10 4.35-10
0 =50, 7
"06 ©0 6000 3.40-10 4.53-10 1.44-10
0 =100, 8.29-1( 3.21-16° 9.24.16°
"Q6 £V 4000
0 =100, 3.81 .10 1.04-16 1.34 .16
"Q6 £ U 8000
0 =100,
"06 ©0 6000 3.64 -10 6.70-10 6.02-10
0 =150, 2.00-167 2.00-13" 3.34.10%
"Q6 £V 4000
0 =150, 5.21 -10 2.37-16 2.37-16
"Q6 £ U 8000
0 =150, 3.54 .10 5.66-10 1.85 -10
"Q6 £ U GFhi6000

Table 14. Statistical analysis of the optimisation results obtained by applying, 30
independent times;FOA. BV: Best value, MV: Mean valu§D: Standard deviation
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