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Title: 

Automotive Magneto-Rheological Dampers: Modelling and Parameter 

Identification using contrast-based Fruit Fly Optimisation  

 
Abstract:  

 

The present study discusses the mechanical behaviour and modelling of a prototype 

automotive magneto-rheological (MR) damper, which presents different viscous 

damping coefficients in jounce and rebound. The force generated by the MR damper 

is measured at different velocities and electrical currents, and a modified damper 

model is proposed to improve fitting of the experimental data. The model is calibrated 

by means of parameter identification and for this purpose a new swarm intelligence 

algorithm is proposed, that we call the contrast-based Fruit Fly Optimisation 

Algorithm (c-FOA). The performance of c-FOA is compared with that of Genetic 

Algorithms, Particle Swarm Optimisation, Differential Evolution and Artificial Bee 

Colony. The comparison is made on the basis of no a-priori knowledge of the damper 

model parameters range. The results confirm the good performance of c-FOA under 

parametric range uncertainty. A sensitivity analysis discusses c-FOA’s performance 

with respect to its tuning parameters. Finally, a ride comfort simulation study 

quantifies the discrepancies in the results, for different identified damper model sets. 

The discrepancies underline the importance of accurately describing MR damper 

nonlinear behaviour, considering that virtual sign-off processes are increasingly 

gaining momentum in the automotive industry. 
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1. INTRODUCTION 

Magneto-rheological (MR) dampers find an increasing number of applications in 

civil, mechanical and automotive engineering [1-4]. Regarding the latter, Digital 

Design and Virtual Modelling have been identified as key elements for significantly 

reducing development costs and speeding up time to market [5]. Concurrently virtual 

testing and homologation is increasingly gaining momentum [6]. Pilot studies in the 

automotive industry show that costs can be reduced up to 5 times. Therefore, there is 

a need for tools that can model and accurately describe MR damper behaviour. 

Inaccurate MR damper modelling has been shown to lead to undesirable limit cycle 

behaviour, sub-optimal energy dissipation and insufficient control [7-8]. The 

inaccuracy is mainly due to MR dampers’ highly nonlinear mechanical behaviour.  

MR damper force is characterised by significant hysteresis [9-10] and delay, in the 

range of tens of milliseconds, owing to the inductance of the MR damper electro-

magnetic circuit [11-12]. Damping characteristics can be continuously adapted by 

controlling the electrical current that passes through the electromagnet [13-15]. 

Furthermore, MR dampers can be mechanically designed to have different damping 

coefficient in jounce and rebound [16]. The latter is particularly important for 

automotive suspension control where the vehicle response is differentiated when 

hitting a pothole or a bump [17]. 

The models proposed for describing MR damper behaviour range from analytical 

first-principle to phenomenological ones. Cesmeci and Engin developed a theoretic 

flow model based on the Bingham plastic constitutive model and compared it to the 

modified Bouc-Wen damper model [18]. Guo et al. developed a more detailed version 

of the previous one by considering also the compressibility of MR fluid and air [19]. 

Both approaches aimed at developing an accurate physical model of damper 

hysteretic behaviour. On the other hand, both approaches do not take into account 

damper mass (inertia), while tests were conducted in a relatively small range of 

frequencies (less than 1 Hz). In [20] a lumped mass parameter model was developed 

as a response to accurately describing MR damper behaviour at different frequencies. 
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In [21] a hyperbolic tangent model was proposed for approximating the hysteretic 

behaviour, without the need to employ a set of differential equations. Recently Zhang 

et al. [22] proposed a sigmoid model for approximating the mechanical behaviour of 

an MR damper and compared its performance to the Bingham and Bouc-Wen models. 

Another alternative is to employ dynamic neural networks [22]. The disadvantage of 

using neural networks is that no insight is gained even when the model parameters are 

identified. In [23] the MR damper model is identified using the recursive lazy learning 

method. In lazy learning, each time a prediction is required for a specific query point, 

a set of local models is identified. The generalization ability of each model is assessed 

through a local cross-validation procedure. Finally, a prediction is obtained either by 

combining or selecting different local models on the basis of some statistic of their 

cross-validation errors. The optimal combination of models is achieved using a 

recursive formula.  

As far as it concerns modelling in automotive applications, Silveira et al. idealised the 

damper as a single viscous damping element with different coefficients in jounce and 

rebound [24]. The hysteretic behaviour of the damper was not taken into account. 

Similar approaches were followed in [25] and [26] indicating current modelling 

practice in automotive engineering. In [27]-[29] the modified Bouc-Wen damper 

model was used for developing a semi-active suspension controller. The modified 

Bouc-Wen model enhances with a spring and a damper the original one to simulate 

more accurately the roll-off effect at small velocities. In that region the damper force 

drops more rapidly due to the fluid shear thinning effect.  

Suppliers of MR dampers do not provide information relevant to the hysteretic or roll-

off behaviour. To this end experimental tests are necessary for determining at greater 

accuracy the damper mechanical behaviour [30-32]. Engineers are left with the task of 

accurately fitting the experimental data by identifying the parameters of the models 

employed. For this purpose different optimisation were proposed in the past, 

including Particle Swarm Optimisation, Cascaded Evolutionary Algorithms, 

Recursive Lazy Learning, Adaptive Charged system, and Genetic Algorithms [33-39]. 

In [33] a radial basis function neural network (RBFNN) was employed to fit the data. 

The parameters of RBFNN were determined by applying sequentially a genetic (GA) 

and differential evolution (DE) algorithm. Differential evolution was employed as a 

means to improve the population generated by GA. The RBFNN used 13 neurons. As 

mentioned in [32] the choice of parameters in GA and DE is problem-dependent and 
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user experience was required. To this end different rules have been proposed in the 

literature but do not always provide the expected performance [34, 35]. The 

population size in DE was 100 and in GA 30. The crossover probability in DE was 0.6 

and in GA 0.9. The mutation factor was 0.5 in both algorithms. In [36] the GA was 

implemented to identify the parameters of a non-symmetrical Bouc-Wen model. The 

non-symmetrical Bouc-Wen model is a variation of the original Bouc-Wen model for 

describing dampers with asymmetric hysteretic behaviour at near zero velocities. The 

GA used real-value random numbers to represent the chromosomes. The population 

size was 50. The selection operation was omitted. Crossover was realised by selecting 

randomly two chromosomes and generating a child using a linear blending function. 

Mutation is implemented by selecting randomly a chromosome and perturbing it 

using a Gaussian kernel. After crossover and mutation, 2% of the chromosomes were 

replaced by copies of the best chromosome. GA was terminated when the expectation 

of improving the identification error was below a threshold value. To identify the 

parameters of a modified Bouc-Wen model the Enriched Imperialist Competitive 

Algorithm (EICA) was used in [37]. The model comprises fourteen variables. The 

utilized test data covered velocities up to 30 mm/s. EICA is an agent-based 

optimisation algorithm. The agents of this algorithm are called “countries”. There are 

two types of “countries”; those with the lower function value are selected to be the 

“imperialist” states and the remaining countries form the “colonies” of these 

imperialists. All the colonies of initial countries are divided among the imperialists 

based on their “influence”. The influence of each “country” is inversely proportional 

to its cost. The Charged System Search was implemented in [38] to identify the 

parameters of the modified Bouc-Wen model. Charged system search uses Coulomb’s 

and Newton’s laws to describe the interactions taking place in a group of particles. A 

number of parameters need to be tuned for improving the trade-off between 

exploration and exploitation. The algorithm terminated after 200 iterations. The 

authors pointed out the importance of estimating correctly the range of parameters 

before optimisation starts. In the particular study this was achieved by a 

comprehensive parametric analysis, testing different search domains around the actual 

values of the parameters. Particle Swarm Optimisation (PSO) was utilised in [39] to 

identify the parameters of an algebraic MR damper model. The algebraic model 

included a hyperbolic tangent function to describe the hysteretic behaviour. In PSO 

the inertia term 𝜔 was 0.65 and parameters 𝜑1 = 𝜑2 = 1. The population comprised 
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50 members. The algorithm terminated when the probability of improving the 

objective function was below a threshold. The utilized test data were for velocities up 

to 50 mm/s.  

The multitude of MR damper models indicates that model selection depends directly 

on the task. In dynamics and control the most popular one is the modified Bouc-Wen 

model [40]. This model employs a set of coupled differential equations to 

approximate the MR damper hysteretic behaviour. Consequently, simulation of 

damper force using Bouc-Wen requires longer time compared to algebraic damper 

models. In the parameter identification process the simulation routine may be called 

several thousand times and thus requires a long time to complete. A considerably 

longer parameter identification process may become a significant disadvantage for a 

commercial product or a tool used by practicing engineers. Furthermore, the modified 

Bouc-Wen model is not necessarily suitable for automotive MR dampers as it cannot 

approximate dampers with asymmetric viscous damping behaviour.  

In this paper, the mechanical behaviour of a prototype automotive MR damper, with 

asymmetric viscous damping coefficient in jounce and rebound is presented. The MR 

damper was tested at a relevant range of velocities and currents and a modified 

algebraic damper model is proposed for improving the fitting of experimental data. 

An algebraic model is proposed as a means for minimising the time required for 

identification. For the parameter identification, the contrast-based Fruit Fly 

Optimisation Algorithm (c-FOA) is employed [41]. c-FOA is compared to the Genetic 

Algorithm, Differential Evolution, Particle Swarm Optimisation, Artificial Bee 

Colony and the original FOA. The comparison is performed under the assumption that 

the initial range of model parameters is unknown. The results show that the proposed 

contrast-based FOA is suitable for identifying the parameters of MR dampers. A 

sensitivity analysis was performed and the factors that influence c-FOA’s 

performance are discussed. Finally, a ride comfort simulation study quantifies the 

discrepancies in the results, for different identified damper model sets. The 

discrepancies underline the importance of accurately describing MR damper nonlinear 

behaviour, considering that virtual sign-off processes are increasingly gaining 

momentum in the automotive industry. 

The rest of the paper is structured as follows: in Section 2 the experimental data and 

the proposed asymmetric MR damper model are presented and discussed. In Section 3 
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c-FOA is explained. In Section 4 the performance of c-FOA is compared to Genetic 

Algorithm, Differential Evolution, Particle Swarm Optimisation, Artificial Bee 

Colony and the original FOA. In Section 5 an analysis is carried out for highlighting 

the tuning parameters of c-FOA and the computational burden reduction when 

processed in parallel. Finally, Section 6 gives conclusions, and future work is 

proposed. 

2. ASYMMETRIC MR DAMPER MODEL 

The prototype MR damper concerns a monotube damper configuration, asymmetric in 

terms of the magnitude of generated forces in both directions of the piston motion. 

The electromagnets are attached to the passages. As the MR fluid goes through the 

passage, and under the application of a magnetic field, the viscosity changes. The 

particles’ size contained in the MR fluid ranges usually between 1μm and 7μm. As 

shown in Figure 1, in the absence of a magnetic field the particles take random 

positions; in the presence of a magnetic field they align. The stronger the magnetic 

field intensity 𝐵 is, the greater the particles align [42]. The compressed length of the 

damper is 500 mm and the maximum stroke is 170 mm. The coil resistance is 

approximately 1.5 Ω. 

 

Figure 1 Alignment of iron particles contained in the MR fluid in the presence of a 

magnetic field  

2.1 Experimental setup and MR damper force response  

The experimental setup consists of a servo-hydraulic tensile test machine and an 

Electronic Control Unit that controls the current in the electromagnets, housed in the 

MR damper, Figure 2 [43]. The damper is driven by the servo-hydraulic tester and the 
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load cell measures the generated damping force. The tester is an Instron 8501, this is a 

100 kN dynamic rated frame. The system is regulated by an Instron FastTrack 8800 

control system. Force is measured using an Instron 10 kN load cell. Displacement is 

measured using an Instron 2601-093 linear variable displacement transducer (LVDT). 

To avoid extreme positions, the damper stroke was positioned at its centre before 

starting the test. Sampling rate was 250 Hz and 10 load cycles were collected in each 

test. The first and the last load cycle were omitted to avoid transient effects. The 

velocity is obtained from the derivative of displacement with respect to time. The 

maximum attainable velocity with the used testing machine is 0.15 m/s.  

 

 

 

Figure 2. Experimental set up for testing the mechanical behaviour of the prototype 

MR damper. 

The damper was tested for sinusoidal and triangle wave inputs 𝑥(𝑡) described by 

expressions (1) and (2) respectively: 

 

𝑥(𝑡) = 𝐴 ∙ sin(2 ∙ 𝜋 ∙ 𝑓 ∙ 𝑡) (1) 

 

 

𝑥(𝑡) = 𝐴
8

𝜋2
∙ ∑

sin(2 ∙ 𝜋 ∙ (2 ∙ 𝑘 + 1) ∙ 𝑓 ∙ 𝑡)

(2 ∙ 𝑘 + 1)2

∞

𝑘=0

 (2) 

 

where 𝐴 is the amplitude with 𝐴 ∈ [0, 0.05]m, 𝑓 is the frequency of excitation with 

𝑓 ∈ [0, 2]Hz and 𝑡 is time. In the experiments the current 𝐼 was varied from 0 to 2 A 

withtheintervalof0.5A. 
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Figure 3 illustrates the triangle wave input used for exciting the MR damper, where 

𝐴 = 0.05m, 𝑓 = 1Hz.  

 

 
(a) 

 
(b) 

Figure 3. Triangle wave input with 𝐴 = 0.05m, 𝑓 = 1Hz:  a) Position versus time, 

b) Velocity versus time  

 

Figure 4a shows a response of the damper force 𝐹𝑑 to the triangle wave input with 𝐼 =

0, and Figure 4b for the triangle wave input with 𝐼 = 0.5A. As observed, the 

hysteresis loop increased in size when the current was increased. The inclination of 

the force-velocity curve is different in jounce and rebound (the upper curve changes 

by 300 N while the lower curve changes approximately 450 N). The slope remained 

invariable when the current changed. Furthermore, damper force presents an offset at 

zero velocity. The offset is caused by pressurised gas in the accumulator in the 

damper.  

Due to the offset and difference in inclination the damper behaves asymmetrically 

with respect to the positive and negative axis. For example, in Figure 4a the maximum 

positive force is approximately 200 N, while the maximum negative force is 630 N. In 

Figure 4b, the maximum positive force is 390 N, while the maximum negative force is 

720 N. 

For the model identification phase, the MR damper force response was tested for 

sinusoidal inputs with 𝐴 = 0.05m, 𝑓 = [0.5, 1, 1.5, 2]Hz, and 𝐼 =

[0.0, 0.5, 1.0, 1.5, 2.0]A. Table 1 lists the performed tests. Figure 5 illustrates the MR 

damper force response for sinusoidal input with 𝐴 = 0.05m, 𝑓 = 0.5Hz and 𝐼 =

[0.0, 0.5, 1.0, 1.5, 2.0]A. 
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(a) 

 
(b) 

Figure 4. MR damper force response for a triangle wave displacement with a) 𝐴 =
0.05m, 𝑓 = 1Hz, 𝐼 = 0 b)  𝐴 = 0.05m, 𝑓 = 1Hz, 𝐼 = 0.5A.  

Table 1. Loading conditions of the tests on the MR damper 

 

 Frequencies 𝑓 / Hz 

Electric current 𝐼 / A 𝑓=0.5 𝑓 =1 𝑓 =1.5 𝑓 =2 

0 A=0.05 m A=0.05 m A=0.05 m A=0.05 m 

0.5 A=0.05 m A=0.05 m A=0.05 m A=0.05 m 

1 A=0.05 m A=0.05 m A=0.05 m A=0.05m 

1.5 A=0.05 m A=0.05 m A=0.05 m A=0.05 m 

2.0 A=0.05 m A=0.05 m A=0.05 m A=0.05 m 

 

The MR damper force response is again asymmetric. The maximum positive forces 

take lower values compared to the maximum negative forces. This is due to the offset 

and slightly asymmetric hysteretic behaviour. An additional reason for the asymmetry 

is the different slope of the MR damper force response for absolute velocities greater 

than approximately 0.07 m/s. A careful observation reveals that the damper force 

response for negative velocities is closer to the horizontal compared to the one 

achieved for positive velocities. This is an indication of the different viscous damping 

coefficient for jounce and rebound. 
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Figure 5. Experimental data used in the model identification phase: Force response 

for sinusoidal input with 𝐴 = 0.05m, 𝑓 = 0.5Hz and 𝐼 = [0.0, 0.5, 1.0, 1.5, 2.0]A. 

 

2.2 Proposed asymmetric MR damper model  

The proposed asymmetric model is developed on the basis of [12]. A detailed analysis 

of this model is provided in [39], where it was shown that it can accurately describe 

the hysteretic and roll-off behaviour of MR dampers. In order to minimize the time 

required for simulation and parameter identification an algebraic model was selected 

instead of one that is described by differential equations. Potentially, other algebraic 

models could serve the same purpose. 

 

The damper force 𝐹𝑑 is expressed by four elements: 

 

𝐹𝑑 = 𝑚 ∙ �̈� + 𝐶𝑐 ∙ �̇� + 𝐾𝑘 ∙ 𝑢 + 𝐹ℎ + 𝐹0 (3) 

 

where 𝐹𝑑 and 𝑢 are the damping force and displacement of the MR damper 

respectively; 𝐶𝑐 is the variable damping coefficient; 𝐾𝑘 is the variable stiffness 

coefficient; 𝑚 is the equivalent mass that represents the MR damper piston rod inertial 

effect and 𝐹0 is the initial or preload force. The hysteretic force 𝐹ℎ is expressed as: 

 

𝐹ℎ = 𝐹𝑦 ∙ 𝑡𝑎𝑛ℎ(𝑦) (4) 

 

and 
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𝑦 = 𝛽 ∙ (�̇� + 𝜆 ∙ 𝑠𝑔𝑛(𝑢)) (5) 

 

where 𝐹𝑦 is the damping force related to the magnetic field and 𝛽, 𝜆 are shape factors 

that determine the degree of smoothness of the hysteretic curves. 

 

Parameters 𝐶𝑐, 𝐹𝑦 and 𝐾𝑘 are a function of current 𝐼 [12]: 

 

𝐶𝑐(𝐼) = 𝐶𝑐𝑎 + 𝐶𝑐𝑏 ∙ 𝐼 (6) 

 

𝐹𝑦(𝐼) = 𝐹𝑦𝑎 + 𝐹𝑦𝑏 ∙ 𝐼 (7) 

 

𝐾𝑘(𝐼) = 𝐾𝑘𝑎 + 𝐾𝑘𝑏 ∙ 𝐼 (8) 

 

Parameters 𝐶𝑐, 𝐹𝑦 and 𝐾𝑘 depend linearly on current 𝐼 because the prototype MR 

damper saturates at currents much larger other known configurations of a damper. For 

reliability purposes, it is not intended to use the MR damper at its limits. 

 

The time response of the current 𝐼 under a commanded input 𝐼𝑐𝑚𝑑 is described by a 

first order model [12]: 

 

𝐼̇ = −𝜂 ∙ (𝐼 − 𝐼𝑐𝑚𝑑) (9) 

 

where η is a constant. 

 

To account for the asymmetric damping forces the model described by Eqs (4)-(9) is 

refined as follows:  

 

𝐹𝑑 = 𝑚 ∙ �̈� + 𝐶𝑐
∗ ∙ �̇� + 𝐾𝑘 ∙ 𝑢 + 𝐹ℎ + 𝐹0 (10) 

 

with  

 

𝐶𝑐
∗ = {

𝐶𝑐𝑎
+ + 𝐶𝑐𝑏

+ ∙ 𝐼, 𝑖𝑓�̇� ≥ 0

𝐶𝑐𝑎
− + 𝐶𝑐𝑏

− ∙ 𝐼, 𝑖𝑓�̇� < 0
 (11) 

 

As observed for �̇� = 0 the damping force term 𝐹𝑐 will be 𝐹𝑐 = 𝐶𝑐
∗ ∙ �̇� = 0 and 

therefore zero order continuity C0 is preserved. 

 

In conclusion, the following thirteen parameters are used to describe the MR damper: 

𝐬 = [𝑚, 𝐹0, 𝛽, 𝜆, 𝐹𝑦𝑎𝐹𝑦𝑏 , 𝐶𝑐𝑎
+ , 𝐶𝑐𝑎

− , 𝐶𝑐𝑏
+ , 𝐶𝑐𝑏

− , 𝐾𝑘𝑎, 𝐾𝑘𝑏 , 𝜂]. 
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3. CONTRAST BASED FRUIT FLY OPTIMISATION 

3.1 Objective function formulation 

The offset and noise in the experimental data were not removed, although this was 

possible by balancing and low-pass filtering, respectively. The reason for this was our 

aim to assess the optimisation algorithm’s performance in the presence of epistemic 

uncertainty. 

 

In order to obtain the parameters 𝐬 that best fit the experimental data, the model 

identification problem is formulated as [44]: 

 

Find optimal 𝐬∗, 𝐬 = [𝑠1, 𝑠2, … , 𝑠𝑚] 
  

that minimises 

 

𝑓(𝐬) = ∑(𝐹𝑑𝑖,𝑒𝑥𝑝 ∙ 𝑣𝑖 − 𝐹𝑑𝑖 ∙ 𝑣𝑖)
2

𝑛

𝑖=1

 

 

(12) 

where vector 𝐬 is the design vector, 𝑛 is the number of sample data, 𝐹𝑑𝑖,𝑒𝑥𝑝 is the 𝑖th 

measured damper force value, 𝐹𝑑𝑖 is the 𝑖th model predicted damper force value. 

 

3.2 The Contrast-based Fruit Fly Optimisation Algorithm (c-FOA) 

Pan presented for the first time the Fruit Fly Optimisation Algorithm (FOA), and 

since then different versions were developed, improving the efficiency and robustness 

of the initial FOA [45-48]. In this paper, the contrast-based Fruit Fly Optimisation 

Algorithm (c-FOA), an extension of original FOA, is presented. It is based on a recent 

biological study where it was discovered that fruit flies, when searching for food, are 

stimulated not only by smell but also by visually-contrasting objects [49]. 

Additionally, it was found that fruit fly cruising speed is dependent on the stimulation 

level: i.e., when the scent is strong fruit flies surge while when it is weak they cast. In 

this study, the fruit fly behaviour is accordingly idealised, modelled and further 

developed to address the parameter identification problem of an MR damper. 

 

The basic steps of c-FOA are summarised by the pseudo-code shown in Figure 6, 

while a flowchart is provided in Figure 7.  

 

Contrast-based Fruit Fly Optimisation Algorithm (c-FOA) 
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1: begin 
2: Select initial design vector 𝒔0, m is the number of design variables 

3: Generate initial fruit fly swarm 𝒔𝒊, 𝑖 = 1,2, … ,𝑁 in the vicinity of  s0 using 
a uniform discrete distribution [1, 𝑁𝑟𝑒𝑠] 

4: Calculate smell concentration (objective function) Smi at 𝐬i, Smi = f(𝐬i) 
5: Rankthefruitflies’performance and find the best performing one                                                                                                                   

Sm∗ = f(𝐬∗) = min(Smi) 
6: If Sm∗ < Sm0 then 𝒔0= 𝐬i

∗ 
7: while (𝑘 < 𝐾) 
8:  Increment k 
9: Reposition the fruit fly swarm 𝒔𝑖[𝑘], near 𝒔0[𝑘] using uniform 

discrete distribution [1, 𝑁𝑟𝑒𝑠] 
10:  Calculate smell concentration Smi[𝑘] = 𝑓(𝒔𝑖[𝑘]) 
11:  Rank the fruit flies and find the best: 
12:  Sm∗[k] = f(𝐬∗[k]) = min(Smi[k]) 
13:  If  Sm∗[k] < Sm0[k] then 𝒔0[𝑘 + 1] = 𝒔∗[𝑘] 
14:  Increment response time 𝑡[𝑘] = 𝑡[𝑘– 1] + 1 
15:  if (𝑡[𝑘] > 𝑑𝑒𝑙𝑎𝑦𝑡𝑖𝑚𝑒) 
16:   if (Sm∗[k] < Sm0[k − κ]) 
17:    reduce the search radius M[k + 1] = c ∙ M[k] 

(surging phase) 
18:   else if (Sm∗[k] = Sm0[k − κ]) 
19:     the worst performing candidate, 𝐬∴[k] , 

Sm∴[k] = f(𝐬∴[k]) = max(Smi[k]), becomes the new 
attraction point 𝒔0[[𝑘 + 1] =  𝒔∴[𝑘]  
(contrast based vision phase) 

20:    else if (Sm∗[k] > Sm0[k − κ]) 
21: return to the previous best, 𝒔0[[𝑘 + 1] = 𝒔0[[𝑘 − 𝜅] 

(casting phase and memory function) 
22:   end if 
23:   Initialise response time 𝑡[𝑘] = 0 
24:  end if 
25: end while 
26: Post process results and visualisation 
27:  end 
 

Figure 6. Pseudo-code of the Contrast-based Fruit Optimisation Algorithm (c-FOA). 

 

3.3 Swarm localisation, normalisation and termination 

A coordinate system is defined and the position of a fruit fly with coordinates (𝑋0, 𝑌0) 

is defined. The remaining N–1 fruit flies are located, randomly, in the vicinity of (𝑋0, 

𝑌0) according to Eq. (13). 
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Figure 7. Flowchart of proposed c-FOA algorithm. 
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𝑋𝑖𝑗[𝑘] = 𝑋0𝑗[𝑘] ∙ (1 + 𝑀 ∙ (2 ∙ 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠 − 1), j=1,2,…,m and i=1,…,N 

𝑌𝑖𝑗[𝑘] = 𝑌0𝑗[𝑘] ∙ (1 + 𝑀 ∙ (2 ∙ 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠 − 1), j=1,2,…,m and i=1,…,N 
(13) 

 

where k=1,2,…, K is the iteration number, m is the number of optimisation variables, 

N is the size of the swarm and 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠 is a random number from a uniform discrete 

distribution defined in the interval [1, Nres]. The use of a discrete distribution is not 

observed in nature, but is a feature introduced to improve the algorithm’s performance 

in multi-parameter problems. M is a scaling parameter that defines how coarse or fine 

the search strategy is.  

 

To each fruit fly a smell concentration 𝐷𝐼𝑖𝑗 is assigned based on how close each fruit 

fly parameter (𝑋𝑖𝑗[𝑘], 𝑌𝑖𝑗[𝑘]) is to the origin of the coordinate system: 

 

𝐷𝑖𝑗[𝑘] = √𝑋𝑖𝑗
2 [𝑘] + 𝑌𝑖𝑗

2[𝑘] (14) 

 

𝐷𝐼𝑖𝑗[𝑘] = 𝑠𝑖𝑔𝑛(𝑋𝑖𝑗[𝑘]) ∙ 𝑠𝑖𝑔𝑛(𝑌𝑖𝑗[𝑘]) ∙
1

𝐷𝑖𝑗[𝑘]
 (15) 

 

Each fruit fly is assigned a “smell concentration” 𝑆𝑚𝑖[𝑘] at 𝐬𝐢[𝑘] determined by the 

objective function value 𝑆𝑚𝑖[𝑘] = 𝑓(𝐬i[𝑘]). A small objective function value 

corresponds to a position with high smell concentration, a position that is closer to the 

“food” source or the optimized value.  

 

The fruit flies are ranked on the basis of their smell concentration, and the fruit fly 

𝐬𝑖
∗[𝑘] that achieves the highest smell concentration 𝑆𝑚𝑖

∗[𝑘] at position (𝑋𝑖
∗[𝑘],𝑌𝑖

∗[𝑘]) 

is identified. In case the smell concentration 𝑆𝑚𝑖
∗[𝑘] is better than that of the current 

point of attraction 𝑆0[𝑘], then 𝑆𝑚𝑖
∗[𝑘] becomes the new point of attraction. 

 

𝒊𝒇𝑺𝒎𝒊
∗ < 𝑺𝒎,𝒌𝟎 

𝑡ℎ𝑒𝑛𝑋0[𝑘] = 𝑋𝑖
∗[𝑘]𝑎𝑛𝑑𝑌0[𝑘] = 𝑌𝑖

∗[𝑘] 
(16) 

 

The algorithm terminates when the maximum number K of iterations is reached. 
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3.4 Response delay, cast, surge and visual contrast phases 

Fruit flies do not respond immediately owing to sensory-motor delays when the 

stimulation changes. As presented in [49], the delay is constant and independent of 

other parameters. This delay is idealised and modelled in the c-FOA algorithm as 

follows. 

 

In the case the best objective function value improves over the last κ iterations, where 

κ represents the delay, the swarm enters the “surge” phase, during which the fruit flies 

move towards the attraction point 𝐬0[𝑘] at greater speeds: 

 

if (𝑆𝑚𝑘𝑖 < 𝑆𝑚(𝑘−𝜅)0) 

𝑴𝒌+𝟏 = 𝒄 ∙ 𝑴𝒌 

(17) 

The requirement for the completion of κ iterations before a decision is made is 

inspired by fruit flies’ food search behaviour. Fruit flies also present a delay in 

decision-making, most probably for compensating the chaotic movement of smell 

outdoors [49].  

  

In case the best objective function value does not change over the last κ iterations the 

swarm enters the “visual contrast” phase, during which the fruit flies are attracted by 

the point 𝐬𝑖
∴[𝑘] that achieves the lowest smell concentration max(𝑆𝑚𝑖[𝑘]) =𝑆𝑚𝑖

∴[𝑘] : 
 

if (𝑆𝑚𝑖[𝑘] = 𝑆𝑚0[𝑘 − 𝜅] 

𝑋0[𝑘] = 𝑋𝑖
∴[𝑘]𝑎𝑛𝑑𝑌0[𝑘] = 𝑌𝑖

∴[𝑘] 
(18) 

where k is the current iteration.  

 

if (𝑆𝑚𝑖[𝑘] > 𝑆𝑚0[𝑘 − 𝜅]) 

𝑋0[𝑘] = 𝑋0[𝑘 − 𝜅]𝑎𝑛𝑑𝛶0[𝑘] = 𝑌0[𝑘 − 𝜅] 
(19) 

 

This resembles the memory function of fruit flies [50]. 

 

4. DAMPER MODEL IDENTIFICATION  

The model identification problem was solved using the Genetic Algorithm, 

Differential Evolution, Particle Swarm Optimisation, Artificial Bee Colony, original 

FOA and c-FOA. All algorithms were implemented in MATLAB, version 16a. The 
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algorithms were terminated after 4000, 8000 and 16000 function evaluations 

(𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠). 30 independent repetitions were conducted to analyse statistically the 

performance of each algorithm. The reason for this is the stochastic behaviour of the 

optimisation algorithms. The only optimisation parameter varied was the population 

size. The rest of the optimisation parameters were not varied. However 

recommended/standard values were used [51-55]. It was assumed that there is no a 

priori knowledge of the damper model parameters range. Therefore, the design space 

was considered unbounded.  

 

The Genetic Algorithm (GA) version utilised in this study is the one provided in the 

Global Optimisation Toolbox, MATLAB. Three different population sizes were 

tested, comprising 50, 100 and 150 members. A uniform distribution generates 

randomly the members using the floating-point representation. To each member 

objective function values are assigned and sorted according to it. 80% of the new 

generation is created by crossover and 5% progresses from the old generation. A 

stochastic uniform algorithm is used for the parent selection. The crossover operator 

uses a weighted average of the parents for creating the new generation. Mutation is 

used to create to remaining members. In mutation, the new directions are randomly 

picked up. GA terminated when the maximum number of function evaluations 

generations is reached, unless it stalled. This happens when for over 200 generations 

the objective function does not change significantly.  

 

The Differential Evolution (DE) version employed in this study is from [56] and is the 

standard DE augmented with dither. This is a more robust version compared to the 

standard one. The population comprised 50, 100 and 150 members. The mutation 

operator was 𝐹 = 0.85. The crossover probability in the crossover operator was 𝐶𝑟 =

1. A uniform distribution created the individuals. DE internally treats all variables as 

floating-point values regardless of their type. DE terminated when the maximum 

number of function evaluations was reached. 

 

The Particle Swarm Optimisation (PSO) version employed is the one available in 

MATLAB, version 16a.  The initial swarm was generated randomly. The algorithm 

chooses the new member positions based on: 
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𝒗𝒊+𝟏 = 𝝎 ∙ 𝒗𝒊 +𝝋𝟏  ∙ 𝜷𝟏 ∙ (𝒑𝒊 − 𝒙𝒊) + 𝝋𝟐  ∙ 𝜷𝟐 ∙ (𝒑𝒈 − 𝒙𝒊) 

𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖+1 
(20) 

 

The inertia term 𝜔𝜖[0.1,1.1] is calculated in relation to the number of stalls 𝑐: 

 

𝑖𝑓𝑐 < 2,𝜔𝑖+1 = 2 ∙ 𝜔𝑖

𝑒𝑙𝑠𝑒𝑖𝑓𝑐 > 5, 𝜔𝑖+1 =
𝜔𝑖

2

 

(21) 

 

In the case the objective function does not improve between two consecutive 

iterations, the neighbourhood size 𝑁ℎ is changed according to: 

 

𝑁ℎ𝑖+1 = min(𝑁ℎ𝑖 +𝑁ℎ𝑚𝑖𝑛 , 𝑁) 
(22) 

 

where 𝑁 = 50, 100 and 150 is the total number of particles and 𝑁ℎ𝑚𝑖𝑛 = 0.25is the 

minimum number of particles. The parameters 𝜑1 and 𝜑2 were set as 𝜑1 = 𝜑2 =

1.49. PSO terminated when the maximum number of function evaluations was 

reached. 

 

The Artificial Bee Colony algorithm (I-ABC) version was used in this comparison 

[57]. The total number of employed bees was 𝑁 = 50, 100 and 150. The greedy 

selection mechanism was employed as the selection operator. The upper bound of the 

acceleration coefficient was Φ2 = 1. I-ABC terminated when the maximum number 

of function evaluations was reached. 

 

The original Fruit Fly Optimisation Algorithm (FOA) employed in this study is 

detailed in [58]. The population size was set equal to 𝑁 = 50, 100 and 150 members. 

For c-FOA the following parameters are selected: 𝑁 = 50, 𝜅 = 5,𝑀 = 0.95, 𝛮𝑟𝑒𝑠 =

100and𝑐 = 0.9. FOA terminated when the maximum number of function 

evaluations was reached. 
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4.1 Data fit performance  

In Table 2 the results of the statistical analysis for the 30 repetitions are listed. The 

results correspond to the set of optimisation parameters that achieved the best average 

value. A detailed analysis of the algorithms performance is provided in Appendix A, 

Tables 10-14.  The mean value of the optimized values is denoted MV, the standard 

deviation SD and the best optimized value BV. As observed PSO and c-FOA achieve 

the best performance compared to the rest algorithms. PSO achieves a slightly better 

objective function value, while c-FOA reaches a slightly better average value.  The 

result of the Kruskal-Wallis test is shown in Figure 8. The probability for the null 

hypothesis is p=0.03. 

The authors also investigated how well c-FOA fits the data when a symmetric model 

is employed, where 𝐶𝑐𝑎
− = 𝐶𝑐𝑎

+ , 𝐶𝑐𝑏
− = 𝐶𝑐𝑏

+  (refer to Eq. 11). As observed, in Table 3, 

the asymmetric model achieves a better fit compared to the symmetric one. Therefore, 

it is possible to conclude that an asymmetric model is more suitable than a symmetric 

one, at least for the proposed type of MR damper model. 

Table 2. Statistical analysis of the optimisation results obtained by applying, 30 

independent times, the Genetic Algorithm, Differential Evolution, Particle Swarm 

Optimisation, Artificial Bee Colony, standard FOA and c-FOA.  BV: Best value, MV: 

Mean value, SD: Standard deviation 

   Objective function value 𝑓(𝐬) 
𝑁 𝑓𝑢𝑛𝑒𝑣𝑎𝑙𝑠 BV MV SD 

Genetic Algorithm 100 16000 4.14·107 4.67·107 3.11·106 

Differential Evolution 50 16000 3.76·108 9.31·108 4.66·108 

Particle Swarm 

Optimisation 

100 16000 
3.39·107 5.44·107 1.40·107 

Artificial Bee Colony 50 16000 2.96·109 1.14·1010 6.39·109 

FOA 

 

50 16000 
2.00·1017 2.00·1017 3.40·1010 

c-FOA 

 

50 16000 
3.40·107 4.53·107 1.44·107 
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Figure 8. Kruskal-Wallis test output and box plots for the optimisation results 

obtained from PSO (“1”) and c-FOA (“2”)  

 

Table 3. Statistical analysis of the optimisation results obtained by applying, 30 

independent times, c-FOA using an asymmetric and a symmetric model. BV: Best 

value, MV: Mean value, SD: Standard deviation 

c-FOA   Objective function value 𝑓(𝐬) 
𝑁 𝑓𝑢𝑛𝑒𝑣𝑎𝑙𝑠 BV MV SD 

Asymmetric model 

𝐶𝑐𝑎
− ≠ 𝐶𝑐𝑎

+  
𝐶𝑐𝑏

− ≠ 𝐶𝑐𝑏
+  

 

50 

 

16000 3.40·107 4.53·107 1.44·107 

Symmetric model 

 𝐶𝑐𝑎
− = 𝐶𝑐𝑎

+  
𝐶𝑐𝑏

− = 𝐶𝑐𝑏
+  

 

50 

 

16000 

 

6.39·107 

 

7.73·107 

 

1.70·107 

 

The model parameters that produced the best fit using c-FOA, are listed in Table 4. 

An example of c-FOA convergence rate is illustrated in Figure 9.  

 

Table 4. Optimised model parameter values using c-FOA  

Parameter  

No. 

c-FOA 

𝑓(𝐬) = 3.40 · 107 

1 𝑚 3.83 

2 𝐹0 –270.00 

3 𝛽 144.00 

4 𝜆 1.41 
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5 𝐹𝑦𝑎 5.56 

6 𝐹𝑦𝑏 238.00 

7 𝐶𝑐𝑎
+  2278.00 

8 𝐶𝑐𝑎
−  98.00 

9 𝐶𝑐𝑏
+  46.00 

10 𝐶𝑐𝑏
−  178.00 

11 𝐾𝑘𝑎 3.70 

12 𝐾𝑘𝑏 1.07 

13 𝜂 25.00 

 

 

 
 (a)  

 

 
(b) 

Figure 9. Convergence rate example with c-FOA (a) Overall view (b) Detailed view 

 

The model-based and measured damper forces versus speed for a sinusoidal input 

with 𝐴 = 0.05m, 𝑓 = 0.5Hz are illustrated in Figure 10. Figure 10a corresponds to 

an input with 𝐼 = 0, Figure 10b to 𝐼 = 0.5A, Figure 10c to 𝐼 = 1.5A and Figure 10d 

to 𝐼 = 2A. As observed there is a good match between the two curves, however the 

match is not identical. It is observed that only for 𝐼 = 2A at low speed the damper 

force curve suddenly changes the slope. This behaviour is not observed in the rest 

cases. The corresponding damper force-displacement diagrams are provided in Figure 

11. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 

Figure 10. Damper force-versus speed diagrams. Comparison between experimental 

data and simulation for 𝐴 = 0.05m, 𝑓 = 0.5Hz a)  𝐼 = 0.5A. b)  𝐼 = 1A, c)  𝐼 =
1.5A and d)  𝐼 = 2A. 

 

 
(a) 

 
(b) 

 

 
(c)  

(d) 

Figure 11. Damper force-versus displacement diagrams. Comparison between 

experimental data and simulation for 𝐴 = 0.05m, 𝑓 = 0.5Hz a)  𝐼 = 0.5A. b)  𝐼 =
1A, c)  𝐼 = 1.5A and d)  𝐼 = 2A. 
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4.2 Damper model identification and ride comfort CAE analysis 

A proper parameterization of the MR dampers plays an important role in ride comfort 

Computer Aided Engineering (CAE) analysis [59]. The importance of virtual testing 

and virtual sign-off gains are increasing momentum in the automotive industry. In 

several cases it was demonstrated that virtual sign-off can reduce costs up to 5 times.  

 

A ride comfort scenario was investigated for three different model parameter fits. The 

model parameters correspond to the best solution identified by c-FOA, GA and PSO. 

The corresponding model parameters are listed in Table 5.  

 

For the simulation a sport utility vehicle (SUV) vehicle of total mass 1963 kg is 

considered. Compliance and kinematics of the suspension are validated according to 

the real prototype, Range Rover Evoque, investigated in the European project EVE, 

(http://eve-project.eu/). All-season 225/55R19 tyres are parameterized accordingly.  

 

In the scenario, the vehicle is assumed to be equipped with the modelled MR dampers. 

The corresponding force-velocity diagrams are shown in Figure 12. The characteristic 

represented as solid line shows the best parameter fit. 

 

Table 5. Model parameter values obtained using c-FOA, GA and PSO 

Parameter  

No. 

 Fit 1 (c-FOA) 

𝑓(𝐬)
= 3.42 · 107 

Fit 2  (GA) 

𝑓(𝐬)
= 4.14 · 107 

Fit 3 (PSO) 

𝑓(𝐬)
= 3.96 · 107 

1 𝑚 3.83 21.48 18.79 

2 𝐹0 –275.00 –203.00 –201.00 

3 𝛽 144.00 929.00 5926 

4 𝜆 1.41 20.00 0.53 

5 𝐹𝑦𝑎 5.56 88.00 30.42 

6 𝐹𝑦𝑏 238.00 221.00 235.00 

7 𝐶𝑐𝑎
+  2278.00 13.00 537.00 

8 𝐶𝑐𝑎
−  98.00 0.80 816.00 

9 𝐶𝑐𝑏
+  46.00 834.00 347.00 

10 𝐶𝑐𝑏
−  178.00 87.00 119.00 

11 𝐾𝑘𝑎 3.70 4.64 5.33 

12 𝐾𝑘𝑏 1.07 0.43 0.17 

13 𝜂 25.00 25.00 25.00 

 

http://eve-project.eu/
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Figure 12. Force-velocity diagrams for three different MR damper model parameter 

sets given in Table 2. 

 

In the scenario an out-of-phase sine-sweep test with variable amplitude is assumed to 

excite the vehicle. This is a standard test for evaluating ride comfort in the automotive 

industry. In this test, the peak-to-peak amplitude of the road profile 𝑧𝑟is progressively 

reduced from 0.004 to 0.001m and its frequency content increases up to18Hz, 

Figure 13d. This test allows assessing ride comfort characteristics in terms of heave 

𝑎𝑧𝑏, pitch �̈�𝑧𝑏and roll motion �̈�𝑧𝑏in the frequency domain. It is assumed that the 

vehicle is moving at a constant velocity of 25m/s. As observed from Figures 13a -

13c the frequency response is not identical between the three parameter fits. In the 

critical – for ride comfort – frequency range 4-8 Hz the differences are up to 5dB, 

while at higher frequencies the discrepancy raises up to 12dB.  

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 13. Simulation results for three different MR damper model parameters: (a) 

 

5. c-FOA ANALYSIS                 

5.1 Parallel computing  

c-FOA is a simple Swarm Intelligence algorithm that, with only a few code changes, 

can be processed in parallel. A computational burden study was conducted on a PC 

running Windows 7 Enterprise, 64 bit operating system, with an Intel Core i5 

processor running at 3.20 GHz and 4 GB installed memory (RAM). The purpose of 

the study was to compare the simulation time required for c-FOA to complete 𝑐 

iterations (𝑓𝑢𝑛𝑒𝑣𝑎𝑙𝑠 = 1000), with and without parallel processing. 

 

Table 6. Computational cost of the data fit problem using c-FOA: serial 

implementation; parallel implementation with 2 processors; and parallel 

implementation with 4 processors for𝐾 iterations (𝑓𝑢𝑛𝑒𝑣𝑎𝑙𝑠 = 1000) 

Computational 

burden 

Serial computing Parallel computing 

with 2 processors 

Parallel computing 

with 4 processors 

s 201 154 103 

 

From the results, listed in Table 6, it is evident that with parallel processing the 

computational burden of c-FOA can be significantly reduced. Specifically, it was 

reduced by 42% and 62.5% using 2 and 4 parallel processors respectively. 

 

5.2 c-FOA tuning – Sensitivity analysis 

c-FOA performance depends on a number of parameters including the number of 

iterations 𝐾, the fruit fly population 𝑁 and the resolution 𝛮𝑟𝑒𝑠. The parameters 𝜅 =

5,𝛭 = 0.95 and 𝑐 = 0.9, were kept constant in this analysis. This is because their 
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optimum values were easy to determine.  For example when the delay parameter 𝜅 is 

too small then the algorithm is not robust against noise. By contrast, if the delay 

parameter 𝜅 is too large then the search strategy is switched not quickly enough and 

the algorithm becomes much slower. Values 𝜅 ∈ [5,10] give robust results, when 𝐾 is 

in the range of a few hundred generations. Similarly, 𝛭denotes the search range 

radius. For 𝛭=0.95 a significantly large area is explored, considering the inverse-

square dependency of the fruit fly position in the c-FOA algorithm, Equations (13)-

(15). This is also the default value for the standard FOA. The contraction parameter 𝑐 

determines how quickly the search radius is reduced (refer to Equation (17)) and 

therefore is linked to the number of generations 𝐾. In the case 𝐾 is in the range of a 

few hundreds, then 𝑐 = 0.9provides a good trade-off between exploration and 

exploitation. If 𝑐 is too small the search radius reduces quickly (geometric 

progression) and might lead c-FOA to premature convergence.  

 

On the other hand, the maximum number of iterations 𝐾, the population size 𝑁 and 

resolution 𝛮𝑟𝑒𝑠 are less intuitive to choose. For this reason three parametric studies 

were conducted.  

 

In the first parametric study the population size varied: 𝑁 = 50, 100 and 150. The 

maximum number of iterations and resolution were kept constant, 𝐾 = 150 and 

𝛮𝑟𝑒𝑠 = 100. The results are listed in Table 7. An increase in the population size does 

not improve considerably the best value but produces better results statistically, as the 

mean value and standard deviation are reduced. 

 

Table 7. Statistical analysis of the optimisation results obtained by applying c-FOA 

30 independent times. Best value (BV), Mean value (MV) and Standard deviation (SD) 

for = 150 , 𝑁 = 50, 100 and 150, 𝛮𝑟𝑒𝑠 = 100, 𝜅 = 5,𝛭 = 0.95  and 𝑐 = 0.9 

c-FOA Objective function value 𝑓(𝐬) 
BV MV SD 

𝑁 = 50 3.65·107 5.87·107 3.22·107 

𝑁 = 100 3.60·107 4.96·107 1.35·107 

𝑁 = 150 3.46·107 4.61·107 1.47·107 

 

In the second parametric study the maximum number of generations was varied: 𝐾 =

150, 200 and 250. The population size and resolution were kept constant, 𝑁 = 50 
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and 𝛮𝑟𝑒𝑠 = 100. The results are listed in Table 8. As observed an increase in the 

number of iterations does not provide any clear benefit. 

Table 8. Statistical analysis of the optimisation results obtained by applying c-FOA 

30 independent times. Best value (BV), Mean value (MV and Standard deviation (SD) 

for 𝐾 = 150, 200, 250, 𝑁 = 50, 𝛮𝑟𝑒𝑠 = 100, 𝜅 = 5,𝛭 = 0.95  and 𝑐 = 0.9 

c-FOA Objective function value 𝑓(𝐬) 
BV MV SD 

𝐾 = 150 3.65·107 5.87·107 3.22·107 

𝐾 = 200 3.46·107 4.94·107 2.17·107 

𝐾 = 250 3.45·107 4.76·107 4.36·107 

 

In the third parametric study the resolution varied: 𝛮𝑟𝑒𝑠 = 10, 100, and 1000. The 

maximum number of iterations and population size were kept constant 𝐾 = 150 and 

𝑁 = 50. The results are listed in Table 9. As observed for a very small resolution the 

results are significantly worse. For a very large resolution 𝛮𝑟𝑒𝑠the results are slightly 

worse. A large resolution 𝛮𝑟𝑒𝑠 does not allow the algorithm to explore quickly the 

different combinations of parameters for such a multi-parametric problem.  

Table 9. Statistical analysis of the optimisation results obtained by applying c-

FOA 30 independent times. Best value (BV), Mean value (MV and Standard 

deviation (SD) for 𝐾 = 150, 𝑁 = 50, 𝛮𝑟𝑒𝑠 = 10, 100 and 1000, 𝜅 = 5,𝛭 =
0.95  and 𝑐 = 0.9 

c-FOA Objective function value 𝑓(𝐬) 
BV MV SD 

𝛮𝑟𝑒𝑠 = 10 6.33·107 1.99·108 2.01·108 

𝛮𝑟𝑒𝑠 = 100 3.65·107 5.87·107 3.22·107 

𝛮𝑟𝑒𝑠 = 1000 3.65·107 7.45·107 6.99·107 

 

6. CONCLUSIONS 

In this study an automotive magnetorheological (MR) damper with asymmetric 

viscous damping coefficient in jounce and rebound was studied, modelled and 

designed. For the parameter identification of the MR damper a new swarm 

optimisation algorithm, the contrast-based Fruit Fly Optimisation (c-FOA) is 

proposed. The algorithm was compared to popular optimisation algorithms and the 

results show the c-FOA is robust and requires minimum tuning. In particular: 
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 The mechanical behaviour of a prototype automotive magnetorheological 

(MR) damper was presented. Unique experimental data were generated using a 

set of sinusoidal and triangular input profiles for different currents. An 

analysis of the mechanical behaviour was conducted and shown that the MR 

damper present different viscous behaviour in jounce and rebound. 

 A modified algebraic model is proposed for modelling the MR damper. As 

explained, this is preferred compared to differential equation based MR 

dampers because in parameter identification several thousand function 

evaluations may be required. A comparison between a symmetric (original) 

and asymmetric (proposed) model shows that the latter is potentially more 

suitable.   

 Contrast-based Fruit Fly Optimisation Algorithm (c-FOA) is employed for 

identifying the damper model parameters. It is the first time that FOA, or a 

version of it, is used to identify the parameters of a magnetorheological 

damper. The results confirm the suitability of c-FOA for identifying the 

parameters of the damper. 

 c-FOA is compared to the Genetic Algorithm, Differential Evolution, Particle 

Swarm Optimisation, Artificial Bee Colony and the original FOA. The 

comparison is performed on the basis of no a priori knowledge of the model 

parameters' range. The analysis shows that Particle Swarm Optimisation and 

c-FOA achieve the best performance. Particle Swarm Optimisation achieves a 

slightly better objective function value, while c-FOA achieves a slightly better 

average objective function value. 

 The computational burden of c-FOA can significantly improve by parallel 

computing. The analysis showed that by using four processors the 

computational burden was approximately halved.  

 A parametric analysis of c-FOA parameters, in particular the number of 

iterations 𝑲, population size 𝑵 and resolution 𝜨𝒓𝒆𝒔 was conducted. The 

analysis showed that the best results were achieved for 𝑲 = 𝟐𝟎𝟎, 𝑵 = 𝟐𝟓𝟎 

and 𝜨𝒓𝒆𝒔 = 𝟏𝟎𝟎. An increase in resolution did not offer any benefit, nor did 

an increase in the number of iterations. 

 The proposed damper model was implemented on a vehicle model ride 

comfort Computer Aided Engineering analysis. For this purpose, three 
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different damper parameter sets were chosen: the optimised parameter fit 

using c-FOA, the Genetic Algorithm and the Particle Swarm Optimisation. 

The simulation study quantified how much MR damper model uncertainty 

influences the metrics used in ride comfort studies.  

 For a standard sine sweep test significant differences were observed among 

the different parameter sets. In the critical – for ride comfort – frequency range 

4-8 Hz the differences are limited to up to 5 dB, while at higher frequencies 

the discrepancy raises up to 12 dB. This result is particularly important for 

virtual sign-off purposes, currently a trend in automotive industry and which 

will potentially lead to significant reduction of development time and costs. 

In the future, it is foreseen to investigate the hybridisation of c-FOA with local search 

methods and using the identified MR damper models for the development of a 

distributed predictive suspension control concept.  
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Appendix A 
 

Table 10. Statistical analysis of the optimisation results obtained by applying Genetic 

Algorithm, 30 independent times. BV: Best value, MV: Mean value, SD: Standard 

deviation 

Genetic Algorithm Objective function value 𝑓(𝐬) 
BV MV SD 

𝑁=50, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=4000 
1.25·108 8.35·108 1.02·109 

𝑁=50, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=8000 
4.62·107 3.12·108 7.50·108 

𝑁=50, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=16000 
3.70·107 9.98·107 3.20·108 

𝑁=100, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=4000 

2.98·108 1.39·109 5.88·108 

𝑁=100, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=8000 

6.12·107 2.95·108 6.92·108 

𝑁=100, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=16000 

4.14·107 4.67·107 3.11·106 

𝑁=150, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=4000 

1.20·109 2.67·1011 1.45·1012 

𝑁=150, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=8000 

6.78·107 3.89·108 2.42·108 

𝑁=150, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=16000 

4.40·107 1.35·108 4.63·108 

 

Table 11. Statistical analysis of the optimisation results obtained by applying 

Differential Evolution, 30 independent times. BV: Best value, MV: Mean value, SD: 

Standard deviation 

Differential 

Evolution 
Objective function value 𝑓(𝐬) 

BV MV SD 

𝑁=50, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=4000 
1.97·1010 4.18·1010 1.42·1010 

𝑁=50, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=8000 
3.97·109 7.61·109 3.83·109 
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𝑁=50, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=16000 
3.76·108 9.31·108 4.66·108 

𝑁=100, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=4000 

5.52·1010 1.28·1011 4.83·1010 

𝑁=100, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=8000 

1.45·1010 4.16·1010 1.5·1010 

𝑁=100, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=16000 
2.64·109 7.28·109 2.25·109 

𝑁=150, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=4000 

7.72·1010 1.98·1011 6.95·1010 

𝑁=150, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=8000 

1.58·1010 6.86·1010 2.12·1010 

𝑁=150, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=16000 

8.85·109 2.18·1010 7.54·109 

 

Table 12. Statistical analysis of the optimisation results obtained by applying, 30 

independent times, Particle Swarm Optimization. BV: Best value, MV: Mean value, 

SD: Standard deviation 

Particle Swarm 

Optimization 
Objective function value 𝑓(𝐬) 

BV MV SD 

𝑁=50, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=4000 
3.83·107 1.53·108 9.80·107 

𝑁=50, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=8000 
3.46·107 6.94·107 2.68·107 

𝑁=50, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=16000 
3.39·107 5.57·107 1.05·107 

𝑁=100, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=4000 

4.12·107 4.92·108 5.45·108 

𝑁=100, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=8000 

3.45·107 8.59·107 4.88·107 

𝑁=100, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=16000 
3.39·107 5.44·107 1.40·107 

𝑁=150, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=4000 

1.19·108 9.35·109 1.12·109 

𝑁=150, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=8000 

4.14·107 1.42·108 1.32·108 

𝑁=150, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=16000 

3.36·107 5.87·107 1.63·107 

 

Table 13. Statistical analysis of the optimisation results obtained by applying, 30 

independent times, Artificial Bee Colony. BV: Best value, MV: Mean value, SD: 

Standard deviation 

Artificial Bee 

Colony 
Objective function value 𝑓(𝐬) 

BV MV SD 
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𝑁=50, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=4000 
2.58·1010 6.39·1010 2.25·1010 

𝑁=50, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=8000 
5.89·109 2.80·1010 1.12·1010 

𝑁=50, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=16000 
2.96·109 1.14·1010 6.39·109 

𝑁=100, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=4000 

4.12·1010 1.08·1011 4.13·1010 

𝑁=100, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=8000 

1.85·1010 5.15·1010 1.96·1010 

𝑁=100, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=16000 
9.35·109 2.29·1010 1.16·1010 

𝑁=150, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=4000 

4.64·1010 1.2·1011 5.36·1010 

𝑁=150, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=8000 

2.15·1010 5.63·1010 2.82·1010 

𝑁=150, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=16000 

8.55·109 3.45·1010 1.40·1010 

 

Table 14. Statistical analysis of the optimisation results obtained by applying, 30 

independent times, c-FOA. BV: Best value, MV: Mean value, SD: Standard deviation 

c-FOA Objective function value 𝑓(𝐬) 
BV MV SD 

𝑁=50, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=4000 
4.14·107 1.43·108 1. 38·108 

𝑁=50, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=8000 
3.65·107 5.72·107 4.35·107 

𝑁=50, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=16000 
3.40·107 4.53·107 1.44·107 

𝑁=100, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=4000 

8.29·108 3.21·1015 9.24·1015 

𝑁=100, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=8000 

3.81 ·107 1.04·108 1.34 ·108 

𝑁=100, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=16000 
3.64 ·107 6.70·107 6.02·107 

𝑁=150, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=4000 

2.00·1017 2.00·1017 3.34·1012 

𝑁=150, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=8000 

5.21 ·107 2.37·108 2.37·108 

𝑁=150, 

𝑓𝑢𝑛_𝑒𝑣𝑎𝑙𝑠=16000 

3.54 ·107 5.66·107 1.85 ·107 

 

 

 


