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Abstract

The development of hydropower and other infrastructure that disrupts river connectivity poses

a serious threat to highly endemic and genetically distinct freshwat fish species in temperate
parts of the Southern Hemisphere. Such locations have been neglected in previous reviews on
fish passage. Fishways have long been constructed to mitigate the impacts of riverine barriers on
fish, yet they haveoften failed for all but the largest, strongest swimming taxa. This is a particular
problem in the temperate southwhich is home tonative species that arenon-recreational and
generally smaltbodied with weak swimming abilities (e.g.Galaxiidae) relative to typical target
species for fishway design (e.g. Salmonidag)sing the Eco Evidence method for rapid evidence
synthesis, we undertook an assessment of evidence for effective fishway design focusing on
species representative of theemperate south including eel and lamprey Systematic literature
searches resulted in 630 publications. Through a rigorous screening process these were reduced
to 46 publications containing 76 evidence items across 19 hypotheses relating to design criteria
for upstream and downstream passage. We found an overwhelming lack of evidence for effective
fishway design in the temperate south. Particular deficiencies were found with regard to the
design of effective facilities for downstream passage. The attractiand entrance of upstream
migrating fish into fishways is also relatively underresearched. Given the urgent need for
effective fishways in the temperate south, these results justify an approach to fishway design
based on a combination of empirical data ahexpert knowledge. In the meantime, significant
resources should be assigned to improve the evidence base through high quality research. The
particular deficiencies identified here could guide that research agenda.

Keywords : Fish passage; fishway desigiydropower; non-recreational fish; Southern
Hemisphere
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Introduction

Given that the majority of freshwater fsh species must undertake some form ahovement (e.g.
for feeding, refuge, reproduction) in order to complete their lifecycle (Schlosser and Angermeier
1995), loss of connectivity caused by hydropower dams poses a serious problem. A range of
smaller structures such as lowhead hydropower plants, culverts, weirs and tidegates can also
represent barriers to fish (Kempand/ & ( A 201Gy, @nd their cumuktive impacts can be severe
(Larinier 2008; McKay et al2013). Pertinent examplesinclude the decline of fallChinook salmon
(Oncorhynchus tshawytscha&almonidae) in the Columbia River system, USA (Daubled Geist
2000), ard the disappearance ohnadromous species from major rivers in France and northern
Spain (e.g. Reye&avilan et al1996). Facilities designed to maintain passable conditions for fish
have been constructed for centuries but often fail for all but theteongest swimming taxa, such as
the salmonids native to northern Europe and North America(Katopodis and Williams 2012), and
effective design can be challengingven for these speciegRoscoe and Hinch 2010; Noonan et al.
2012; Bunt et al. 2016. The negative environmental and indeed economic consequences of
impoundments are such that many large economies in the Northern Hemisphere have begun to
remove barriers to migration, including large dams in some cases (Pa&hd Hart 2002; e.g. East
et al.2015).

The Southern Hemisphere, however, presents a different problem because of intense pressure
for rapid economic development and the relative lack of knowledge on the needs of native
species (Roscoand Hinch 2010). Attention has been drawn to the inadequate provision for
passage ofarge, migratory fish in neotropical South Americgwhere hydropower development is
especially rapid (Barletta et al2010; Zarfl et al.2015). The conclusion consistently reached by
scholarsis that designs exported from the Northern Hemisphere are unsuitable for passing
diverse neotropical communities (Quirés1989; Makrakis et al.2011; Roscoeand Hinch 2010;
Duarte et al.2012; Katopodisand Williams 2012). The situation is just as serious in temperate
regions of the Southern Hemisphereurrently experiencing a hydropower boom(e.g. Chile)
which have been neglected in important reviews on fish passadpy Quirds(1989), Pringle et al.
(2000) and Barletta et al. (2010).The snaller-bodied, nonrecreational fish that characterisethis
region are likely to present even more of a challenge for fishway technology during a global

movement (Link and Habit, 2015).

Fish communities of the temperateéSouthern Hemispheretypically have low species richness but

high levels of genetic diversity and endemism (OrmazabaB93; Gehrkeand Harris 2000;

Ruzzante et al2006; Zemlak et al2008; MufiozRamirez et al2014). These communities are
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Galaxiidae) and the anadromous pouched lampreyGeotriaaustralis, Geotridae), whosextant

distributions encompassNew Zealand and southern parts of Australia, Argentina and Chile

(Figure 1, McDowall 2002). The galaxiids and related taxa are the dominant groups in this zone,

comprised of over 50 species fronthe families Leptogalaxiidae (Australia), Retropinnidae

(Australia and New Zealand) and Galaxiidae (whole range). These fish are already experiencing a

major decline due to the effects of habitat deterioration, overexploitation and displacement by

introduced species (McDowalR006; Habit et al.2010). The majority of species native to Chile
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2014). The high degree of diadromy in these fish communitie§vicDowall, 2002), and the fact

that most upstream migrations occur during juvenile life stages, further exacerbates the problem.

Mitigation for fish passageunder certain conditionsis required by law in all of the

aforementioned countries.Article 168 of theLaw of Fisheries and Aguaculture in Chile, for

example,obligates the owners ofbarriers O E fpréverthe natural migration of fishd0i OAAOOU 1 0O
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fishways constucted through implementation of theselaws may bemore suitable for non-native,

recreational speciessuch as salmonidsrather than native taxa(e.g. Sevicio de Evaluacion

Ambiental 2017).

AEA 1T OAOAT T OA E£A debsB®@AgaiiD 6 § A RUEA B indERICUbY alslite §f
metrics describing the ability of individuals of target species to locate and enter the facility and
pass the barrer without significant consequences in terms of fithessi.e. growth, survival and
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specifically designed to pass fish in an upstream or downstream directionffBctiveness for
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efficiencydescribes the proportion of fish motivated to pass the barrier that can locate the

entrance to the fishway Entrance efficiencys the proportion of fish attracted to the entrance that

subsequently enter.Passage efficiendg defined as the number of fish exiting the fishway as a

proportion of those entering. For downstream passageyuidance efficiencys the proportion of

fish passing through the route intended by the design of screens and bypasses, rather than

through hydropower turbines. Turbine entrainment may result in injury and mortality due to

excessive shear, turbulence and pressure fluctuations, in addition to mechani@ajuries such as

blade strike (Pracheil et al2016a8 4 EOOh OZAEOE AOEAT Al UdgHOAOAET A AAOL
et al.2014; Dixonand Hogan2015). The effectiveness of fishwaysas well as mortality during

turbine entrainment, is related to both engineering parameters(e.g. hydraulics turbine design

andthe biological (e.g.body length, swim bladder morphology) characteristicsof target species

(Bunt et al.2012; Pracheil et al. 2016).

Given the proliferation of hydropower dams and other barriers to fishmovementin the

temperate south, our aim was to assess the evidence for design criteria that would optimise the
effectiveness of fishwaydor native speciesin this region. Given the urgncy of the situation, we
used theEco Evidence method forapid evidence synthesis (Norris et al2012; Webb et al2015)
and includedevidence on smaHbodied and nonrecreational species (including eel and lamprey)
from anywhere in the world.

Methods

We used the Eco Evidence method, described in full by Norris et al. (2012), because it was

specifically designed to rapidly evaluate causeffect relationships inthe environmental sciences.

The method is best classified as belonging to the emerginggou | £ OOADPEA OAOEAxS 1 AOE
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methods, inspired by those used in medical sciences, but at a fraction of the cost and time

required. Eco Evidence maximises transparencgnd repeatability, and provides readily

interpretable results (Webb et al.2013). The method centres on the synthesis @vidence items

(sensu Webb et al2015), which are the summarized ihdings from a study (hypothesi®d cause

and effect, experimental @sign classification, presence or absence of cause and effect

association). There are eight stages to an Eco Evidence review (Norris et2fl12). These stages

can be consolidated in to four broad categories: (i) problem formulation and context; (ii)

hypothesis generation; (iii) literature search and evidence extraction; and (iv) evidence

assessment and reporting. We describe each of these stages below within a feavmork that

follows the PRISMA (Preferred Reporting Items for Systematic reviews andeté-Analyses)

statement (Liberati et al.2009) as closely as possible for ecological studies (Nakagaaad

Poulin 2012).

Problem formulation and context

Our overall research question wasis there sufficient evidence to inform effective fishway design in
the tenmperate Southern HemisphereThough our review focused on species native to the
temperate south, the scarcity of empirical data relating specifically to these species necessitated
a wider scope. We therefore considered evidence relating tmy freshwater species globallywith
amaximum adult body length of <250 mm TL, a broader category than previously proposed for
non-recreationalj O1-0 81 @sH 1H0 mm TL; Linkand Habit 2015). This wasnot intended as

a reclassifcation of non-recreational fish. It wasmerely apractical definition for the purposes of
the review. Our rationale for this was that body length is &indamental trait influencing

swimming speed (Lauder2015) and mortality due to turbine entrainment (Coutantand Whitney
2000), rendering evidence from larger species of increasingly limited relevance.

Hypothesis generation



We focused on four effects consistent with the literature on fishway effectiveness metrics,
namely attraction, entrance, passage and guidance efficiency (Kermpd/ 8 ( A RA13, Plus
fish mortality due to turbine entrainment (Table 1). Our initial set of causes was based on our
understanding of fishway design criteria from the global literature, which included important
contributions from previous reviews that primarily focused on fish native to the Northern
Hemisphere (Coutant and Whitney 2000;Larinier and Marmulla 2004; Katopodis 2005; Roscoe
and Hinch 2010; Bunt et al.2012, 2016, Brown et al.2014; Pracheil et al2016a). To further
define our hypotheseswe consulted several international fishway design experts. During the
literature search we refined our set of hypothesesexcluding,separatingor aggregating them as
necesary toavoid over-specifying hypotheses in circumstances where there is little evidence
available (e.g. Webb et a012). We provide detailed descriptions of the final set of causes in
Table 2.

Literature search and evidence extraction

The literature search focused on two databases: |8¥eb of Sciencand the University of
Massachusetts Fish Passage Reference DataE88RFACS2009), which contains theses,
unpublished reports, conference proceedings and miscellaneous publications on fish passage.
The search strings used when querying the literature databases are provided in Appendix 1.
However, Greenhalghand Peacock (2005) have shown how systematic reviews of complex
evidence @nnot rely solely on predefined search strategies. Therefore, in addition to the results
of the systematic literature search, a number of other sources relevant to the review were
included that were sourced through colleagues, our own knowledge of the litature, and from
the reference lists of obtained publications. It was impossible to include these in the systematic
literature search as they did not appear in either database.

Results of the literature search were filtered by reviewing abstracts or, ithe case of several

results from the University of Massachusetts database, by scanning the full source. A total of 630

unique articles (Table S1) were filtered down to 72 articles through this initial screening process
(Figure 2). The remaining articles wee assessed in full (see below) by at least one assessor but
could still be excluded at this stage due to insufficient reporting of results with regards to
fishway characteristics or fish response, limitations in the study design (confounding variables)
or because results were reported for disqualified (noranguilliform >250 mm TL) or ambiguous
species (Table S2). After this final screeningve were left with 46 articles containing 76

individual evidence items across the 19 hypothesed-{gure 2).

Evidenceassessment

An individual article could contain evidence across one or more hypotheses. Each evidence item
considered appropriate for inclusion was given a weight based on its inferential strength (a
combination of study design and replication, with highemeights attributed to stronger
experimental designs) using the standard Eco Evidence weightings (see Norris et2012). For
each hypothesis we summed evidence weights supporting the hypothesis and weights refuting
the hypothesis. We used the standard BdEvidence thresholds for assigning a nominal outcome
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Evidence were séthrough an extensive expert consultation process (Norris et a2012).
However, as the thresholds are somewhat arbitrary, there is a need for careful interpretation
when weightings are close to boundaries between outcomes.

For hypotheses with sufficientbut somewhat inconsistent evidence (weight >20 for support and
>0 for refute) we decomposed results into subhypotheses focusing on three taxonomic groups:
(i) angulliform fish; (ii) Galaxiidae (including Retropinnidae); and (iii) other taxa. These groups
were used to reduce potential differencesd.g.rheotactic behaviour) in the response of the taxa
considered. If articles reported evidence for multiple taxonomic groups within the same
hypothesis, a separate item of evidence was considered for each group

When evidence for a hypothesis was assessed by more than one assessor we calculated the
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individual evidence items across that hypothesis. Where there was a differemin the weighting

assigned by different assessors we conservatively used the lower weighting when reporting
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inclusion or exclusion of an evidence item.

Results
Internal validity

Out of a total of 121 evidence items remaining after the initial screening, 40 were independently
assessed by at least two assessors. There was 100% agreensnbng assessorabout
appropriateness of the study design (i.e. whetheor not the evidence item was included). There
was also complete agreemenamong assessorgsbout whether the hypothesis was supported or
refuted by the evidence. Differences in the weights reported were rare, and in all but one case
(hypothesis P4c) equatedo only a modest variation (analogous to measurement error in
primary data; Webb et al. 2012) in the evidence weight (Table 3, Table S2).

Summary of evidence

The 46 articles retainedafter completing the screening process came from studies conducted in
Europe, North AmericaNew Zealand, Australia, Central America and South Ameri@a order of
frequency; Figure 1) Across the 19 hypotheses tested, plus six sthypotheses split by
taxol T i EA COT OB 10 NOAI EOAGEOA AAOOAR OEA 11 00
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rejected, and there was one instance of inconsistent evidencEi§ure 4; Table 4.
Attraction efficiency

We did not find sufficient evidence to support either hypothesis relating to attraction efficiency
(Figure 4). Only a small proportion of the evidence gathered across the whole systematic review
related to this effect (5%). The najority of evidence items initially screened for hypothesis A1

(€ Proportion of flow at fishway entrance: ¢ Attraction efficiency) were excluded, largely
because they failed to quantify attraction efficiency (Table S2).

Entrance efficiency

Of the four hypotheses relating to entrance efficiency, an outcome of insufficient evidence was
returned for hypotheses E1 D Mean water velocity at entrance ¢ Entrance efficiency) and E4
(D Turbulence intensity at entrance: ¢ Entrance efficiency) Eigure 4). Hypothesis E5 D Drop
height : ¢ Entrance efficiency) was strongly supported, containing 9% of all evidence items
considered across the review. We were unable to find any evidence for hypothesis EP\(elocity
gradient : ¢ Entrance efficiency).

Passage efiiency

We found insufficient evidence to support hypothesis P13{Fishway type: ¢ Passage efficiency;
Figure 4). An outcome of inconsistent evidence was returned for hypothesis PP (Mean water
velocity in fishway : ¢ Passage efficiency) but decompositiomto taxonomic groups

demonstrated sufficient evidence to support the hypothesis for anguilliform and galaxiid species,
whilst the hypothesis was rejected by a small margin for other taxa. Evidence relating to
hypothesis P2 constituted the largest proportbn (27%) of items found across the whole review.
Hypothesis P4b ¢-Baffle presence and configuration ¢ Passage efficiency) was supported across
pooled taxa. However, a more detailed analysis showed that there was only sufficient evidence to
support this hypothesis for galaxiids. We also found support for P4aflow regime: ¢ Passage
efficiency) but this related to only two species across three separate studies. Outcomes of
insufficient evidence were returned for hypotheses P4al} Turbulence intensity in fishway:

¢ Passage efficiency) and P4 (Climbing substrate: ¢ Passage efficiency).



Guidance efficiency

We found sufficient evidence to support hypothesis GBScreen design ¢ Guidance efficiency)
by a narrow margin (Figure 4). An outcome of insufficient evidence was returned for hypothesis
G2 @-Bypass design ¢ Guidance efficiency), with only four evidence items all relating to a single
speciesAnguilla anguilla Anguillidae (Table S2).

Turbine entrainment (mortality)

We found insufficient evidence to support any of the four hypotheses relating to mortality due to
turbine entrainment (Figure 4), with just four studies contributing evidence.

Discussion

Overall, we found insufficient evidence to inform effective fishway design in the temperate
Southern Hemisphere. The only clear exceptions to this (weighting >>20 for support, <<20 for
refute) related to hypotheses P4b $Baffle presence and configuration ¢ Passage efficiency) and
P2 (D Mean water velocity in fishway: ¢ Passage efficiency) for Baxiidae and Retropinnidae, as
well as hypothesis E5 D Drop height: ¢ Entrance efficiency)for all taxonomic groups

Workers in the field of fish passage have consistently bemoaned the disproportionate focus of
fishway research and design on largeglatively strong swimming species native to the Northern
Hemisphere (Quir6s1989; Roscoeand Hinch 2010; Makrakis et al.2011; Duarte et al.2012;
Katopodisand Williams 2012). Despite this, there have been no previous attempts to synthesise
the evidencefor fishway design criteria specifically relating tonon-recreational species. The
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non-recreational fish passage is an underesearched areanot only in the temperate Southern
Hemisphere but in other regions dominated byelatively small-bodied, weakswimming species,
such as Turkey(e.g. Kuckali and Hassinger 2016) and thé&reat Plains of thadJSA (e.g. Pennock
et al. 2017)

Evidence fordownstream fishway design

We found a particular deficiency in evidence relating to downstream passage, echoing several
previous commentaries highlighting the disproportionate focus on upstream migration in the
wider fish passage literature (Kempand/ & (IédyR010; Pompeu et al2012, 2015; Baumgartner
et al.2014). This disproportionate effort risks the creation of ecological traps upstream of
barriers and eventually local extinction(Peliciceand Agostinho 2008; Agostinho et al2011). The
major issues wih downstream passageéhave been cited as mortality due to pressure fluctuations
(barotrauma), fluid shearand blade strike during turbine entrainment, and the challenges of
guiding fish away from potentially harmful routes (Coutant and Whitney 2000 Katopodis 2005;

Brown et al.2014; Pracheil et al2016a).

Though we were able to support hypothesis G1, that a qualitative change in scregasignwould
affect guidance efficiency, the four evidence items included evaluated the performandetioree
different screen typesBakerand Aldridge (2010) evaluated the effect of modification to a
physical screen on three species native to New Zealand (in both anguilliform and Galaxiidae
groups). Johnson and Miehls (2013) tested the response Betromyzon marinuPetromyzontidae
to two different electrical screens. FinallyPiper et al. (2015) focused on hydrodynamic screening
of migrant A. anguilla The effectiveness of screens is related to many factors that are highly
species and site- specific (Katopodis2005), making the definition of general design criteria
challenging.

The only evidence for the effectiveness of bypass types (hypothesis G2) and mortality due to
blade strike (T2, T3), shear and turbulence (T4) during turbine entrainment was limited to a
single speciesA. anguilla Evidence for the effect of pressure flucations on mortality due to
barotrauma came from just two studies investigating a total of four specie&ntosphenus
tridentatus Petromyzontidae andLampetra richardonii Petromyzontidae in Colotelo et al. (2012)
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and Astyanax bimaculatusCharacidae and_epainus reinhardtii Anostomidae in Pompeu et al.
(2009). However, it could be misleading to include lamprey (e.¢. tridentatus L. richardonii)
together with other species as evidence for this hypothesis. This is because the lack of a swim
bladder in lamprey appears to render them insusceptible to barotrauma (Colotelo et &012).

Evidence for upstream fishway design

We found that factors affecting attraction and entrance efficiency have been poorly researched
for all taxonomic groups representative of he temperate south. The exception to this was in the
case of hypothesis E5, demonstrating that the occurrence of drops between the downstream
water surface and the upstream bed level would constitute poor fishway design. The general lack
of evidence for atraction efficiency hypotheses is of major concern as poor attraction is one of
the primary reasons for fishway failure worldwide (Larinier and Marmulla 2004). Bunt et al.
(2012) describe attraction and entrance failure mechanisms agi) poor entrance loation; (ii)
insufficient discharge relative to competing flow; andiii) excessive turbulence and velocities.

We did not find sufficient evidence to evaluate hypotheses for any of these causes. Furthermore,
the majority of evidence we did find was limitedto eel and lamprey. We found no evidence at all
for hypothesis E2, which is surprising given the wider literature suggesting that fish avoid areas
with abrupt velocity accelerations and decelerations, albeit when migrating in a downstream
direction (Haro et al. 1998; Kemp et al2005; Enders et al2009 2012; Vowlesand Kemp2012;
Vowles et al.2014). It is likely that such extreme conditions are not found at entrances to
fishways designed for upstream passage.

Causes relating to passage efficiency had cparatively more evidence. However, several design
criteria relating to upstream passage are still not sufficiently researched to reach any general
conclusions. For example, evidence for hypothesis P4FKishway type: ¢ Passage efficiency)
included studieson a range of fishway types. Foulds and Lucas (2013) and Matondo et al. (2015)
compared the passage efficiency of Denil and verticalslfishways respectively with pool-and-
weir designs. The former foundextremely low passage efficienciesf 0 % (Denil fishway) and5
% (pool-and-weir) for Lampetra fluviatilis Petromyzontidae. Stuart et al. (2008a) evaluated
passage efficiency improvements resulting from the modification of a vertical slot fishway with
lock gates finding inconsistent effects of the modifiation among three nonrecreational species
iTT AT AO Al-andlysis repomeq ghsshgd €ifisiencies for a variety of fishway types,
whereas Newbold et al. (2014) focused on alternative designs for culverts. Cleatlyese studies
do not form coherent evidence that is able to inform fishway design in any detail, and this may
partly explain the inconsistency of findings.

Mean velocity or fishway slope (hypothesis P2) was by far the nsbwell-researched design
criterion, with a total of 20 individual evidence items. We found support for the hypothesis that
the passage of anguilliform and galaxiid species is improved as mean velocity or longitudinal
slope is decreased. For other species there wa greater weight of evidence for the opposite
effect. The majority of evidence refuting hypothesis P2 for neanguilliform and non-galaxiid
speciescomes from two studies that tested the passage of fish through culverts (Bousaad
Paukert 2010; Davidand Hamer 2012), a somewhat different context to fishway design at
hydropower barriers. Further evidence of a negative correlation between passage efficiency and
mean velocity came fromthe meta-analysisof Noonan et al(2012), reported for all non-

salmonid taxatogether. We therefore interpret this finding with caution.

We found that there was insufficient evidence to support hypothesis P3, that passage efficiency
would increase with decreasing fishway length. Minimisation of fishway length has often been
included in best practice guidelines for the hydraulic design of fishways, for reasons relating to
swimming performance and energetics€.g.Laborde et al.2016). However, we found a
comparable weight of evidence supporting and refuting this hypothesis. Ehevidence
contributing to this outcome comes from two very different contexts: Baker (2014) evaluated
passage efficiency over ramps up to 6 m long, whereas Noonan et al. (2012) includigit-scale
fishways. The latter found a positive relationship betweerishway length and passage efficiency
but this correlation was likely at least partly driven by the negative relationship between fishway
length and slope, with slope being the decisive factor. There is clearly a need to disentangle the
effects of these ky design criteria.



Turbulence (hypothesis P4a) and the installation of bafflesR4b) have also been included in
design criteria for fishways for reasons relating to swimming energetic¢Feurich et al.2012;
Bretén et al.2013; Baki et al.2014a, b). Howeer, we found insufficient evidence fo the benefits
of these desigrparameters. The exception to this was for the response of galaxiids to baffle
design, which was among our most strongly supported hypotheses. Several studies support the
installation of complex baffle arrangements and rough substrates to improve the passage of
galaxiid and related species€.g.Bakerand Boubée2006; MacDonaldand Davies2007; Maller-
Cooper et al2008). Turbulence is a complex phenomenon that can be described in a variety
ways, including intensity, periodicity, orientation and scale (Lacey et 82012). The elucidation of
relationships between fish swimming performance and turbulence, especially in the context of
fishway design, remains a major challenge (Wilkes et £013).

We were able to support hypothesis P4c, that a qualitative change in flow regime affects passage
efficiency. However, the three studies that contributed to this evidence suggested opposite
effects for two species. Piper et al. (2012) found tha.anguilla passage over an intertidal weir
was significantly higher under plunging flow, whereas Branco et al. (2013a, b) reported that
Squalius pyrenaicu€yprinidae passage through an experimental poand-weir fishway was
significantly higher under streaming flow. This conflicting evidencepoints to fundamental
differences in the behaviour of eels and other species around barriefSel passage may be
stimulated under plunging flow becausethe flow regime has agreater influence on velocitiesand
turbulence near the wate surface, where juvenilesare more likely to be migrating(Clay 1995;
Tesch2003), whereas other nonrecreational species lack the strong rheotactic behavig to deal
with these conditions and may become disorientated by thélow patterns found under plunging
flow regimes (Brancoet al. 2013a, b).

A key characteristic of several species of the temperate south is their ability to climb vertical
surfaces (e.gGalaxias fasciatu§&alaxiidae, Gobiomorphus huttonEleotridae, Anguilla
dieffenbachiiAnguillidae). We therefore tested hypothesis P4d, that the presence and type of
climbing substrate would affect passage efficiency. However, we found only one study evaluating
this hypothesis (Davidand Hamer 2012), which reported an increasen passage when mussel
spat ropes were installed at a perched culvert entrance, and for only one (juveni® fasciatusof
three climbing species native to New Zealand. This may be due to the different climbing styles
exhibited by the three species. Foexample,G. fasciatusises its whole body to climb in a
continuous movement, whereass. huttoniattaches intermittently with specialised pectoral fins.
This apparent difference justifies further research into the efficacy of a variety of substrates to
improve the passage of climbing species.

Fish passage research needs

We found that most studies excluded at the screening stage were highly sgpecific,lacking a
sufficiently robust study design to generate transferable knowledge. Another shortcoming
apparent in the extant literature is the lack of standardised reporting of efficiency estimates and
variances, a problem also highlighted by Bunt et al. (2012016) and Pracheil et al. (201) for
the global literature on upstream passage and turbine entraiment respectively. The omission of
standardised estimates and variances precludethe use of formal metaanalyses (Williams &
Katopodis, 2016).

Roscoe and Hinch (2010) found that less than 5% of published fishway evaluations had been
performed in the temperate south. The lack of studies investigating passage failure mechanisms
is a particular deficiency of work in the Southern Hemisphere (Roscand Hinch 2010). Not a
single study from the Southern Hemisphere met the criteria for inclusion ithe meta-analyses on
the performance of fishwaysby Bunt et al.(2012, 2016). These criteria were: (i) fish were
individually monitored using biotelemetry; (ii) data were from migratory fish actively migrating
within a single spawning season; and (iii) observations wer made under natural conditions
without any intervention to coerce fish into ascending structures. In part, the exclusion of work
from the temperate south based on such criteria is due to the difficultyr impossibility of

adopting currently available biotelemetry technologies for use with smaHbodied fish. For



example, even the smallest passive integrated transponder (PIT) tags are approximately 25% of
the length and 10% of the weight of a juvenile galaxiife.g.G. maculatusChapman et al. 2006)

Direct fishway evaluations in the temperate south often rely on trapping campaigns at the
upstream and downstream ends of fishways on alternate days, with a comparison of species
composition and body length distributions indicating the degree to which théishway is effective
(e.g. Stuart et al2008b). Whilst this is a pragmatic study design, it fails to produce a metric of
passage efficiency, ignores attraction and entrance efficiency, and is not able to indicate
mechanisms for passage success or failuskn alternative approach has been to stain and release
fish downstream of a fishway (e.g. Amstaetter et &2015). Recapture rates in a netted section
upstream can then be used to infer passage efficiency. However, this method is susceptible to
losses of tained fish and is not suitable in large rivers where isolating a section with nets would
be impractical.

There is an urgent need to develop a set of methods for robust design and evaluation of fishways
in the temperate south. This may include PIT and aastic tagging, although experimental work

is required to check what, if any, negative impacts on mortality and swimming performance
result from using miniaturised PIT and acoustic tags imon-recreational fish. Further laboratory
work on swimming performance and behaviour in prototype fishways will also be useful to
define biological design criteria fornon-recreational species (e.g. Laborde et &016). This
experimental approach should be extended to include the assessment of screem dnypass
designs and the definition of safe thresholds for shear and pressure fluctuations (Brown et al.
2014). Such doseresponse studies are expensive and timatensive. Thus, attemptsshould be
made to synthesise work already completed on a range ofaeeational species worldwidein

order to derive transferrable knowledge for native species of the temperate Southern
Hemisphere There is also a need to model blade strike injury and mortality for a range of turbine
designs and discharges (e.g. Deng et2011). All such modelling and laboratory results must be
validated in-situ in order to incorporate the full set of processes influencing fishway efficiency in
complex, realworld situations (e.g. Baumgartner et al2012).

Our analyses confirm that vastly less is known about fishway design fapn-recreational fish

than for salmonids. The evidence is not well documented even for anguilliform species, which
have been the focus of much legislation antbnservation efort globally (Haro et al.2000; Dekker
2003; Masters et al2006; Bark et al.2007; Lucas et al2009; Russonand Kemp2011). The mean
overall upstream fishway effectiveness (21%) and the average delay to migration (5.5 days)
reported by Noonan et al(2012) for non-salmonids suggest serious consequences of current
fishway designs for the vast majority of species. The current global hydropower boom is affecting
areas of the world with diverse nonrsalmonid species (Zarfl et al2015), including the mega
diverse Amazon and Mekong basins (Winemiller et &2016). A major problem in tropical basins

is the trapping of fish eggs and larvae in quiescent impounded sections, rendering fishway
effectiveness a concept of limited relevance (Pompeu et aD12). Although the Eco Evidence
approach would be suitable for application to this problem, or review has not considered this
aspect This is, in part, because this lif@istory trait is less prevalent in temperate systems.
However, resarch on ecological traps (Pelicicand Agostinho2008) and sources and sinks
(Godinhoand Kynard 2009) caused by impoundments in the temperate south would help to fill
this knowledge gap. Such research would ensure that effective fishway design is contrtilmg
positively to the viability of populations, rather than facilitating passage into ecological traps, and
thus condemning populations to eventualocal extinction.

Our inclusion of any species with an adult body length of <250 mm TL plus anguilliforapecies

of any length encompasses fish of a huge diversity of liféstories, behaviours and ecologiesThis

introduces uncertainties into our review and may be at least partially responsible foour

evaluation of inconsistent evidencen the case of hypdhesis P2(D Mean water velocity in

fishway : ¢ Passage efficiencyfor non-galaxiid and nonanguilliform species which included

cypriniform, perciform , characiform and siluriform taxa(Table 4; Table S2)One major challenge

for fish passage research globally is to identify and catalogue the traits that are decisive in
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minimum, such a trait catalogue should includenformation on body length, migration timings

and cues, swimming performance, lateral line development, swim bladder morphology and



migration depth. These latter two traits are critical to the susceptibility of fish to barotrauma, a
previously neglected impact of hydropower turbines and other river infrastructure (Brown et al.
2014; Pracheil et al2016a). Limited fish trait information is already available in databasesvith
worldwide ( Froese and Pauly014) and national (e.g. USA; Frimpong antingermeier 2009)
coverage, and has already been appliéd the context of hydropowermonitoring in the USA
(Pracheil et al. 2016b), but more work is required to develop the full set of relevant traits,
particularly for species native to regions outside ofhe temperate Northern Hemisphere By
allowing the identification of functional groups, compilation of these traits would help talirect
efforts to transfer knowledge between biogeographical regions and taxonomic groupas we
haveattempted to do in thisreview.

Conclusions

There is currently very little evidence to support the design of effective fishways faron-
recreational fish native to the temperate southa geographi@l context that includesareas
presently experiencing rapid hydropowerdevelopment More research is urgently required in
areas relating to attraction, entrance and guidance efficiency and turbine entrainment, but with
more robust experimental designs that allow findings to be transferred beyond the system being
studied. Themost urgent needs are for research into effective design of downstream passage
facilities, otherwise there is a risk that resources used to construct effective upstream fishways
are wasted when downstream migrants suffer high levels of mortality. Thick of empirical
evidencejustifies the combination of available data, modelling outputs and expert judgement for
informing fishway design decisions until sufficient (and sufficiently robust) datacan be collected.
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Table 1z Combinations of cause and effect hygthesising the relationships between fishway and
turbine design parameters and effect on fishway efficiency and fish mortalitgvaluated within

the Eco Evidencanalysis (€ ) indicates ahypothesised increase, D) a decrease and%) a

qualitative change.See Table 2 for @tailed descriptions of causes.

Causal Cause Effect

hypothesis

Al ¢ Proportion of flow at fishway entrance € Attraction efficiency
A2 D Distance of entrance from barrier ¢ Attraction efficiency
El D Mean water velocity at entrance ¢ Entranceefficiency

E2 D Velocity gradient ¢ Entrance efficiency
E4 D Turbulence intensity at entrance ¢ Entrance efficiency
ES5 D Drop height ¢ Entrance efficiency
P1 3-Fishway type ¢ Passage efficiency
P2 D Mean water velocity in fishway ¢ Passage efficiency

P3 D Fishway length ¢ Passage efficiency
P4a D Turbulence intensity in fishway ¢ Passage efficiency
P4b 3-Baffle presence and configuration ¢ Passage efficiency
P4c 3-Flow regime ¢ Passage efficiency
P4d ¢ Climbing substrate ¢ Passage efficiency
G1 3-Screen design ¢ Guidance efficiency
G2 3-Bypass design ¢ Guidance efficiency
T1 D Pressure fluctuation ¢ Mortality (barotrauma)
T2 3-Turbine design ¢ Mortality (blade strike)
T3 D Turbine revolution speed ¢ Mortality (blade strike)
T4 3-Turbine type ¢ Mortality (shear, turbulence)
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Table 2z Descriptions of fishway and turbine design parametersisedto form causalhypotheses

in Table 1

Cause

Description

Proportion of flow at the
fishway entrance
Distance of entrance
from barrier

Mean water velocity at
entrance

Velocity gradient
Turbulence intensity at
entrance

Drop height

Fishway type

Mean water velocity in
fishway

Fishway length
Turbulence intensity in
fishway

Baffle presence and
configuration

Flow regime

Climbing substrate

Screen design
Bypass design

Pressure fluctuation

Turbine design

Turbine revolution
speed
Turbine type

The proportion of total streamflow discharged from the fishway,
plus any auxiliary attraction flow

The physical distance of the fishway entrance from the barrier.
Alternatively, the distance of the entrance from the maximum
upstream limit of migration if this differs from the barrier location
The time-averaged water velocity at the entrance to the fishway

Linear flow acceleration or deceleration at the fishway entrance
The magnitude of fluctuations ininstantaneous velocities at the
fishway entrance

The vertical elevation of a physical drop between the downstream
water surface elevation and the upstream bed level

The type of fishway (e.g. poeand-weir, vertical slot, Denil, rature-
like bypass, rock ramp)

The time-averaged water velocity in the fishway. Alternatively, as
velocity is rarely reported, the longitudinal fishway slope or head
difference as a surrogate

The total lengthof the fishway

The magnitude of fluctuations in instantaneous velocities in the
fishway

The presence and/or size, shape, configuration of baffles in the
fishway

The prevailing flow regime in the fishway (plunging or streaming)
The presence and type of roughness elements designed to aid
climbing fish

The type and design parameters of fish screening devices (e.g.
physical, hydrodynamics, electrgal, acoustic, light)

The type and design parameters of fish bypasses for downstream
movement (e.g. surface or submerged bypass)

The ratio of maximum to minimum pressure or the rate of pressure
change that a fish is expsed to when passing through turbines or
other infrastructure

The design of turbines, including the number, configuration, shape
and spacing of blades

The number of revolutions of the turbine per unit time

The type of turbine present (e.g. Francis, Kaplan, bulb, Pelton,
crossflow, Archimedes)
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Table 3z Summary ofdifferencesin evidence weightingsgiven byassessrs who independently
assessed evidence itemdncludes evidence items excluded at theligibility stage.

Hypo- Evidence Itemswith2 Items with Mean Mean Maximum
thesis items assessors 3 assessors  evidence difference difference
assessed weight among among

assessors assessors

Al 7 2 1 4.0 0 0

A2 2 0 1 4.0 0 0

El 5 1 0 4.7 0 0

E2 0 NA NA NA NA NA

E4 2 0 0 6.0 NA NA

E5 10 0 0 8.8 NA NA

P1 10 0 2 5.2 0 0

P2 33 11 0 7.2 0.4 2

P3 8 5 2 9.0 0 0

P4a 4 2 0 3.3 0 0

P4b 13 1 0 7.3 1 1

P4c 3 1 0 6.0 4 4

P4d 3 3 0 6.0 0 0

G1 6 1 0 5.3 0 0

G2 6 1 0 4.4 0 0

T1 2 1 1 6.5 0.2 1

T2 3 2 0 4.0 0 0

T3 2 2 0 9.0 0 0

T4 2 0 0 6.0 NA NA
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Table4 z Results of theEco Evidenceanalysis for each causal hypothesis identified in Table 1.

Hypothesis Supporting hypothesis Refuting hypothesis Conclusion
Summed References Summed References
weight weight
Al 4 Fouldsand Lucas (2013) 4 Matondo et al. (2015) Insufficient evidence
A2 8 Stuart et al. (2007); da Silva et a{2012) 0 Insufficient evidence
El 10 Johnson et al. (2012); Newbold et al. (2014) 4 Moser et al. (2002) Insufficient evidence
E2 0 0 No evidence
E4 6 Newbold et al. (2014) 0 Insufficient evidence
E5 62 Baker (2003); Holthe et al. (2005); Ficke et al. 0 Supported
(2011); Cooneyand Kwak (2013); LeMoineand
Bodensteiner (2014)
P1 17 Stuart et al. (2008); Noonan et al. (2012); Matondo 14 Fouldsand Lucas (2013); Insufficient evidence
et al. (2015) Newbold et al. (2014); Stuat
et al. (2008)
P2 103 Hypothesis split by taxonomic group below 40 Hypothesis split by taxonomic Inconsistent evidence
group below
P2 (anguik 31 Keefer et al. (2011); Kemp et a(2011); Jellymanet 16 David and Hamer (2012); Supported
liform) al. (unpublished data); Matondo et al. (2015) Johnson et al. (2012);
Newbold et al. (2014)
P2 (Galaxiidae) 54 Bakerand Boubée (2006); MacDonaldand Davies 0 Supported

(2007); Doehring et al. (2011); Davidand Hamer

(2012); Doehring et al. (2012); Baker (2014);

Amstaetter et al. (2015)

Bakerand Boubée (2006); Duarte et al. (2012); 24
Baker (2014)

P2 (other taxa) 18 Bouskaand Paukert (2010);
David and Hamer (2012);

Noonan et al. (2012)

Reject hymthesis

P3 18 Baker (2014) 9 Noonan et al. (2012) Insufficient evidence
P4a 9 Duarte et al. (2012); Kemp et al. (2011) 0 Insufficient evidence
P4b 64 Hypothesis split by taxonomic group below 16 Hypothesis split by taxonomic  Supported

group below
P4b (anguil- 12 Jellyman et al. inpublished data); Vowles et al. 8 Newbold et al. (2014); Insufficient evidence
liform) (2015) Tummers et al. (2015)
P4b 43 Bakerand Boubée (2006); MacDonaldand Davies 0 Supported



(Galaxiidae)

P4b (other
taxa)
P4c

P4d
G1

G2

T1
T2
T3
T4

(2007); Hicks et al. (2008); MallerCooper ¢ al.
(2008); David et al. (2014)
Bakerand Boubée (2006)

Piper et al. (D12); Branco et al. (2013ab)

David and Hamer (2012)

Bakerand Aldridge (2010); Johnsonand Miehls
(2013); Piper et al. (2015)

Durif et al. (2002); Gosset et al. (2005); Marohn et al.
(2014)

Pompeu et al. (2009)

van Eschand Spierts (2014)
Buysse et al. (2013)

N

OO~ Db

Mallen-Cooper et al. (2008)

David and Hamer (2012)

Calles et al. (2012)

Colotelo et al. (2012)
Buysse et al. (2015)

Insufficient evidence
Supported

Insufficient evidence
Supported

Insufficient evidence

Insufficient evidence
Insufficient evidence
Insufficient evidence
Insufficient evidence
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Figure 1- Joint distribution of Galaxias maculatusind Geotria australis(dashed black lines)
delimiting the temperate Southern Hemisphere according to McDowall (2002). Symbols denote
the locations of46 studies included in this review.
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Figure 2z Inclusion and exclusion of studies in the systematic review, as suggested by the
PRISMA statement (Liberati et al., 2009). n = number of studies, e = number of evidence items,
WoS = Web of Science, UMass nilkrsity of Massachusetts Fish Passage Reference Database.
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Figure 3z Eco Evidence outcome thresholds. Axis units are summed evidence points across

evidence items supporting (x) and refuting (y) the hypothesis.
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