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Abstract 

Instrumented indentation is a convenient and increasingly rapid method of high resolution mapping 

of surface properties. There is, however, significant untapped potential for the quantification of these 

properties, which is only possible by solving a number of serious issues that affect the absolute values 

for mechanical properties obtained from small indentations. The three most pressing currently are 

the quantification of: the Indentation Size Effect (ISE); Residual stress; and pile-up and sink-in – which 

is itself affected by residual stress and ISE. Hardness based indentation mapping is unable to 

distinguish these effects. 

We describe a procedure that uses Elastic modulus as an internal reference and combines the 

information available from an indentation modulus map, a hardness map, and a determination of the 

ISE coefficient (using self-similar geometry indentation) to correct for the effects of stress, pile up and 

the indentation size effect, to leave a quantified map of plastic damage and grain refinement 

hardening in a surface. This procedure is used to map the residual stress in a cross-section of the 

machined surface of a previously stress free metal. The effect of surface grinding is compared to 

milling and is shown to cause different amounts of work hardening, increase in residual stress, and 

surface grain size reduction. The potential use of this procedure for mapping coatings in cross-section 

is discussed. 

Key words: residual stress, indentation mapping, size effect, plastic damage 

1. Introduction 

Residual stress often exists in manufactured structures and components, playing an important role in 

their performance and lifetime. Depending upon the application, residual stress can be either harmful 

or beneficial to performance and service life. For example, compressive stress states impede crack 

formation and favourably displace the failure stress of a component. Various surface treatments are 

designed to manipulate stress states, examples include Nitriding (causing stress by material volume 

change), or the introduction of mechanical damage by shot or shock peening, etc. Alternatively steps, 

such as annealing, can be taken to reduce or even eliminate the residual stress that develops during 

manufacture.  Residual stress may also be generated or altered whilst a component is in service. The 

measurement of residual stress is therefore important both for quality control and for structural 

monitoring. Accumulated plastic damage also leads to structural/component failure and structural 

monitoring to determine its work hardened state is critical to prediction of end of life. A method that 

is able to monitor both in a non-destructive way is highly sought after. The ISO technical report 

ISO/TR29381 [1] identified that instrumented indentation testing has the potential to do this via 

obtaining stress-strain curves but that procedures are needed to separate work hardening from the 

effects of stress on the indentation response. 

 



2 
 

Various quantitative methods exist to measure residual stress in both surfaces and bulk components, 

such as hole-drilling, X-ray, neutron diffraction etc. Laboratory X-ray sources are energy and intensity 

limited to penetration depths of microns; and measurements take a considerable time to perform. 

Brighter and higher energy X-ray sources are available at synchrotrons, but such scarce and expensive 

resources are not available for routine measurements. This is similarly the case for Neutron sources.  

Hole drilling is, therefore, the cheapest and easiest quantitative method to use, but suffers from being 

destructive and relatively low resolution.  In contrast, instrumented nano-indentation testing (IIT) has 

high resolution, is also sensitive to residual stress, and is considered to be a low-destructive technique 

due to its small indent size. Various calibration methods have been published, aiming to produce a 

semi-quantitative map of stress, usually using hardness mapping [2,3,4,5 ] IIT is particularly useful 

when the stress state is driven by a large volume of material, as, although an elasto-plastic indentation 

causes a change to the stress and damage state very locally, it does not do enough damage to alter 

significantly the macroscopic average stress fields that are driving the residual stress. Most early work 

on the effect of residual stress on IIT focussed on hardness. Indeed, a casual expectation might be that 

yield stress should be offset by residual stress and that this is what is driving the hardness differences. 

Suresh and Giannakopoulos (1998) showed that, a comparison of stress-affected hardness 

measurements with an indentation made in a nominally zero stress region of a sample, allows a simple 

residual stress map to be generated relatively quickly and easily [6]. Hardness is, however, affected by 

many things, such as grain size, indentation size and dislocation density (work hardened state). This 

makes the use of hardness-derived residual stress maps unreliable.  

A particular complication for hardness mapping is the well-known indentation size effect (ISE). We 

have previously reported that mechanical test results at small length-scales, both uniaxial [5] and 

hardness values obtained from instrumented nano-indentation [7, 8], are strongly dependant on a 

combined interaction of length scales such as grain size, indentation contact size and dislocation 

spacing. However, elastic modulus does not exhibit a size effect, except in the extreme case of nano-

crystalline materials [9], where it has been shown that the increase in the volume fraction of grain 

boundary material does reduce the elastic modulus. In our previous ISE investigations it has become 

routine to use elastic modulus as an internal reference to insure against metrological errors (such as 

indenter area-function errors) and so to demonstrate that the measured ISE is real [10]. Typical 

hardness mapping is performed at constant applied force. This, however, causes hardness variation 

due to ISE. It is therefore essential to either quantify or control the ISE effect if hardness is to be used 

to map residual stress. The indentation size effect can be rapidly assessed using self-similar 

indentations in one spot, but it is the subject of ongoing research to use this information to specifically 

correct for ISE particularly, when there are other length-scales in the material that would interact with 

the ISE in a non-linear way and could be varying with position [11]. The simplest approach to this 

problem is to create maps using constant depth indentations, rather than constant maximum applied 

force. This provides a first order elimination of ISE variation, but it is not fool-proof if the sample is 

compositionally inhomogeneous and/or there is a large variation in pile up expected. Tsui et al. 

indented across the neutral stress axis in cross sections of bent beams and showed that both hardness 

and modulus results were affected by stress [2]. They found that, if the actual indentation contact 

area was measured and used in the data analysis, it generated both the stress-free modulus and the 

stress-free hardness of the material. Thus, it is not the stress itself that is being measured, but an error 

in the indentation contact area. This also explains why the observed changes in hardness and modulus 

due to stress are typically much larger than the size of the residual stresses involved.  
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The premise of this paper is that the parameter being affected by residual stress is the indentation 

contact area; compressive stress is equivalent to an increase in pile-up of the indentation and tensile 

stress equivalent to sink-in. Pile-up (or compressive stress) increases the measured stiffness of the 

indent but generates a reduction in the calculated indentation depth (hence the calculated contact 

area). The result of this is an increase in the measured modulus and hardness values. Tensile residual 

stress has an opposite effect on the modulus and hardness measurements (equivalent to sink-in). Thus, 

in a compositionally homogeneous sample, a ratio of elastic modulus values to the stress-free modulus 

value for the material gives a map of residual stress of the sample. 

This paper shows that, by using the elastic modulus (rather than hardness) of a material as an internal 

calibration, it is possible to map residual stress and correct the hardness values to enable generation 

of a separate map of the plastic property changes of the material, which are also length-scale 

dependent. 

2 Data Analysis Methodology 

In order to separate out the influences of stress, indentation size effect, grain size refinement and 

plastic damage, the following data analysis methodology was developed: 

1. Use ISO14577 standard methodology [12 ] to obtain the values of hardness and elastic 

modulus from indentations into a region of the sample that is nominally stress free. These 

indentations have to be over a range of indentation sizes in order to determine the stress free 

indentation size effect response of the material. The range of indentation sizes shall include 

any indentations sizes to be used later to map surface properties of the sample. 

2. Check to ensure that the elastic modulus values obtained in step 1 are constant over the range 

of indentation sizes. If elastic modulus is not constant then this indicates possible 

compositional changes in the sample (requiring step 9), or an error in the instrument 

calibrations or indenter area function.  

3. If the modulus values from step 1 are constant then the internal reference value, Eref, for the 

sample is the arithmetic mean of the modulus values obtained in step 1. Note that this value 

includes and normalises the effect of any usual pile-up or sink-in exhibited by this sample.  

4. Select a suitable indentation size to map the properties of the sample in the region of interest. 

Note that indentation separation resolution in the map shall be at least three indentation 

diameters. Other requirements of ISO14577 should also be taken into account, such as the 

size of indentations with respect to the sample surface roughness. The ISE hardness reference 

value Href is the hardness value obtained in step 1 at the indentation size selected. Where 

there is a lot of data scatter, Href may be obtained from a fit to the hardness vs. indentation 

depth data. 

5. Obtain the indentation map using indentations of a set and constant depth, and calculate the 

values of hardness and elastic modulus according to ISO14577. 

6. Take the ratio of the measured elastic modulus to the internal reference value obtained in 

step 3. Values less than unity indicate tensile residual stress; values greater than unity indicate 

compressive residual stress. A map of the ratio values is therefore a semi-quantitative map of 

the residual stress of the region of interest. In principle, comparison of results to known levels 

of residual stress can enable a calibration of the response to yield a fully quantified map of 

residual stress. 
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7. For each indentation, calculate the corrected indentation contact area, Acor, using the 

equation (a rearranged form of ISO14577:2015 equation A14): 

𝐴𝐶𝑜𝑟 = 𝜋 (
𝑆

2𝐸𝑟𝑒𝑓
)
2

                                                                     (1) 

where S is the measured stiffness of the indentation. 

8. Calculate the corrected hardness, Hcor, using the value of Acor obtained in step 7. 

                                                               𝐻𝐶𝑜𝑟 = (
𝐹𝑚𝑎𝑥

𝐴𝑐𝑜𝑟
)                                                                      (2) 

These values represent the plastic flow stress of the material at the indentation size selected 

for the map. A map of the ratio Hcor / Href shows where there are changes in the plasticity 

length scale of the region of interest. This can be attributed to either a change in dislocation 

density (e.g. due to work hardening) or a change in grain size, e.g. due to plastic damage [7]. 

9. In the case that there are known variations in the composition of the sample that are 

expected to cause a variation in elastic modulus, the simple calculation of Eref and Href in 

step 3 and step 4 respectively is not valid. However, if the indentation contact sizes are 

measured directly (e.g. by Atomic Force Microscopy) then these values can be used to derive 

stress-corrected Eref values and Href values that may then be used in the above procedure. 

In this paper, the analysis was performed using ISO14577:2002 [13] and therefore plane strain 

modulus values were used throughout. It is noted that ISO14577:2015 uses a much improved contact 

mechanics analysis that uses an estimate of Poisson’s ratio and the measured hardness and modulus 

ratio to correct for the change in contact area due to the lateral dilation of a material when indented. 

The procedure above is compatible with the use of either standard and the use of plane strain modulus 

or indentation modulus. The indentation size effect is not a measurement error but a genuinely harder 

response of the material and so ISE does not cause any problems when ISO14577:2015 uses the 

hardness to modulus ratio to correct for lateral dilation.  

3 Experimental details 

3.1 Specimen preparation and characterization 

In this study, two 304 stainless steel specimens were taken from a batch that was originally selected 

to investigate the effect of surface preparation method on the susceptibility to stress corrosion 

cracking under simulated atmospheric corrosion conditions. The specimen preparation and 

characterization details are described elsewhere [14] but are summarized here. Prior to final specimen 

manufacture, the material was solution annealed to remove any residual cold work (at 1050°C for 30 

minutes, followed by gas quenching). The first specimen was ‘longitudinally ground’ (LG) using 

standard machine shop procedures, such that grinding marks extended along the length of the 

specimen (see Figure 1). The second specimen was ‘transversely milled’ (TM) in a manner to simulate 

poor machine shop practice, such that milling marks are across the width of specimen. The specimens 

were then cross-sectioned, mounted in Bakelite resin and polished to study the underlying, near-

surface material.  

 

The microstructure was characterized by a Zeiss ‘Supra 40’ Field Emission Gun Scanning Electron 

Microscope (SEM) equipped with an electron back-scatter diffraction (EBSD) detector (Oxford 

Instruments Ltd, UK). The residual stress was determined using incremental hole-drilling 

measurements, according to the procedures outlined in NPL Good Practice Guide No 53 [15]. The 
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multi-axis strain gauges were installed with element 1 aligned along the sample length (longitudinal 

direction) and element 3 in the transverse direction, and the corresponding stresses presented as 1 

and 3 as shown in Figure 1. 

 

Figure 1 Sample schematic defining the grinding and stress directions with respect to the cross-
section taken and indented. The hole-drilling hole was made in the top surface and yielded the 

orthogonal stress components 1 and 3. The indentations were therefore primarily affected by 1. 

3.2 Nano-indentation 

A Nanoindenter II (Nanoinstruments, USA) was used to perform indentation experiments on the 
samples in this study. Indentation was performed in a temperature-controlled laboratory (22.4 ± 
0.1°C), using a Berkovich indenter (NPL unique reference code JEV) with a certified area function 
obtained by atomic force microscopy (AFM). Indents were placed in a square array, with a sufficient 
spacing that each indent did not interact with its neighbours. Indentations were performed in three 
regions as shown in Figure 2: 

1. Initial indentations were performed under load control within the coarse-sized grains in the “far-

field”, i.e. sufficiently far away from the prepared surface to be in nominally unstressed, virgin 

material. A wide range of indentation sizes were obtained by using indentation maximum forces 

from 1 mN up to 100 mN. This provided an immediate estimate of the indentation size effect (ISE) 

and a base line of mechanical properties for material not affected by the surface machining.  

2. High resolution indentation mappings were carried out within the “surface-damaged-layer” 

region. The recommended spacing of indentations in hardness standards such as ISO14577, is at 

least three indent diameters. High resolution is, therefore, not possible if the indents are in a line 

perpendicular to the interface. We adopted the strategy of rotating the indentation array to be 

at a 10° grazing incidence to the interface (see Figure 2) and by reducing the indentation size and 

spacing to the minimum. By selecting an area where the interface is relatively straight, it is then 

possible to order results according to perpendicular distance from the interface, which, therefore, 

enables much finer ‘depth below surface’ increments than would otherwise be possible. These 

indentations (within the surface damaged layer) were performed under load control, but with 

the indentation endpoint defined as a maximum indentation depth (100 nm or 150 nm 

depending on the size of the indentation and deformed layer thickness). In this way, the 

contribution of the ISE was kept constant by maintaining a constant contact size.  

 

 

Prepared surface 

Indented surface 
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Figure 2 EBSD and SEM images of the TM specimen showing the indentation mapping near the 
surface (inverse pole figure colour scheme inserted). Two regions are defined. “Far-field”: a region is 
sufficiently far from the specimen surface to be undamaged by machining. The EBSD estimated grain 
size is approximately 250 μm. “Surface-damage layer”: the layer within the 20 µm region from the 
cross-section edge. Severe deformation was introduced into this layer including residual stress, grain 
refinement and possibly very high dislocation density. The imposed indentation grids (not scaled) are 
to illustrate the mapping used in the far-field and within the surface damaged layer. Indentations 
were sufficiently separated to avoid interference.  

Far field 
            

         1.    

            

            

            

 

120 µm 
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4. Results and discussions 

4.1 EBSD mapping and residual stress measurements near-surface  

EBSD maps of the TM specimen show an intensely deformed layer, of the order of 50 µm thick, near 

the prepared surface (see Figure 3). In this region, the milling process has broken the coarse grains 

into nano-crystalline grain structures with shear bands extending further into the material. The severe 

damage to the near-surface crystal structure makes it difficult for EBSD software to perform grain 

indexing. This is even more evident in the deformed layer of the LG specimen, which is approximately 

only 2 µm thick; no EBSD patterns could be generated from this layer at all.   

The hole-drilling residual stress measurements are summarized in Figure 4. A hole was drilled into the 

machined surface of the sample and the strains resulting from the stress relief were measured using 

multi-axis strain gauges. Here, the stresses σ1 and σ3 represent the longitudinal and transverse stresses 

respectively (see Figure 1). Both specimens showed a high and similar transverse residual stress (σ3) 

toward the surface. For the TM specimen, a transverse stress field is only observed within the first 

50 µm region under the surface; while for the LG specimen, the stressed region extends 250 µm below 

the surface. Of more interest is the longitudinal stress, 1, as it is this stress component that affects 

the IIT results. In the LG specimen the longitudinal and transverse residual stress components are very 

similar; both showing a tensile profile. However, the longitudinal stress in the TM sample is very 

different. An extrapolation of the two measured points nearest the surface, back to the nominal 

surface position, suggests that there is a very small depth of tensile stress followed by a rapid 

transition to a compressive stress field extending about 300 µm below the surface. From the EBSD 

mapping, it is shown that the deformed layer of the milled specimen (TM) is much thicker than that 

of the ground specimen (LG).  
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Figure 3 Electron back-scattered diffraction (EBSD) image of the TM specimen (top) and the LG 
specimen (bottom): showing highly deformed surface layers and shear bands (inverse pole figure 
colour scheme inserted). 
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Figure 4 Hole drilling residual stress profiles for the milled specimen (TM) and ground specimen (LG) 
as a function of depth (redrawn from the literature reference [14]): the extrapolation (dotted line) to 
zero depth (surface position) indicates the stress at the surface that is measured by the indentation 
array. The stresses σ1 and σ3 represent the longitudinal and transverse stresses respectively, 
positive values indicate tensile stress and negative values indicate compressive stress state. 
 

[b] 

[a] 
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4.2 Indentation mapping within coarse grains  

The indentation results from coarse grains, far away from the surface in both specimens, are 

summarized in Figure 5. The EBSD results showed that the grain size was large in these areas, typically 

250 µm, with some grains as large as 1 mm (see Figure 2). The plane strain modulus is the same for all 

indentations in both samples. Obtaining a constant indentation modulus value with depth (in a 

homogeneous material) is a good indicator of valid measurements at all depths. The average of all the 

modulus values was calculated as a base line value (reference value) for the modulus of the unaffected 

material and was 202 GPa +/- 13 GPa. There is however, a significant increase in hardness as the 

indentation depth decreases from 1400 nm to about 30 nm. Since the grain size, at ~250 µm, is much 

larger than the indentation size (at least x25 greater), the increase in hardness is almost pure 

indentation size effect.  
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Figure 5 Hardness and plane strain modulus measured by instrumented indentation with load control 
to demonstrate the indentation size effect (ISE) of the “far-field region”. Indentations of different sizes 
(forces from 0.1 mN to 100 mN) were used to study the indentation size effect. This is a typical output 
of step 1 of the method described in section 2. 
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4.3 Indentation mapping of the surface-damaged-layer region   

SEM and EBSD of the indentation map near the surface of the TM specimen is shown in Figure 2 and 

confirms that the indentations were indeed within the deformed layer. These indentations were 

performed to a constant indentation depth of 150 nm; a lateral contact size of about 1 µm. Apart from 

any variation in pile-up, a constant indentation depth ensures that all the indentations made are the 

same size. This is necessary to maintain a constant contribution of the indentation size effect to the 

measured hardness value. This allows an assumption that any hardness difference observed across 

the deformed layer and into the bulk of the material can be attributed to residual stress and/or other 

size effects such as grain size or dislocation spacing.  

 

Since the elastic modulus of a material is not significantly affected by residual stress, and the samples 

being investigated are homogeneous, the contribution of residual stress to the indentation 

measurements can be singled out by observing the plane strain modulus results. Figure 6 shows a drop 

in plane strain modulus within 10 µm of the surface of the TM sample. This is consistent with a tensile 

surface residual stress. Surprisingly, the hardness was found to be constant across the mapping region 

(see Figure 6). In this case, although a tensile residual stress should cause a low hardness 

measurement by instrumented indentation, the specimen preparation also produced a fine 

microstructure and work-hardening at the surface; these size effects are most likely compensating for 

the expected drop in hardness.         

 

The same mapping procedure was conducted on the LG specimen, with the maximum indentation 

depth set to be 150 nm. The results are shown in Figure 7. Again, a significant reduction in plain strain 

modulus (from around 188 GPa to around 110 GPa) was measured close to the surface; however, the 

resolution was insufficient, as there were only a few measurement points in the region where the 

residual stress was significant enough to cause a decrease in modulus. This was addressed by reducing 

the maximum indentation depth from 150 nm to 100 nm, enabling a smaller spacing between 

indentations (4 µm). It was confirmed that the measured plane strain modulus was almost halved in 

the shallow layer, < 10 µm from the surface. This indicates a significant tensile stress in the LG 

specimen due to the surface preparation.  

 

Direct comparison between the residual stress mapping from the hole-drilling technique and 

instrumented indentation technique is not readily possible, mainly due to the resolution difference. 

However, both of these techniques show a similar trend of progressively (towards the surface) 

increasing tensile residual stress in the near-surface, deformed layer.  Hole drilling shows that the 

tensile residual stress (σ1) in the LG sample (1200 MPa) is much larger than that in the TM sample 

(100MPa) and that there is a change in sign of the residual stress (σ1) from tensile to compressive at 

about 10  µm below the TM surface. Indentation shows exactly the same trends: The drop in 

indentation plain strain modulus in the LG specimen is almost twice that measured in the TM specimen.  

The change from tensile to compressive stress in the TM sample can also be seen in the indentation 

plane strain modulus at approximately 10 µm from the surface, where the measured modulus value 

goes from below the reference modulus of 202 GPa to above (rises to ~211 GPa) 

 

It can be seen that the indentation of the TM specimen shows a greater sensitivity to tensile stress 

than to compressive stress. The change in indentation plane strain modulus is greater in the first 
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10 µm depth below the surface than in the region 10 µm to 20 µm below the surface, whereas the 

hole-drilling measurement shows a bigger drop in σ1 of the TM specimen between 10 µm to 20 µm. 

This difference in sensitivity is in agreement with results reported by Tsui et al. that the influence of 

stress is greater for specimens loaded in tension than those loaded in compression [2]. 

 

The plain strain modulus of the LG specimen increased as a function of depth below the surface but it 

only reached around 188 GPa within the measurement region. This is lower than the reference 

modulus of 202 GPa and is consistent with the hole drilling data, which shows continued tensile 

residual stress (σ1) all the way to 250 µm below the surface.  
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Figure 6 Size-controlled indentation of the damaged surface layer of the transversely milled (TM) 
specimen cross sections:  Inclined rectangular arrays giving maps of indentation plane-strain modulus 
and hardness have been ordered by distance from the surface and projected onto a single axis to give 
indentation hardness and modulus at incremental distances (smaller than the indent separation) along 
a line perpendicular to the deformed surface layer. The maximum indentation depth was controlled 
to be 150 nm for all indents. 

[b] 

[a] 
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Figure 7 Size-controlled indentation of the damaged surface layer of the transversely ground (LG) 
specimen cross sections:  Inclined rectangular arrays giving maps of indentation plane-strain modulus 
and hardness have been ordered by distance from the surface and projected onto a single axis to give 
indentation hardness and modulus at incremental distances (smaller than the indent separation) along 
a line perpendicular to the deformed surface layer.  The max indentation depth was controlled to be 
150 nm initially, with additional smaller indentations (100 nm deep) added to increase the near-
surface resolution. 

[a] 

[b] 
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4.4 Indentation mapping of residual stress corrected plasticity information  

It has been indicated earlier that the use of simple hardness maps is unreliable and can be misleading. 

The potential for confusion is clearly demonstrated in the results obtained here. If hardness values are 

used without correction, a strange trend is observed in the as-measured hardness as a function of 

depth below the surface of the LG sample, see Figure 7b. The surface hardness is depressed and 

increases to a maximum at 10 µm below the surface, before decreasing again. If hardness were the 

only issue, then this might be misinterpreted as a layer of harder material below the surface of the 

sample, or a stress distribution with a maximum stress below the sample surface. This is not the case 

and the apparent maximum is the interplay between two effects: a hardness (reduced by stress at the 

surface) rising with depth below the surface; and a hardness increase at the surface (due to grain size 

reduction and/or dislocation density at the surface due to the machining) decaying with depth into 

the material. The hardness data corrected for the effects of residual stress (and pile up) is shown in 

Figure 8. Data sets for 150nm deep indents into both samples are shown along with the 100nm deep 

indentations made into the TM sample. The Href values obtained for the 150 nm indentation sizes used 

are plotted in Figure 8 as a comparison. The average hardness for 1400 nm indents is also shown to 

indicate the relative contribution of ISE to the hardness values. The corrected hardness values clearly 

reveal that the maximum of plastic damage is at the surface as expected, and decays with depth into 

the surface for both samples (LG and TM). This further demonstrates the more subtle case of the 

apparently constant uncorrected hardness of the TM sample being misleading in Figure 6b. In this case, 

the effects of stress and plastic damage are exactly compensating to give an appearance of constant 

hardness. 

 

From indentation data alone, it is not possible to know whether the higher corrected hardness of the 

surface is due to work hardening or to grain size refinement or both. The EBSD images, however, 

clearly show grain refinement to be occurring and that the combination of grain refinement and work 

hardening at the surface was so extreme that the grain orientations (and so grain size) became 

unmeasurable. It was, therefore, not possible to make an estimate of the relative contributions of 

grain size and work hardening and this will generally be the case where there is no means of grain size 

measurement in the region indented. It is interesting that the corrected hardness remains above the 

Href values throughout the range plotted in Figure 8 (up to 25um below the surface), indicating that 

plastic damage caused by the surface machining is present in both samples to at least these depths, 

which is consistent with the SEM and EBSD images in Figure 3. 

 

In this paper we were able to assume that the material was compositionally (elastically) homogeneous 

and that we were able to identify and indent a stress free area to get a reference value for the material 

plane strain modulus. However, Tsui et al. have shown that direct measurements of the contact area 

can be used to correct indentation results to give a stress free plane strain modulus. Thus, if each 

indentation area of contact is directly measured (e.g. by AFM), the method in this paper does not have 

to be limited to homogeneous materials – mapping of inhomogeneous materials is also possible. In 

this case, the ratio of the directly measured contact area and the indentation contact mechanics 

calculated area gives a semi-quantitative measure of the stress component. 
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Figure 8 Cross-sectional depth-profile plots of hardness data corrected for the effect of residual 
stress by using far field modulus as an internal reference. Each depth profile was performed at a 
constant indentation depth and the contribution of indentation size effect to the measured hardness 
is shown. Depth profiles in both LG and TM samples show a maximum plastic damage (Hall-Petch 
plus work hardening) at the surface, which decreases with depth below the surface. 

 

An important case of inhomogeneous material is the cross-section of a coating. This method could be 

applied to indentation maps of coatings cross-sections. Easiest to obtain is information about the 

stress field, hardness and modulus in the substrate, because it is likely that an indentation far from 

the coating interface could be stress free and could therefore supply the necessary internal stress free 

reference modulus (as in this paper). Separation of elastic modulus, stress and hardness from 

indentation maps of the coating material in cross-section requires either indentation information from 

unstressed coating material, an independent value for coating modulus, or direct measurement of 

indentation size to obtain a corrected modulus and therefore the stress and hardness measurement 

of the coating. The small thickness of a thin coating may make it difficult to obtain enough indentation 

size effect information to estimate the hardness of the coating material (unaffected by the indentation 

size effect). This method may also be used to map the stress, modulus and hardness in the plane of a 

nominally homogenous surface if the modulus is known or a portion of unstressed surface can be 

indented, or, alternatively, a direct measurement of indentation size can be obtained to provide a 

reference modulus (or directly correct the modulus and hardness measurements). Laterally 

inhomogeneous surfaces could also be measured but, where there is likely to be unknown 

inhomogeneity in the indentation depth direction, it would be impossible to know if a different 

property material immediately below the indent was causing a difference in modulus value or not.  
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The findings in this paper have important implications for the measurement of coatings’ properties in 

plan. Strictly the indentation of coatings standard ISO14577-4 [16] cannot be used if there is residual 

stress, however, further work is called for to verify if this restriction may be lifted when the indent size 

is directly measured. 

 

It should also be noted that, in general, ISO14577-4 does not take indentation size effects into account: 

 Coating hardness is identified by determining the indentation depth at which the substrate 

makes a significant contribution to the hardness result.  

 Coating-only modulus is obtained by deconvoluting it from the depth-dependent combination 

of two moduli – the substrate and the coating.  

Indentation size does not affect the measurement of elastic modulus but does need to be addressed 

when quoting hardness values. Conversely, thinner coatings are genuinely harder, for the same 

reasons that smaller indentations are harder. The concept that hardness is fundamentally length-scale 

dependent presents a real problem when comparing hardness data from indents of different sizes and 

contradicts the idea that smaller indents always give better hardness information from a coating; the 

indentation response will be a result of the combined indent and coating sizes and very small indents 

will generate artificially high hardness values compared to those representative of the coating 

performance. The strategy demonstrated here (of comparing like-sized indents) is strongly 

recommended for comparison of all coating hardness results.  

 

4. Conclusions  

This is the first paper to our knowledge that provides a valid analysis to separate and quantify plasticity 

size effect (including grain refinement and hardening due to increase in dislocation density), 

indentation size effect (an issue particularly important for high resolution mechanical property 

mapping) and residual stress (often involved in machining and heat treatment) for mechanical 

property mapping. We have shown that uncorrected hardness maps are unreliable and misleading. 

They are unable to map combinations of residual stress and plastic damage. Unfortunately this 

combination is the most likely situation driving the need for surface property mapping. 

We have developed and demonstrated a new procedure to quantify and correct for the effects of 

residual stress on indentation measurements. This uses the elastic modulus of a material as an internal 

reference. Elastic modulus is derived from bond strength and crystal coordination number and may 

safely be assumed to be unaffected by plastic damage, residual stress, and has no intrinsic indentation 

size effect associated. The method shows the benefits of making indentation maps at constant depth 

(rather than constant force). This new approach allows a direct estimate of the indentation size effect 

on the mapped hardness values and allows separation of ISE from other length-scale effects such as 

grain refinement.  

 

We have presented a case study of the surface machining of 304 stainless steel and shown that this 

induces residual stress, grain refinement and work hardening into and below the surface. The 

indentation derived map of residual stress is entirely consistent with independent measurements of 

residual stress by hole-drilling.  The comparison of uncorrected with corrected hardness maps 

demonstrates the requirement to use our new procedure, if valid conclusions regarding the stress and 

or damage state of a material are to be made. This new procedure, presented here, provides a rapid, 

high resolution, essentially low/non-destructive method to map the stress and plastic damage of a 
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surfaces (and coatings) in plan or in cross-section. The method is particularly useful in cross-section 

and where the material is homogenous in composition, but can be extended to inhomogeneous 

materials and coatings by the use of direct indentation size measurement. 
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