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  Abstract  15 

    One of the most challenging scenarios in bearing diagnosis is the extraction of fault 16 

signatures from within other strong components which mask the vibration signal. Usually, 17 

the bearing vibration signals are dominated by those of other components such as gears and 18 

shafts. A good example of this scenario is the wind turbine gearbox which presents one of 19 

the most difficult bearing detection tasks. The non-stationary signal analysis is considered 20 

one of the main topics in the field of machinery fault diagnosis. In this paper, a set of signal 21 

processing techniques has been studied to investigate their feasibility for bearing fault 22 

detection in wind turbine gearbox. These techniques include statistical condition indicators, 23 

spectral kurtosis, and envelope analysis. The results of vibration analysis showed the 24 

possibility of bearing fault detection in wind turbine high-speed shafts using multiple signal 25 

processing techniques. However, among these signal processing techniques, spectral kurtosis 26 

followed by envelope analysis provides early fault detection compared to the other 27 

techniques employed. In addition, outer race bearing fault indicator provides clear indication 28 

of the crack severity and progress. 29 

  30 

1. Introduction 31 

Wind energy is one of the growing renewable energy industries. In recent years, hundreds of 32 

wind farms, frequently in unmanned and remote areas, have been built. As the size of wind 33 

power projects keeps increasing, the need for reducing the downtime and making the best use 34 

of availability is essential. Wind turbines are becoming more established as an economically 35 

viable alternative to fossil-fueled power generation. The potential of the wind turbine could 36 

meet the demand in two times over in many places around the word (Nie & Wang 2013). The 37 

continuous monitoring and fault diagnosis of wind turbine systems (generators, blades, and 38 

drive trains) can be the most effective way to reduce the operational and maintenance costs of 39 

these systems and increase their reliability. With good data acquisition and appropriate signal 40 

processing, faults can thus be detected while components are operational and appropriate 41 

actions can be planned in time to prevent damage or failure of components. Maintenance 42 

tasks can be planned and scheduled more efficiently, resulting in increased reliability, 43 

availability, maintainability and safety (RAMS) whilst downtime, maintenance and 44 

operational costs are reduced (Wenxian et al. 2010). The gearbox steps up the speed from the 45 

input shaft (approx. 20 rpm.) to the high-speed shaft (approx. 1500+ rpm.). The high-speed 46 

bearings, which support both radial and thrust loads, are highly susceptible to failure, being 47 

subjected to continue variable speed, load and misalignment, see Figure 1. The high-speed 48 
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shaft is supported by the high-speed stage bearings located on the front and back ends of the 1 

shaft. If there is any misalignment between the high-speed shaft and the connected generator, 2 

unexpected minor vibrations will occur and may cause damage to the bearings. Therefore, as 3 

the wind turbine gearbox is virtually inaccessible since it is situated atop a high tower, once a 4 

bearing roller has broken, it could lead to breaking of another component of the gearbox, with 5 

the consequential need to replace several parts inside the gearbox (Musial et al. 2007; 6 

Wenxian Yang 2014).  7 

Figure 1: Wind turbine gearbox arrangement (olympus-ims.com) 8 

Acquired vibration data followed by processing for fault diagnosis of rotating machinery with 9 

multiple bearings, such as wind turbine gearbox, can be a challenging task, as data are usually 10 

required in three perpendicular directions for a reliable diagnosis. Also, the extracted data are 11 

typically masked by another signals. Consequently the task of diagnosing faults on such 12 

systems may be daunting for even an experienced specialist (Wenxian Yang et al.  2014). 13 

Wind turbine condition monitoring and fault diagnosis were the central points of many types 14 

of research, which has been covered in the past literature (Patil et al. 2008; Hamilton & Quail 15 

2011; Lu et al. 2009; Lu et al. 2012; Elasha et al. 2016; Cibulka et al. 2012; Uma Maheswari 16 

& Umamaheswari 2017). Modern wind turbines are usually fitted out with some method of 17 

condition monitoring systems, including subsystem-level or system-level fault detection. 18 

Subsystem-level fault detection systems are typically based on monitoring parameters such as 19 

the vibration of the wind turbine drive train, bearing temperature, and oil particulate content 20 

(Kusiak & Li 2011). A number of works have focused on fault diagnosis of rotating 21 

machinery by using vibration measurement techniques for bearings and gears of wind turbine 22 

gearboxes. In vibration measurement techniques, vibration signals are collected by means of 23 

vibration analyser equipped with sensor in time domain then this is converted into the 24 

frequency domain by using FFT analyser.  25 

Several attempts have been made to improve advanced signal processing techniques for 26 

vibration signals to obtain useful information in recent years. Wavelet analysis, as one of the 27 

time-frequency analysis methods, has been developed to describe the change of frequencies 28 

in the signal over a period of time. A number of wavelet formulations have also been 29 

employed to remove non-stationary noise from the recorded vibration signals. Among them, 30 

continuous wavelet transform, discrete wavelet transform as well as harmonic wavelet 31 

transform have been accepted as key signal processing methods for wind turbine gearbox 32 

monitoring (Lu et al. 2012; Yang et al. 2008; Anon 2010; Str & Barszcz 2016). Igba et al. 33 

2016, studied novel techniques for wind turbine faults detection using the RMS and peak 34 

values of vibration signals. They proposed techniques based on three models (signal 35 
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correlation, extreme vibration, and RMS intensity), and validated the proposed techniques 1 

with time domain data driven approach using condition monitoring data from wind turbine. 2 

Their results showed that signal correlation with RMS values are good for detecting 3 

progressive failure such as bearing pitting in its insipient stage (Igba et al. 2016). Ruiz-Carcel 4 

and others proposed a technique based on merging process and vibration data with the 5 

objective of improving the detection of mechanical faults in industrial systems working under 6 

variable operating condition. They tested the capability of Canonical Variate Analysis (CVA) 7 

for detecting faults using experimental data acquired from a test rig where different process 8 

faults were introduced. The results showed that the combination of process and vibration data 9 

can effectively improve the detectability of mechanical faults in systems working under 10 

variable operating conditions (Ruiz-Carcel et al 20016). Elasha and others presented a 11 

comparative study of adaptive filters in detecting a naturally degraded bearing within a 12 

gearbox. They compared the effectiveness of four different techniques in diagnosing a 13 

bearing defects within a gearbox employed for endurance tests of an aircraft control system. 14 

The techniques investigated include the least mean square (LMS), self-adaptive noise 15 

cancellation (SANC) and the fast block LMS (FBLMS). All three techniques were applied to 16 

measured vibration signals taken throughout the endurance test. The results of this study 17 

showed that the LMS technique is able to detect the bearing failure earlier (Elasha et al 18 

2017). Sonawane experimentally investigated defects prediction in a wind turbine drive train. 19 

In this study diagnosis techniques focusing on ball bearing defects for non-linear and non-20 

stationary fault signals were investigated using vibration monitoring and spectral analysis as 21 

the predictive maintenance tools. The results showed that sequential regression SER 22 

algorithm was successful in detecting the gearbox defect and also demonstrated which gear 23 

contained the damage (Sonawane 2014). Gray and Watson 2010, have proposed a new 24 

approach for calculation of damage accumulation using standard turbine performance 25 

parameters and physics of failure methodology. They concluded that the proposed approach 26 

can be used to calculate all critical failure modes in real time on the basis of standard 27 

measured performance parameters (Gray & Watson 2010). Mohanty and Kar studied fault 28 

detection of the multistage gearbox by applying discrete wavelet transformation to 29 

demodulate the current signal. The results showed that the input shaft frequency is a good 30 

indicator of defects at a different load condition (Mohanty & Kar 2006). Amirat and others 31 

provided an assessment of a failure detection technique based on the homopolar component 32 

of the generator stator current and highlighted the use of the Ensemble Empirical Mode 33 

Decomposition, EEMD, as a tool for failure detection in wind turbine generators for 34 

stationary and non-stationary cases (Amirat et al. 2013). Elasha  applied various vibration 35 

analysis techniques including statistical measures, spectral kurtosis and enveloping to 36 

diagnose the presence of naturally developed faults within a worm gearbox. The results 37 

showed that diagnosis of faults is feasible as long as the appropriate analysis technique is 38 

employed. Additionally, the results showed sensitivity to the direction of vibration 39 

measurement(Elasha et al. 2015).  40 

Zhang and others applied data mining algorithms and statistical methods to analyse the jerk 41 

data obtained from monitoring the gearbox of a wind turbine and identify failed stages of the 42 

gearbox. They applied the correlation coefficient analysis and clustering analysis for the 43 

component failure identification (Zhang et al. 2012). Elforjani experimentally investigated 44 

condition monitoring of slow speed bearing and applied linear regression classifier and 45 

multilayer artificial neural network model. Elforjani used a new fault indicator which is 46 
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signal intensity estimator (SIE) for analysing data and estimate remaining useful life (RUL) 1 

for bearing while in operation. The results demonstrated the applicability of proposed models 2 

in locating and discriminating the faulty bearings from the healthy bearings. Therefore the 3 

results showed the reliability and sensitivity of SIE to detecting of incipient cracks and 4 

defects (Elforjani 2016). Minh Zhao  proposed Tach-less envelope order method (TLEO) and 5 

used vibration signals collected from locomotive roller bearing to demonstrate the 6 

effectiveness of the proposed method. They illustrated the effectiveness of the proposed 7 

method by simulation and experimental work. The analysed results showed that the TLEO 8 

could identify different bearing faults effectively and accurately under speed varying 9 

conditions (Zhao et al. 2014). Yuh-Tay Sheen proposed an envelope estimation algorithm 10 

based on the resonance modes of the mechanical system. The results showed that the 11 

envelope estimation algorithm could be applied for signal processing for bearing vibration. 12 

Furthermore, the results of the envelope spectra showed acceptable consistency of the 13 

proposed method to the high-frequency resonance technique (Sheen 2010). Litreature review 14 

shows there is a lack of real world application data and especially for detecting of bearing 15 

degradation within gearboxes where the bearing fault is masked with noise and components 16 

of gear meshing. Therefore this paper will employ a series of signal processing techniques to 17 

improve bearing fault detection. In addition it will employ a new condition indicator, Energy 18 

Index (EI), to detect high speed shaft bearing failure in wind turbine gearbox. In this paper, a 19 

crack fault in the high-speed bearing has been investigated using vibration analysis. The 20 

analysis has been performed using newly developed energy index and outer race fault 21 

indictors, as well as conventional condition indicators such as rms and kurtosis. In addition, 22 

the demodulation analysis was performed to detect the crack and evaluate the progress.  23 

2. Vibration Measurements 24 

The dataset used in the current study was extracted from the high-speed shaft of a two MW 25 

commercial wind turbine with measurements taken for fifty consecutive days by using the 26 

vibration-based method. The accelerometers were microelectromechanical systems (MEMS) 27 

based. The component under examination was the high-speed bearing which is housed on the 28 

tail of the gearbox. The bearing defect was detected by a sensor which has been mounted 29 

radially on the bearing support ring. Figure 2 shows the defect in the high-speed shaft 30 

bearing. 31 

 32 

Figure 2: Wind turbine high-speed shaft bearing defect (Bechhoefer et al. 2013) 33 
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Data was collected over the 50 days in 10-minute intervals. The database consisted of 50 1 

waveforms, which were recorded at 1800 rpm. The data was sampled at 97656 sps for 6 2 

seconds (Bechhoefer et al. 2013). Bearing envelope analysis was performed by a band 3 

passing the signal between 9 to 11 KHz. The Fast Kurtogram Matlab code and other codes 4 

were used on the heterodyned signal. Statistical parameters such as kurtosis, crest factor, and 5 

energy index were calculated. The table 1 below lists the operation details of the wind turbine 6 

which has been monitored until the high-speed shaft bearing failed.  7 

Table 1. Wind turbine operating details 8 

Nominal Machine Health:  Increasing inner race bearing fault  

Power rating: 2 MW 
Nominal speed: 1800 rpm 
Bearing Information: 
 FTF: 0.42 x (shaft speed) 
 BPFO: 6.72 x (shaft speed) 
 BPFI: 9.47 x (shaft speed) 
 BSF 1.435 x (shaft speed) 
Measurement Channels  
 Channel: 

1 
Sensor 

  Sample rate: 97656 Hz 
  Record 

length:  
6 Seconds  

  Sensor type: Accelerometer 
 9 

3. Result and Discussion   10 

To correlate the impulsive presence on vibration signals with the component and its failure, 11 

many analyses were undertaken. This includes time domain, frequency domain and envelope 12 

analysis, see figure 3. The extracted signals from the faulty rolling elements can be processed 13 

using different indicators to obtain features of the measured vibration and to identify the 14 

health condition of the component. The statistical analysis techniques employed are 15 

commonly applied for time domain signal analysis, in which descriptive statistics such as 16 

rms, crest factor, kurtosis and energy index are used to detect the faults. To provide different 17 

ways for analysing measuring the signals deviations from the normal conditions, several of 18 

fault index extraction and signal processing techniques were applied to the measured data, 19 

include enveloping and spectrum analyses. Statistical tools such as Crest factor (CF), energy 20 

index (EI), and kurtosis (KU) have been employed for bearing defect detection.  21 

 22 

 23 
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 3 

Figure 3: Proposed signal processing scheme 4 

3.1. Time domain analysis 5 

The extracted data, in general, have a tendency to be high noisy because of overlapping 6 

signals of the system components, such as the case of vibration data, and for that reason, it is 7 

required to be filtered before any future processing. However, an excess in reduction, may 8 

lead the extracted data to losing some important information. Figure 4, shows the waveform 9 

of the data on day 1, 10, 20, 30, 40, and 50 respectively. Visual examination of the 10 

waveforms showed no distinctive difference between the signals acquired on different days, 11 

therefore this kind of analysis is not useful for fault detection. Full records of all days have 12 

been examined. First, it can be seen that the collected vibration signals are dominated by 13 

other vibration components, which is mainly induced by the gearbox components (such as 14 

shafts and gears).  15 

 16 

The results showed that as the runnning of the wind turbine progressed with time, waveform 17 

showed a noisier trend in the variation in bearing signals occurred, see figure 4. 18 

 19 

 20 
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 1 

Figure 4: Vibration Data Collected at different days of Monitoring 2 

 3 

 4 

3.2.  Condition Fault Indicators  5 

Condition monitoring systems based on vibration analysis can monitor all parts of gearboxes, 6 

for example, gears, bearings and shafts. For a better signal to noise ratio, a raw vibration 7 

signal is filtered and pre-amplified. Consequently, the signal is processed in two different 8 

ways and the overall vibration level is monitored. The time domain signal is synchronously 9 

averaged and consequently filtered to focus only on the important part of the vibration signal. 10 

Then some condition indicators are computed. Finally, the computed condition fault 11 

indicators are compared to provide useful information about the bearing condition.  12 

3.2.1. Kurtosis 13 

One of the most effective means to detect bearings failure from vibrational data is to monitor 14 

the value of the kurtosis of the acquired signal. The kurtosis is defined as the fourth statistical 15 

moment of a given signal and describes how peaky or flat the distribution is. It is known that 16 

KU is a measure of the peakness of a signal and on the basis that a signal will contain 17 

impulsive transient events during the onset of degradation (Zhu et al. 2014). A kurtosis value 18 

close to 3 indicates a Gaussian signal. Kurtosis greater than 3 indicates a sharp peak signal. 19 

Whereas, signals with relatively flat peaks have a kurtosis less than 3. In some applications, 20 

other sources of vibration signals or background noise frequently mask the bearing fault 21 
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features in the signal and as a result of that, the kurtosis may not be able to capture the peaks 1 

of the faulty signal. In such cases, the kurtosis as an indicator is not useful; however, better 2 

results could be obtained if the kurtosis value was calculated across different frequency bands 3 

(Eftekharnejad et al. 2011). The kurtogram, developed by Antoni and Randall (Antoni 2007), 4 

is a representation of the kurtosis value as a function of the frequency and the bandwidth of 5 

the different frequency bands where it is calculated. Using the kurtogram, it is possible to 6 

identify the frequency band where the kurtosis is maximum. This information can be used to 7 

design a filter which extracts the part of the signal with the highest level of impulsiveness, 8 

enhancing the bearing fault signal from the raw signal. This technique has been already 9 

applied successfully by different researchers in bearing fault detection and diagnosis (Barszcz 10 

& Randall 2009). Kurtosis values for a given signal can be estimated using the equation: 11 

                                      �� = �
�� ��	
	�
 �

�

	��
4                                                       (1)          12 

3.2.2. Crest Factor  13 

One of the frequently used parameter to characterised obtained data is Crest factor. Crest 14 

factor is defined as a ratio of the signal side peak value of the input signal to the root mean 15 

square level  (Večeř et al. 2005). Crest factor calculated using the equation: 16 

                                 �� = 	 ���������
                                                             (2) 17 

3.2.3.  Energy Index 18 

Energy Index (EI) is defined as the square of the ratio of the root mean square of a defined 19 

segment (RMSsegment) in a given signal to the overall root mean square (RMSoverall) of the 20 

same signal. The technique was effectively applied to simulate an experimental data of 21 

bearing (Al-Balushi et al. 2010). In application, an Energy Index value of one is associated 22 

with non-transient type waveforms and greater than one where transient characteristics are 23 

present. EI was calculated using the equation: 24 

                               ��	 = 	 �	���� !" #$	
���%& '()) �

*
                                            (3)  25 

To understand the trend of the degradation signals, originating from bearings, linear or 26 

exponential models were widely employed to fit the features extracted for the acquired 27 

signals. In this research work, the following exponential model could fit the different fault 28 

indicators. 29 

 30 

      + = ,- + /(123
�)
5                                             (4) 31 

 32 

In the above function (f) is the value of any of the fault indicators (KU or EI and/or CF), (a 33 

and b) are the model constants, and (t) is the time. The constant (yo) is used here to indicate 34 

the value when the degradation time is almost equal to zero. To find the optimal values for 35 

the above function constants a, b and yo, the popular least-square method was applied to the 36 

bearing case; figures 5 shows the fitted bearing case for 50 days of measurements. Table 2 37 
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also summarizes the general optimal estimated constants and global goodness of fit (R2) for 1 

the exponential model.   2 

 3 
 4 

Figure 5: Condition indicators 5 

Table 2. general optimal estimated constants  6 

f y0 a b R2 

Kurtosis 3.0116 0.0031 0.0811 0.9336 
Energy Index 15.2174 0.364 0.0725 0.9996 
Crest Factor 4.9187 0.0183 0.0342 0.8697 

 7 

While the operating days passed 25 days of measurement, results indicated that the three 8 

indicators EI, CF and KU have relatively high values of about 122.95, 5.41 and 3.37 9 

respectively. It is worth mentioning that after 40 days of operating significant increase in 10 

calculated KU and EI values was observed. As the operating days progressed the KU and EI 11 

values were very sensitive to the variation in bearing signals, see figure 5. On the termination 12 

of measurements (50 days running) EI recorded a maximum value of 268.68, whereas KU 13 

recorded maximum values of 5.6, shown in figure 5. However, the CF result showed an 14 

inconsistant pattern and therefore CF is not fitting with the degradation pattern shown in 15 

figure 5. 16 

It can be concluded that KU and IE are reliable indicators in detecting bearing failure, their 17 

detection sensitivity depends on the presence of incipient defects and on defect size. The 18 

observations from the results presented in figure 4, show also that the EI is a sensitive tool to 19 

a high transient vibration activity in rotary machines, typical for natural degrading bearings. 20 

Hence the continuous monitoring of bearings employing techniques such as the EI would 21 

offer the operator a relatively sensitive method for observing high transient type activity.  22 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

10 

 

3.3.Demodulation analysis 1 

The time series data has further been processed using Fast Fouriet Transform FFT to obtain 2 

frequency spectrum. Figure 6 depicted the power spectrum of the vibration signal collected 3 

on the day 15. Observations from this figure show multiple peaks at 3500 Hz and 10 KHz. 4 

However, no fault frequencies can be identified due to high noise level and existence of 5 

strong signal from gears and shafts. Thus, the vibration signal was further studied to reduce 6 

the noise level and extract bearings fault frequency.  7 

 8 

Figure 6: Power Spectrum for the fifteenth day 9 

 10 

To achieve this task, the authors employed the envelop analysis. In envelope analysis, the 11 

vibration signal is filtered at high frequency band to extract bearing impacts. The frequency 12 

band characteristic has been obtained using spectral kurtosis (SK). The filtered signal then 13 

processed using frequency analysis. Figures 7 presents kurtogram obtained using the original 14 

algorithm developed by Antonio and others (Antoni 2007), the result shows the frequency 15 

band and central frequency of the filter for the vibration data collected on day 20 and day 50. 16 

Then this band has been used to flitter out the vibration signal. 17 
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 1 
Figure 7: Kurtogram plot obtained from vibration data collected on day 20 (up) and day 50 (down) 2 

 3 

To obtain the frequency spectrum, the filtered signal has further been processed; samples of 4 

the selected signals are presented in figures [8-13]. Observations from figure 8, for instance, 5 

show an inner race fault frequency at 284 Hz. It is worth mentioning that though the noise 6 

level was very high, the speed shaft frequency and its harmonics can obviously be observed. 7 

Analysis of the acquired signals throughout the days 10 and 20 show almost the same results, 8 

see figures 9 and 10. 9 
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 1 
Figure 8: Amplitude spectrum of the squared envelope first day 2 

 3 

Figure 9: Amplitude spectrum of the squared envelope day 10 4 
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 1 
Figure 10: Amplitude spectrum of the squared envelope day 20 2 

 3 

Interestingly, significant increase in the amplitude of the bearing inner race fault frequency 4 

was noted in the enveloped signal for day 30. The amplitude increased from 0.017 in day 20 5 

to 0.11 in the day 30, shown in figure 11. For the data collected on day 40, similar remark 6 

was observed, and harmonic of the bearing fault was also detected. On the termination of 7 

measurements (day 50) the harmonics of the faulty bearing recorded higher level than the 8 

noted on day 30, see figure 13.  9 

 10 

 11 
Figure 11: Amplitude spectrum of the squared envelope day 30 12 
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 1 
Figure 12: Amplitude spectrum of the squared envelope day 40 2 

 3 

 4 
Figure 13: Amplitude spectrum of the squared envelope day 50 5 

 6 

Another analysis was undertaken using the fault frequency indicator. Results of the inner race 7 

fault indicator, presented in figure 14, showed an increase in the fault frequency amplitude 8 

after 14 days of measurements. The highest amplitude of this indicator was recorded between 9 

day 28 and day 41, and it eventially decreased to its level prior to day14. This was attributted 10 

to the high noise level as a result of the formation of fully developed crack on the bearing 11 

race. The use of this indicator could also provide another way to measure how the bearing 12 

deviates from its normal health conditions. 13 
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 1 
Figure 14: Outer race fault indicator 2 

 3 

 4 

4. Discussion and Conclusion  5 

The techniques used in this paper are typically used for applications where strong background 6 

noise masks the defect signature of interest within the measured vibration signature. this 7 

paper motivated by a lack of real world application data and especially for detecting of 8 

bearing degradation within gearboxes where the bearing fault is masked with noise and 9 

components of gear meshing. Therefore this paper has employed  a series of signal 10 

processing techniques to improve bearing fault detection. In addition it has employed a new 11 

condition indicator, Energy Index (EI), to detect high speed shaft bearing failure in wind 12 

turbine gearbox. The use of Energy Index is relatively recent and this paper enhances the 13 

understanding of this technique as means of obtaining condition information in these intricate 14 

conditions. 15 

Results from statistical indicators showed both kurtosis and EI are reliable indicators and 16 

increased as fault severity increases. In addition these indicators provide a clear exponential 17 

trend, which is very useful to fault prognosis. However, the CF showed poor results with no 18 

clear trend, therefore such indicator was not useful in this case. 19 

Frequency analysis using Fast Fourier Transform should no fault frequency exist. However, 20 

Results from frequency analysis using Spectral Kurtosis and envelope analysis showed the 21 

possibility to identify the fault defect frequency at early stage. The fault frequency was 22 

identified from the first day of the test and the fault frequency amplitude increases as crack 23 

progress.  24 

By comparing the results of statistical condition indicators with frequency analysis; it is clear 25 

that the frequency analysis can be considered as a superior tool in detection of the bearing 26 

fault at early stages though the statistical indicators were sensitive as the fault on the bearing 27 

race was well advanced. Further, the use of the spectral kurtosis could exactly identify the 28 

location of the fault within the bearing components. The fault severity was assessed using 29 

inner race fault indicator, and the results showed a significant increase in the amplitude as the 30 

crack progressed with time. However, this was not the case throughout the measurement 31 

period in the last days where a sharp drop in the indicator levels was noted. This is due to an 32 

increase of the clearance within the bearing which led to less vibration levels.  33 

 34 
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Results obtained from the analysis of condition indicators showed that the energy index as a 1 

consistent fault measure of the fault severity, and it had less drops as the fault progressed. On 2 

contrary crest factor, kurtosis and inner race bearing fault showed some level variation with 3 

progress of the crack. Thus, energy index can be used to provide a good severity measure of 4 

the bearing fault.  5 

 6 

Overall, the signal processing techniques used in this study proved their ability in detection of 7 

crack fault within wind turbine gearbox. In addition, combination use of these techniques will 8 

in turn provide the analyst with more reliable diagnosis tools for online monitoring of wind 9 

turbines.  10 

 11 

Funding 23 

The author(s) received no financial support for the research, authorship, and/or publication of 24 

this article. 25 

 26 

Declaration of conflicting interests 27 

The author(s) declared no potential conflicts of interest with respect to the research, 28 

authorship, and/or publication of this article. 29 

 30 

 31 

5. References  32 

Al-Balushi, K.R. et al., 2010. Energy index technique for detection of acoustic emissions 33 

associated with incipient bearing failures. Applied Acoustics, 71(9), pp.812–821. 34 

Available at: http://dx.doi.org/10.1016/j.apacoust.2010.04.006. 35 

Amirat, Y., Choqueuse, V. & Benbouzid, M., 2013. EEMD-based wind turbine bearing 36 

failure detection using the generator stator current homopolar component. Mechanical 37 

Systems and Signal Processing, 41(1-2), pp.667–678. Available at: 38 

http://dx.doi.org/10.1016/j.ymssp.2013.06.012. 39 

Anon, 2010. research on online monitoring and diagnosis of bearing fault of wind turbine 40 

gearbox based on undecimated wavelet transformation Zhou Fu-cheng North China 41 

Electric Power University Science ˂ Technology College. , pp.6–9. 42 

Antoni, J., 2007. Fast computation of the kurtogram for the detection of transient faults. 43 

Mechanical Systems and Signal Processing, 21(1), pp.108–124. 44 

Barszcz, T. & Randall, R.B., 2009. Application of spectral kurtosis for detection of a tooth 45 

crack in the planetary gear of a wind turbine. Mechanical Systems and Signal 46 

Processing, 23(4), pp.1352–1365. 47 

Bechhoefer, E., Hecke, B. Van & He, D., 2013. Processing for Improved Spectral Analysis. 48 

Annual Conference of the Prognostics and Health Management Society, pp.1–6. 49 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 

 

Cibulka, J. et al., 2012. A review on approaches for condition based maintenance in 1 

applications with induction machines located offshore. Modeling, Identification and 2 

Control, 33(2), pp.69–86. 3 

Eftekharnejad, B. et al., 2011. The application of spectral kurtosis on Acoustic Emission and 4 

vibrations from a defective bearing. Mechanical Systems and Signal Processing, 25(1), 5 

pp.266–284. 6 

Elasha, F., Mba, D. & Ruiz-Carcel, C., 2016. A comparative study of adaptive filters in 7 

detecting a naturally degraded bearing within a gearbox. Case Studies in Mechanical 8 

Systems and Signal Processing, 3(October), pp.1–8. 9 

Elasha, F., Mba, D. & Ruiz-Carcel, C., 2015. Pitting detection in worm gearboxes with 10 

vibration analysis. Mechanisms and Machine Science, 23, pp.231–241. Available at: 11 

http://dx.doi.org/10.1016/j.engfailanal.2014.04.028. 12 

Elasha, F., Mba, D., & Ruiz-Carcel, C. (2016). A comparative study of adaptive filters in 13 

detecting a naturally degraded bearing within a gearbox. Case Studies in Mechanical 14 

Systems and Signal Processing, 3, 1–8. https://doi.org/10.1016/j.csmssp.2015.11.001 15 

Elforjani, M., 2016. Estimation of Remaining Useful Life of Slow Speed Bearings Using 16 

Acoustic Emission Signals. Journal of Nondestructive Evaluation, 35(4), pp.1–16. 17 

Hamilton, A. & Quail, F., 2011. Detailed State of the Art Review for the Different On-Line / 18 

In-Line Oil Analysis Techniques in Context of Wind Turbine Gearboxes. ASME Turbo 19 

Expo, 133(July), pp.1–18. 20 

Igba, J., Alemzadeh, K., Durugbo, C., & Eiriksson, E. T. (2016). Analysing RMS and peak 21 

values of vibration signals for condition monitoring of wind turbine gearboxes. 22 

Renewable Energy, 91, 90–106. https://doi.org/10.1016/j.renene.2016.01.006 23 

J., C.S.G. and S.W., 2010. Physics of failure approach to wind turbine condition based 24 

maintenance. Wind Energy, 13(August 2009), pp.395–405. 25 

Kusiak, A. & Li, W., 2011. The prediction and diagnosis of wind turbine faults. Renewable 26 

Energy, 36(1), pp.16–23. 27 

Lu, B. et al., 2009. A review of recent advances in wind turbine condition monitoring and 28 

fault diagnosis. Electronics and Machines in Wind, pp.1–7. Available at: 29 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5208325. 30 

Lu, Y., Tang, J. & Luo, H., 2012. Wind Turbine Gearbox Fault Detection Using Multiple 31 

Sensors With Features Level Data Fusion. Journal of Engineering for Gas Turbines and 32 

Power, 134(4), p.042501. 33 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 

 

Mohanty, A.R. & Kar, C., 2006. Fault detection in a multistage gearbox by demodulation of 1 

motor current waveform. IEEE Transactions on Industrial Electronics, 53(4), pp.1285–2 

1297. 3 

Musial, W., Butterfield, S. & McNiff, B., 2007. Improving Wind Turbine Gearbox 4 

Reliability. European Wind Energy Conference, pp.1–13. 5 

Nie, M. & Wang, L., 2013. Review of condition monitoring and fault diagnosis technologies 6 

for wind turbine gearbox. Procedia CIRP, 11(Cm), pp.287–290. Available at: 7 

http://dx.doi.org/10.1016/j.procir.2013.07.018. 8 

Patil, M.S., Mathew, J. & RajendraKumar, P.K., 2008. Bearing Signature Analysis as a 9 

Medium for Fault Detection. Journal of Tribology, 130(1), pp.014001–1. 10 

Ruiz-Cárcel, C., Jaramillo, V. H., Mba, D., Ottewill, J. R., & Cao, Y. (2016). Combination of 11 

process and vibration data for improved condition monitoring of industrial systems 12 

working under variable operating conditions. Mechanical Systems and Signal 13 

Processing, 66–67, 699–714. https://doi.org/10.1016/j.ymssp.2015.05.018 14 

Sheen, Y.T., 2010. An envelope analysis based on the resonance modes of the mechanical 15 

system for the bearing defect diagnosis. Measurement: Journal of the International 16 

Measurement Confederation, 43(7), pp.912–934. Available at: 17 

http://dx.doi.org/10.1016/j.measurement.2010.03.011. 18 

Sonawane, P.B., 2014. Fault Diagnosis of Windmill by FFT Analyzer. Iternational journal of 19 

innovation in Engineering and Technology, 4(4), pp.47–54. 20 

Str, M. & Barszcz, T., 2016. Application of Artificial Neural Network for Damage Detection 21 

in Planetary Gearbox of Wind Turbine. Shock and Vibration, 2016, pp.1–13. 22 

Uma Maheswari, R. & Umamaheswari, R., 2017. Trends in non-stationary signal processing 23 

techniques applied to vibration analysis of wind turbine drive train ??? A contemporary 24 

survey. Mechanical Systems and Signal Processing, 85, pp.296–311. Available at: 25 

http://dx.doi.org/10.1016/j.ymssp.2016.07.046. 26 

Večeř, P., Kreidl, M. & Šmíd, R., 2005. Condition Indicators for Gearbox Condition 27 

Monitoring Systems. Acta Polytechnica, 45(6), pp.35–43. 28 

Wenxian, Y. et al., 2010. Cost-Effective Condition Monitoring for Wind Turbines. Industrial 29 

Electronics, IEEE Transactions on, 57(1), pp.263–271. 30 

Wenxian Yang1, 3, Peter J. Tavner2, Christopher J. Crabtree2, Y.F. and Y.Q. 1, 2014. Wind 31 

turbine condition monitoring: technical and commercial challenges. Wind Energy, 32 

17(April 2013), pp.657–669. Available at: 33 

http://onlinelibrary.wiley.com/doi/10.1002/we.1608/full. 34 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

19 

 

Yang, S., Li, W. & Wang, C., 2008. The intelligent fault diagnosis of wind turbine gearbox 1 

based on artificial neural network. 2008 International Conference on Condition 2 

Monitoring and Diagnosis, pp.1327–1330. Available at: 3 

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4580221. 4 

Zhang, Z. et al., 2012. Fault Analysis and Condition Monitoring of the Wind Turbine 5 

Gearbox. IEEE Transactions on Energy Conversion, 27(2), pp.526–535. 6 

Zhao, M. et al., 2014. Multi-Fault detection of rolling element bearings under harsh working 7 

condition using imf-based adaptive envelope order analysis. Sensors (Switzerland), 8 

14(11), pp.20320–20346. 9 

Zhu, J. et al., 2014. Survey of Condition Indicators for Condition Monitoring Systems. 10 

Annual Conference of the Prognostics and Health Management Society, 5, pp.1–13. 11 

Uma Maheswari, R., Umamaheswari, R.: Trends in non-stationary signal processing 12 

techniques applied to vibration analysis of wind turbine drive train ??? A contemporary 13 

survey. Mech. Syst. Signal Process. 85, 296–311 (2017). 14 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Highlights  

1. The frequency analysis can be considered as a superior tool in detection of the bearing 
fault at early stages. 

2. Condition indicators results showed that the energy index as a consistent fault 
measure of the fault severity, and it had less drops as the fault progressed 

3. The signal processing techniques used in this study proved their ability in detection of 
crack fault within wind turbine gearbox.  


