Detection of Natural Crack in Wind
Turbine Gearbox

Suliman Shanbr; Faris Elasha; Mohamed Elforjani and Joao
Teixeira

Accepted author manuscript deposited in Coventry University Repository

Original citation:

Shanbr, S; Elasha, F; Elforjani, M. and Texeira, J. (2017) Detection of Natural Crack in Wind
Turbine Gearbox Renewable Energy (in press). DOI: 10.1016/j.renene.2017.10.104

http://dx.doi.org/10.1016/j.renene.2017.10.104

Elsevier
CC BY-NC-ND

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.


http://dx.doi.org/10.1016/j.renene.2017.10.104

Accepted Manuscript

Renewable Energy

AN INTERNATIONAL JOURNAL

Editor-in-Chief: AAM. Sayigh

Detection of Natural Crack in Wind Turbine Gearbox

Suliman Shanbr, Faris Elasha, Mohamed Elforjani, Joao Teixeira

PII: S0960-1481(17)31074-1
DOI: 10.1016/j.renene.2017.10.104
Reference: RENE 9392

To appearin:  Renewable Energy

Please cite this article as: Suliman Shanbr, Faris Elasha, Mohamed Elforjani, Joao Teixeira, Detection of
Natural Crack in Wind Turbine Gearbox, Renewable Energy (2017), doi: 10.1016/j.renene.2017.10.104

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.



https://doi.org/10.1016/j.renene.2017.10.104

N

O oo NOUL bW

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Detection of Natural Crack in Wind Turbine Gear box

Suliman ShanBr Faris Elasha Mohamed Elforjarfi Joao Teixeira
! Cranfield University, Bedfordshire, UR Coventry University, UK? University of
Hertfordshire, UK
Corresponding author:
Suliman Shanbr
Cranfield University, School of Water, Energy anavEonment, UK
E-mail addresses: s.s.shanbr@cranfield.ac.uk
Telephone no: +44 7951812122

Keywords. Condition Monitoring, Vibration, Natural Crackspfting Machinery, signal
processing.

Abstract

One of the most challenging scenarios in bgadragnosis is the extraction of fault
signatures from within other strong components whitask the vibration signal. Usually,
the bearing vibration signals are dominated byehafsother components such as gears and
shafts. A good example of this scenario is the wintiine gearbox which presents one of
the most difficult bearing detection tasks. The #stationary signal analysis is considered
one of the main topics in the field of machinerylfaliagnosis. In this paper, a set of signal
processing techniques has been studied to investidpir feasibility for bearing fault
detection in wind turbine gearbox. These technigoekide statistical condition indicators,
spectral kurtosis, and envelope analysis. The tesnfl vibration analysis showed the
possibility of bearing fault detection in wind tumb high-speed shafts using multiple signal
processing techniques. However, among these gigoeéssing techniques, spectral kurtosis
followed by envelope analysis provides early fad#éitection compared to the other
techniques employed. In addition, outer race bgdanlt indicator provides clear indication
of the crack severity and progress.

1. Introduction

Wind energy is one of the growing renewable en@ngystries. In recent years, hundreds of
wind farms, frequently in unmanned and remote areage been built. As the size of wind
power projects keeps increasing, the need for iadube downtime and making the best use
of availability is essential. Wind turbines are tiing more established as an economically
viable alternative to fossil-fueled power genenatidhe potential of the wind turbine could
meet the demand in two times over in many placegrat the word (Nie & Wang 2013). The
continuous monitoring and fault diagnosis of windbine systems (generators, blades, and
drive trains) can be the most effective way to cedilne operational and maintenance costs of
these systems and increase their reliability. Wabd data acquisition and appropriate signal
processing, faults can thus be detected while coenis are operational and appropriate
actions can be planned in time to prevent damagrilre of components. Maintenance
tasks can be planned and scheduled more efficientlyulting in increased reliability,
availability, maintainability and safety (RAMS) ws$ii downtime, maintenance and
operational costs are reduced (Wenxian et al. 201 gearbox steps up the speed from the
input shaft (approx. 2pm.) to the high-speed shaft (approx. 1500+ rpithe high-speed
bearings, which support both radial and thrust $pade highly susceptible to failure, being
subjected to continue variable speed, load andligmsaent, see Figure 1. The high-speed



No o b WwN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35

shaft is supported by the high-speed stage bealmegsed on the front and back ends of the
shaft. If there is any misalignment between thdtsgeed shaft and the connected generator,
unexpected minor vibrations will occur and may eadamage to the bearings. Therefore, as
the wind turbine gearbox is virtually inaccessiilece it is situated atop a high tower, once a
bearing roller has broken, it could lead to breglohanother component of the gearbox, with
the consequential need to replace several parideirntbe gearbox (Musial et al. 2007;
Wenxian Yang 2014).

High speed stage
bearing

i 3 =
2 ~
y Intermediate speed

stage bearing

Planetary stage bearing

Gear teeth

Figure 1: Wind turbine gearbox arrangement (olympus-ims)com

Acquired vibration data followed by processing flault diagnosis of rotating machinery with
multiple bearings, such as wind turbine gearbor,lm@a challenging task, as data are usually
required in three perpendicular directions forlabde diagnosis. Also, the extracted data are
typically masked by another signals. Consequentéy task of diagnosing faults on such
systems may be daunting for even an experiencedladige (Wenxian Yang et al. 2014).
Wind turbine condition monitoring and fault diagrsowere the central points of many types
of research, which has been covered in the pasalitre (Patil et al. 2008; Hamilton & Quail
2011; Lu et al. 2009; Lu et al. 2012; Elasha e@lL6; Cibulka et al. 2012; Uma Maheswari
& Umamaheswari 2017). Modern wind turbines are Ugddted out with some method of
condition monitoring systems, including subsystewel or system-level fault detection.
Subsystem-level fault detection systems are tylyitesed on monitoring parameters such as
the vibration of the wind turbine drive train, biegr temperature, and oil particulate content
(Kusiak & Li 2011). A number of works have focused fault diagnosis of rotating
machinery by using vibration measurement technidorebearings and gears of wind turbine
gearboxes. In vibration measurement techniquesatim signals are collected by means of
vibration analyser equipped with sensor in time dwonmthen this is converted into the
frequency domain by using FFT analyser.

Several attempts have been made to improve advasigedl processing techniques for
vibration signals to obtain useful information gcent years. Wavelet analysis, as one of the
time-frequency analysis methods, has been develtpddscribe the change of frequencies
in the signal over a period of time. A number ofvelat formulations have also been
employed to remove non-stationary noise from tloenaed vibration signals. Among them,
continuous wavelet transform, discrete wavelet sigmm as well as harmonic wavelet
transform have been accepted as key signal processethods for wind turbine gearbox
monitoring (Lu et al. 2012; Yang et al. 2008; An2dd10; Str & Barszcz 2016). Igba et al.
2016, studied novel techniques for wind turbinelttadetection using the RMS and peak
values of vibration signals. They proposed techesquased on three models (signal
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correlation, extreme vibration, and RMS intensitghd validated the proposed techniques
with time domain data driven approach using coaditinonitoring data from wind turbine.
Their results showed that signal correlation witM3R values are good for detecting
progressive failure such as bearing pitting innpient stage (Igba et al. 2016). Ruiz-Carcel
and others proposed a technique based on mergomeg® and vibration data with the
objective of improving the detection of mechanizallts in industrial systems working under
variable operating condition. They tested the caipabf Canonical Variate Analysis (CVA)
for detecting faults using experimental data a@ylifrom a test rig where different process
faults were introduced. The results showed thattmebination of process and vibration data
can effectively improve the detectability of mecitah faults in systems working under
variable operating conditions (Ruiz-Carcel et aDP®). Elasha and others presented a
comparative study of adaptive filters in detectmghaturally degraded bearing within a
gearbox. They compared the effectiveness of fotfierént techniques in diagnosing a
bearing defects within a gearbox employed for eadce tests of an aircraft control system.
The techniques investigated include the least megmare (LMS), self-adaptive noise
cancellation (SANC) and the fast block LMS (FBLM8JI three techniques were applied to
measured vibration signals taken throughout theuemte test. The results of this study
showed that the LMS technique is able to detectbibaring failure earlier (Elasha et al
2017). Sonawane experimentally investigated defa@diction in a wind turbine drive train.
In this study diagnosis techniques focusing on balring defects for non-linear and non-
stationary fault signals were investigated usidgation monitoring and spectral analysis as
the predictive maintenance tools. The results sdoweat sequential regression SER
algorithm was successful in detecting the gearkefeal and also demonstrated which gear
contained the damage (Sonawane 2014). Gray andowa&810, have proposed a new
approach for calculation of damage accumulatiomgisstandard turbine performance
parameters and physics of failure methodology. Tdwmycluded that the proposed approach
can be used to calculate all critical failure modegeal time on the basis of standard
measured performance parameters (Gray & Watson)20¢hanty and Kar studied fault
detection of the multistage gearbox by applyingcrdiee wavelet transformation to
demodulate the current signal. The results showatithe input shaft frequency is a good
indicator of defects at a different load conditidiohanty & Kar 2006). Amirat and others
provided an assessment of a failure detection tqabrbased on the homopolar component
of the generator stator current and highlighted uke of the Ensemble Empirical Mode
Decomposition, EEMD, as a tool for failure detestion wind turbine generators for
stationary and non-stationary cases (Amirat e2@l3). Elasha applied various vibration
analysis techniques including statistical measusggectral kurtosis and enveloping to
diagnose the presence of naturally developed fawilisin a worm gearbox. The results
showed that diagnosis of faults is feasible as lasghe appropriate analysis technique is
employed. Additionally, the results showed sengjtito the direction of vibration
measurement(Elasha et al. 2015).

Zhang and others applied data mining algorithms statistical methods to analyse the jerk
data obtained from monitoring the gearbox of a wimtbine and identify failed stages of the
gearbox. They applied the correlation coefficientalgsis and clustering analysis for the
component failure identification (Zhang et al. 2P1RIforjani experimentally investigated
condition monitoring of slow speed bearing and eggbllinear regression classifier and
multilayer artificial neural network model. Elfojaused a new fault indicator which is

3
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signal intensity estimator (SIE) for analysing datal estimate remaining useful life (RUL)

for bearing while in operation. The results demratstl the applicability of proposed models
in locating and discriminating the faulty bearinfigem the healthy bearings. Therefore the
results showed the reliability and sensitivity dESo detecting of incipient cracks and

defects (Elforjani 2016). Minh Zhao proposed T#ts envelope order method (TLEO) and
used vibration signals collected from locomotivellero bearing to demonstrate the

effectiveness of the proposed method. They illtstrahe effectiveness of the proposed
method by simulation and experimental work. Thelys®al results showed that the TLEO

could identify different bearing faults effectivelgnd accurately under speed varying
conditions (Zhao et al. 2014). Yuh-Tay Sheen predoan envelope estimation algorithm

based on the resonance modes of the mechanicansydthe results showed that the
envelope estimation algorithm could be applieddignal processing for bearing vibration.

Furthermore, the results of the envelope spectmawveti acceptable consistency of the
proposed method to the high-frequency resonantmigpee (Sheen 2010). Litreature review
shows there is a lack of real world applicationadahd especially for detecting of bearing
degradation within gearboxes where the bearing fauhasked with noise and components
of gear meshing. Therefore this paper will empl®eges of signal processing techniques to
improve bearing fault detection. In addition it M@mploy a new condition indicator, Energy

Index (El), to detect high speed shaft bearingifaiin wind turbine gearbox. In this paper, a
crack fault in the high-speed bearing has beensiiyeted using vibration analysis. The

analysis has been performed using newly developexigg index and outer race fault

indictors, as well as conventional condition indica such as rms and kurtosis. In addition,
the demodulation analysis was performed to debecttack and evaluate the progress.

2. Vibration M easurements

The dataset used in the current study was extrdated the high-speed shaft of a two MW
commercial wind turbine with measurements takenfifoy consecutive days by using the
vibration-based method. The accelerometers wereoglectromechanical systems (MEMS)
based. The component under examination was thespigbd bearing which is housed on the
tail of the gearbox. The bearing defect was detkbie a sensor which has been mounted
radially on the bearing support ring. Figure 2 shatlve defect in the high-speed shaft
bearing.

Figure 2: Wind turbine high-speed shaft bearing defect (Beelfer et al. 2013)
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Data was collected over the 50 days in 10-minutervials. The database consisted of 50
waveforms, which were recorded at 1800 rpm. Tha aes sampled at 97656 sps for 6

seconds (Bechhoefer et al. 2013). Bearing envelpdysis was performed by a band

passing the signal between 9 to 11 KHz. The Fasto§gtam Matlab code and other codes

were used on the heterodyned signal. Statisticalnpeters such as kurtosis, crest factor, and
energy index were calculated. The table 1 belois tise operation details of the wind turbine

which has been monitored until the high-speed d¥esting failed.

Table 1. Wind turbine operating details

Nominal Machine Health: Increasing inner race ingpfault
Power rating: 2 MW
Nominal speed: 1800 rpm
Bearing I nformation:
FTF: 0.42 x (shaft speed)
BPFO: 6.72 x (shaft speed)
BPFI: 9.47 x (shaft speed)
BSF 1.435 x (shaft speed)
Measurement Channels
Channel: Sensor
1
Sample rate 97656 Hz
Record 6 Seconds
length:
Sensor type: Accelerometer

3. Result and Discussion

To correlate the impulsive presence on vibratigmals with the component and its failure,
many analyses were undertaken. This includes tioneath, frequency domain and envelope
analysis, see figure 3. The extracted signals ffwarfaulty rolling elements can be processed
using different indicators to obtain features oé tmeasured vibration and to identify the
health condition of the component. The statistiemlalysis techniques employed are
commonly applied for time domain signal analysiswhich descriptive statistics such as
rms, crest factor, kurtosis and energy index aegl us detect the faults. To provide different
ways for analysing measuring the signals deviatfoms the normal conditions, several of
fault index extraction and signal processing teghes were applied to the measured data,
include enveloping and spectrum analyses. Statldtiols such as Crest factor (CF), energy
index (EI), and kurtosis (KU) have been employetbiearing defect detection.
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Figure 3: Proposed signal processing scheme

3.1. Timedomain analysis

The extracted data, in general, have a tendendyetbigh noisy because of overlapping
signals of the system components, such as theotasgration data, and for that reason, it is
required to be filtered before any future procagsiHowever, an excess in reduction, may
lead the extracted data to losing some importdotnmation. Figure 4, shows the waveform
of the data on day 1, 10, 20, 30, 40, and 50 réisedc Visual examination of the
waveforms showed no distinctive difference betwidensignals acquired on different days,
therefore this kind of analysis is not useful fault detection. Full records of all days have
been examined. First, it can be seen that the atetlevibration signals are dominated by
other vibration components, which is mainly indudsdthe gearbox components (such as
shafts and gears).

The results showed that as the runnning of the wirltine progressed with time, waveform
showed a noisier trend in the variation in beasiggals occurred, see figure 4.
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Figure 4: Vibration Data Collected at different days of Mamihg

3.2. Condition Fault Indicators

Condition monitoring systems based on vibrationyais can monitor all parts of gearboxes,
for example, gears, bearings and shafts. For @rbgignal to noise ratio, a raw vibration
signal is filtered and pre-amplified. Consequenthg signal is processed in two different
ways and the overall vibration level is monitor@the time domain signal is synchronously
averaged and consequently filtered to focus onltherimportant part of the vibration signal.
Then some condition indicators are computed. Rmathe computed condition fault

indicators are compared to provide useful infororaibout the bearing condition.

3.2.1. Kurtosis

One of the most effective means to detect beafaifyge from vibrational data is to monitor
the value of the kurtosis of the acquired signak Kurtosis is defined as the fourth statistical
moment of a given signal and describes how peakiabthe distribution is. It is known that
KU is a measure of the peakness of a signal antherbasis that a signal will contain
impulsive transient events during the onset of dégtion (Zhu et al. 2014). A kurtosis value
close to 3 indicates a Gaussian signal. Kurtosatgr than 3 indicates a sharp peak signal.
Whereas, signals with relatively flat peaks havaidosis less than 3. In some applications,
other sources of vibration signals or backgrounégendrequently mask the bearing fault

7
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features in the signal and as a result of thatktitesis may not be able to capture the peaks
of the faulty signal. In such cases, the kurtosigm indicator is not useful; however, better
results could be obtained if the kurtosis value valsulated across different frequency bands
(Eftekharnejad et al. 2011). The kurtogram, devetbby Antoni and Randall (Antoni 2007),
is a representation of the kurtosis value as atiomof the frequency and the bandwidth of
the different frequency bands where it is calculatdsing the kurtogram, it is possible to
identify the frequency band where the kurtosis aximum. This information can be used to
design a filter which extracts the part of the sigwith the highest level of impulsiveness,
enhancing the bearing fault signal from the rawnalig This technique has been already
applied successfully by different researchers gring fault detection and diagnosis (Barszcz
& Randall 2009). Kurtosis values for a given sigcah be estimated using the equation:

w=3y, () @

3.2.2. Crest Factor

One of the frequently used parameter to charaetbrabtained data is Crest factor. Crest
factor is defined as a ratio of the signal sidekpeslue of the input signal to the root mean
square level (V& et al. 2005). Crest factor calculated using theaéqn:

CF = =peak 2)

Srms

3.2.3. Energy Index

Energy Index (El) is defined as the square of #t@ rof the root mean square of a defined
segment (RM&gment IN @ given signal to the overall root mean squ&® Soveral) Of the
same signal. The technique was effectively appt®dsimulate an experimental data of
bearing (Al-Balushi et al. 2010). In applicatiom Bnergy Index value of one is associated
with non-transient type waveforms and greater tbae where transient characteristics are
present. El was calculated using the equation:

El = (3)

To understand the trend of the degradation sigraiginating from bearings, linear or
exponential models were widely employed to fit fleatures extracted for the acquired
signals. In this research work, the following exgotial model could fit the different fault
indicators.

( RMSsegment )2
RMSoverall

a(ebt-1)

f=yo+2 @)

In the above functionf) is the value of any of the fault indicators (KU Bl and/or CF), 4
andb) are the model constants, arifli§ the time. The constangy is used here to indicate
the value when the degradation time is almost etyuakro. To find the optimal values for
the above function constardsb andy,, the popular least-square method was appliedeo th
bearing case; figures shows the fitted bearing case for 50 days of nreasents. Table 2

8
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Figure5: Condition indicators
Table 2. general optimal estimated constants
f Yo a b R2

Kurtosis 3.0116 0.0031 0.0811 0.9336

Energy Index 15.2174 0.364 0.0725 0.9996

Crest Factor 4.9187 0.0183 0.0342 0.8697

While the operating days passed 25 days of measmtemesults indicated that the three
indicators El, CF and KU have relatively high vauef about 122.95, 5.41 and 3.37
respectively. It is worth mentioning that after d@ys of operating significant increase in
calculated KU and El values was observed. As tleradimg days progressed the KU and El
values were very sensitive to the variation in imgasignals, see figure 5. On the termination
of measurements (50 days running) El recorded armam value of 268.68, whereas KU
recorded maximum values of 5.6, shown in figureHbwever, the CF result showed an
inconsistant pattern and therefore CF is not fittmith the degradation pattern shown in
figure 5.

It can be concluded that KU and IE are reliablacatbrs in detecting bearing failure, their
detection sensitivity depends on the presence @pient defects and on defect size. The
observations from the results presented in figyrghdw also that the El is a sensitive tool to
a high transient vibration activity in rotary maaés, typical for natural degrading bearings.
Hence the continuous monitoring of bearings emplgyiechniques such as the EIl would
offer the operator a relatively sensitive methaddoserving high transient type activity.
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3.3.Demodulation analysis

The time series data has further been processad &sist Fouriet Transform FFT to obtain
frequency spectrum. Figure 6 depicted the powectapa of the vibration signal collected

on the day 15. Observations from this figure showtiple peaks at 3500 Hz and 10 KHz.
However, no fault frequencies can be identified twehigh noise level and existence of
strong signal from gears and shafts. Thus, theatitor signal was further studied to reduce
the noise level and extract bearings fault frequenc

Power Spectrum
4DD T T T T T T T T

350 1 7

300 1 7

—

ey 280

200

amplitude {V

="
tn
o

100

i i I i Il
0

0 0.5 1 15 2 25 3 35 b 4.5 5

Frequency (Hz) x10*

Figure 6: Power Spectrum for the fifteenth day

To achieve this task, the authors employed the lepvanalysis. In envelope analysis, the
vibration signal is filtered at high frequency bawdextract bearing impacts. The frequency
band characteristic has been obtained using spéctrtsis (SK). The filtered signal then
processed using frequency analysis. Figures 7 mie&artogram obtained using the original
algorithm developed by Antonio and others (Anto@02), the result shows the frequency
band and central frequency of the filter for thieration data collected on day 20 and day 50.
Then this band has been used to flitter out theatiiin signal.

10
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Figure 7: Kurtogram plot obtained from vibration data colégton day 20 (up) and day 50 (down)

To obtain the frequency spectrum, the filtered aidras further been processed; samples of
the selected signals are presented in figures [8€i3servations from figure 8, for instance,
show an inner race fault frequency at 284 Hz. W@sth mentioning that though the noise
level was very high, the speed shaft frequencyindarmonics can obviously be observed.
Analysis of the acquired signals throughout thesdHy and 20 show almost the same results,
see figures 9 and 10.

11
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Interestingly, significant increase in the ampléuaf the bearing inner race fault frequency
was noted in the enveloped signal for day 30. Thplidude increased from 0.017 in day 20
to 0.11 in the day 30, shown in figure 11. For dlaa collected on day 40, similar remark
was observed, and harmonic of the bearing fault &lss detected. On the termination of
measurements (day 50) the harmonics of the fawdgribg recorded higher level than the

noted on day 30, see figure 13.
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Figure 11: Amplitude spectrum of the squared envelope day 30
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Figure 13: Amplitude spectrum of the squared envelope day 50

Another analysis was undertaken using the fautfuieecy indicator. Results of the inner race
fault indicator, presented in figure 14, showedirarease in the fault frequency amplitude
after 14 days of measurements. The highest amplivfithis indicator was recorded between
day 28 and day 41, and it eventially decreasetsti®vel prior to dayl4. This was attributted
to the high noise level as a result of the fornmawd fully developed crack on the bearing
race. The use of this indicator could also provadether way to measure how the bearing
deviates from its normal health conditions.
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Figure 14: Outer race fault indicator

4. Discussion and Conclusion

The techniques used in this paper are typicallg dgeapplications where strong background
noise masks the defect signature of interest withegn measured vibration signature. this
paper motivated by a lack of real world applicatideita and especially for detecting of
bearing degradation within gearboxes where theimgdault is masked with noise and
components of gear meshing. Therefore this paper draployed a series of signal
processing techniques to improve bearing faultafiete. In addition it has employed a new
condition indicator, Energy Index (El), to detedgh speed shaft bearing failure in wind
turbine gearbox. The use of Energy Index is reddyivecent and this paper enhances the
understanding of this technique as means of oligicondition information in these intricate
conditions.

Results from statistical indicators showed bothtdsis and El are reliable indicators and
increased as fault severity increases. In additiese indicators provide a clear exponential
trend, which is very useful to fault prognosis. Hwer, the CF showed poor results with no
clear trend, therefore such indicator was not usefthis case.

Frequency analysis using Fast Fourier Transfornulshoo fault frequency exist. However,
Results from frequency analysis using Spectral ¢&istand envelope analysis showed the
possibility to identify the fault defect frequeney early stage. The fault frequency was
identified from the first day of the test and tlailt frequency amplitude increases as crack
progress.

By comparing the results of statistical conditiadicators with frequency analysis; it is clear
that the frequency analysis can be considered sagaearior tool in detection of the bearing
fault at early stages though the statistical inisawere sensitive as the fault on the bearing
race was well advanced. Further, the use of thetigpekurtosis could exactly identify the
location of the fault within the bearing componenike fault severity was assessed using
inner race fault indicator, and the results showathnificant increase in the amplitude as the
crack progressed with time. However, this was et ¢ase throughout the measurement
period in the last days where a sharp drop inridecator levels was noted. This is due to an
increase of the clearance within the bearing whedho less vibration levels.

15



O oo NOOULID WN B

=
= O

N N NN
(o2 IV, BN~ 08

wW W NNNN
= O W 00

w
N

33
34
35

36
37
38
39

40
41
42

43
44

45
46
47

48
49

Results obtained from the analysis of conditionidatbrs showed that the energy index as a
consistent fault measure of the fault severity, iiéd less drops as the fault progressed. On
contrary crest factor, kurtosis and inner race ingdiault showed some level variation with
progress of the crack. Thus, energy index can bd tesprovide a good severity measure of
the bearing fault.

Overall, the signal processing techniques uselignstudy proved their ability in detection of
crack fault within wind turbine gearbox. In additiccombination use of these techniques will
in turn provide the analyst with more reliable diagis tools for online monitoring of wind
turbines.
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Highlights

1. Thefrequency analysis can be considered as a superior tool in detection of the bearing
fault at early stages.

2. Condition indicators results showed that the energy index as a consistent fault
measure of the fault severity, and it had less drops as the fault progressed

3. Thesignal processing techniques used in this study proved their ability in detection of
crack fault within wind turbine gearbox.



