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Abstract — This paper deals with the automated design of a 

Virtual Sensor used to estimate the vehicle planar motion states 

and the axle lateral forces. It is proposed to substitute the 

cumbersome and non-trivial manual task of tuning a Kalman 

Filter by using meta-heuristic optimization, and in particular, 

employing the contrast-based Fruit Fly Optimization Algorithm 

(c-FOA). c-FOA is a recently developed powerful Swarm 

Intelligence meta-heuristic. The optimized state estimator is 

implemented in the vehicle dynamics simulation software IPG – 

CarMaker® and its performance is evaluated under aggressive 

maneuvers. Results are compared to those obtained with a filter 

tuned manually in previous stages of this research using a 

systematic trial and error method.  

Keywords—Tire Force Estimation: Extended Kalman Filter: 

Neural Networks: Fruit Fly Optimization 

I.  INTRODUCTION  

The development of Modern Automotive Control Systems 
[1,2] requires the accurate and timely estimation of an elevated 
number of vehicle states [3,4] which cannot be directly 
measured. This approach, also called Virtual Sensing, is of 
great importance especially in the case of tire forces. Up to 
now, no commercially available sensors can directly measure 
the tire forces and relevant research has shown that various 
proposed approaches are too complex, expensive or unreliable 
to implement [5,6,7,8]. 

The standard method for vehicle state and tire force 
estimation is the Kalman Filter [9,10]. Different versions of 
Kalman filters exist including, the linear one, Extended 
Kalman Filter (EKF), Unscented Kalman Filter (UKF), and 
Particle Filters [11]. Since tire forces exhibit a smooth 
nonlinear behavior at high longitudinal slip ratios and lateral 
slip angles, the Extended Kalman Filter is commonly used to 
estimate the tire forces [12,13,14].  

Tuning an Extended Kalman Filter, selecting the 
measurement and noise statistics, is a cumbersome process as it 
is a multivariable problem with competing objectives [15]. For 
the derivation of an adequate solution, a multiple parameter 
trade-off analysis − considering performance in steady state 
maneuvers, performance in dynamic maneuvers, root mean 
square (RMS) values, maximum absolute error − is required. 
There are no design rules in place which can be used for this 
complex purpose and current practice relies on trial and error 

methods. A new trend is to tune the EKF using numerical 
optimization techniques [16, 17]. However, this approach has 
not been tested before in vehicle dynamics. Furthermore, it is 
not straightforward to apply numerical optimization, as the 
objective function is noisy and nonlinear. Thus, the application 
of gradient optimization techniques is not suitable. To this end, 
several authors proposed the application of Gaussian 
optimization [18].  

In this paper, we propose the tuning of an Extended 
Kalman Filter used for tire force estimation, by applying the 
contrast-based Fruit Fly Optimization Algorithm (c-FOA) [19]. 
The numerical results obtained indicate the significant 
performance improvement of EKF compared to the standard 
systematic trial-and-error method. Furthermore, the authors 
provide insight into the application of c-FOA by proposing an 
objective function comprising a weighted combination of 
longitudinal velocity, lateral velocity, yaw rate and lateral 
acceleration errors. By incorporating the lateral acceleration 
error, the optimum solution is achieved more robustly and with 
fewer iterations compared to the standard objective function, 
comprising a combination of just the vehicle states.  

The rest of the paper is organized as follows: In Section II, 
the structure of the tire force state estimator is presented. The 
vehicle model, the data-based approach to model the tire 
friction forces and the Extended Kalman Filter formulation are 
introduced. The optimization routine of the contrast-based Fruit 
Fly algorithm and the optimization objective function proposed 
in this paper are described in Section III. The results obtained 
after subjecting the optimized Extended Kalman Filter to Open 
Loop and Closed Loop aggressive dynamic maneuvers are 
discussed in Section IV. Finally, conclusions and further 
research steps are provided in Section V. 

II. HYBRID OBSERVER STRUCTURE 

The structure of the Hybrid observer proposed in this work 
is depicted in Fig. 1. As can be seen, the state estimator 
consists of an Extended Kalman Filter and a Feedforward 
Neural Networks (NN) block. The vehicle planar dynamics are 
modeled in the EKF by means of a Single Track vehicle model, 
whereas the axle lateral forces are approximated by a Static (1-
10-1) NN structure. This hybrid modeling approach is 
advantageous compared to other “black-box’’ [20] or “tire 
model-based” [9] modeling techniques in the sense that no 



prior knowledge of the tire model is assumed nor the vehicle 
dynamics are treated as a black box. Instead, it combines the 
advantages of the NN in modeling the tire’s highly nonlinear 
behavior with a first principles model that captures the overall 
dynamic behavior.  

 

 

Fig. 1. Virtual Sensor Structure. 

A. Vehicle Modeling 

The vehicle planar dynamics are modeled using a Single 
Track model [21], Fig. 2.  

 

Fig. 2. Single Track vehicle model. 

The longitudinal, lateral and rotational dynamic equilibrium 
equations are discretized using a first order approximation 
(𝑒𝐴𝑇𝑠 ≈ 1 + 𝐴𝑇𝑠), and expressions (1-3) are obtained.  

𝑣𝑥,𝑘+1 = 𝑣𝑥,𝑘 + 𝑇𝑠�̇�𝑘𝑣𝑦,𝑘 +
𝑇𝑆

𝑚
(𝐹𝑥𝑓,𝑘 cos(𝛿𝑘)

− 𝐹𝑦𝑓,𝑘 sin(𝛿𝑘) + 𝐹𝑥𝑟,𝑘) 
(1) 

𝑣𝑦,𝑘+1 = 𝑣𝑦,𝑘 − 𝑇𝑠�̇�𝑘𝑣𝑥,𝑘 +
𝑇𝑆

𝑚
(𝐹𝑦𝑓,𝑘 cos(𝛿𝑘)

+ 𝐹𝑥𝑓,𝑘 sin(𝛿𝑘) + 𝐹𝑦𝑟,𝑘) 
(2) 

�̇�𝑘+1 = �̇�𝑘 +
𝑇𝑆

𝐼𝜓

(𝐹𝑦𝑓,𝑘 cos(𝛿𝑘)𝑙𝑓

+ 𝐹𝑥𝑓,𝑘 sin(𝛿𝑘) 𝑙𝑓 − 𝐹𝑦𝑟,𝑘𝑙𝑟) 

(3) 

 

Where 𝑇𝑠 denotes the discretization time, 𝑙𝑓 and 𝑙𝑟  the 

distances from the center of gravity to the front and rear axles 
respectively, 𝑚 the mass of the vehicle, and 𝐼𝜓 the yaw inertia. 

The vector of states (𝑋) is formed by the longitudinal velocity 

(𝑣𝑥), the lateral velocity (𝑣𝑦), and the yaw rate (�̇�), expression 

(4). The front and rear axle longitudinal forces (𝐹𝑥𝑓,𝐹𝑥𝑟) and 

the angle steered by the front wheels (𝛿) are considered inputs 
to the system, expression (5). Finally, the yaw rate and 
longitudinal velocity quantities are assumed measurable 
variables, and form the vector of measurements (𝑌), equation 
(6). 

𝑋 = {𝑣𝑥 , 𝑣𝑦 , �̇�} (4) 

𝑈 = {𝐹𝑓𝑥, 𝐹𝑥𝑟 , 𝛿} (5) 

𝑌 = {𝑣𝑥 , �̇�} (6) 

B. Tire Force Modeling 

The nonlinear axle lateral forces (7) are approximated by a 
first order Taylor series expansion, and expression (8) is 
obtained.  

𝐹𝑦 = 𝑓(𝛼, 𝜆) (7) 

𝐹𝑦 ≈ 𝐹𝑦0 +
𝜕𝐹𝑦

𝜕𝛼
Δ𝛼 +

𝜕𝐹𝑦

𝜕𝜆
Δ𝜆 (8) 

 

The second derivative term is neglected under the 
assumption of quasi-static conditions in the longitudinal 
direction. The first derivative term (𝐶, cornering stiffness) is 
approximated using a finite differences approach (9). 

𝜕𝐹𝑦

𝜕𝛼
= 𝐶 ≈

𝐹𝑦,𝛼0+∆𝛼𝑡
− 𝐹𝑦,𝛼0−∆𝛼𝑡

2∆𝛼𝑡

 (9) 

 

The term Δ𝛼𝑡 denotes a small fixed axle slip increment, and 
is different from the increment (Δ𝛼) presented in expression 
(8).  

C. Neural Networks 

A model-based approach [3,22] is used to determine the 
static lateral force (𝐹𝑦0) and cornering stiffness (𝐶) required to 

calculate the axle lateral forces, equation (8). The tire friction 
nonlinear behavior is approximated using a one-hidden-layer 
NN structure. The vehicle longitudinal acceleration (𝑎𝑥) and 
the axle wheel slips (𝛼) are selected as the NN inputs. The axle 
wheel slips are computed from the vehicle states using a small 
angle approximation [23], expressions (10-11). 

𝛼𝑓,𝑘 = 𝛿𝑘 − (
�̇�𝑘𝑙𝑓 + 𝑣𝑦,𝑘

𝑣𝑥,𝑘

) (10) 

𝛼𝑟,𝑘 = − (
𝑣𝑦,𝑘 − �̇�𝑘𝑙𝑟

𝑣𝑥,𝑘

) (11) 

 

The longitudinal acceleration was incorporated into the NN 
structure with the aim to predict the lateral force reduction 
during combined longitudinal and lateral solicitations (force 
coupling), thus permitting an accurate vehicle state estimation 
in non-constant speed events (e.g. braking in a turn). It is 
important to remark that this approach considers a quasi-static 
weight transfer in the longitudinal direction, and an even 
surface. Road irregularities will be addressed in future stages of 
this research. The datasets necessary to train the NN structure 



were generated in IPG-CarMaker® using an experimentally 
validated compact-class vehicle model [3] and a state-of-the-art 
Magic Formula 6.1 tire model [24]. Open Loop aggressive 
maneuvers (Step steer) covering different longitudinal 
acceleration levels (Braking, Power On) were simulated for 
this purpose. Finally, the NN was trained in Matlab® using the 
Levenberg-Marquardt backpropagation algorithm and a 
70/15/15% dataset division was selected after performing a 
sensitivity analysis. The stability of the NN structure was 
studied following the methodology described in [25]. For 
additional details regarding the application of NN to model the 
tire friction forces, [3] can be consulted. 

D. Extended Kalman Filter 

In order to present the EKF, it is necessary to adopt the 

state-space formulation. The vehicle dynamics equations (1-3) 

can be expressed in state-space form by the set of discrete 

equations (12-13): 

𝑋𝑘+1 = 𝑓(𝑋𝑘, 𝑈𝑘) + 𝑤𝑘  (12) 

𝑌𝑘 = ℎ(𝑋𝑘) + 𝑣𝑘 (13) 

In this system, the terms 𝑓(. ) and ℎ(. ) denote the state 

evolution and observation vectors respectively. The system 

states, system inputs and system outputs are represented by the 

vectors 𝑋𝑘, 𝑈𝑘 and 𝑌𝑘. The plant uncertainties are modeled by 

the variable 𝑤𝑘, whereas 𝑣𝑘 is employed to model the noise 

associated with the system outputs. These noises are assumed 

to be Gaussian, uncorrelated and zero mean, i.e. (𝑤 ≈
𝑁(0, 𝑄), 𝑣 ≈ 𝑁(0, 𝑅)). The plant and measurement covariance 

matrices are noted by Q and R respectively. Following the 

formulation presented in [9], the EKF action can be 

subdivided into the time update and measurement update 

steps, represented by the expressions (14-18).  
Time update 

�̂�𝑘|𝑘−1 = 𝑓(�̂�𝑘−1|𝑘−1, 𝑈𝑘) (14) 

𝑃𝑘|𝑘−1 = 𝐴𝑘𝑃𝑘−1|𝑘−1𝐴𝑘
𝑇 + 𝑄 (15) 

Measurement update 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇[𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅]
−1

 (16) 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘[𝑌𝑘 − ℎ(�̂�𝑘|𝑘−1)] (17) 

𝑃𝑘|𝑘 = [𝐼 − 𝐾𝑘𝐻𝑘]𝑃𝑘|𝑘−1 (18) 

 

During the first stage of the algorithm, the plant model (a 
priori knowledge of the system) is used to predict the system 
states in the next time step (14). The covariance matrix 𝑃𝑘|𝑘−1 

is calculated using the process covariance matrix 𝑄, and the 
jacobian matrix of the state evolution vector 𝐴𝑘, expression 

(15). After that, the predicted states �̂�𝑘|𝑘−1 are corrected in the 

measurement update stage. The filter gain 𝐾𝑘 is computed from 
the predicted covariance matrix 𝑃𝑘|𝑘−1, the measurement 

covariance matrix 𝑅, and the jacobian of the observation vector 
𝐻𝑘, equation (16). Once the filter gain is calculated, the 
measurement residuals are used to correct the states predicted 
in the time update stage, expression (17). Finally, the 
covariance matrix is updated, expression (18). 

E. Observability of the EKF 

In this paper, the Lie Derivative was used to study the local 
observability of the system [9]. Lack of observability is present 
during null longitudinal velocity, and the observer is switched 
off each time the vehicle velocity goes below 2.7 m/s to avoid 
the ill-conditioning of the system. For further details, [3] can be 
consulted.  

III. OBSERVER TUNING 

A. Contrast-based Fruit Fly Optimization 

Fruit flies are very efficient in detecting food as they can 
locate it, even if this is 40 km away. Pan, inspired by fruit flies’ 
foraging behavior, proposed for the first time a Fruit Fly 
Optimization (FOA) algorithm on this basis [26]. The authors 
have developed an enhanced version of the original FOA [19], 
which includes the following steps; for simplification, the 
routine is presented for a one-dimensional optimization 
problem: 

Algorithm 1 Contrast-based Fruit Fly Optimization 

 Step 1: Initialization. The average swarm location 
[𝑥0, 𝑦0], the maximum number of iterations K, the size 
of the swarm N, the delay κ, the scaling factor M, and 
the contraction parameter c are defined. 

 Step 2: Swarm Generation. A new population of fruit 
flies [𝑥𝑖 , 𝑦𝑖] of length (𝑁), is created through the 
following randomized process: 

𝑥𝑖 = 𝑥0 ∙ (1 + 𝑀𝑖 ∙ (2 ∙ 𝑟𝑎𝑛𝑑 − 1) (19) 

𝑦𝑖 = 𝑦0 ∙ (1 + 𝑀𝑖 ∙ (2 ∙ 𝑟𝑎𝑛𝑑 − 1) (20) 

 Step 3: Localization. Each fruit fly is assigned a value 

𝑆𝑖 based on how close the fly [𝑥𝑖, 𝑦𝑖] is to the origin: 

𝑑𝑖 = √𝑥𝑖
2 + 𝑦𝑖

2 
(21) 

𝑆𝑖 =
1

𝑑𝑖

 
(22) 

 Step 4: Smell concentration/ Objective function 

calculation. The corresponding smell concentration for 

each fruit fly i is defined, where 𝑓 is the objective 

function. 

𝑆𝑚𝑒𝑙𝑙𝑖 = 𝑓(𝑆𝑖) (23) 

 Step 5: Best member identification. The fruit fly with 

the highest smell concentration (𝑆𝑏) in the swarm and 

its location (𝑥𝑏 , 𝑦𝑏) are identified: 

 𝑆𝑚𝑒𝑙𝑙𝑏 = max(𝑆𝑚𝑒𝑙𝑙𝑖) (24) 

 Step 6: Average location selection. The best fruit fly is 

compared to the existing average location: 

𝑖𝑓 𝑆𝑚𝑒𝑙𝑙𝑏 > 𝑆𝑚𝑒𝑙𝑙0, 
𝑥0 = 𝑥𝑏 , 𝑦0 = 𝑦𝑏  

(25) 

 Condition 1:  

 If the maximum number of iterations 𝐾 has 

been reached then terminate the optimization 

process, retrieve the optimal fruit fly Sopt as 

well as the corresponding objective function 

value Smellopt. 



 Else, continue to Step 7. 

 Step 7: Decision delay. In this phase, the fruit fly 

swarm does not change its food search strategy for κ 

iterations. This resembles the delay in decision-making 

that also fruit flies exhibit. 

 Condition 2: 

 If the smell concentration 𝑆𝑚𝑒𝑙𝑙0 improves 

over the last κ iterations, then go to step 8a.  

 Else if the smell concentration 𝑆𝑚𝑒𝑙𝑙0 does 

not change over the last κ iterations, then go 

to step 8b.  

 If the smell concentration 𝑆𝑚𝑒𝑙𝑙0  worsens 

over the last 2∙κ iterations, then go to step 8c. 

 Step 8a: Casting. Go to Step 2 without any change. 

 Step 8b: Visual feature detection. The fruit fly with the 

worst smell concentration 𝑆𝑚𝑒𝑙𝑙𝑤  is identified and the 

fruit fly swarm becomes attracted to it. Reduce the scale 

factor 𝑀 and go to Step 2. 

[ 𝑥𝑤   𝑦𝑤  ]  →  𝑆𝑚𝑒𝑙𝑙𝑤 = min(𝑆𝑚𝑒𝑙𝑙𝑖) (26) 

𝑥0 = 𝑥𝑤  𝑎𝑛𝑑 𝑦0 = 𝑦𝑤 (27) 

𝑀𝑖+1 = 0.9 ∙ 𝑀𝑖 
(28) 

where 𝑖 is the current iteration. Eventually, the flies will 

explore the area around the fruit fly with Smellw. This 

resembles the visual cue fruit fly search behavior.  

 Step 8c: Reset. Return to the location that encountered 

the best smell concentration 𝑆𝑚𝑒𝑙𝑙0 up to that point. 

Then go to Step 2. 

𝑥0 = 𝑥𝑏  𝑎𝑛𝑑 𝑦0 = 𝑦𝑏   (29) 

This resembles the memory function that fruit flies 

present. 

B. Objective function formulation 

In this study, the objective function is formulated as the 
weighted average of the combination of longitudinal velocity, 
lateral velocity, yaw rate and lateral acceleration errors (30). 

𝑆𝑚𝑒𝑙𝑙 = ∑ (𝑤1 ∙ (�̂�𝑥,𝑗 − 𝑣𝑥,𝑗)
2

𝑁𝑠𝑎𝑚

𝑗=1

+ 𝑤2 ∙ (�̂�𝑦,𝑗 − 𝑣𝑦,𝑗)
2

+ 𝑤3 ∙ (�̂̇�𝑗 − �̇�𝑗)
2

+ 𝑤4 ∙ (�̂�𝑦,𝑗 − 𝑎𝑦,𝑗)
2

) 

(30) 

 

Where 𝑤1, 𝑤2, 𝑤3 and 𝑤4 are user defined parameters. The 
lateral acceleration is obtained from the vehicle motion states 
as (31), and 𝑁𝑠𝑎𝑚 is the number of data samples 

𝑎𝑦 =  �̇� ∙ 𝑣𝑥 − 𝑑𝑣𝑦/𝑑𝑡  (31) 

 In this paper, 𝑤1=𝑤2= 𝑤3=𝑤4 = 0.25. Thus, the EKF 
tuning problem is formulated as an optimization problem for 
which the design parameters 𝑄∗, 𝑅∗ are sought that minimize 
the objective function: 

𝑄∗, 𝑅∗  → min (𝑆𝑚𝑒𝑙𝑙) (32) 

IV. RESULTS 

The state estimator described in Section II was constructed 
in Simulink® and integrated into the vehicle dynamics 
simulation software IPG-CarMaker®. The discretization time 
was set to 1ms, and the measurable quantities were acquired at 
a frequency of 100Hz using a zero-order hold block. An 
additive white Gaussian noise model was used to incorporate 
the uncertainties associated with the measurement equipment 
in the simulation signals [27,28]. 

A. EKF Optimization 

The diagonal terms of the EKF covariance matrices (Q, R) 
were tuned following the methodology presented in Section III. 
An optimization dataset was formed by concatenation of Lane 
Change, Slalom and Sine with Dwell maneuvers (tests #1, #3, 
#6, #7, Table I), Fig. 3, and the design parameters (𝑄∗, 𝑅∗) 
which minimized the objective function (32) were found. 

 
Fig. 3. Optimization dataset, Tests #1,#3, #6, and #7. 

B. Evaluation of the Optimized Observer 

The catalog of maneuvers presented in Table. I was 
simulated to test the performance of the optimized observer. 
Additional maneuvers (#2, #4, #5, #8) were added in order to 
check the suitability of the observer under scenarios not 
included in the optimization dataset. The nomenclature base is 
used to note the results obtained with a preliminary filter tuning 
carried out manually [3]. The normalized RMS errors [3,9] of 
the optimized observer were calculated for each test and 
presented in Table II. 

TABLE I.  CATALOG OF MANEUVERS. CD: COAST DOWN, PB: PARTIAL 

BRAKING, HB: HARD BRAKING, MS: MAINTAIN SPEED. 

Test Speed / SWA / Braking input 

#1 Sine with Dwell 80kph / 150˚ / CD 

#2 Sine with Dwell 80kph / 90˚ / CD 

#3 Sine with Dwell 80kph / 90˚ / PB 

#4 Sine with Dwell 80kph / 70˚ / HB 

#5 ISO Lane Change 100kph / - / MS 

#6 ADAC Lane Change 100kph / - / CD 

#7 Slalom 36m 80kph / - / MS 

#8 Slalom 18m 60kph / - / MS 



Overall, the errors keep within a 10% of accuracy for the 
majority of the maneuvers tested. Largest errors are observed 
in the front axle forces estimated during the test number 4 (Sine 
with Dwell with Hard Braking). Despite this, the normalized 
error of the lateral velocity is acceptable. In order to check the 
relative improvement of the optimized filter with respect to the 
base configuration, the error increment (Δ𝑒) was calculated 
using the equation (33). 

Δ𝑒 = 100
𝑒𝑏𝑎𝑠𝑒 − 𝑒𝑜𝑝𝑡

𝑒𝑏𝑎𝑠𝑒

 
(33) 

The results are presented in Fig. 4. The noise reduction 
achieved with the optimization of the filter is remarkable and 
ranges between 20 to 60 percent in all the tests except in the 
maneuver number 4. In this last, the lateral velocity error 
increases due to the uncertainty associated with the front axle 
lateral forces during hard braking. Nevertheless, the absolute 
value of the lateral velocity error is roughly 6 percent and can 
be accepted. 

TABLE II.  NORMALIZED RMS ERROR. 

Test 𝒆�̇� 𝒆𝒗𝒙
 𝒆𝒗𝒚

 𝒆𝒂𝒚
 𝒆𝑭𝒚𝒇

 𝒆𝑭𝒚𝒓
 

#1 1.68 0.62 1.69 3.54 4.07 4.23 

#2 1.78 0.61 2.18 2.32 2.20 4.24 

#3 2.22 0.63 4.69 4.66 4.99 7.41 

#4 1.37 0.72 6.37 10.40 17.22 6.25 

#5 2.16 0.62 2.60 2.61 2.81 3.41 

#6 1.94 0.54 2.18 1.83 2.10 4.08 

#7 2.84 0.57 6.26 1.76 1.82 3.22 

#8 2.25 0.64 4.25 3.36 2.62 6.51 

 

The improvement introduced by the optimized state 
estimator is particularly noticeable in the test number 8 (Slalom 
18 meters), where a systematic reduction in the noise level is 
seen in all the estimated vehicle states and axle forces.  

 
Fig. 4. Relative improvement of the optimized observer. 

 
Fig. 5. (a) Front lateral force, (b) lateral velocity. Test #8. 

 

The time histories of the front axle lateral force and the 
lateral velocity obtained during the simulation of this test are 
presented in Fig. 5. Apart from the expected reduction in the 
noise level, the optimized state estimator is able to approximate 
the simulation signals with high accuracy, thus eliminating the 
offset (lateral velocity) and delay (front axle lateral force) 
exhibited by the EKF tuned with the base configuration. 

V. CONCLUSIONS 

The results presented in this paper evidence the suitability 
of the contrast-based Fruit Fly Optimization algorithm as a 
robust and efficient approach to tune an Extended Kalman 
Filter. The reduction in the error of the estimated vehicle states 
and tire forces is significant, and the time-consuming task of 
manually tuning the filter is eliminated.  

The approach presented in this paper can reduce drastically 
the development time of automotive control systems. This can 
be especially advantageous when dealing with systems that 
present systematic errors and require an optimal tuning for each 
particular situation.  

In the following stages of this research, the performance of 
this optimization approach will be assessed in other nonlinear 
state estimators (Unscented Kalman Filter). Moreover, the 
determination of the optimum filter values for particular 
driving situations (e.g. steady-state driving, transient driving) 
as well as the subsequent integration in a covariance-scheduled 
scheme will be pursued. 
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