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Abstract

Data provenance refers to the knowledge about data source and opera-
tions carried out to obtain some piece of data. A provenance-enabled system
maintains record of the interoperation of processes across different modules,
stages and authorities to capture the full lineage of the resulting data, and
typically allows data-focused audits using semantic technologies, such as on-
tologies, that capture domain knowledge. However, regulating access to the
captured provenance data is a non-trivial problem, since execution records
form complex, overlapping graphs with individual nodes possibly being sub-
ject to different access policies. Applying traditional access control to prove-
nance queries would then either hide from the user the entire graph with
nodes that had access to them denied, or return an informative and/or se-
mantically invalid graph. An alternative approach is to answer queries with
a transformed graph that abstracts over the missing nodes and fragments.
In this paper, we present an access control language for provenance data us-
ing Open Provenance Model that supports this approach, together with an
algorithm that transforms graphs to obtain into safe, valid ones under the
conditions defined by the access control language.
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1. Introduction

Data provenance refers to the knowledge about data source and opera-
tions carried out to obtain a set of data. Making software systems provenance-
aware enables users to investigate data sources and services that produced
a particular output from the system, together with the individuals who in-
stigated the requests and received those outputs. In such way, the software
data outputs can be audited to establish their exact lineage and assess that
correct procedures were followed.

Provenance information can be represented as directed acyclic graphs
(DAG) establishing causal relationships between individual nodes. The Open
Provenance Model [1] (OPM) is a standard for provenance description. It
defines three basic elements to be linked: artifacts, agents, and processes;
and five basic causal dependences: a process used an artifact, an artifact
was generated by a process, a process was controlled by an agent, a process
was triggered by another process, and an artifact was derived from another
artifact. Following these basic elements, and others related to temporal de-
pendences, agents and process roles and accounts, OPM graphs can be drawn
to express the causal dependences amongst the elements interacting in a sys-
tem. Digital representation of any provenance element is also an essential
requirement in OPM, which has adopted URIs as the protocol to define the
OPM elements, and is advocating the usage of RDF and OWL technologies
for OPM graph format storage and interpretation, e.g. OPMV and OPMO
ontologies [2].

A new set of security considerations arises for provenance data in relation
to regulating access to records of a resource, rather than the resource itself,
e.g. whether a user is allowed to access provenance trail of a certain process,
or of a process affecting a certain data item. Even if a data item itself is
not accessible to the user, this should not necessarily restrict the user from
accessing some information about it – auditor may not be allowed to see
a patient’s full electronic health record, but may see that the patient was
entered into a clinical trial. To answer such questions, not only is a novel
language needed to specify constraints, but a new mechanism which would
allow access to transformed provenance graphs that provide some, allowed,
information in answer to the query.

Access control is a generic term for ensuring that a principal (person,
process, ...) has access only to the services/data that they are authorised for
in a certain system. This is typically implemented through security policies
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that try to enforce a certain protection goal such as to prevent unauthorized
disclosure (secrecy) and intentional or accidental unauthorized changes (in-
tegrity). In general, authorisations on some resource can be positive and
negative, although traditionally both have been used in mutual exclusion
based on the two classical closed policy and open policy approaches. Closed
policy adheres to a deny-by-default policy, where access to a resource is only
granted if a corresponding positive authorisation policy exists. Open policy
systems allow all access unless a corresponding negative authorisation policy
exists. In practice a combined approach is used to support exceptions. If mul-
tiple policies apply to some resource (e.g. a specific one, and a more generic
one) conflict resolution takes place depending on the approach adopted by
the system, some typical approaches including denials-take-precedence, most-
specific-takes-precedence, priority levels, and time-dependent access.

When the resources to be accessed are linked with a complex structure,
i.e. in a tree or a graph, denied resources prevent browsing the whole system
and answering certain queries, since alternative, non-denied paths, are not
computed. In order to compute such alternative paths, the initial complex
structure needs to be transformed. In particular, transforming OPM graphs
makes it possible to: 1) views generation depending on user roles and/or data
analysis goals; 2) generate semantically valid view of the original graph where
the access to all its resources is guarantee; 3) obtain the whole set of query
results that can be exposed to an user; 4) minimize the time-cost of access
evaluation since transformation can be done only once per user, for example,
at connection time; and 5) improve the visualization graph user-interface, as
view are user and task-oriented.

Our goal is to define a control access system for provenance OPM graphs
which guarantee the maximum accessibility to the non-denied resources. An
overview of the proposed solution is given in the following section.

2. OPM graph access control by graph transformation: overview

of our proposal

Provenance graph access needs to be semantically oriented as the prove-
nance data themself. Therefore, we have extended a semantically-oriented
access control language for provenance [3] to allow provenance graph to be
transformed according to user specifications and provenence inferences rules.
The defined language is called TACLP, the Transformation-oriented Access
Control Language for provenance.
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The access control language in [3] is an extension form the initial one de-
fined by Qun Ni et. al [4] which include a semantic approach description of
subjects (user roles), resources to be accessed, conditions under which restric-
tions are applied, and four different types of access permissions. Cadenhead
et. al [3] added regular expressions for resource and condition descriptions.
Our extension allows users, to define subgraphs of the OPM that needs to
be transformed, and three different levels of abstractions (namely hide, min-
imal and maximal) are allowed for the transformations. Details of the whole
language can be found in Section 4.

Using this language, an user can define the access policy for his data. This
access policy is evaluated (Section 5) against a provenance graph, and the
set of nodes where the access is restricted, and therefore where the transfor-
mation needs to be performed, the level of abstraction with which the nodes
needs to be abstracted and other details are collected. The graph is then
transformed accordingly and the transformed view of the graph is returned.
Querying and browsing can then executed over the generated view of the
graph.

The provenance graph transformation or view generation process is for-
malized in Section 3. Two different operations to transform the graphs are
defined: remove and replacement. The first allows to remove a set of nodes,
while the second allows to replace a set of nodes with a new abstract node.
However applying these operations on an arbitrary set of nodes can intro-
duce false dependences, that is, dependences in the view that were not in the
original graph.

To avoid this, the input set of nodes are partitioned in such a way that
that remove and replacement operations can be performed over the nodes
in each partition element without the risk of introducing false dependences.
Such a partition is called a causality-preserving partition, and can always
be computed according to Theorems 1 and 2 in Section 3. These theorems
establish that a causality-preserving partition is such that each element of the
partition contains a node whose external causes and effects through the input
set of nodes are shared by the rest of nodes in the partition element. External
causes (effects) of a node through a input set of nodes are the nearest causes
(effects) to the node, that are not in the input set, but are linked to the node
by a path of nodes in the input set.

Finally, computing causality-preserving partitions with minimal cardi-
nality, called as optimal causality preserving partition, is desired since each
partition element can be further partitioned, and, having this, a hierarchy of
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User (U) Open application (OP) Input data (IdP)

Process (P)

Input  data (D)

Result (R)

Figure 1: OPM graph example.

partitions could be computed and given as alternative views to an user. In
this paper, the partition hierarchy is not explored, but an optimized algo-
rithm for computing optimal causality preserving partitions, including user-
specified restrictions, is described at the end of the Section 3. The algo-
rithm is based on the Theorem 3 which states the conditions under which a
causality-preserving partition is optimal.

Although the same concepts can be applied to provenance graphs de-
scribed using PROV ontology [5], in this paper we use the OPM [2] formal-
ism1, as the proposal needs to be integrated to a provenance API, which
follows OPM. We plan to extend the proposal for considering the whole set
of constructors introduced in PROV. A discussion of the whole proposal in
comparison with other solutions in the literature is provided in Section 7.

3. Provenance foundations

In general terms, an OPM graph [2] is a directed acyclic graph composed
by three entities to be linked: artifacts, agents, and processes; and five basic
causal dependences: a process used an artifact, an artifact was generated by
a process, a process was controlled by an agent, a process was triggered by
another process, and an artifact was derived from another artifact. Graphi-
cally, artifacts are represented as ellipses, process as rectangles and agents as
hexagons. Figure 1 shows a simple example of a graph describing a generic
software process in which an user U opened an application within a process
represented by OP and used an input data option IdP of the software that
allowed him to enter some data, D, and then use the process P to obtain a
result, R dependent on the entered data.

Definition 1 (Provenance graph). A provenance graph, Prov = (V,E, type)
consists of a directed acyclic graph G = (V,E), with functions s, t : E → V

1To be more precise, we define an extension of OPM which introduces an abstract
provenance entity and an abstract causal dependence type. The reasons for such extension
can be found in Section 3.
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Artifact
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Agent
wasControlledBy

Figure 2: OPM type graph.

representing sources and targets of each edge, and the graph morphism type :
G → TG which maps graphs onto the provenance type graph OPM Type ∈
TG shown in Figure 2.

Figure 2 is an extension of the provenance graph type defined in [2].
The extension consists on the addition of two basic concepts (for node and
causal dependence types) that enable to represent the OPM concepts in a
simple but powerful hierarchy. In the type graph, it can be noticed a new
node type labeled as “Provenance node”, depicted as a diamond and lighter
color, which represents the abstract, high level concept for the provenance
nodes; and a new relationship “was caused by”, depicted in lighter colour,
that represents the abstract, high level concept for the provenance causal
dependence definitions. Given so, any path in a provenance graph define an
indirect was caused by relationship between the nodes it links. This simple
notion constitute an important contribution of this work, as it introduces a
basic hierarchy amongst the provenance nodes and relationships and at the
same time provide a semantic abstract definition for any multi-step causal
dependence. Therefore, the existence of process nodes in a path does not
prevent its transformation onto an inferred relationship as happened in [2].

All possible relationships (direct and indirect) in a provenance graph are
summarized in Table 1. .I is used to denote the elements of type . (an in-
terpretation), ∗ is used to define the transitive closure of relations and + to
nominate indirect relationships. For example, ArtifactI denotes the artifact
nodes, and wdf+I

denote the set of the indirect was derived from relation-
ships. However, for simplicity, we will use the type name instead of the ex-
plicit notation for its interpretation when the case is clear from the context;
also ∗ can be used instead of + for wdf and c just to highlight the fact that
these two relationships are the only transitive ones according to the semantics
of provenance relations. The relationships caused by and indirect caused by,
introduced in this paper, are represented in the table as c and c+ respectively.
We use provInf to describe the set of provenance inferences as defined in [2]
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(provInf = {wdf+, u+, wgb+, wtb+}), and provInfExt, for the whole set of
inferences defined in this paper (provInfEt = {wdf+, u+, wgb+, wtb+, c+}).

Relation Name Subset of Semantics

wdf ArtifactI × ArtifactI artifact was derived from another artifact

u ProcessI × ArtifactI process used an artifact

wgb ArtifactI × ProcessI artifact was generated by a process

wcb ProcessI × AgentI process was controlled by an agent

wtb ProcessI × ProcessI process was triggered by another process

c EntityI × EntityI two entities are causally related

wdf+ wdf∗ (transitive closure) Indirect was derived from relationship.

u+ u ◦ wdf+ Indirect used relationship

wgb+ wgb ◦ wdf+ Indirect was generated by relationship

wtb+ wtb ◦ wdf+ Indirect was triggered by relationship

c+ c∗ (transitive closure) Indirect was caused by relationship

Table 1: Relationship types between pair of nodes in a provenance graph. .I denotes
elements of type “.”.

As previously announced, the transformation of an OPM graph comes
in two flavours: entity removal, where the hidden nodes are deleted and
entity replacement, where the hidden nodes are replaced by a new abstract
node. Both are based on the notion of external effects and causes through
a set of nodes. Intuitively, the external effects (causes) of a set of nodes S
through a set of nodes R, with S ⊆ R, or simply external effects (causes),
are the nearest effects (causes), in V \R, to S that could be affected by the
removal of the nodes in R. The recognition of the external effects (causes)
is crucial because they represent the primary set of nodes that are affected
by the removal of the nodes in R. During the removal, external effects and
causes needs to be connected in such a way that do not change the causal
dependency between them; and, guaranteeing this, the causal relationships
amongst all remaining nodes (V \R), will not be affected.

A path of a graph is a well-known concept but for clarity we define it as
follows since it is used in Definition 3 which formalize the external effects
and causes concepts.

Definition 2 (Path of the graph). A path p = (v1, ..., vn) of a provenance
graph Prov = (V,E, type) is a sequence of nodes vi ∈ V , i ∈ {1, ..., n} ,
such that, (vi, vi+1) ∈ E. The nodes of a path p, denoted by nodes(p) is
the set of the nodes in the path. Let Paths be the set of paths in G, and
path : V ×V → Paths be a function that retrieve the set of paths connecting
two nodes.

Definition 3. [External effects and causes through a set of nodes] Given a
provenance graph Prov = (V,E, type), let R, S be two sets of nodes, such
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(a)

(b)

Figure 3: External causes and effects through a set of nodes.

that S ⊆ R ⊆ V . The external effects (causes) of the nodes in S through the
nodes in R, denoted as ef(S,R), ca(S,R) are sets of nodes in V \R that are
causally related with a node in S through a direct relation or a path in R,
such that:

• ef(S,R) = {v ∈ V \R|(v, v′) ∈ c∗, v′ ∈ S, ∃p ∈ path(v, v′) such that
∀v′′ ∈ nodes(p) \ v′, v′′ ∈ R}

• ca(S,R) = {v ∈ V \R|(v′, v) ∈ c∗, v′ ∈ S, ∃p ∈ path(v′, v) such that
∀v′′ ∈ nodes(p) \ v′, v′′ ∈ R}.

If R = S, these sets will be denoted with the simplified versions ef(R) and
ca(R).

Figure 3 shows a graphic representation of the external causes and effect
definition. External effects and causes are the nearest effects and causes,
respectively, of the nodes in S arriving to them through a path of nodes in
R. In both examples (Figure 3a and the 3b the external causes of the nodes
in S through its superset R, ca(S,R) and ca(R) respectively, are the set {1}.
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In the case of the external effects, in Figure 3a, in contrast to Figure 3b
cannot included the node 7, since no node from S has caused the appearance
of 7. So, ef(S,R) = {4} in Figure 3a, and, ef(R) = {4, 7} in Figure 3b.
Finally, notice that the node 5 is not in the external effect sets as it is not
the nearest node to the nodes in S; also the node 8 is not in the linage of any
node in R, and therefore excluded from any external causes and effects sets.

Definition 4. [Entity removal operator RemR] Let Prov = (V,E, type) and
R ⊆ V a set of nodes to be removed. Entity removal transformation RemR

on Prov produces a new provenance graph Prov′ = (V ′, E ′, type′), where:

• V ′ = V \R

• E ′ = (E \ {(v, v′) ∈ E|v, v′ ∈ R}) ∪ {(v, vc)|v ∈ ef(R), vc ∈ ca(R)}

• type′ morphism function is defined as:

– ∀v ∈ V ′, type′(v) = type(v)

– ∀e ∈ E ′ ∩ E, type′(e) = type(e)

– ∀e ∈ E ′ \ E, type′(e) =























wdf if type(e) = wdf+

u if type(e) = u+

wgb if type(e) = wgb+

wtb if type(e) = wtb+

c otherwise

Prov′ is called the transformed graph by entity removal on R, and the
operation is denoted as: Prov′ = RemR(Prov).

Removal operator produce a new graph, Prov′, from the original one,
Prov, removing the nodes and edges in R and including new edges linking
the external effects and causes of R. The type of the new edges are updated
to generalize indirect relationships as the direct analog relationships, or to
define the relationship as “caused by”2.

Definition 5. [Entity replacement operator RepR] Let Prov = (V,E, type)
and R ⊆ V a set of nodes to be removed. Entity replacement transformation
RepR produces a new provenance graph Prov′ = (V ′, E ′, type′), where:

2A new edge could have a “caused by” label either an “indirect caused by” relationship
were in Prov or not.
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• V ′ = (V \R) ∪ {va}

• E ′ = (E \ {(v, v′) ∈ E|v, v′ ∈ R}) ∪ {(v, va)|v ∈ ef(R)} ∪ {(va, vc)|vc ∈
ca(R)}

• type′ morphism function is defined as:

– ∀v ∈ V ′ \ {va}, type
′(v) = type(v)

– type′(va) =

{

Artifact, if ∀v ∈ R, type(v) = Artifact
Process, otherwise

– ∀e ∈ E ′ ∩ E, type′(e) = type(e)

– ∀e ∈ E ′ \ E, type′(e) is defined according to the TG graph.

Prov′ is called the transformed graph by entity replacement on R, va the
abstract entity introduced by the transformation and AR = {(va, R)} is called
the abstract relation of the transformation, and the operation is denoted as:
Prov′ = RepR(Prov).

Abstract entities have different semantics than those in the original graph3.
Therefore, the users should consider this fact during the graph analysis. In
any case, it is responsibility of the provenance administrator to give users
the information about which nodes have been abstracted in his view.

A transformation by entity removal (RemR) is useful in cases in which
a subgraph needs to be hidden if it is unnecessary for an analysis or it has
been concealed to the user. A transformation by entity replacement (RepR)
is useful for removing details of data and operations in a subgraph while
maintaining a general information (the abstract entity) that suggest the ex-
istence of such subgraph. Take as an example a provenance graph generated
by a health care system. A patient is not able to see the subgraph associated
to the clinical trial in which he participates, neither the actions performed
by his GP to decide a diagnosis or a therapy. In the first case, RepR is more
appropriate, as nodes representing parts of a clinical trial process could indi-
cate to the patient when and which of his clinical data are used for the study.
In the second case, is more dangerous to use RepR than RemR, since RepR
could suggest the existence of automatic systems (or clinical case discussion
in a medical institution) to assess a diagnosis or therapy, and so a patient

3Abstract entities represents a subgraph of the original graph.
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Figure 4: Transformations examples. (b) and (e) Entity removal operation over the ex-
amples in (a) and (d), respectively; (c) and (f) Entity replacement operation over the
examples in (a) and (d), respectively. Nodes to be removed are denoted with letters and
red borders, the nodes to maintain with numbers, indirect dependences are represented as
double lines, soft dependences (Definition 6) as dash lines, and abstract entities have gray
background and red borders.
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1
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Figure 5: Entity replacement operation which introduce false dependencies (e.g. a new
path from 2 to 5 ). (a) Original graph, (b) abstract graph using A and B as the nodes to
abstract.

could argue about ethical issues during the process. Figure 4 shows two
examples to which removal and replacement operations have been applied.

The transformations RemR and RepR does not introduce cycles in the
transformed graph as the original graph re acyclic as well. However, using
these transformations in an arbitrary set of nodes can introduce false depen-
dences, that is, causal links that were not in the original graph can appear
in the transformed graph.

Figure 5 shows an example in which a transformation by entity replace-
ment introduces false dependencies when the entities A and B are joined. In
this case, paths from 2 to 5, D, and E do not exist in the original graph.

The multi-step (inferred) dependences defined in [2] are not useful to
represent all possible multi-step causal dependences observed in an OPM
graph, as no process node can be “removed” with an inferred dependence.
The introduction of the causal dependence caused by, c, to represent “any”
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casual dependence, and c+ as “any” indirect causal dependence guarantee
that any pair of connected nodes in a graph can be linked by c or by c+. This
simple notion allow us to transform any causal dependence appearing in a
graph with a default (c+) dependence relationship. Therefore, in case that no
more specific multi-step dependence can be used to replace a path of causal
dependences, c+ can be used to instead, and in this case soft dependences
will appear in the transformed graph. The following definition formalizes the
concepts of false and soft dependences.

Definition 6 (False and soft dependences introduced by transformation).
Let Prov = (V,E, type) and Prov′ = (V ′, E ′, type′) a transformed graph by
entity removal or replacement. A path p ∈ path(v, v′) of Prov′, is called
false dependence introduced by the transformation if it does not belongs to
Prov, and it is called soft dependence introduced by the transformation if
(v, v′) ∈ c∗ \ {wdf+, u+, wgb+, wtb+}.

Definition 7 (Causality-preserving transformation). As transformation is
called causality preserving if it does not introduce false dependences.

The problem of avoiding the introduction of false dependences during
transformations can be reformulated as: given a provenance graph and a set
of entities to be abstracted/hidden, how these entities can be joined/removed
from the graph to make all the transformations causality-preserving? The
definition and construction of a partition such that each of its elements can
be safely (preserving the causality amongst the remaining nodes) transformed
is the proposed solution and aim of the following definitions.

Definition 8 (Causality preserving partition of a set of entities). Let Prov =
(V,E, L) a provenance graph, and R ⊆ V . A partition of R, P, is causality
preserving if for all P ∈ P, transformations RemP and RepP are causality
preserving.

Having introduced the notion of causality preserving partition, we now
show how a causality preserving partition can be used to transform a graph
(Definition 9), and how it can be constructed (Theorems 1, 2, 3 and Algo-
rithm 1).

Definition 9. [Transformed graph by a causality preserving partition] Let
Prov = (V,E, type) be a provenance graph, and P be a causality preserving
partition of R ⊆ V . A transformed graph by P is the resulting graph from
the sequential application of the operations RemP or RepP , P ∈ P.
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The requirement to construct such partition is that for each set in the
partition all of the external effects and causes of the set are connected.

Theorem 1. Let Prov = (V,E, type) be a provenance graph, P is a causal-
ity preserving partition of set R ⊆ V iff ∀P ∈ P, v1 ∈ ef(P,R), v2 ∈
ca(P,R), ∃(v1, v2) ∈ c∗.

Proof. In Appendix C.

The previous theorem is equivalent to having a “special” node in each
partition element such that its causes and effects include the causes and
effect of the remaining nodes of the partition element.

Theorem 2. Let Prov = (V,E, type) be a provenance graph, P is a causality
preserving partition of R ⊆ V , iff ∀P ∈ P, ∃ v ∈ P such that ∀v′ ∈ P, v 6=
v′, ef({v′}, R) ⊆ ef({v}, R) and ca({v′}, R) ⊆ ca({v}, R).

Proof. In Appendix D.

Each set in a causality preserving partition can be abstracted as a whole,
or it can be further partitioned4 if so desired, without breaking the causality
property. This suggests that it is desirable to partition R into large subsets,
as this gives users the maximum freedom to choose a specific granularity
within each of those subsets. Note that the partition of R consisting of
singletons, called default causality preserving partition is trivially causality
preserving, however this leaves users with no choice at all on the granularity
of abstraction, in fact it corresponds to simply anonymizing each of the nodes
in R.

Theorem 3. [Optimal causality preserving partition element] Let Prov =
(V,E, type) be a provenance graph and P a causality preserving partition
of R ⊆ V . P is optimal with respect to the cardinality of the partition iff
∄P, P ′ ∈ P such that ef(P,R) ⊆ ef(P ′, R) and ca(P,R) ⊆ ca(P ′, R).

Proof. In Appendix E.

4Given a causality preserving partition P an element of P can be further partitioned
following again the Theorems 1 and 2. The proof that the obtained partition is also
causality preserving is then trivial.
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Combining Theorems 2 and 3 is the key for computing an optimal
causality-preserving partition given a set of entities R. This computation
can be described as follows. Firstly, compute the external causes and effects
of each element in the default partition, that is, for each v ∈ R compute its
external effects and causes through R (ef({v}, R) and ca({v}, R)). Then,
the optimal partition can be formed combining as much as possible the el-
ements in the default partition while the conditions in both theorems are
maintained, that is, each element in the formed partition contain a node
whose external causes and effects through R is superset of all other element
in the partition element (Theorem 2) and no pair of elements can be further
combined (Theorem 3).

For a given graph and set of nodes to transform, it can exist more than
one optimal causality preserving partition. The ambiguity emerges when
an element can be combined with more than one other element. An order
of preferences and/or restrictions for combinations can remove this ambigu-
ity. Both ideas are incorporated in the algorithm for the optimal partition
computing with restrictions (Algorithm 1).

A restriction for optimal partition computing is defined as a boolean
condition that should be satisfied by each partition element. Let P be a
causality preserving partition for the set of nodes R and P be an element of
P, then R = ∪P∈PP . Two examples of restrictions are:

1. Soft dependences transformations are not allowed for a set of nodes.

Let softDepsNotAllowedIn be the set of nodes for which soft depen-
dences are not allowed. To guarantee this restriction external causes
and effects of P , with P ∩softDepsNotAllowedIn 6= ∅ through R have
to be related through a relationship in provInf :

P ∩ softDepsNotAllowedIn = ∅ or

(P ∩ softDepsNotAllowedIn 6= ∅ and

∀vc ∈ ca(P,R); ve ∈ ef(P,R), type((ve, vc)) ∈ provInf)

(RESTR. 1)

2. Nodes in a partition element have to share a value property. Let
dict be a hash table containing the property value of each nodes in R:

∀v1, v2 ∈ P, v1 6= v2, dict[v1] = dict[v2] (RESTR. 2)
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{A} {B} {C} {D} {E}
externalCauses {4,5} {4} {4} ⊘ {5}
externalEffects {1} {2} {1,2} {1} {1,3}

Table 2: External causes and effects for the default causality preserving partition elements
for Figure 5.

In the first part of Algorithm 1, the external causes and effects of the
default partition are calculated and the ordered list of its elements, according
to the sum of the cardinality of the external causes and effects and for the
lexicographic order of the nodes5, is used to initialize sortedP variable. The
sets emptyCauses and emptyEffects , which will be returned at the end of
the algorithm, that are also computed in this step as the set of nodes whose
external causes and effects are empty sets, respectively. These sets will be
used in Algorithm 4, Section 6.

In the second part of the algorithm, elements in sortedP are used to cre-
ate the causality preserving partition, P. Each time, an element in sortedP ,
denoted by seed, is merged iteratively with all other elements of sortedP ,
denoted by mergeWith if 1) the external causes and effects of seed are su-
persets of the respective sets of mergeWith and 2) all restrictions, rest,
are satisfied by partition element to be created (seed ∪mergeWith). If the
merging is performed mergeWith element is removed from sortedP to avoid
merging this element again.

The ordering imposed in the first part of the algorithm becomes also
relevant for the second one. The first ordering (external causes and effects
cardinality) guarantee a minimal number of times that the superset opera-
tions are performed. The second ordering (lexicographic) allows to define a
merging node order preference, which eliminate the ambiguity when a node
can be merged to more than one other node. Any desirable order can be
used instead of the lexicographic one.

The execution of this algorithm using as input the details in Figure 5
without restrictions is shown in the following.

Step One
The external causes and effects associated to the default causality pre-

serving partition of the set of entities to abstract (R = {A,B,C,D,E}) is
described in the Table 2. From it, emptyCauses = {D}, emptyEffects = ∅
and the list sortedP = [A,C,E,B,D].

5URIs are used as identifiers in OPM graphs using semantic approach, as in our case.
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Algorithm 1 Optimal causality preserving partition with restrictions.
Require: g: OPM graph.

R: the set of nodes to abstract.
restr: set of conditions to be hold by the elements of the partition.
superSet(., .): is a boolean function between sets that returns “True” if the first argument is superset

of the second and “False”, otherwise.
Ensure: P: optimal causality preserving partition.

emptyCauses: the set of nodes with empty set of external causes.
emptyEffects: the set of nodes with empty set of external effects.

{Step One: external causes and effects for the default partition}

1: Compute in externalCauses a dictionary of the external causes for each element {v}, v ∈ R, through R

2: Compute in externalEffects a dictionary of the external effects for each element {v}, v ∈ R, through R

3: emptyCauses = {v|v ∈ R, externalCauses[v] = ∅}

4: emptyEffects = {v|v ∈ R, externalEffects[v] = ∅}

5: Let sortedP a list of the elements in R sorted first, in descending order of the sum of cardinality of their
external causes and effects, and then by the lexicographic order of the node names.

Step Two: generate the partition

6: P = ∅
7: for i = 1, ..., |sortedP | − 1 do

8: seed = {sortedP [i]}

9: j = i + 1

10: while j <= |sortedP | do

11: mergeWith = {sortedP [j]}

12: if superSet(externalCauses[sortedP [i]], externalCauses[sortedP [j]]) and
superSet(externalEffects[sortedP [i]], externalEffects[sortedP [j]]) and
∀r ∈ restr, r is satisfied by seed ∪ extendWith then

13: seed = seed ∪ mergeWith

14: Remove the j-esim element of sortedP

15: else

16: j = j + 1

17: P = P ∪ {seed}

18: return P, emptyCauses, emptyEffects

16



A

C

D

E

B4

5

1

2

3

(a)

a 14

a 2

a 35

1

2

3

(b)

a 14

a 25

1

2

3

(c)

Figure 6: Applying RepR and RemR operations to the elements in an optimal causality
preserving partition. (a) Original graph, (b) View of the graph after applying RepR to all
optimal partition elements, (c) View of the graph after applying RemR to {C, B} set and
RepR to the other two partition elements.

Step Two
P is initialized as an empty set, ∅, and the double loop proceed as:

1. seed = {A}

(a) mergeWith = {C}. Condition in line 12 is False.
(b) mergeWith = {E}. Condition in line 12 is False.
(c) mergeWith = {B}. Condition in line 12 is False.
(d) mergeWith = {D}. Condition in line 12 is True, then seed =

{A,D}, sortedP = [A,C,E,B]
(e) P = {{A,D}}

2. seed = {C}

(a) mergeWith = {E}. Condition in line 12 is False.
(b) mergeWith = {B}. Condition in line 12 is True, then seed =

{C,B}, sortedP = [A,C,E].
(c) P = {{A,D}, {C,B}}

3. seed = {E}

(a) P = {{A,D}, {C,B}, {E}}

The output of the algorithm is: P = {{A,D}, {C,B}, {E}}, emptyCauses =
{D}, emptyEffects = ∅. Figure 6 show two views of the original graph: in
the first RepR operation is applied to all element in P, in the second RemR

is applied to the {C, B} set and RepR to the other two.

4. TACLP, the Transformation-oriented access control language for

provenance

The Access Control Language for Provenance data described here is an
extension of the works in [4, 3]. In these works the access control to a
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provenance graph is provided through a set of policies expressed in an XML
syntax. When a query is asked, the policies are applied and the query is
answered if no resource in the result is denied.

In contrast, our extension, called Transformation-oriented access control
language for provenance -TACLP-, allow the description of transformations in
case of restrictive access and, for query answering, the policies are evaluated
and the transformed graph is used instead of the original one. In addition to
securing the graph, a key feature of our approach is to provide access to the
maximum allowable subset, without unnecessarily hiding any nodes.

The TACLP XML schema can be found in Appendix A. We assume
that both provenance graph items and security policy elements refer to onto-
logical terms, thereby providing unambiguous interpretation, tighter domain
coupling, easier human verification, and allowing existing Semantic Web tools
to be used for data access and analysis.

The access control is defined by a set of policies and a policy evaluation
type. The latter can take two values: ‘deny takes precedence’ or ‘permit takes
precedence’. In previous works only ‘deny takes precedence’ was described.
However, ‘permit takes preference’ could be useful to define a cascade of
policies separating users according to their access level. Section 5 details how
policies are applied during query evaluation. In the following a summary of
the elements defined in [4] is given. Section 4.1 details the transformation
element introduced in this paper.

A policy consists of a target, effect, and a transformation elements and
optionally condition and obligation elements.

Element target specifies the set of users (subject element) and resources
(record element) to which the policy should be applied, and optional ele-
ments restriction and scope. Subject and record elements are specified by a
collection of specific concepts, defined through IRI references. For example,
doctor and patient can be used to define the type of users to which a policy is
applied; and open eHR, nurse, and laboratory test are examples of a process,
an agent and an artifact concept resources, respectively, to which a policy
is applied6. The optional restriction string element describes a conditional
expression under which the policy is applied, which is either a relational
comparison between a value in a property path and a literal, or a full logi-

6The semantic approach of using concepts to specify users is a simile to user groups in
the classical theory of access control
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cal expression. The scope element determines if the policy is ‘transferable’
or ‘non-transferable’ with respect to subjects - whether it applies to all the
ancestors of matched elements in the graph, or to the matched elements only.

The effect element specifies the intended outcome if the policy is applica-
ble and the rule matches part of the provenance graph. A policy is applicable
to a node if the subject and record are superconcepts of the user accessing the
provenance graph and the node type, respectively, and if the restrictions and
conditions are satisfied by the node and the provenance system, respectively.
Effect can take four predefined values:

• Absolute permit. This value guarantees access to the graph regard-
less of other policies outcome, e.g. for allowing access to auditors or
law enforcement agencies, and avoids the need for additional conditions
in deny policies.

• Deny. Guarantees that certain parts of the graph will not be accessed
by users in the subject element.

• Necessary permit. It is useful to describes necessary conditions, but
not sufficient, for accessing to certain parts of the graphs, and therefore
needs an explicit permit policy for accessing (See [4] for examples of
usefulness of having necessary permit in addition to permit).

• Permit. It is useful to describes those parts of the graph that can be
accessed if there are no other policies denying its access.

The optional condition element of a policy describes contextual require-
ments that have to be met in terms of system names, IP address, time con-
straints etc., rather than ontological concepts. If omitted, the condition
evaluates to true.

4.1. Transformation element

The transformation element is our novel extension to the policy language
defined in [4]. It allows provenance data administrator to specify how to
transform the provenance graph in order to hide certain resources. The
transformation element includes the specification of which nodes needs to
be hidden and which transformation operation (RemR and RepR) should be
applied to them. Depending on the connected user, a view of the graph is
generated and the queries answered according to this transformed graph.
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<xs:element name="transformation" minOccurs ="0" maxOccurs ="1">

<xs:complexType>

<xs:sequence >

<xs:element name="transformation_spread " type="xs:string "

minOccurs ="0" maxOccurs ="unbounded "/>

<xs:attribute name="type" use="required ">

<xs:simpleType>

<xs:restriction base="xs:string ">

<xs:enumeration value ="Single "/>

<xs:enumeration value ="Subgraph "/>

</ xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="level" use ="required ">

<xs:simpleType>

<xs:restriction base="xs:string ">

<xs:enumeration value ="Hide"/>

<xs:enumeration value ="Minimum "/>

<xs:enumeration value ="Maximum "/>

</ xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="labelAs " type="xs:string "/>

</ xs:sequence >

</xs:complexType>

</xs:element >

Figure 7: Transformation element XSD definition

The XSD definition, shown in Figure 7, consists of three parts: the trans-
formation type which determines what segment of the graph needs to be
hidden, the abstraction level, and label denoting the names for introduced
abstract entities in the transformed graphs.

Transformation type can take two possible values:

• Single. The original graph is transformed by removing the nodes
matching the target policy.

• Subgraph. As above, but the set of matching nodes is extended to
include also nodes causally dependent on the original matching nodes
the target policy whose type is included in the transformation spread
element. Transformation spread element is used to specify a concept
defined in OWL language.

Three different transformation levels are specified:

• Hide, when the matched nodes of the subgraph have to be completely
hidden (removed) from the graph, so, RemR transformation is applied;
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• Minimum abstraction, when the nodes of the subgraph have to be
abstracted considering provInf 7 set of inferences, so, RepR transfor-
mation is applied but no caused by relationship (soft dependences) will
appear in the transformed graph.

• Maximum abstraction, when the nodes of the subgraph are ab-
stracted as much as possible, that is considering the complete provInfExt8

set of inferences, so, RepR transformation is applied but soft depen-
dences could appear in the transformed graph.

4.2. Example: Access to an Electronic Health Record and Clinical Trial Sys-
tems

Figure 8 shows a simple example of access control for an Electronic Health
Record (EHR) system, such as the ones used in the UK’s National Health
Service, and a clinical trial data maintenance and analysis system. We as-
sume the existence of a Clinical Data Ontology (CLDO), similar to existing
ontologies such as SNOMED-CT [6], that includes the most important clini-
cal concepts in a healthcare system: user, date, patient, general practitioner
(GP), diagnosis, etc.. All patient data and its provenance are stored using
CLDO. cldo: is used as the prefix namespace for CLDO, and cldo:now de-
notes a concept associated to the current date/time which involves a system
function call when a node of this concept is accessed9.

In the example, the following policies are provided (following the order
in Figure 810):

1. Patients do not have access to the laboratory processes. These nodes
should be transformed at minimum abstraction level, labelling the new
abstract entities “Laboratory”.

2. Patients do not have access to the clinical trial processes. These nodes
should be transformed at minimum abstraction level, labelling the new
abstract entities obtained with “Clinical Trial”.

3. Patients have no access to any information related to the automatic
diagnosis recommendation nor to the graph segment connecting it with

7provInf = {wdf+, u+, wgb+, wtb+} as defined in Section 3, see Table 1.
8provInfExt = {wdf+, u+, wgb+, wtb+, c+} as defined in Section 3, see Table 1.
9Technique used in ontology definitions for pervasive context-aware systems (e.g. [7])

10In the Figure 8, the third and fifth access control policies are omitted as they are
similar to the second and first policies, respectively.
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the clinical evidences. These nodes need to be transformed at hidden
abstract level.

5. Access policy evaluation algorithms

The aim of the new policy evaluation strategy we present is not only to
decide whether a resource can be viewed or not, but to construct a view of
the graph which satisfies the security restrictions for the users. As described
in the previous section, the access control policy type can take two values:
‘deny takes precedence’ or ‘permit takes precedence’. With respect to the
access control example in Section 4.2, the authorization system could be
divided in two groups: the heathcare center responsibles, which have access
to all provenance data, and the rest of the users. Then, for the first group
a ‘permit takes precedence’ strategy can be used; for the second, however, a
‘deny takes precendence’ strategy is the adequate one.

Algorithms 2 and 3 show the access policy evaluation for each access con-
trol policy type. The general idea behing both algorithms is to collect the
set of nodes, R, to be transformed, as well as the level and label associated
to them while the target policies are evaluated (lines 10-31 of Algoritm 2
and lines 10-37 of Algorithm 3). Then, using the compiled data the opti-
mal causality preserving partition is computed by using Algorithm 1, pro-
vided that set of the restrictions, rest, is adequately updated (lines 32-34
of Algorithm 2 and lines 38-40 of Algorithm 3). Notice that the variable
softDepsNotAllowedIn collects the set of nodes to be transformed using
minimal abstraction, that is, where indirect caused by inferences cannot be
generated. Adding the first restriction (RESTR. 1) no element in the par-
tition having nodes in softDepsNotAllowedIn will generate a soft depen-
dence. Finally, the graph is transformed according to the causality-preserving
partition, and the details about the level and label of the nodes (line 33 of
Algorithm 2 or line 40 of Algorithm 3) as explained in Section 6. In Ap-
pendix F the flowcharts of these algorithms are depicted and can be used as
a summary of the whole algorithm described in this section.

The first difference between these algorithms is with respect the order in
which ‘deny’ policy is evaluated. If the access control preference is deny (per-
mit) the deny (permit) policies will be evaluated before the permit (deny)
policies. ‘Absolute permit’ policies have to be always evaluated first in both
deny and permit takes precedence strategies to guarantee the access to the
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<policySet accespolicyType="deny takes precedence ">

<policy ID=1>

<!-- Patients have access to the provenance data directly associated to

their EHR and the EHR itself -->

<target >

<subject >ocld:Patient</subject >

<record >opm:Entity | ocld:EHR </record >

<restriction >ocld:Patient.patId == ocld:User .id</restriction >

<restriction >ocld:Patient.patId == ocld:EHR .id</restriction >

<restriction >opm:Entity rdf:property ocld:EHR </restriction >

</target >

<condition >ocld:Now .typeWeekDay == ocld:weekend</ condition >

<scope >transferable</scope >

<effect >permit </effect >

</policy >

<policy ID=2>

<!-- Patients does not have access to the laboratory process , but transform

these nodes considering ‘minim abstraction’ level and labelling the

abstracted entities obtained with "Laboratory "-->

<target >

<subject >ocld:Patient </subject >

<record > ocld:LaboratoryProcess | ocld:LaboratoryArtifact </record >

<restriction >ocld:Patient.patId == ocld:User .id </ restriction >

<restriction >ocld:Patient.patId == ocld:EHR .id </restriction >

<restriction >opm:LaboratoryProcess rdf:property* ocld:EHR </ restriction >

<restriction >opm:LaboratoryArtifact rdf:property* ocld:EHR </restriction >

</target >

<scope >transferable </scope >

<effect >deny </effect >

<transformation level ="Minimum " type =" Single "/>

</policy >

<policy ID=3>

<!-- Patients have no access to any information associated to a diagnosis that

was generated by using an automatic diagnosis recommendation process and

to the subgraph connecting it with the clinical evidences -->

<target >

<subject >ocld:Patient </subject >

<record >ocld:DiagRecommProcess </record >

<restriction >ocld:Patient.patId == ocld:User .id AND

ocld:Patient.patId == ocld:EHR .id AND

ocld:EHR rdf:property*/ ocld:Diagnosis/opm:wasGeneratedBy *

ocld:DiagRecommProcess </restriction >

</target >

<scope >transferable </scope >

<effect >deny </effect >

<transformation level ="Hide" type ="Subgraph ">

<tranformation_spread >ocld:clinicalEvidence </tranformation_spread >

</transformation >

</policy >

</policySet >

Figure 8: Example of a access control definition for a healthcare system, ocld: is used as
prefix of the ontology OCLD.
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matching nodes. As ‘necessary permit’ policies constitute a necessary con-
dition for permit an access they have to be always evaluated before that
‘permit’ policies.

The second difference lies in the way in which nodes not-covered by a
policy are treat in the last step of the algorithm: all non-covered nodes will
assumed a deny (permit) access in deny (permit) precedence access control
type. So, whereas in deny precedence access control type, all non-covered
nodes are included in the R set and given ‘hide’ as the abstraction level and
an empty string as the label for the abstracted node information, in permit
precedence access control type, non-covered nodes does not affect the set R
of nodes to be transformed.

The access control evaluation algorithms take into account, and solve,
the ambiguity problem that could appear when a node match more than
one policy. Firstly, as described before, the effect of the policies are used to
consider them in a certain order. Secondly, policies, inside each evaluation
block, are always evaluated in the same order in which they are specified
in the TACLP XML file. Finally, it is guaranteed, through the function
matchingEntitiesOf(g, policy), that a node is only associated with the poli-
cies whose resources are conceptually nearest.Even if a node matches two
policies with the same effect type, only the policy defined first in the XML
and with the resource type definition semantically nearest to the node will
return it as the matching node.

6. OPM graph transformation

OPM graph transformation (or view generation) simply apply the ade-
quately graph operations (removal or replacement) to each element, P , in
the optimal partition, P. It is assumed that all nodes a partition element
have the same level of abstraction which is guarantee in Algorithms 2 and 3
by adding (RESTR. 2) for the dlevels dictionary. Removal transformation
is applied for a ‘hide’ level or, to avoid having uninformative abstract nodes
in the extremes of the view (when P has an empty set of external causes
or effects and the abstracted node would has an empty label value). Other-
wise, replacement transformation is applied. Minimal or maximal abstrac-
tion is obtained depending on the nodes in softDepsNotAllowedIn, which
in turn is used when (RESTR. 1) is added to the restrictions rest and used
in Algorithms 2 and 3. The OPM graph transformation process is shown
Algorithm 4.
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Algorithm 2 Access policy evaluation for ‘deny takes precedence’
Require: g: OPM graph to access.

policies: list of applicable policies per the user.
transform(...): View generation function of g using Algorithm 4 in Section 6.
matchingEntitiesOf(target): For a given target, it retrieves the most specific nodes in g matching

the target, that is, a nodes is retrieved by this method if it matches target and no other target more specific
than target matches with the node.

Ensure: view: view of g for which the access is granted.

Step One: evaluate absolute permit’

1: covered = {}

2: for p = policies[1]...policies[n] do

3: if p.effect == ‘abs.permit′ then

4: for node ∈ matchingEntitiesOf(p.target) do

5: if eval(p.cond, node) then

6: covered = covered ∪ {node}

Step Two: evaluate ‘deny’ or ‘necessary permit’

7: Initialize dlevel as a dictionary to maintain the level associated to an entity.

8: Initialize dlabel as a dictionary to maintain the label associated to an entity.

9: R = ∅ //R will contain the set of nodes to hide or abstract

10: softDepsNotAllowedIn = ∅ // Set of nodes for which soft dependences can not be generated.

11: for p = policies[1]...policies[n] do

12: if p.effect == ‘deny′ or p.effect == ‘nec.permit′ then

13: for node ∈ matchingEntitiesOf(p.target) do

14: if node /∈ covered and ((target.effect == ‘deny′
and eval(p.cond, node) ) or

(target.effect == ‘nec.permit′ and not eval(p.cond, node))) then

15: for node′ ∈ {node} ∪ subgraph(node, p.transform.spread) do

16: covered = covered ∪ {node′}

17: dlevels[node′ ] = p.transform.level

18: dlabels[node′] = p.transform.label

19: R = R ∪ {node′}

20: if p.transform.level == ‘min.abstraction′ then

21: softDepsNotAllowedIn = softDepsNotAllowedIn ∪ {node}

Step Three: evaluate ‘permit’

22: for p = policies[1]...policies[n] do

23: if p.effect == ‘deny′orp.effect == ‘nec.permit′ then

24: for node ∈ matchingEntitiesOf(p.target) do

25: if p.effect = ‘permit′ and eval(p.cond, node) then

26: covered = covered ∪ {node}

Step Four: complete R with the not covered nodes, transform and return the graph view

27: for node ∈ g.nodes do

28: if node /∈ covered then

29: dlevels[entity] = ‘hide′

30: dlabels[entity] = ””

31: R = R ∪ {node}

32: rest = ∅ //rest maintains the set of restrictions to use for computing the optimal partition

33: rest = rest ∪ {(RESTR.1) for the set of enities in softDepsNotAllowedIn}

34: rest = rest ∪ {(RESTR.2) using the dictionary dlevels}

35: P, emptyCauses, emptyEffects = optimalPartition(g, R, rest) //Use here Algorithm 1.

36: view = transform(g,P, dlevels, dlabels, emptyCauses, emptyEffects)

37: return view
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Algorithm 3 Access policy evaluation for ‘permit takes precedence’
Require: g: OPM graph to access.

policies: list of applicable policies per the user.
transform(...): View generation function of g using Algorithm 4 in Section 6.
matchingEntitiesOf(target): For a given target, it retrieves the most specific nodes in g matching

the target, that is, a nodes is retrieved by this method if it matches target and no other target more specific
than target matches with the node.

Ensure: view: view of g for which the access is granted.

Step One: evaluate absolute permit’

1: covered = {}

2: for p = policies[1]...policies[n] do

3: if p.effect == ‘abs.permit′ then

4: for node ∈ matchingEntitiesOf(p.target) do

5: if eval(p.cond, node) then

6: covered = covered ∪ {node}

Step Two: evaluate ‘necessary permit’

7: Initialize dlevel as a dictionary to maintain the level associated to an entity.

8: Initialize dlabel as a dictionary to maintain the label associated to an entity.

9: R = ∅ //R will contain the set of nodes to hide or abstract

10: softDepsNotAllowedIn = ∅ // Set of nodes for which soft dependences can not be generated.

11: for p = policies[1]...policies[n] do

12: if p.effect == ‘nec.permit′ then

13: for node ∈ matchingEntitiesOf(p.target) do

14: if node /∈ covered and target.effect == ‘nec.permit′ and not eval(p.cond, node) then

15: for node′ ∈ {node} ∪ subgraph(node, p.transform.spread) do

16: covered = covered ∪ {node′}

17: dlevels[node′ ] = p.transform.level

18: dlabels[node′] = p.transform.label

19: R = R ∪ {node′}

20: if p.transform.level == ‘min.abstraction′ then

21: softDepsNotAllowedIn = softDepsNotAllowedIn ∪ {node}

Step Three: evaluate ‘permit’

22: for p = policies[1]...policies[n] do

23: if p.effect == ‘deny′orp.effect == ‘nec.permit′ then

24: for node ∈ matchingEntitiesOf(p.target) do

25: if p.effect = ‘permit′ and eval(p.cond, node) then

26: covered = covered ∪ {node}

Step Two: evaluate ‘deny’

27: for p = policies[1]...policies[n] do

28: if p.effect == ‘deny′ then

29: for node ∈ matchingEntitiesOf(p.target) do

30: if node /∈ covered and target.effect == ‘deny′ and eval(p.cond, node) then

31: for node′ ∈ {node} ∪ subgraph(node, p.transform.spread) do

32: covered = covered ∪ {node′}

33: dlevels[node′ ] = p.transform.level

34: dlabels[node′] = p.transform.label

35: R = R ∪ {node′}

36: if p.transform.level == ‘min.abstraction′ then

37: softDepsNotAllowedIn = softDepsNotAllowedIn ∪ {node}

38: rest = ∅ //rest maintains the set of restrictions to use for computing the optimal partition

39: rest = rest ∪ {(RESTR.1) for the set of enities in softDepsNotAllowedIn}

40: rest = rest ∪ {(RESTR.2) using the dictionary dlevels}

41: P, emptyCauses, emptyEffects = optimalPartition(g, R, rest) //Use here Algorithm 1.

42: view = transform(g,P, dlevels, dlabels, emptyCauses, emptyEffects)

43: return view
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Algorithm 4 Provenance graph transformation
Require: g: OPM graph to access.

P: the optimal causality preserving partition obtained from Algorithm 1.
emptyCauses: set of nodes in P having empty cause node set, obtained from Algorithm 1.
emptyEffects: set of nodes in P having empty effect node set, obtained from Algorithm 1.
dlevels: dictionary that maintain the level associated to the elements of P .
dlabels: dictionary that maintain the label associated to the entity in R.
concatenate(...): string operation that concatenates a lexicographically ordered set of strings.

Ensure: g′: view of g in which the access is granted.
g′ = g
for P ∈ P do

Let node a node in P
if (dlevels[node] == ‘hide′ or (concatenate({dlabels[node]|node ∈ P}) == “′′ and

(P ⊆ emptyCauses or P ⊆ emptyEffects)) then

g′ = RemP (g′) // applying Removal operator
else

g′ = RepP (g′) // applying Replacement operator
Set concatenate({dlabels[node]|node ∈ P}) as the value of the abstract entity obtained by the previous
replacement.

return g′

Figure 9a shows a subgraph in which Clinical Trial, Decision support and
EHR updating systems are traced with our provenance API. The entities
affected by the access policy described in Section 4.2 are also highlighted in
the figure. Figure 9b shows the result of applying the access control and view
generation method described in this paper.

The original graph (Figure 9a) shows the evolution of a EHR of a patient
during two visits and the subsequent actions. In the first visit the patient
(Ag1) was attended by the general practitioner (Ag3) and the EHR system
(Ag2) was used to record all the details of the visit. First, new item creation
process (P1) was executed, which generated a new EHR version (EHR v20 -
A2) from the current version of the EHR of the patient (EHR v19 - A1). After
the patient detailed the symptoms, the GP gave to the patient a prescription
(A3) to be followed and a blood test form (A4) to be performed, and updated
the data in the EHR system, generating a new version of the EHR (EHR v21
- A5). The date on which the the blood test was performed, the blood test
form was used to prepare the instrumentation and conduct the measurement
(P3). All these operations were controlled by the laboratory System (Ag4)
and a laboratory technician (Ag5). As part of this process, a laboratory
condition report was generated (A6), and it triggered the blood test report
creation process (P5), which generated the test report (A7) and a new version
of the EHR containing the results of the test (EHR v22 - A9). The test and
the laboratory condition reports (A7 and A6) were both used during the
creation of an electronic Case Report Form, eCRF, (P4), as the patient is
involved in a clinical Trial, and his evolution is also followed by the Clinical
Trial researcher (Ag6). The result of this action is the eCRF (A8).
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{P3} {P4} {A6} {A8} {P7} {P8} {A11} {A12} {A13} {A14}
externalCauses {A4} {A4, A7} {A4} {A4, A7} {P6, A10} {P6, A10} {P6, A10} {P6, A10} {P6, A10} {P9}
externalEffects {P5} ⊘ ⊘ ⊘ {P9} {P9} {P9} {P9} {P9} ⊘

Table 3: External causes and effects for the default causality preserving partition elements
for Figure 9a.

In the second visit, as in the first one, a new EHR item process (P6) was
executed, given as a result the new version of the EHR (A10). Followed this,
the doctor used a decision support system (Ag10) to confirm his diagnosis
hypothesis. He opened the application, introduced the details of the patient
(P7), and a set of diagnosis clues (A11) were extracted from the EHR of
the patient. These clues were then compared (P8) with the clinical evidence
repository (A12) of the decision support system. A diagnosis recommen-
dation (A13) was then obtained and given as a possible option to the GP,
who used it to generate his final diagnosis (A15). A variable containing the
recommendation chosen by the GP (A14) is also generated and maintained
by the decision support tool. Once the GP had the diagnosis, he proceed to
update the data in the EHR system, generating a new prescription for the
patient (A16), and a new version of the EHR (A17).

The external causes and effects, abstraction level and labels associated to
the graph in Figure 9a is shown in Table 3. As can be noticed the output of
the Algorithm 1 is the partition {{A11, A12, A13, P7, P8}, {A8, P4}, {P3,
A6}, {A14}}.

According to the obtained partition, levels and labels to use, the graph
in Figure 9b is obtained. Notice that the labels properly describe the aim of
the abstracted entities in the cases of laboratory and clinical trial, and the
whole subgraph corresponding to the automatic diagnosis decision support
processing is removed.

7. Related work

While most of the works on provenance has been focused on its storage,
maintenance, and querying, only in the last years the security problem of
provenance data is gaining interest. A reason for this fact, could be that
provenance data are maintained on relational databases or RDF stores, and
the access control is leaved to the security mechanisms provided by these
technologies. Security for database technologies has been studied extensively
in the past (see [8] for an overview) and the increasing need for maintaining
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(a) OPM graph and the access control associated to the nodes .

(b) View of the graph for the patient during the weekends.

Figure 9: OPM graph for EHR-clinical trial example.
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semantic resources has developed a large set of works focused on security for
RDF data [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

Kaushik et. al [9] introduces various mechanisms for hiding sensible in-
formation in RDF graphs, e.g. rename and/or removing RDF subgraphs, as
an access control mechanism but no inference processes were involved neither
conflict resolution in case of contradictory decisions. Jain et. al [10] intro-
duced an access control model for RDF data which considers inferences and
Kim et. al [11] extends this work describing the authorization conflict prob-
lem that arises as consequence of access control propagation to subclasses
and subproperties when using inference for policy evaluation. Carminati et.
al [13] proposes a framework for access control in social networks in which
policy and its evaluation uses SW tools. The policy is defined by using SWRL
rules, and in this way, the policy evaluation is performed through instance
checking and conflict free evaluation in the ontology. All these works con-
tains ad-hoc mechanisms for control access description such as predicates
in [9] and SWRL rules in [13].

Recently, Flouris et. al [14] presented a work that contains a high-level
specification language for access control, that allow users to define the type
of access (permit or deny) for set of triple pattern and a conjunction of
triple patterns and constrains that should also be held. It includes also a
formal semantic for obtaining the access decision, and some experiment that
shown a good scalability performance in relation of different size parameters.
Another evolution step in formalizing the access control can be found in [18]
where Privacy Preference Ontology (PPO) is defined for allowing users to
specify fine-grained privacy preferences for restricting (or granting) access to
specific (social) data, and MyPrivacyManager tool can be used to filter data
according to preferences described on PPO.

Access control models for XML, as the OASIS eXtensible Access Control
Markup Language (XACML), are not suitable for general graphs as RDF
data [20]. However, as XACML has become an accepted solution for ac-
cess control in XML, some works have been produced extending XACML
for RDF data. Kounga et. al [12] proposed an extended architecture for
allowing users to define authorization policies based on their preferences to
allow or deny access to their private data. Helil et. al [15], presented an
extension of XACML profile for Role-based Access Control based on the se-
mantic concepts. A OWL-DL reasoner is needed for evaluate the policy and
a preliminary evaluation shown a low response time for the evaluation.

XACML cannot be used to define fine-grained access control for struc-
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tured data [18]. It is well-known that XACML is very verbose and can
become unreadable with few different polices [19, 15]. It also, lacks of a
formal semantics for policy combination algorithms [4, 18].

Provenance data imposes some important requirements for access con-
trol. Justifications for a semantic approach in provenance and in its security
framework can be found in [21, 4, 22]. Kubiatowicz et. al [23] highlighted
the importance of maintain the trustworthiness of retrieved provenance data.
Aspects such as the integrity, availability, confidentiality migration, location
(in distributed environment), verification and migration has also been dis-
cussed by Hasan et al. [24] and Braun et. al [20] emphasized the ”DAG” and
”immutability” nature of provenance information.

Provenance Explorer [25] is a visualization and access control tool for
provenance data based on Semantic Technologies and XACML for aceess
control definition. OWL is used to describe the provenance model and SWRL
to define the inference rules on which the view generation and control access
is based. As all access models which do not transform the original graph,
Provenance Explorer suffers from deny access to the whole graph if a resource
has denied access.

The first work presenting a complete framework for access control in
provenance can be found in [4], which are focused on establishing tighter
coupling between syntactical language constructs and semantic categories in
provenance languages. Ni et. al [4] defined a language for expressing fine-
granularity access control for provenance, and the algorithms for evaluating
the a policy. Numerous features of XACML can be found in the language but
it 1) aims to simplify the policy description making it readable, 2) considers
the immutability of the provenance data and, 3) is semantically approached
as subjects, resources, constrains, and other elements of the language are
based on semantic descriptions.

Cadenhead et. al [3] extended this language to include regular expressions
to define elements of the language, and the experiments performed with
a prototype and a simple topology shown that their algorithm is efficient,
obtaining, for example, less than one second for evaluating queries in a RDF
space of 50k triples. A further extension, in [26], enrichs the language with
a rewriting system that allows them to produce a valid OPM view from an
original valid OPM graph and the embeded rewiriting instructions in the
extended language.

Nguyen et. al [22] discuss important issues that needs to be taken into
account while modelling control access for provenance and the system imple-
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menting these ideas is described in [27]. In particular, the authors highlight
the importance of using path patterns to restrict the access and generate
valid views, and the need of defining a mechanism for naming the path pat-
terns to be abstracted. We have had, in parallel, the similar ideas and have
been included in the transformation element of the TACLP.

The notion of OPM graph type, similar to ours, is described by Sun
et. al [28] and used to define complex dependency types. In contrast with
our OPM graph type, the nodes of the OPM graph type in [28] represent
domain provenance concepts, the edges represent the OPM relationships,
and the notion of inheritance is not considered. Having defined a graph
type composition operator (to create complex dependency types) and its
inverse operator, the system is able to abstract paths matching a predefined
dependency path types.

ProPub [29] is another relevant work which considers the strategy of
transforming the provenance graph to satisfy some user publishing restric-
tions. The process is a manually-assisted: an user makes a request to
anonymize, abstract or hide a set of nodes in a provenance graph before
it can be published. Considering the user specifications, an initial graph is
generated and from it the final valid graph, in which integrity constraint
violations are solved with the creation of fictitious nodes, is generated and
returned. Ficticious nodes are not the same as abstract nodes we define here.
In contrast with ficticious nodes, which are generated to solved semantic vi-
olations in the generated views, abstract nodes have a well defined semantics
according to the REPP operator and the validity of the generated views is
guarantee by the computing of the causality preserving partition.

These works and the presented in this paper share the notion of trans-
forming the provenance graphs in valid views. However, in [26, 22, 27, 28] a
manual definition of the writing rules for transforming the provenance graphs
is needed, and in [29] fictitious nodes cannot be semantically associated with
a subgraph in the original graph. In our work, both issues are considered
and solved.

8. Conclusions

Within this paper, we introduced a novel technique for addressing the
challenges of provenance record access and security. We extended the existing
access control languages in [3] by introducing a transform element that allow
more flexible policy specifications. We described also a novel access control

32



evaluation algorithm that returns valid transformed graphs according to the
user specifiations.

Our system takes into account the W3C Provenance Group RDF recom-
mendations [30], with the aim of providing a standardised security solution
for provenance stores that allows tight coupling to domain concepts, mak-
ing it understandable, and verifiable by the end-users. The additions and
changes we made to the existing proposals increased the overall flexibility
of the access control system and introduced a new and interesting way of
handling deny policies. Complexity has also increased nevertheless. It is up
to policy writers to decide when transformations are acceptable and when
they introduce to many overheads in terms of access query processing.

Issues related to visualization, semantic provenance subgraph abstraction
and its annotation will be addressed in future works.
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Appendix A. TACLP XML schema

<?xml version ="1.0 " encoding ="UTF -8"?>

<xs:schema attributeFormDefault ="unqualified "

elementFormDefault="qualified "

xmlns:xs ="http: //www .w3.org /2001/ XMLSchema ">

<xs:element name="AccessControl">

<xs:complexType>

<xs:sequence >

<xs:element name="policy " type="policyType " minOccurs ="0" maxOccurs ="unbounded "/>

</xs:sequence >

<xs:attribute name=" defaultPolicy">

<xs:simpleType>

<xs:restriction base="xs:string ">

<xs:enumeration value ="deny"/>

<xs:enumeration value ="permit "/>

</ xs:restriction>

</xs:simpleType>

</xs:attribute>

</ xs:complexType>

</xs:element >

<xs:complexType name="policyType ">

<xs:sequence >

<xs:element name="target ">

<xs:complexType>

<xs:sequence >

<xs:element type="xs:string " name="subject "/>

<xs:element type="xs:string " name="record "/>

<xs:element type="xs:string " name="restriction " minOccurs ="0" maxOccurs ="1"/>

<xs:element name="scope " minOccurs ="0" maxOccurs ="1">

<xs:simpleType>

<xs:restriction base="xs:string ">

<xs:enumeration value =" transferable"/>

<xs:enumeration value ="non -transferable"/>

</ xs:restriction>

</xs:simpleType>

</xs:element >

</ xs:sequence >

</xs:complexType>

</xs:element >

<xs:element type="xs:string " name="condition "

minOccurs ="0" maxOccurs ="1"/>

<xs:element name="effect ">

<xs:simpleType>

<xs:restriction base="xs:string ">

<xs:enumeration value ="absolute permit "/>

<xs:enumeration value ="deny"/>

<xs:enumeration value ="necessary permit "/>

<xs:enumeration value ="permit "/>

</ xs:restriction>

</xs:simpleType>

</xs:element >

<xs:element name="Obligations " minOccurs ="0"/>
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<xs:element name="transformation" minOccurs ="0" maxOccurs ="1">

<xs:complexType>

<xs:sequence >

<xs:element name="transformation_spread " type="xs:string " minOccurs ="0" maxOccurs ="unboun

</ xs:sequence >

<xs:attribute name="level " use="required ">

<xs:simpleType>

<xs:restriction base="xs:string ">

<xs:enumeration value="Hide"/>

<xs:enumeration value="Minimum "/>

<xs:enumeration value="Maximum "/>

</xs:restriction>

</xs:simpleType>

</ xs:attribute>

<xs:attribute name="type" use="required ">

<xs:simpleType>

<xs:restriction base="xs:string ">

<xs:enumeration value="Single "/>

<xs:enumeration value="Subgraph "/>

</xs:restriction>

</xs:simpleType>

</ xs:attribute>

<xs:attribute name="labelAs " type="xs:string "/>

</xs:complexType>

</xs:element >

</ xs:sequence >

<xs:attribute name="ID" type="xs:string "/>

</xs:complexType>

</xs:schema >
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Appendix B. Notation and considerations in Theorem proofs

Let Prov′ = (V ′, E ′, type′) be the transformed graph by the causality
preserving partition P. All elements of the transformed graph will be denoted
with prime (′), e.g., c′∗ denotes the set of all indirect caused by relations for
the transformed graph.

The set of external effects and causes links in both transformations by
removal and replacement are the same (see Definitions 4 and 5). Therefore,
transformations will affect the paths of the resulting graph in the same way.
In these proofs, we assume the use of only RepR transformations.

Appendix C. Proof of Theorem 1

Theorem 1. Let Prov = (V,E, type) be a provenance graph, P is a causal-
ity preserving partition of set R ⊆ V iff ∀P ∈ P, v1 ∈ ef(P,R), v2 ∈
ca(P,R), ∃(v1, v2) ∈ c∗.

Proof.

• Let P be a partition of R such that ∀P ∈ P, v1 ∈ ef(P,R), v2 ∈
ca(P,R), ∃(v1, v2) ∈ c∗ (1).

Suppose P is not causality preserving, that is, ∃v′1, v
′
2 ∈ V \ R such

that (v′1, v
′
2) ∈ c′∗ and (v′1, v

′
2) /∈ c∗. Then it exists an element P ∈ P

which caused the introduction of false dependences. Let va the abstract
node introduced by RepP . Then, (v

′
1, va) ∈ c′∗, (va, v

′
2) ∈ c′∗ and ∃v1 ∈

ef(P,R), v2 ∈ ca(P,R) such that (v′1, v1) ∈ c∗ and (v2, v
′
2) ∈ c∗, and

(v1, va), (va, v2) ∈ E ′. But this contradicts (1) since the only possibility
for the false dependence introduction has to be in the path (v1, v2),
that is (v1, v2) /∈ c∗. Therefore, P has to be causality preserving.

• Let P be a causality preserving partition (2).

Suppose ∃P ∈ P, v1 ∈ ef(P,R), v2 ∈ ca(Pi, R) with (v1, v2) /∈ c∗. Let
va the abstract node introduced by RepP . Then, (v1, va), (va, v2) ∈ E ′

and therefore, (v1, v2) ∈ c′∗. Given (2), if (v1, v2) ∈ c′∗ then (v1, v2) ∈ c∗.
This contradicts the supposition and ∀P ∈ P, v1 ∈ ef(P,R), v2 ∈
ca(P,R), ∃(v1, v2) ∈ c∗.
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Appendix D. Proof of Theorem 2

Theorem 2. Let Prov = (V,E, type) be a provenance graph, P is a causality
preserving partition of R ⊆ V iff ∀P ∈ P, ∃v ∈ P such that ∀v′ ∈ P \
v, ef({v′}, R) ⊆ ef({v}, R) and ca({v′}, R) ⊆ ca({v}, R).

Proof.

• Let P be a causality preserving partition, then for Theorem 1, ∀P ∈ P,
v1 ∈ ef(P,R), v2 ∈ ca(P,R), ∃(v1, v2) ∈ c∗. (3)

Suppose ∃P ∈ P such that ∄v ∈ P such that ∀v′ ∈ P, v 6= v′,
ef({v′}, R) ⊆ ef({v}, R) and ca({v′}, R) ⊆ ca({v}, R). That is, ∀v ∈
P, ∃v′ ∈ P such that ef({v′}, R) 6⊆ ef({v}, R) or ca({v′}, R) 6⊆ ca({v}, R).
Let v, v′ ∈ P , v 6= v′, such that ef({v′}, R) 6⊆ ef({v}, R), then ∃v1 ∈
ef({v′}, R) and v1 6∈ ef({v}, R). GivenRepP , ∀v2 ∈ ca({v}, R), (v1, v2) ∈
c′∗. But, (v1, v2) /∈ c∗ as v1 6∈ ef({v}, R). This contradicts (3). Analo-
gous analysis can be done when that ca({v′}, R) 6⊆ ca({v}, R). There-
fore, if P is a causality preserving partition then ∀P ∈ P, ∃v ∈ P
such that ∀v′ ∈ P, v 6= v′, ef({v′}, R) ⊆ ef({v}, R) and ca({v′}, R) ⊆
ca({v}, R).

• ∀P ∈ P, ∃v ∈ P such that ∀v′ ∈ P, v 6= v′, ef({v′}, R) ⊆ ef({v}, R)
and ca({v′}, R) ⊆ ca({v}, R). (4)

Suppose P is not causality preserving, that is, ∃P ∈ P, v1 ∈ ef(P,R), v2 ∈
ca(P,R) such that (v1, v2) /∈ c∗, per Theorem 1. Per RepP defini-
tion, ∀v′1 ∈ ef({v}, R) and v′2 ∈ ca({v}, R), (v′1, v

′
2) ∈ c∗. Per (4),

v1 ∈ ef({v}, R) and v2 ∈ ca({v}, R). Therefore, (v1, v2) ∈ c∗, which
contradicts the supposition. Therefore, if ∀P ∈ P, ∃v ∈ P such that
∀v′ ∈ P, v 6= v′, ef({v′}, R) ⊆ ef({v}, R) and ca({v′}, R) ⊆ ca({v}, R),
P is causality preserving partition.
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Appendix E. Proof of Theorem 3

Theorem 3 (Optimal causality preserving partition element). Let Prov =
(V,E, type) a provenance graph and P a causality preserving partition of
R ⊆ V . P is optimal with respect to the cardinality of the partition iff
∄P, P ′ ∈ P such that ef(P,R) ⊆ ef(P ′, R) and ca(P,R) ⊆ ca(P ′, R).

Proof.
Let P = {P1, ..., Pn} a causality preserving partition. Let Pseed = {v1, ..., vn}

the set of elements such that vi ∈ Pi, and the external causes and effects of
vi are supersets of the external causes and effects of the remaining elements
in Pi, respectively, which exists per Theorem 2.

• Let P such that ∄P, P ′ ∈ P such that ef(P,R) ⊆ ef(P ′, R) and
ca(P,R) ⊆ ca(P ′, R). (5)

Given (5), ∄vi, vj , with i, j ∈ {1, ..., n}, i 6= j such that ef({ei}, R) ⊆
ef({ej}, R) and ca({ei}, R) ⊆ ca({ej}, R) and therefore, non less than
n partitions can be formed from R. Therefore if (5) is satisfied, P is
optimal with respect to the cardinality of the partition.

• Let P optimal with respect to its cardinality. (6)

Suppose that ∃Pi, Pj ∈ P such that ef(Pi, R) ⊆ ef(Pj, R) and ca(Pi, R) ⊆
ca(Pj, R). Then, ∃vi, vj, with i, j ∈ 1, ..., n, i 6= j such that ef({ei}, R) ⊆
ef({vj}, R) and ca({vi}, R) ⊆ ca({vj}, R). Therefore, it exists other
causality preserving partition, P ′ = (P \ {Pi, Pj}) ∪ {Pi ∪ Pj}, and
|P ′| < |P|, which contradicts (6). Therefore, if P is optimal with re-
spect to its cardinality then ∄P, P ′ ∈ P such that ef(P,R) ⊆ ef(P ′, R)
and ca(P,R) ⊆ ca(P ′, R).
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Appendix F. Flowcharts for access control evaluation algorithms

(a) Deny takes precedence (b) Permit takes precedence

Figure F.10: Flowcharts for access control evaluation.
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