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Abstract 

This paper presents results of fatigue crack growth  testing of aluminium alloy 2624-

T351 reinforced by bonded crack retarders made of GLARE fibre-metal laminate. 

Specimens were tested at room temperature, 70°C and −60°C. Better performance of the 

crack retarders in terms of increased fatigue life was achieved at room temperature than 

at the two temperature extremes. This is attributed to a combined effect of change in the 

fatigue crack growth rate at temperature in the substrate material, and residual stress 

generated at temperatures above or below room temperature. The change in fatigue 

crack growth rate was measured, and the substrate deformation and the stress intensity 

factors at temperature were calculated by Finite Element Analysis. In addition, the 

effect of thermal load cycling on fatigue crack growth rate was investigated by exposing 

the specimens to repeated thermal cycles between 70°C and –60°C prior to fatigue 
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testing. It is concluded that the pre-test thermal cycling has little effect on the fatigue 

crack growth rate.  

Keywords: Aluminium alloys, Bonded crack retarders, , crack growth rate, Fatigue 

crack growth, Thermal cycling 

Highlights  

 GLARE straps provided considerable reduction to FCG rate at RT. 

 At −60°C, baseline FCG life is more than tripled owing to the reduced FCG rate.  

 At 70°C, baseline FCG life is shorter owing to greater stress intensity factors.  

 Thermal cycling does not impair the performance of BCR tested at RT. 

1. Introduction 

The continuing increase in demand for air transportation requires new design concepts 

to achieve lightweight, low-operating-cost aircraft structures. Novel manufacturing 

technologies have led to the development of integral metallic structures to replace the 

conventional built-up structures containing riveted joints. Integral structures potentially 

reduce the structural weight and manufacturing cost. A major concern in using integral 

structures is the reduced resistance to fatigue crack growth (FCG) owing to the lack of 

inherent crack-stoppers. Regulatory authorities require such structures to utilise 

additional design features to ensure fail safety and damage tolerance. Bonded crack 

retarder (BCR) technology has been developed to improve the fatigue performance of 

integral metallic structures. Reinforcing straps are adhesively bonded on to the structure 

at the manufacture stage, in locations where crack propagation is expected. The local 

increase in stiffness, coupled with the crack-bridging capability of the strap, reduce the 

crack growth driving force thereby reducing the crack growth rates [1, 2].  
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Use of adhesively bonded repair of aluminium structures with composite or metal 

patches has received a lot of attention [3-9]. Previous studies have shown that the 

reinforcing strap material incompatibility with the substrate resulted in significant 

residual stresses, material failure and galvanic corrosion problems [6, 7]. In recent 

years, the GLARE fibre-metal laminate system has been identified as the most 

promising material for BCR [10, 11] owing to its low weight and excellent fatigue 

performance, and also compatibility with the aluminium substrate [11]. GLARE 

consists of alternating layers of thin aluminium sheet and glass-fibre-reinforced epoxy. 

Although BCR technology improves the fatigue performance of the reinforced structure, 

potential concerns are the development of thermal residual stress, the integrity of the 

bond interface under fatigue loading, and the consequences of any out-of-plane 

deformation following the strap bonding process. 

The elevated temperature curing of the adhesive used during the BCR bonding 

process will produce tensile residual stresses in the aluminium substrate owing to the 

difference in the coefficient of thermal expansion (CTE) between the substrate and strap 

materials [12]. At the curing temperature, there will be zero residual stress present. 

After the bond is cured and cooled down to room temperature, tensile residual stresses 

will develop in the substrate. The magnitude of the residual stress depends on the 

mismatch between the CTE and elastic modulus of the substrate and strap, the (relative) 

thicknesses, and the curing temperature. Tensile residual stresses present in the substrate 

structure will add to the service loads and may result in a significant change in the stress 

intensity factor of a growing crack, thereby reducing the potential fatigue life 

improvement [12, 13]. Previous work has shown that curing GLARE straps at elevated 

temperature introduces relatively low residual stresses and should not impair the 
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benefits of the crack retarder [12-14]. Therefore, GLARE has been selected for further 

studies of the performance of BCR under service conditions.  

During service, aircraft structures are exposed to a range of operating 

temperatures, from up to 70°C on the ground to −60°C at cruise altitudes. Research 

performed in [15] investigated the magnitude of residual stresses caused by bonded 

titanium straps at room temperature (RT) and −50°C, and found that the peak residual 

stress in the substrate had doubled at −50°C compared to that at RT. 

To the authors’ knowledge there is no previous work investigating the effect of 

temperature and thermal cycling on the fatigue crack growth performance of aluminium 

reinforced by bonded GLARE straps. To address these research questions, two different 

tests have been conducted on aluminium 2624-T351 plate reinforced by GLARE straps, 

to investigate: (a) fatigue crack growth rates at RT, 70°C and −60°C; and (b) effect of 

prior thermal cycling on the fatigue crack growth rate at RT. Thermal cycling was 

performed between –60°C and 70°C, followed by room temperature fatigue crack 

growth testing. 

2. Experimental details 

2.1. Materials and test specimens 

Middle-crack Tension (M(T)) specimens were prepared from aluminium alloy 2624-

T351 plate with dimensions 400 × 140 × 5 mm
3
. Figure 1 shows the geometry and 

dimensions of the M(T) specimen bonded with a pair of GLARE straps. A crack starter 

notch of 16 mm was introduced in the M(T) specimens using the electro-discharge 

machining process. Experiments were performed on the specimens with and without 

GLARE straps. One important parameter that contributes to the performance of the 

BCR is the global stiffness ratio (μ), which is defined as [16]: 
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 (1) 

where Estrap, EAl and Astrap, AAl are the elastic modulus and cross-section area of the 

straps and the substrate material respectively. 

In this study, a global stiffness ratio of 0.2 was chosen and GLARE 2A-6/5 was 

selected as the crack retarder material, which consists of six layers of aluminium alloy 

sheets (each 0.4-mm-thick) and five layers of unidirectional glass-fibre-reinforced 

epoxy (each 0.26-mm-thick). The dimensions of the strap were 180 mm in length, 25.83 

mm width and 3.7 mm thickness. Glass fibres in GLARE are oriented along the 

longitudinal direction (X-direction in Figure 1). The mechanical properties of GLARE 2 

(6/5) in the fibre direction are tensile modulus = 64 GPa, ultimate tensile strength = 

1091 MPa, and tensile yield strength = 331 MPa. 

Table 1 shows the mechanical properties of the substrate and adhesive used in this 

investigation. The substrate and strap assembly was bonded using Cytec FM94
®
 

adhesive [17]. The curing temperature of the adhesive was 120°C and the curing 

procedure is described in detail in [14]. After the curing, specimens were inspected 

using an ultrasonic phased array C-scan to confirm the bond quality. The stated 

operating temperature range for the adhesive in [17] is −55 to 104°C. Therefore, the 

lowest test temperature is slightly outside this range; however, the property limits for 

the adhesive are at the upper end of the temperature range rather than the lower. 

2.2. Measurement of out-of-plane deformation 

The specimens were subjected to in-plane loading in fatigue tests with loading along the 

longitudinal direction (the X-direction, see figure 1). Owing to the asymmetric strap 

configuration (straps were bonded on one side of the plate only), out-of-plane 
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deformation will occur after the curing of the straps, and additionally during the fatigue 

loading because of  the secondary bending effect (see figure 3). 

Following curing of the crack retarders at elevated temperature residual stresses 

exist owing to the mismatch of the elastic modulus and coefficient of thermal expansion 

between the aluminium substrate and the GLARE straps. Because of the asymmetric 

strap configuration, these residual stresses will cause out-of-plane deformation. This 

deflection was measured on the specimens after the strap bonding process using a co-

ordinate measurement machine. The measurement was performed on the unreinforced 

(back) side along the specimen longitudinal direction with a 1 mm measurement 

interval. 

Secondly, single-sided strap arrangement causes a shift in the neutral axis in the 

specimen, resulting in so-called secondary bending when an in-plane load is applied. To 

evaluate the magnitude of the secondary bending at the maximum applied load of the 

test, a pair of strain gauges was attached to a specimen. Strain measurements were 

performed at room temperature as the sample was loaded. As shown in Figure 1, the 

strain gauges were positioned on both sides of the specimen at a position remote from 

the crack tip stress concentration and on the horizontal centre line, at a distance of 60 

mm from the centre of the specimen. A static load of 53.4 kN (resulting in 60 MPa  

nominal applied stress in the far-field of the plate) was applied under  displacement 

control  of 0.1 mm/min. The strain data on both reinforced and unreinforced side were 

recorded, and used to validate the FE model that is presented in Section 3. 

2.3. Fatigue crack growth testing at temperature 

The efficacy of the bonded crack retarder was investigated by at-temperature constant-

amplitude tension-tension fatigue crack growth testing on specimens with and without 
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straps. Table 2 summarises the results. Fatigue crack growth tests were performed using 

a 100 kN MTS servo-hydraulic test machine. Specimens were subjected to a maximum 

applied stress of 60 MPa with a stress ratio of 0.1 and at 10 Hz loading frequency. 

Crack length measurement was performed on the unreinforced side with a travelling 

microscope with a 7× objective magnification and an accuracy of ± 0.01 mm. Tests 

were performed according to the ASTM E 647-15e1 standard [18]. For tests at −60°C 

and 70°C, an Instron 3119-407 environmental chamber was used and the specimens 

were coupled with an N-type thermocouple to monitor the temperature with an accuracy 

of ±0.5°C. For tests at −60°C, liquid nitrogen was used as a cooling medium. 

2.4. Pre-fatigue thermal cycling 

Twelve specimens were thermal cycled between the minimum temperature −60°C to the 

maximum temperature 70°C using a VOTSCH (VTS 7010) thermal cycling chamber. 

Each specimen was coupled with an N-type thermocouple to record the temperature 

with an accuracy of ±0.5°C. After reaching the desired temperature, a holding time of 

40 minutes was maintained to allow the specimens to equilibrate. After completing a 

defined number of thermal cycles 500, 1000, 1500, 2000, 3000, and 4500  specimens 

were removed from the thermal cycling chamber. Two specimens from each thermal 

cycle history were subsequently tested at constant amplitude load (maximum stress of 

60 MPa and stress ratio 0.1) at room temperature using the 100 kN MTS servo-

hydraulic test machine. 

3. Finite Element modelling 

Finite element modelling was carried out using the commercial software package 

ABAQUS. Linear elastic material properties in Table 1 were used for the analysis. 

Figure 2 shows a full-scale specimen as modelled. The aluminium substrate, adhesive 
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layer, and straps were modelled using 8-noded continuum brick elements with reduced 

integration (designated in ABAQUS as C3D8R). Following a mesh convergence study, 

element sizes of 1 × 1 × 1 mm
3
, and a finer mesh of 0.5 × 0.5 × 0.5 mm

3 
along the crack 

path in the substrate were used. The substrate-adhesive and adhesive-strap interfaces 

were modelled by surface- based constraints. The degrees of freedom on the slave 

surface are eliminated and the nodes are set to deform with the closest node on the 

master surface using the ABAQUS TIE option. Thermal residual stresses owing to 

curing at 120°C are inputted in the model prior to the applied stress. In accordance with 

the method in [12], work thermal residual stresses (~20MPa) were inputted into the 

model via a predefined field. During the FE analysis, the specimen is subjected to a far-

field tensile stress of 60 MPa or 6 MPa (representing the maximum and minimum 

stresses during the fatigue crack growth testing) and subjected to room temperature, 

70°C and −60°C. During the 70°C and −60°C analysis, the temperature was applied on 

whole M(T) assembly by using the respective thermal boundary conditions. 

4. Results and discussion 

4.1. Out-of-plane deformation after strap bonding 

After curing the adhesive at 120°C, out-of-plane deformation was observed at room 

temperature owing to the asymmetric configuration of the strap-reinforced specimens. 

Figure 3a shows the measured out-of-plane deformation resulting from the bonding 

process, and Figure 3b is a schematic of the specimen deformation before and after the 

strap bonding process. The maximum deformation is 0.9 mm, which is 18% of the 

substrate thickness.  
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4.2. Secondary bending at the maximum fatigue load 

Strain measurement was conducted on a reinforced specimen at the maximum applied 

stress of 60 MPa (53.4 kN load) during static loading, as described in section 2.2. 

Owing to the secondary bending effect, there is a significant difference in strains 

between the reinforced and unreinforced sides of the substrate (measured at the gauge 

positions in Figure 1). At the maximum applied load, the strain on the unreinforced side 

is 1200 με, and 700 με on the strap side. Therefore, the bending strain is 250 με, i.e. 

(1200–700) / 2. Using the Young’s modulus of 71 GPa, the bending stress is about 17 

MPa acting on the unreinforced side of the substrate (i.e. 28% of the maximum applied 

stress during the testing). 

4.3.  Fatigue crack growth rates at temperature 

Figure 4 shows the average half crack length versus number of cycles at the three test 

temperatures, for specimens with and without bonded straps. At room temperature, the 

strap-reinforced specimens show an average life improvement factor of 1.27 compared 

to the unreinforced specimens.  

 Elevated temperature (70°C) resulted in shorter fatigue life both in unreinforced 

and reinforced condition and resulted negligible benefit of the BCR.. At low 

temperature (−60°C), longer life than the specimens  tested at room temperature was 

seen, by a factor of ~3, but overall there is.no clear benefit of the BCR on the fatigue 

life.  

 Figure 5 shows the crack growth rate (da/dN) vs. half crack length with and 

without straps. At RT, there is a noticeable difference in the slope of the crack growth 

rate curve of with-strap specimens compared to without-strap: the crack growth rate 

becomes slower when the crack propagates under the strap (a < 40 mm). At 70°C (Fig 
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5a) crack growth rate is increased compared to RT and there is no difference between 

the with-strap and without-strap cases. At −60°C (Figure 5b) a significant decrease in 

crack growth rate is seen compared to the RT tests. 

 The difference in fatigue crack growth rates between the reinforced and 

unreinforced specimens tested at RT, 70°C and −60°C may be attributed to two factors. 

First, the change in the substrate material’s intrinsic fatigue crack growth rate properties 

at different temperatures. Second, the temperature will affect the residual stresses in the 

substrate, which leads to a change in the effective or total stress intensity factor that is 

the crack growth driving force. To verify the first factor, fatigue crack growth rate is 

plotted against to the applied stress intensity factor range (ΔK) for the unreinforced 

specimens, in figure 6, at the three different temperature values. 

                    )      (2) 

Where σmax and σmin are maximum and minimum applied stress, a is crack length and β 

is geometry factor. 

  Figure 6 shows that for a given ΔKapp, da/dN at −60°C is significantly lower  

than at room temperature (by an order of magnitude). In the Paris law, da/dN = C 

(ΔK)
n
,: the material constants C and n are dependent on the testing conditions, such as 

the load ratio R, test temperature and humidity. The experimentally-measured C and n 

values for unreinforced specimens at RT, 70°C and −60°C are deduced by a curve fit in 

the Paris law region of the da/dN vs ΔK data and given in Table 3. It is clear that the n 

values for the three temperatures are comparable, but C for −60°C is an order of 

magnitude lower. This is the reason why specimens tested at −60°C have significantly 

longer fatigue life compared to the RT and 70°C tests. 
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 In addition, the maximum stress intensity factor Kmax also changes owing to 

residual stresses at-temperature. This is discussed in Section 4.4. To account for this 

effect, either the effective R-ratio, or Kmax can be used in a two-parameter fatigue crack 

growth rate law, e.g. the Forman or Walker equations [19]. 

4.4. FE analysis 

FE results of the substrate deformation owing to thermal residual stresses after curing 

the adhesive are shown in figure 7b, which is in good agreement with the experimental 

measurement. Owing to the geometric asymmetry, the out-of-plane deformation will 

change when the specimen is under fatigue loading and exposed to test temperatures. To 

investigate this effect further, FE analysis was carried simulating loading of 6 MPa and 

60 MPa stress applied in the longitudinal direction at RT, 70°C and −60°C temperatures 

during the analysis. The schematic of the specimen deformation after loading at three 

temperatures and the FE calculated deformation after curing, at 6 MPa and 60 MPa are 

shown in figures 7b-7d respectively. 

Deformation after curing (at zero load)  

After cure, the sample is deformed by a maximum of 0.9 mm owing to the cure 

temperature effect (z = −0.9 mm, for coordinate definition refer to figure 1). Figure 7b 

shows FE and experimental results of specimen deformation after adhesive curing. The 

FE and the experimental results are in good agreement. 

Deformation at 6 MPa  

Figure 7c shows the specimen deformation at 6 MPa. Note that this is a low load and 

the deformation is therefore caused predominantly by the CTE mismatch. At room 

temperature the specimen did not change its initial deformation shape and there is little 

change in deformation magnitude (z = −0.7 mm). At 70°C the specimen is deformed in 



  

12 

the opposite direction (z = +2.28 mm) to that of the post-curing deformation with 

significant difference in the magnitude compared to the post-cure deformation. This is 

due to the difference in CTE between the substrate and the adhesive. At −60°C there 

was also significant change in the deformation magnitude compared to that after cure, 

resulting in a deformation of z = −3.29 mm. This significant deformation at small 

applied stress is again attributed to the CTE difference between the substrate and the 

adhesive at −60°C.  

Deformation at 60 MPa 

Figure 7d shows the specimen out-of-plane deformation at 60 MPa applied stress. At 

RT and 70°C, the specimen is deformed in the opposite direction to that of the curing 

deformation with z = +1.04 mm (RT) and 4.07 mm (70°C) from the unreinforced side. 

In contrast, at −60°C the specimen retains the initial deformation shape with a larger 

magnitude of z = −1.34 mm. This difference is due to a combination of the asymmetric 

strap bonding and the CTE difference between the substrate and strap. After strap 

bonding, with no external load, specimen deformation results in compressive [8] and 

tensile stresses on the unreinforced and reinforced side respectively. However, at RT, 

and at 70°C with loading of 60 MPa, the deformation is reversed giving tensile stresses 

on the unreinforced side that accelerate fatigue crack growth on that side. Owing to the 

much larger deformation at 70°C compared to RT, the magnitude of the tensile stresses 

is higher at 70°C; hence a greater crack growth rate. On the other hand, the increase in 

magnitude of deformation at −60°C resulted in less tension on the unreinforced side, 

which reduces the fatigue crack growth rate hence giving longer crack growth life 

compared to RT and 70°C. It should be noted that these effects are a consequence of the 
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particular geometry of the samples studied here and the associated constraint, and that 

different results may be obtained for different configurations. 

 These significant changes in deformation on loading will result in variation in 

stresses and stress intensity factors through the specimen thickness. To investigate this 

further, a specific case of an 11-mm-half crack subjected to 60 MPa and 6 MPa applied 

stress at RT, 70°C and −60°C was modelled. Figure 8 shows the stress distribution on 

the two sides of the specimen. Owing to the out-of-plane deformation at the maximum 

applied stress of 60 MPa (figure 7a, 7b), the crack tip stress is much higher at the 

unreinforced side for the RT and 70°C tests, whereas the peak stress location reverses 

for the −60°C case, i.e. the peak stress is on the reinforced side.  

 Figure 9a shows the through-thickness distribution of the maximum total stress 

intensity factor (Kmax) at applied stress of 60 MPa and the three temperature values. 

From figure 9a, the following observations can be made:  

1) On the unreinforced side, at RT and 70°C the specimens have higher K on the 

unreinforced side whereas at−60°C the unreinforced side has lower K.  

2) At RT, the K variation through the substrate thickness is small, and higher K on 

the unreinforced side promotes faster crack growth compared to the reinforced 

side. At 70°C, the K variation through the substrate thickness is significant (14 

MPa√m) owing to the larger secondary bending. Higher K on the unreinforced 

side promotes faster crack growth rate compared to the reinforced side.  

3) At −60°C, there is lower K on the unreinforced side with a variation of 4 MPa√m 

through the substrate thickness. The lower K on the unreinforced side is due to 

reversed secondary bending, causing much reduced fatigue crack growth rate; 

hence longer fatigue life as measured experimentally (Figure 4).  
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FE calculated K values corresponding to the minimum applied stress of 6 MPa are 

shown in figure 9b. In this case, at RT the specimen shows lower K on the unreinforced 

than the reinforced side, indicating that the minimum applied stress does not affect the 

substrate deformation (refer to figure 7c). At 70°C, K is higher on the unreinforced side 

and reduces to zero from 2 mm below the back face (see figure 9b). It was observed 

during the FE analysis for the specimen subjected to 6 MPa at 70°C that the crack is not 

fully opened on the reinforced side (owing to secondary bending, and residual stresses) 

whereas it is fully opened on the unreinforced side. Similar behaviour is also observed 

at −60°C with the crack not fully opened on the unreinforced side. This indicates that 

the thermal residual stresses in the substrate have resulted in partial crack closure on the 

unreinforced side of the specimens at −60°C. 

 The stress intensity factor range governs fatigue crack growth rate. Since the 

experimental crack growth measurements were recorded only on the unreinforced side, 

ΔK values on this side are used for the analysis. Taking a = 11 mm for example: 

ΔK=Kmax–Kmin values are 11.4, 11.4 and 9.7 MPa√m at RT, 70°C and −60°C, 

respectively. This partially explains the much slower crack growth rate at −60°C 

compared to the RT and 70°C tests as presented in Figure. 5. The main reason for the 

much slower crack growth rate at −60°C is the material’s crack growth properties as 

shown in Figure.6 and Table 3. Although the ΔK values on the unreinforced side for RT 

and 70°C are similar, at 70°C the specimen shows faster crack growth rate compared to 

RT: Figure.5 clearly shows higher fatigue crack growth rate at 70°C when ΔK = 15-20 

MPa√m. 
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4.5.  Strap delamination and fracture surfaces 

Another key parameter determining the BCR performance in terms of the fatigue crack 

growth life or crack growth rate is the strap delamination behaviour during fatigue. Two 

types of strap delamination were observed in the tests: (i) delamination between the 

substrate and the strap (i.e. cohesive failure in the adhesive); and (ii) delamination 

within the strap i.e. delamination propagation in the first interface within the GLARE 

(the interface closest to the bond with the substrate). The type of delamination depends 

on several parameters, such as the degree of secondary bending and residual stresses in 

the reinforced structure. The area of delamination will influence the performance of the 

bonded crack retarder. 

In this work all the specimens tested at RT and 70°C showed debonding failure 

in the adhesive layer i.e. cohesive damage. Figure 10 shows images of the post-failure 

specimen tested at 70°C. Since the crack tip stress is very low on the reinforced side 

owing to bending (Figure. 8), this debonding damage is thought to be triggered by the 

moving crack tip. 

Specimens tested at −60°C showed delamination damage running through the 

first layer of the GLARE, as shown in figure 11. This is owing to the increase in 

thermal residual stresses and total stress at the reinforced side (Figure. 8). This causes 

delamination between the first aluminium layer and the glass fibre ply of the GLARE 

strap. Further cyclic loading of the specimen results in delamination propagation within 

the GLARE strap. 

4.6. Effect of thermal cycling prior to fatigue testing 

Figure 12 shows fatigue crack propagation life at RT for specimens thermal cycled prior 

to fatigue tests. Specimens were thermal cycled between −60°C and 70°C and then 
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removed from the thermal chamber and subjected to RT fatigue tests as described in 

Section 2. 

Two tests were performed for each case and Table 4 shows the average fatigue 

life. It can be seen that thermal cycling up to 4500 cycles does not have a negative 

effect on the crack growth life: in fact, above 1500 thermal cycles the lives are actually 

longer, but this is not likely to be systematic. The overall scatter in the data is no more 

than 10%, which is well within the variability range given the inherent scatter in the 

fatigue damage process and changes in laboratory temperature and humidity conditions 

during the test programme. 

In summary, the thermal cycling has no measurable effect on the fatigue 

performance of the bonded crack retarders. There is no degradation of the properties of 

any of the components of the assembly resulting from exposure to the temperature 

extremes defined for the programme. 

Conclusions 

A middle-crack tension M(T) geometry made of aluminium alloy 2624-T351 reinforced 

with GLARE bonded crack retarders was tested at room temperature (RT), 70°C and 

−60°C. The effect of prior thermal cycling on fatigue crack growth at RT was also 

investigated. Finite element analysis was conducted to aid understanding of the test 

results. The straps were bonded to one side of the substrate only, as would be the case in 

the majority of target application. The following conclusions can be drawn.  

1. The single-side strap configuration used and the residual stress arising from curing 

of the adhesive at elevated temperature cause out-of-plane deformation. In this 

study, the maximum deformation is 0.9 mm.  
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2. Secondary bending occurs when applying in-plane loading during the fatigue 

testing. The bending direction and its magnitude depend on the test temperature, 

The consequent stress variation affects the stress intensity factor to different degrees 

on both sides of the specimen; and consequently, the crack growth rate.  

3. At room temperature, fatigue crack growth life was increased by 27% owing to the 

bonded straps. Note that the 2624 alloy has high damage tolerance, and this 

(coupled with the specimen design and stiffness ratio) leads to an improvement that 

is relatively modest compared to those seen in some previous work. 

4. At 70°C, straps brought little improvement on crack growth life. This is attributed to 

the increased residual stress, secondary bending, and greater stress intensity factor. 

Specimens tested at room temperature and 70°C showed cohesive failure at the 

adhesive layer. 

5. The –60°C tests also showed little improvement on crack growth life. This is partly 

a consequence of the much reduced fatigue crack growth rate at –60°C (with and 

without straps), and much reduced residual stress and reversed secondary bending. 

At –60°C, delamination failure was found within the GLARE strap. 

6. Thermal cycling prior to fatigue testing at room temperature does not impair the 

performance of the bonded crack retarders.   
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Figure 1: Geometry and dimension of the M(T) specimen with GLARE bonded crack 

retarders and the strain gauge locations (strain gauge No.2 on back side). Units: mm. 

 

 

 

 

Figure 2: FE model of the M(T) specimen with bonded straps. 
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Figure 3: (a) Measured out-of-plane deformation of the M(T) specimen after bonding 

the GLARE straps, (b) sketch of specimen deformation before and after strap bonding. 

 

 

 

 

Figure 4:  Crack length vs Number of load cycles for specimens with and without 

bonded crack retarders. 
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Figure 5: Fatigue crack growth rate vs crack length for (a) RT and 70°C, (b) RT and 

−60°C tests. 
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Figure 6: da/dN vs ΔK for unreinforced M(T) specimens. 

 

Figure 7: (a) schematic of specimen deformation after strap bonding and subject to 

loading at different temperatures; (b) FE calculated and test measured deformation after 
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cure at no load and at room temperature; (c) FE calculated deformation at applied stress 

6 MPa; and (d) at applied stress 60 MPa. 

 

 

Figure 8: Stresses in the loading (X) direction at 11 mm half crack length loaded to 60 

MPa:, reinforced side (top row), unreinforced side (bottom row); left to right, RT, 70°C, 

−60°C respectively. 
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Figure 9: FE analysis of stress intensity factor variation through the substrate thickness 

for 11 mm half-crack length, (a) Kmax at 60 MPa applied stress, (b) Kmin at 6 MPa 

applied stress 
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Figure 10: Post-failure images of M(T) specimen tested at 70°C: (a) back face of the 

substrate and debonded straps showing delamination front at failure, (b) bonded side of 

the substrate showing adhesive traces on the original strap locations confirming the 

cohesive failure, with a debond crack running through the FM 94 adhesive, (c) 

schematic representation of substrate/strap interface delamination. 

 

Figure 11: Post-failure image of M(T) specimen tested at −60°C: (a) back face of the 

substrate and debonded straps showing delamination in GLARE strap, between the first 

aluminium sheet and the adjacent glass fibre ply, (b) bonded side of the substrate 

showing delamination and the aluminium sheet intact with the original strap location, 

(c) Schematic representation of delamination through the first layer of the strap. 
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Figure 12: Fatigue crack growth in thermally cycled M(T) specimens (a) 500 - 1500 

thermal cycles and (b) 2000 - 4500 thermal cycles prior to fatigue testing. 
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Table 1: Mechanical properties of materials used in this study 

Material E1 (GPa) E2, E3 (GPa) ν12 = ν13 α1, α2( ˚C
–1

)  ρ(g/cm
3
) 

AA 2624-T351 73 71 0.33 23.2 × 10–6 2.77 

FM 94 1.90 1.90 0.52 - 1.1 

 

 

 

 

 

 

Table 2. Summary of at temperature FCG test programme and results 

 Without strap With strap 

Temperature RT 70°C −60°C RT 70°C −60°C 

Average fatigue life (cycles) 147,649 110,728 469,012 177,887 113,320 480,365 
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Table 3. Paris law constants for 2624-T351 at three temperatures 

Paris law constants RT 70°C −60°C 

C (m/cycle) 3.75×10-10 4.60×10-10 7.30×10-11 

n 2.40 2.38 2.62 

 

 

 

 

 

 

 

Table 4. Summary of thermally- cycled test programme and results 

Number of thermal cycles 0 500 1000 1500 2000 3000 4500 

Average fatigue life (cycles) 175,659 181,433 194,236 181,886 189,250 204,673 198,494 
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Highlights  

 GLARE straps provided considerable reduction to FCG rate at RT. 

 At −60°C, baseline FCG life is more than tripled owing to the reduced FCG rate.  

 At 70°C, baseline FCG life is shorter owing to greater stress intensity factors.  

 Thermal cycling does not impair the performance of BCR tested at RT. 

 


