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Complexity, uncertainty-reduction strategies, and project performance 

 

ABSTRACT 

This paper investigates how complexity influences projects and their performance. 

We develop a classification of project complexity by relying on fundamental 

theoretical insights about complexity and then rely on the practice-oriented 

literature to assign concrete project complexity factors to the resulting categories. 

We also identify specific strategies for organizing and knowledge production that 

project planners use to address complexity-related uncertainties. We theorize about 

the way these strategies interact with various types of complexity to increase project 

performance. Anticipated influences are mostly corroborated using survey data on 

81 complex projects from five continents and a diversity of sectors.  

 

1. Introduction 

This paper aims to advance our understanding of project complexity and the way planning-stage 

strategies can address it. Complexity is a major source of uncertainty and risk in projects, which 

produces additional costs and affects project performance if participants fail to address it from the 

planning stage (Shenhar 2001; Williams 1999). While project management scholars have made 

inroads in understanding complexity, efforts to understand its concrete manifestations, the 

difficulties it creates, and how these could be managed are hindered by the inability to connect two 

relevant streams of research (Geraldi, Maylor & Williams 2011). One stream builds on 

fundamental advances, such as highly abstract complexity studies at the Santa Fe Institute, to 

critically reassess project management prescriptions (Cooke-Davies et al. 2007). While this stream 

addresses the practices for managing project complexity, its abstract roots hamper a move from 

criticism to concrete, empirically validated and actionable recommendations. A second, practice-

oriented stream focuses on mapping a vast diversity of concrete factors that increase project 

complexity (Maylor, Vigden & Carver 2008; Bosch-Rekveldt et al. 2011). This identification and 

prioritization effort relies on surveying managers’ opinions, based on the implicit assumption that 

each factor adds separately to project uncertainty and risk, raising planning and management 

difficulties, and affecting performance. But the supposed relations between complexity factors and 



 
 

project outcomes lack theoretical base and empirical validation (Geraldi et al. 2011; Xia & Lee 

2005). The choice of practices is also left implicit, based on the assumption that factor awareness 

already takes a big step towards managing complexity. 

In this paper, we attempt to provide a theoretical basis for the relation between concrete 

aspects of project complexity, the efficacy of planning practices and project performance. In this 

theoretical development, we rely on three premises, each underpinning a distinct contribution of 

this paper. First, we assume that conceptual issues can be solved by a theoretical framework set 

midway between generic abstractions and practical classifications of project complexity. With this 

premise, we rely on the general literature on complexity (Anderson 1999), and on efforts to grasp 

its specifics in domains such as large systems and infrastructure, biotechnology, software, and 

sociology, to derive a small set of dimensions that characterize complexity and its effects. Then, 

based on the practical literature on project complexity (Bosch-Rekveldt et al. 2011) we relate these 

dimensions to concrete project aspects, such as technology and organization, as well as market and 

regulatory environments. Our second assumption is that the efficacy of planning-stage strategies 

in addressing complexity is rooted in the extent to which they enable project organizations to, 

broadly speaking, represent the specific complexities of a project, of its environment and of 

relevant processes. With this basis, we build on innovation and organization literatures to 

characterize the representational ability of project organizations and to theorize how it translates 

in a capacity to develop and apply preventive measures and corrective actions that minimize risks 

and keep projects on track for success. In particular, we suggest how concrete planning-stage 

strategies that put in place knowledge production processes and contractual-organizational forms 

relate to these capacities (Floricel & Miller 2001; Sommer & Loch 2004). Our third assumption is 

that strategies adopted in a project help improve performance only if they match the particular 

complexity affecting that project. This premise and the emerging theoretical framework enable us 

to derive hypotheses about mutual influences between project complexity, planning-stage 

strategies, and project performance, and then to corroborate these hypotheses empirically on a 

sample of complex projects from various domains.  



 
 

Results indicate that the direct influence of complexity on performance is not as 

straightforward as the literature suggests. Moreover, some planning-stage strategies interact with 

certain complexity factors and these interactions have a beneficial effect on completion, innovation 

and operation performance in projects. These results help untangle the nexus of influences between 

complexity and performance, and have practical implications, by suggesting that strategies adapted 

to the type and level of complexity mitigate risk with respect to various performance indicators. 

The paper proceeds as follows. In section 2, we review the literature on complexity, its 

representation and ensuing challenges in order to establish a basis for our theoretical framework. 

In section 3, we characterize planning-stage strategies and derive hypotheses about their effect on 

project performance. Section 4 describes empirical methods, whereas section 5 outlines results. 

Section 6 discusses results and draws conclusions from them. 

 

2. Complexity in theory and project management practice 

The nature and consequences of complexity have become prominent topics in fields such as 

philosophy and mathematics (Bunge 1979; Thom 1974); physics, chemistry and biology 

(Prigogine 1997; Mayr 2000); computer science (Ashby 1958; Simon 1962); technology and 

engineering (Kim & Wilemon 2003; Lu & Suh, 2009); and social sciences, including economics 

and management (Luhmann 1995; Levinthal 1997). The generic literature on complexity still 

debates its definition and nature (Whitty & Maylor 2009). A fundamental issue is whether 

complexity is an intrinsic property of an objective reality, of the ‘world out there’, or stems from 

limitations of, broadly speaking, the cognitive systems that represent the world. But most 

contributions on both sides of the debate see the origin of complexity in particular relations or 

interactions between the elements composing systemic entities, which produce unpredictable 

properties and evolutions in these systems, or preclude their adequate representation. Research 

focusing on complexity as an intrinsic property of the reality can be, in turn, divided in two strands, 

one static, or structural, and the other dynamic (Benbya & McKelvey 2006).  



 
 

Structural complexity. The static stream focuses on interactions between component 

entities that produce unexpected forms and properties in higher-level systems, which cannot be 

explained, reduced to, or deduced from the properties of component entities, including their 

propensities for interaction. For example, properties of cells, organs and living beings cannot all 

be reduced to the properties of component molecules, including genes and proteins (Sauer et al. 

2007). Likewise, some properties of project organizations cannot be reduced to properties of the 

individuals composing them (Crossley 2011). System philosophers call this possibility 

‘emergence’ and argue that it gives higher-level entities a distinct ontological status; emergent 

entities exist in their own right, apart from their components (Bunge 1979; Simon 1981). 

Complexity in this structural sense increases with the ‘non-additive’ character of component 

aggregation. While fundamental researchers still debate the nature of emergence and non-

additivity (Sawyer 2001; Wimsatt 2006), studies of concrete relations, couplings or interactions 

between lower level entities have produced conclusions that help us grasp project complexity. 

These studies trace the complexity of artificial systems, including project artifacts, to functional 

or secondary interactions between components or their properties (Alexander 1964; Simondon 

1989), and track aggregate properties of project networks and organizations, such as flexibility and 

creativity, to patterns of interactions between actors (Burt 1992).  

On top of ‘upward’ emergence, scholars have traced structural complexity to ‘downward 

conditioning’ of components by higher level systems, or to mutual influences between levels 

(Kontopoulos 1993). Such ‘vertical’ interactions boost unpredictability and reduce control in 

projects dealing, for instance, with biological entities, featuring up to nine emergent organization 

levels (Kohl & Noble 2009), or information and communication systems, having as many as seven 

distinct architectural layers (Hanseth et al. 1996). In the social realm, several aggregation levels, 

from individuals, teams and organizations to sectors, nations and global systems, interact to shape 

phenomena (Meyer & Rowan, 1977; Giddens, 1984; Lundvall, 1993; Malerba, 2002).  

Dynamic complexity. In its turn, research in the dynamic stream addresses temporal 

emergence, particularly processes that bring about sudden, radical and unpredictable change in 



 
 

systems. Some researchers focus on structural conditions, such as the number of relevant variables 

and of interactions between them, to suggest how they produce cyclical, path-dependent, chaotic 

or random change patterns (Dooley & Van de Ven 1999). Others seek generic causal mechanisms 

or ‘change engines’, such as evolutionary variation-selection-retention sequences, or dialectic 

processes relying on conflict and paradoxes (Campbell, 1960; Smith & Lewis 2011; Van de Ven 

& Poole 1995), whose outcomes are more difficult to predict and master than those, let’s say, of 

teleological (goal-directed) or life-cycle engines. Mastering dynamic complexity helps projects 

involving unpredictable material processes—from ground instability and materials fatigue, to 

flows of gases, fluids and energy, and to biological pathways—achieve useful functions, predict 

dangerous events and avoid catastrophic failure. But particular attention to dynamic complexity 

has come from social scientists, who study dynamic engines and temporal patterns (Hernes 2008), 

from cycles and lifecycles (Klepper 1997; Vohora et al. 2004; Helfat & Peteraf 2003); 

unpredictable yet path-dependent structuring from repeated interactions between actors (Barley 

1986; Coleman 1966; Feldman & Pentland 2003); sudden or radical restructuring (Gersick 1991); 

to nonlinear, self-reinforcing dynamics that amplify minor events into sweeping changes (Arthur 

1989). Some writers even see organizing as an ongoing process in a world of intersecting event 

strands, and entities as mere cognitive artifacts or a fragile result of recurring processes (Tsoukas 

& Chia 2002; Hernes & Weik 2007).  

Representational complexity. Both static and dynamic views discussed so far implicitly 

assume that complexity is an intrinsic property of reality. But others see complexity as resulting 

from the inability of actors and organizations to represent the reality and its dynamics, what we 

call the correspondence problem. Even those assuming that the world is knowable agree that our 

most advanced representations are not perfect. For example, research on innovation has found that 

abstract scientific knowledge and even more specific engineering formulas cannot capture the 

properties (irregular form, composition, texture, flows, reactions) and multiple interactions that 

characterize natural and artificial objects (Kline 1987; Nightingale 1998). Biochemistry and 

biology can hardly represent biochemical pathways in cells and organs, to hope to influence their 



 
 

workings, or to define the functional organization of the human brain, to try and reproduce its 

performance (Noble 2002; Schwartz 2015). Artificial intelligence researchers point out that even 

assuming that relevant objects could somehow be mirrored, say, by a string of bits, using some of 

these representations is beyond actors’ conceptual and computational abilities (Biggiero 2001; 

Tergaden et al. 1995; Katina et al. 2014). Hence they define and measure complexity as the 

difficulty of identifying object regularities and capturing these in a simplified representation, and 

as the computational effort required for retrieving the initial object form with some degree of 

precision (Kolmogorov 1965; Goertzel 1992; Gell-Mann & Lloyd 1996). Such hardships explain 

why iterative trial and error still dominates the design of complex technical objects (Vincenti 

1990), and why, despite scientific advances, pharma and biotech projects have such low success 

rates and still rely on massive trial and error instead of rational design (Nightingale & Martin 2004; 

Mandal et al. 2009). Partial, implicit or practical representations obtained through empirical or 

experimental approaches may reduce the ‘distance’ between complex reality and its depiction. But 

the frequent experiment replication failures (Begley & Ellis 2012), the fragility of statistical 

inference (Taleb 2007), and snags in high-reliability technical systems (Perrow 1984; Leveson et 

al. 2009; Saunders 2015), all show that they hardly solve the correspondence problem. 

The origin of this ‘distance’ becomes even more evident when the entities that produce 

representations are no longer seen as abstract knowers but as concrete systems. Perception and 

cognition studies in psychology and neuroscience (Rosch 1978; Weick et al. 2005; Hodgkinson & 

Healey 2011), and theories of social construction of reality (Berger & Luckmann 1966; Bourdieu 

1977) reveal that representations are not mirroring the external reality but result from constructive 

processes such as selecting, amplifying, attributing causes, legitimizing, habituating and 

forgetting. Even scientific and technological knowledge, including that supporting societal 

perceptions of risk in projects, is seen as a product of similar cognitive and social construction 

processes (Latour & Woolgar 1979; Douglas & Wildavsky 1982; Bijker et al. 1987; Beck 1992). 

Organizational fields promote and institutionalize a wide range of doubtful representations, from 

scientific, technological, economic and moral assumptions and beliefs (Hughes 1983; Haveman & 



 
 

Rao 1997) to models of organizing (Meyer & Rowan 1977; Abrahamson 1991). Such beliefs and 

assumptions shape project rationales and forms, while models such as Build-Operate-Transfer, 

Public-Private Partnerships or Scrum influence their organizing. Some theorists go even further, 

by arguing that mirroring reality is not even the purpose of representations, which is, in fact, 

enabling the survival of entities producing them. Entities from microorganisms and individuals to 

organizations, organizational fields, and entire societies are self-organizing and self-referential 

communication systems, which set boundaries and differentiate internally, as well as detect, 

interpret and react to external signals only in reference to their own reproduction goal (Maturana 

& Varela 1980; Luhmann 1995). This perspective plays a key role in our framework. 

Classifying project complexity in practice. The structural-dynamic and representational- 

intrinsic distinctions identified in our review of complexity can be seen as reflecting fundamental 

aspects of the world in which we live. For this reason, we adopted them as basic dimensions of a 

framework used to understand project complexity and its effects. But, research on self-referential 

communication systems suggests that the ‘objective’ properties of the ‘reality out there’ are not 

necessarily what an ‘internal’ system formed by project planners (as we focus on planning-stage 

strategies) would distinguish and address. The sensitivity to complexity aspects of a representing 

system formed by the emerging project organization (Koskinen 2012) is conditioned instead by 

the goal of ensuring its own survival, namely acquiring resources and growing to develop and 

execute the project. Representing the relevant complexity can be seen as the starting point in the 

self-reproduction of this communication system. This nature of this representation is shaped by 

two influences. First, objective conditions, and ensuing problems, if these are disregarded, push 

the system to reduce the ‘distance’ between its internal complexity and the complexity of the 

represented system—the project with its environments and processes (Ashby 1958). Second, the 

representation feeds on planners’ understanding of complexity, which builds on their subjective 

interpretation of past experience, but also on a socially constructed world of distinctions about 

project complexity and practices for addressing it. This second influence suggests that our two 

dimensions of complexity should be considered not only in light of truth-seeking debates about 



 
 

the world, its intelligibility and its dynamics, but mainly from a phenomenological perspective, to 

understand whether and how planners make similar distinctions in the course of their normal 

activities, what project factors they associate more frequently with which categories, and what 

practices they adopt to ensure the survival of the project system. Concretely, for our theorizing, 

this meant adopting practitioners’ perspective and imagining how planners perceive and interpret 

relevant complexity aspects but also using practice-oriented project management literature and 

research-oriented contributions that respond to practical problems or study everyday practice to 

identify concepts and models that practitioners would use to make sense of, and legitimate their 

interpretations. This helped us reinterpret the two dimensions derived from fundamental theory 

into similar distinctions that reflect the planners’ perspective, as explained below.   

First, we assumed the intrinsic-representational distinction to imply that planners see 

complexity aspects either as intrinsic in the ‘world out there’ or as resulting from imperfections in 

their own representations. Reliability and systems safety engineers make just this distinction when 

they set apart stochastic from epistemic uncertainty (Helton & Oberkampf 2004). From this 

vantage point, a project aspect is intrinsically complex if confusion with respect to factors, 

interactions levels and engines appears to deny planners any possibility of internal representation 

that would enable an adequate anticipation or control of that aspect in practice (Biggiero 2001). In 

light of system survival goals, an added marker of intrinsic complexity is planners’ preference for 

representations in the form of basic frameworks that help them make sense of forms and evolutions 

in relevant systems but also provide a terminology that legitimates decisions while limiting 

accountability for eventual failures. On the other hand, representational complexity relates to 

aspects for which prediction- and control-enabling internal representations appear possible in 

practice, but raise modeling and computation challenges, often leading to anticipation and control 

failures. Planners would, in this case, attempt to supplement anticipatory models with 

experimental, empirical and practical approaches to gradually improve internal representations. 

 A similar approach was used for the structural-dynamic distinction. If complexity to be 

mastered is structural, the representation ‘distance’ comes from the inability to capture all levels, 



 
 

factors and interactions that shape the relevant project aspect. This translates in system properties 

that differ from planners’ anticipation. Survival is advanced by stressing cognitive and structural 

differentiation that increases the sensitivity and selectivity of the planning team to various levels 

and factors, communicative ties that help detect and convey interactions, and integrative abilities 

that detect patterns and translate them as operational routines (Henderson & Clark 1990). When 

complexity is dynamic, the ‘distance’ comes from differences between internal anticipations and 

velocities and patterns of change in external systems. Its indicators are event unexpectedness, 

perceptual discontinuity and self-referential confusion (Luhmann 1993). Its reduction hinges on 

the ability to update internal representations, by maintaining alertness and sensitivity to incoming 

signals, rapidly making sense of novel conditions and engines, and restructuring communicative 

ties and routines accordingly (Weick & Roberts 1993; Lampel et al. 2009, Teece 2007).  

These reinterpreted distinctions and markers enable us to classify concrete manifestations 

of project complexity into four quadrants. Since we adopted the planners’ perspective, we sought 

expressions of complexity in the project management field. As mentioned in the introduction, the 

practical stream attempts to map a vast diversity of complexity factors, and distinguish them by 

project domains or aspects (Tegarden et al. 1995). Its reliance on eliciting managers’ opinions suits 

our goals because results are close to planners’ situated understanding. In one of the most 

exhaustive efforts of this stream, Bosch-Rekveldt’s et al. (2011) inventoried 50 factors and 

classified them in three categories: technological, organizational, and environmental, creating what 

they call the TOE framework. We relied on this framework but instead of analyzing each of these 

factors, we tried, as a first step, to position their categories relative to our four quadrants. We only 

subdivided their ‘environment’ category, into ‘institutional’ and ‘market’, because, in our view 

presented later, institutional factors point to dynamic complexity, while market factors, to 

structural complexity. For each category, we also derive direct consequences for planning and an 

overall impact on performance. The resulting complexity framework is presented in Table 1.  

The markers for intrinsic structural complexity revealed by our review are the presence of 

non-additive aggregation or interactions and of multiple emergent levels influencing each other. 



 
 

In practice, planners have no hope to design or control the respective project aspect but leave its 

shaping to mutual interactions between relevant elements and levels, including their own inputs. 

Among the four factor categories, we believe that institutional complexity is best placed in this 

quadrant. The complexity of this factor stems from interactions with the management systems of 

parent organizations, stakeholders and broader networks of interested organizations, and political 

and regulatory bodies. While planners try actively to influence this area (Pfeffer & Salancik 1978; 

Oliver 1991; Aaltonen 2011), institutional actors seek to retain their autonomy; planners may even 

ignore who these actors are or represent, what they want, and how they interact among themselves 

(Jepsen & Eskerod 2009). Interaction complexity increases because, on top of their own interests, 

some legitimate and others not, actors bring to the negotiation arena a variety of pragmatic, moral 

and cognitive logics to legitimate their arguments (Suchman 1995): budget limits, efficiency, 

development, job creation, urban planning, aesthetics, equal access, equitable treatment, 

environment protection, etc. Actors also change positions in response to other actors’ arguments. 

All this diminishes planners’ control over the negotiation process and its outcome predictability, 

and makes planning for institutionally complex projects a long process, forcing project concepts 

through several restructurings before an acceptable arrangement is found (Miller & Lessard 2001). 

Planners attempt represent this environment by using frameworks such as stakeholder analysis, 

but this does not necessarily increase success rates (Jepsen & Eskerod 2009). Excessive use of 

analytical representations sometimes even leads to negotiation paralysis (Denis, Lamothe & 

Langley 2001), which supports our assignment of institutional complexity to the intrinsic end. 

Project research also supports this indirectly, because the impact of broader organizations and 

networks of interested and institutional actors is among the few topics studied with multilevel, 

mostly structurationist perspectives (Engwall 2003; Manning 2008). Complex products and 

systems (CoPS) research adopts a similar perspective to study how networks of institutional actors 

interact to shape technical systems (Miller et al. 1995; Brusoni et al. 2001). 

In turn, structural representational complexity is marked by abstraction and computation 

challenges and the use of trial and error to surmount them. Among the four categories of factors, 



 
 

we believe technical complexity best fits these markers. Technology and innovation literature 

suggests that managers address technical complexity by representing interactions at three levels: 

between project functions that interoperate, between solution elements that concur in achieving 

functions, and from interactions inside parts and materials (Simondon 1989, Ulrich 1995). While 

some interactions may be intrinsically and dynamically complex, the availability of such design-

and control-oriented representations makes all these interactions appear as structural problems. 

Because some of them are too costly to capture systematically and exhaustively, planners use low-

correspondence representations first, to identify approximate solutions, and then rely on trial and 

error to reduce the ‘distance’ (Fleming & Sorenson 2004). Even failure to achieve perfect control 

over artifact functioning is not attributed to uncontrollable dynamics but to unforeseen structural 

problems, to be solved through better design and further trials (Bohn 1994). 

For intrinsic and dynamic complexity, markers include special combinations of variables 

and interdependencies causing nonlinear or chaotic dynamics, and the presence of evolutionary or 

dialectic engines. In our view, the factor that best fits these markers is project organization, defined 

as the socio-economic system formed by project participants. For a long time and still today, such 

systems have been implicitly depicted as hierarchical structures, using, for example, authority 

charts or contract networks. Such structures were deemed to result from rational design processes 

responsive to functional and normative pressures (Thompson 1967; DiMaggio & Powell 1983; 

Mintzberg & Lampel 1999). Some representations have also been dynamic, such as PERT or Gantt 

charts and a variety of life cycles or development processes (Boehm 1988). These aimed to order 

project activities in a goal-driven temporal sequence, assuming that some implicit teleological or 

lifecycle engine would push the project along the desired path. Both functional hierarchies and 

temporal sequences assume that a representation is somehow able to constrain actors’ behavior, 

and all that is left is to maximize the efficiency of its structure and sequence, in light of number 

and diversity of participants, tasks and resources, precedence relations, and effort or duration 

uncertainties (Brucker et al. 1999; Chapman & Ward 1994). The focus on solving efficiency 

problems would hint that, for planners, organizational complexity is representational. However, 



 
 

even those who agree argue that such representations do not offer sufficient guidance for action, 

and the problems are much deeper, perhaps intractable (Ballard & Tommelein 2012). This view 

also fails to take into account that projects are not carried out by perfectly rational and malleable 

human actors, interacting in predictable ways based on orderly interests. Anecdotal and qualitative 

evidence suggests that relations between actors are ripe with conflicts of interest, opportunism, 

misunderstandings, cheating, interpersonal conflicts, excessive emotion, and other forms of non-

rational or even criminal behaviors. Failure to explain the difficulties in following the goal-driven 

path led the field to focus on the human side of projects (House 1988), and to rethink projects as 

temporary organizations whose essence consists of social interactions (Lundin & Söderholm 

1995). More recently researchers asserted that the material substrate of objects and even of actors 

intertwines with these social relations in many poorly understood ways (Callon 1986; Barad 2003; 

Orlikowski 2007; Doolin & McLeod, 2012). The new perspectives addressed in priority the issue, 

worsened by a focus on representational efficiency, of project adaptation to continuous change and 

unexpected events (MacCormack, Iansiti & Verganti 2001; Soderholm 2008; Piperca & Floricel 

2012). Suggested solutions call for enhancing problem detection, agility and response capacity 

(Schwaber 1997; Highsmith 2001; Kappelman, McKeeman & Zhang 2006; Floricel, Piperca & 

Banik 2011; Browning & Ramasesh 2015), and even keeping projects on the edge of chaos (Brown 

& Eisenhardt 1997). Most solutions propose frameworks that stress dialectic or evolutionary 

engines (Sommer & Loch 2004), which, in our view, are markers of intrinsic dynamics. But 

applying such new frameworks pushes organizational complexity to the extreme rather than solve 

the problems it causes, because such abstract representations interact in unexpected ways with 

existing interests, practices and culture, causing unpredictable dynamics (Floricel, Piperca & 

Banik 2011; Conforto et al. 2014). Then again, process ontology trends inspired project researchers 

to see change as the normal state of project organizations, a state of continuing organizing or 

becoming (Weick & Quinn 1999; Tsoukas & Chia 2002; Hernes & Weik 2007; Pellegrinelli 2011). 

Those who made the ‘practice turn’ (Blomquist et al. 2010) add that organizing is a continuous 

effort to reweave the project using a variety of institutionalized and improvisational practices 



 
 

(Floricel et al. 2014; Leybourne 2009). As continuous organizing, becoming and reweaving 

replace structural depictions, some researchers even began to question whether a real entity exists 

beyond the variety of metaphors, arguing that a project organization is no more than a conceptual 

reification (Hernes 2008; Vignehsa 2015). For us, the inability to predict, control and even 

represent this dynamic reality is a mark of intrinsic complexity.  

Finally, the marker for dynamic representational complexity is the repeated advent of 

surprising events. We argue that the market environment factor best matches this marker. For this 

factor, representations also shifted from predictable life-cycle views (Abernathy & Utterback 

1978; Klepper 1996) to those focusing on the conditions and engines that produce turbulence and 

velocity (Eisenhardt 1989; Emery & Trist 1965; Bogner & Barr 2000; MacCormack, Verganti & 

Iansiti 2001). But planners still believe evolutions can be predicted with anticipatory frameworks 

(Moore 1991; Rogers 1995) and a host of sales estimation models (Cooper 2001; Bass 1969, 

Urban, Huser & Roberts 1990), some claiming forecast precisions as high as ten percent (Bass et 

al. 2001; Mas-Machuca et al. 2014). Contrary to organization dynamics, the effects of actions and 

interactions in a market may average out because of the larger number of actors and of their relative 

isolation from each other. Of course, hidden interdependences, due to interactions between novel 

project elements and ill-defined social aggregates, for example in innovation projects (Aldrich & 

Fiol 1994), or even to planners’ own interests (Flyvbjerg, Skamris Holm & Buhl 2005) often set 

off evolutionary engines and result in path-dependent patterns (Arthur 1989), which cause 

surprises and prompt forecast reevaluation. But planners trust they can elude surprises by refining 

representations, preparing for contingencies, using market tests or limited product launches, as 

well as discovery-oriented processes (Lynn et al. 1996, Kahn 2014).  

The next section discusses how planning-stage strategies that shape the cognitive and 

organizational representation of complexity help participants address its various forms. But the 

preceding discussion enables us conclude this section by arguing that all complexity factors have 

a direct negative impact on project performance, because they overcome the project planners’ 



 
 

representational capacities and go on create unpredictable forms, surprising properties, temporal 

evolutions or unexpected events. This is expressed in the following hypothesis: 

 

H1 Complexity overall and its various concrete factors have a negative influence on performance  

 

3. Planning stage strategies and complexity representations 

As we argued in the introduction, we assume that complexity management efficacy, and eventual 

performance, depends on the capacity of a project organization to represent the complexity of its 

project. From the communication systems perspective, this means that project planners are able to 

translate their interpretation of project complexity into a project organization that can continue to 

grasp key interactions and engines, limit uncertainties and surprises caused by emergence and 

dynamics, and address consequences in cognizant, proactive, coordinated and flexible ways. We 

treat the required representational capacities broadly, by distinguishing two aspects. The first, 

cognitive aspect was inspired by psychological, engineering and applied science perspectives. It 

includes actors’ mental representations, shared or not (Weick & Roberts 1991), as well as 

representations on external supports, such as plans, organization charts and engineering drawings 

(Floricel, Michela & George 2011). The second, organizational aspect was inspired by 

communication systems research. It refers to representations embedded in work routines and 

communication patterns in project organizations and networks (Luhmann 1995).  

We further assume that planning-stage strategies adopted in projects have a key impact on 

this representational capacity, not only through their influence on representations produced by the 

planning activities but also through the conditions they create for producing and updating 

representations in subsequent stages. Based on the project and innovation management literature 

we argue that two kinds of strategies have the strongest impact on this capacity. First, strategies 

that put in place project development processes impact mainly the subsequent ability to produce 

cognitive representations, because the essence of these processes is knowledge production and use 

(Shenhar 2001). In turn, strategies based on organizational and contractual structures create the 



 
 

kernel of the future project organization. In particular, they shape the channels and incentives for 

communication, which are the key sources of the coordination and integration capabilities that lay 

at the core of organizational representation capacities (Floricel, Piperca and Banik 2011). 

Another argument we advance concerns the fit between the specific complexity faced by a 

project and the representational capacities of the latter, as well as the impact of this contingent fit 

upon project performance. We expect that some strategies are more appropriate in creating the 

capacity to represent a specific complexity factor affecting the project, because they meet the 

challenges raised by this factor in light of its characteristics along the two dimensions presented in 

Table 1. As explained when we introduced them, every end of each dimension is better addressed 

with specific representation capacities. For example, intrinsic complexity favors generic 

frameworks that help participants make sense of properties and evolutions, while representational 

complexity favors more specific, prediction- and control-enabling depictions. Equally, structural 

complexity demands the capacity to comprehend and integrate all aspects and interactions, while 

dynamic complexity, favors fast change-seizing, sensemaking and tie-restructuring capabilities 

(Teece 2007). As we will explain below, these representation capacities are more likely to grow 

from concrete choices on the two types of planning-stage strategies mentioned above. However, 

not every planning group will adopt the right strategies. They usually adopt organizing models 

legitimated by the institutional field, for example, development processes such as Scrum, and 

contractual frameworks such as public-private partnerships. Such models of organizing, “however 

flawed, unstable and biased they may be, form the means by which actors navigate and connect 

entities in a fluid and complex world” (Hernes 2008: 49). It is out of such models, through some 

sort of bricolage, rather than through omniscient, original design, that planners create the kernel 

of the representational capability of a project: an assemblage of knowledge production activities 

and communication ties. But, in certain cases, planners have a better understanding of complexity 

and pick up models that are more appropriate, while in other cases, they adopt models by imitating 

others, out of insecurity and confusion, without considering their appropriateness for the specific 

project complexity context (DiMaggio & Powell 1983; Strang & Macy 2001). This creates 



 
 

variance on the complexity-strategy match, enabling us to hypothesize that strategies are 

interacting with complexity to influence performance. More precisely, we believe that the project 

performance will decrease (linearly) to a lesser extent in relation to each complexity factor when 

planners adopt strategies that match to a greater extent the characteristics of that factor.  

We now turn to developing this proposition into testable hypotheses, by identifying 

concrete planning-stage strategies that allow planners to match the challenges posed by the four 

complexity factors listed in Table 1. Resulting relations are presented in Figure 1. We distinguish 

the first type of strategies mentioned above, namely development processes, by the nature of the 

knowledge they use and by their knowledge production sequence. Both elements condition their 

ability to match intrinsic versus representational complexity. Based on strategy and innovation 

research (March 1991; Katila & Ahuja 2002), these characteristics set apart two categories of 

development processes: more linear sequences relying on preexisting, rather abstract knowledge 

versus more iterative sequences that favor the production of new project-specific knowledge. 

The first category, exploitation of existing knowledge, relies mainly on past learning 

captured in databases, models and rules. It features a rather linear sequence, which translates quite 

abstract premises into more concrete project elements. Evolutionary search literature suggests that 

abstract representations expedite and enhance the search for an overall concept, by offering some 

guidance over a broader solution space (Fleming & Sorenson 2004). But the ‘distance’ between 

these representations and the reality ‘out there’ reduces the efficacy of their guidance for shaping, 

predicting and controlling concrete project elements (Gavetti & Levinthal 2000). We believe this 

kind of process is most effective when planners deal with factors they perceive as intrinsically 

complex. Such perceptions occur when planners are either at loss for grasping the given factor, or 

when prior experience has taught them that creating representations that enable the precise 

prediction and control of relevant properties or dynamics is beyond their cognitive and 

computational abilities. Research shows that when faced with seemingly random phenomena 

actors tend to ‘see’ illusory patterns (Whitson & Galinsky 2008), which also prepares them to 

believe and seek guidance in any representation, even one based on superstition or tradition, which 



 
 

restores some order to a seemingly random world (Kay et al. 2009). Actors are even more inclined 

to adopt such frameworks if these have been socially legitimated by professional and regulatory 

bodies (Strang and Macy 2004), or by the units charged with knowledge absorption, circulation 

and codification in parent organizations (Cohen & Levinthal 1990; Brown & Duguid 1991). These 

rather abstract and generic frameworks enable managers to make sense of incoming signals and 

avoid decision- and action-stalling insecurity. Thus, indirect evidence for the hypothesized 

interaction between intrinsic complexity and existing knowledge exploitation strategies is 

provided by the rise, along with the recognition of institutional environment complexity, of 

prescribed practices for stakeholder analysis (Jepsen & Eskerod 2009) and of governance 

frameworks for developing and approving public projects (Klakegg et al. 2008). For the other 

factor deemed intrinsic, organizational complexity, we see a comparable proliferation of 

contractual and organizing frameworks (Lindstrom & Jeffries 2004; Cooper 2008; Tang, Shen & 

Cheng 2010). Besides, for both factors, project-based organizations have adopted practices that 

capture, diffuse and codify learning from past projects (Prencipe & Tell 2001), as well as project 

management offices that formalize and promote practices based on this learning (Aubry et al., 

2010), to give planners a menu of generic analysis frameworks and procedures. Our case on 

existing knowledge exploitation strategies results in this hypothesis:  

 

H2:  Development processes that exploit existing knowledge will interact with intrinsic 

complexity factors, namely institutional (H2a) and organizational (H2b) categories, with 

beneficial effects for project performance. 

  

A second category of development processes stresses the production of new knowledge. 

This type of process features a deliberate sequence of experiments, simulations, and prototyping, 

along with concurrent engineering or seeking clients’ feedback, which are similar to ‘trials’ with 

downstream participants. By emphasizing new knowledge production activities, participants aim 

to reduce the ‘distance’ between cognitive representations and specific project complexities. But 

resulting representations have narrower applicability, and participants have to start all over again 

if results are unacceptable (Lynn, Morone & Paulson, 1996). Thus, such processes often involve 



 
 

an iterative sequence of trials, producing successively closer representations of the concrete form 

and performance of the system. We argue that new knowledge production processes are more 

effective in addressing representational complexity, namely technical and market factors. For these 

categories, representations can be brought close enough to reality to enable prediction and control 

of relevant project aspects. For example, technical design is often depicted as an iterative process 

of knowledge production or problem solving that constructs an increasingly concrete and complex 

representation of artifact form (Visser 2006; Chandrasegaran et al. 2013). The sequence can be 

optimized by varying relative reliance on preexisting abstract knowledge versus trials that produce 

new concrete knowledge (Fleming & Sorenson 2004), the radicalness, precision and number of 

trials (Thomke & Fujimoto 1998; Luehrman 1998), or the degree of parallelism, overlap, and 

communication between activities (Thomke 1998; Krishnan et al. 1997; Loch & Terwiesch 1998). 

In turn, market research supplements generic estimation models with methods that rely on lead 

users, virtual customers, and simulated or test markets to produce more concrete knowledge (von 

Hippel 1986; Dahan & Hauser 2002). Likewise, market search strategies for radical and disruptive 

innovation projects, likely to generate the highest market complexity, rely on launching repeated 

probes to obtain concrete feedback from possible markets and segments (Christensen 1997; Leifer 

et al 2000). This enables us to propose the following hypothesis: 

 

H3:  Development processes that produce new knowledge will interact with representational 

complexity factors, namely technical (H3a) and market (H3b) categories, with beneficial 

effects for project performance. 

 

We also divided in two categories the other group of planning-stage strategies, those shaping the 

project organization and creating its organizational representation capabilities. Modularity and 

communication literatures research (Simon 1962; Luhmann 1995) inspired us to distinguish 

strategies aiming to enhance these capabilities by separating participants into more or less 

autonomous groups from those that do so by integrating as much as possible all participants. 

The first category, separation-allocation strategies, assume that complexity is best 

addressed by decomposing relevant objects and tasks into stand-alone blocks and allocating their 



 
 

execution to distinct organizations or teams. This type includes modular project organizations 

(Söderlund 2002) and approaches, such as BOT, PPP or turnkey, relying on contracts to allocate 

project tasks between participant organizations. We argue that such strategies are best suited for 

structural complexity categories, namely technical and institutional. In fact, attempts to tackle 

technical complexity inspired design methods that reduce undesired interactions and architectural 

principles that help control emergent properties by separating complex artificial systems into 

stand-alone modules (Simon 1962; Ulrich 1995; Suh 2005). These methods ‘frontload’ the 

development effort, augmenting its system engineering and architecting part, and enable planners 

to uncover and represent early on the key interactions between project elements. Then, project 

organizations and networks can also be separated into modules that parallel technical architecture 

(Sanchez & Mahoney 1996; Schilling 2000). Those working on each module develop detailed 

representations of their respective parts. Because technical solutions within each module are 

developed in an integrated manner, modular units maintain strong internal communication ties that 

help participants grasp interactions (Hansen 1999). Communication across modules is less 

frequent and occurs through well-defined interfaces, but hidden interactions can still be captured 

and mastered if planners maintain and cultivate overall integration capabilities (Murmann & 

Frenken 2006; O’Sullivan 2006). A similar approach tackles institutional factors by partitioning 

the project environment into uncertainty areas and relying on well-defined contractual interfaces 

between participants to allocate respective risks to specific actors (Chapman & Ward 1994; 

Floricel & Miller 2001). High transactional requirements for understanding, negotiating and 

defining inter-participant interfaces, such as specifications, rights, price calculation, certification 

and contingencies, increase the development effort and duration (Miller & Lessard 2001). But this 

effort also creates a systemic representation akin to a modular architecture, which provides a clear 

overall picture early on and then enables participants to focus on developing detailed 

representations of their respective sectors. These arguments led us to the following hypothesis: 

H4:  Organizing strategies relying on separation and allocation will interact with static 

complexity factors, namely technical (H4a) and institutional (H4b) categories with 

beneficial effects for project performance. 



 
 

 

Strategies in the other organizational category, integration-collaboration, aim to increase 

the density and strength of communication ties throughout a project organization by stimulating 

collaborative work, as well as responsibility and risk sharing (Lahdenperä 2012). This helps 

integrate a diversity of perspectives and knowledge and, while it does not uniformly reduce the 

‘distance’ between project complexity and its organizational representations, it eases the ongoing 

adaptation of representations to change. Therefore we argue that integration strategies are best 

suited for addressing dynamic factors, such as organizational and market complexity. To address 

market dynamics, such as unpredictable changes in user needs and market conditions, project 

management literature suggests practices such as small-step, gradual-commitment (Olsson 2006; 

Highsmith, 2010), and multiple frequent iterations based on real-time input (Biazzo 2009). But 

these practices are harder to implement if participants are constrained by preset contractual 

interfaces that strictly allocate risks and prescribe communications (Floricel, Piperca & Banik 

2011). Thus, organizational strategies that foster collaboration, such as partnering and integrated 

project delivery (Naoum 2003; Cohen 2010), or encourage frequent communication, such as agile 

methods (Ballard & Tommelein 2012), help projects adjustments to unexpected market 

developments. For organization complexity, setting interfaces early on also risks routinizing the 

communication patterns, which precludes adaptation by entrenching old implicit representations 

and preventing new systemic sensemaking (Henderson & Clark 1990). The alternative is, once 

more, to foster organizational representation updating through networks with strong 

communication ties between participants (Dietricht et al. 2013; Verganti 1999), orchestrated by 

actors with strong integrative abilities (Brusoni et al. 2001), and driven to collaborate by shared 

responsibilities (Dougherty 2001). These arguments led us to propose the following hypothesis: 

 

H5:  Organizing strategies relying on integration-collaboration will interact with dynamic 

complexity factors, namely market (H5a) and organizational (H5b) categories, with 

beneficial effects on project performance, particularly completion and innovation. 

 Together these hypotheses suggest a systematic association between complexity factors 

and strategy elements in the form of interactions that reverse the negative impact of complexity on 



 
 

different types of performance. All hypothesized relations are depicted in Figure 1. Their empirical 

corroboration is described in the next section. 

 

4. Methods 

We attempt a preliminary corroboration of the hypotheses using data from a survey of complex 

projects, which studied the response capacity of complex projects (see Floricel, Piperca & Banik 

2011 for details). The initial theoretical framework of that research did not include variables for 

complexity, but implicitly accounted for it by targeting certain types of projects. Yet, distinct 

complexity factors emerged as important from the initial qualitative stage of the research, which 

performed 17 qualitative case studies of complex projects in three sectors: biopharmaceutical, 

information and communication systems, as well as energy and transportation infrastructure. In 

that stage, a total of 47 interviews as well as tens of documents were analyzed based on a semi-

grounded approach (Corbin & Strauss 1990), using case narratives to capture contexts, systemic 

interactions and processes; inductive content analysis to develop constructs; as well as intra- and 

inter-case comparisons to work out the relations between constructs. These results helped rethink 

the theoretical framework, and enabled the quantitative survey that provides data for this article. 

 Instrument development and data gathering. Based on the theoretical framework and 

language obtained from interviews, questionnaire items were generated for each variable. Similar 

psychometric measures, seven-point Likert-type scales, were used throughout the questionnaire 

(Meyers, Gamst, & Guarino, 2005: 23). The questionnaire was reviewed by three scholars with 

practical experience in project management, and by one practitioner. Their comments were used 

to prepare the final version of the questionnaire that was implemented online. During the fall of 

2011, this version was administered to practitioners who participated in projects that were just 

completed at the time. Analyses presented here rely on a maximum of 81 answers (see Sample). 

This represents a response rate of just below 10% with respect to the number of emails sent out, 

reasonably good for email surveys, which often go as low as 2 percent (Tucker, 2010), even when 

using the best practices proposed by Dillman, Smyth, and Christian (2009). The pool of 



 
 

respondents was limited by the low number of complex projects. In addition, 32 respondents 

initially agreed to participate, but never completed the questionnaire, despite two reminders. 

  Sample. Although the total sample consists of 81 cases, 1 respondent did not complete 

strategic practices section and 9 did not complete project performance section. This attrition may 

have occurred because the overall questionnaire was lengthy, including hundreds of items. Even 

among those who finished the questionnaire, some respondents did not answer one item, here and 

there. Such missing values (< 1 % of responses) were replaced by sample means for the respective 

items. The number of cases usable in each form of data analysis is stated below or else implied by 

degrees of freedom reported. This sample size is acceptable for the analyses that we performed, in 

that we maintained an approximate ratio of 5 cases to each variable. The sample is diversified 

geographically, and by project type and sector. Locations span 5 continents: North America (39), 

Europe (26), Latin America (7), Africa (6), and Australia (3). Sectors and types of projects include: 

energy (power generation including offshore and nonconventional, oil and gas including offshore, 

biofuel including demonstration); transportation infrastructure (highways, underpasses, tunnels, 

bridges, railroads, urban transit, airport terminals, ports), water infrastructure (water and sewer, 

flood protection); information systems and telecommunication infrastructure; mining and 

manufacturing facilities; sports, cultural, urban and tourism facilities. 

 Measures. Because all scales were new and, especially for complexity, emerged from a 

semi-grounded procedure, we used for validation a combination of exploratory and confirmatory 

analyses. Survey items for project complexity were entered into a common factor analysis. Non-

orthogonal (promax) rotation was used to reduce—but not artificially eliminate—correlations 

among resulting scores that would later be used as predictors in multiple regression (MR) analysis. 

After initial analyses, items that violated simple structure, namely those with factor loadings above 

0.40 on a secondary factor were removed and the analysis was repeated until arriving at the 

structure shown in Appendix Table A1. Aspects of planning strategy were analyzed in the same 

manner (Appendix Table A2). Corresponding factor scores were produced, and correlations within 

and between the two sets of factor scores appear in Table 2. Performance outcome scores were 



 
 

produced as averages of survey items that appeared together on a factor, so that findings could be 

expressed in terms of answers on a seven-point scale. Constituent items for the four performance 

aspects, validated via factor analyses, and measure reliabilities are shown in Appendix Table A3.  

Analyses. Canonical correlation analysis examined, first, the association of complexity 

factors with performance factors in order to corroborate Hypothesis 1. We also used canonical 

correlation to analyze the association of complexity factors with planning strategy variables; 

results helped us interpret results for the remaining hypotheses. In both cases, this multivariate 

statistical method reduced the 16 pairwise correlations between complexity and performance or 

strategy variables to the canonical correlations reported. Further, to corroborate Hypotheses 2 to 

5, multiple regression (MR) analyses examined associations of performance outcomes with 

complexity factors, planning factors, and the various two-way interactions each involving a 

complexity factor and a planning factor. The 16 possible two-way interaction terms were produced 

by multiplying together each interaction term’s complexity and planning linear components. After 

entering linear terms simultaneously (4 each for complexity and planning) in a first hierarchical 

MR step, we then entered all 16 interaction terms with stepwise backward elimination analysis. 

Following Fleiss (1986) and others, we set .10 as a criterion for maintaining interaction terms for 

further analysis (described with Results). It should be noted that all linear terms were maintained 

in all four MR analyses (one for each outcome) throughout the analysis. This approach maintained 

interpretability of the interaction terms as such (Dawson, 2014).  

Due to the use of stepwise regression, the MR analysis should be considered exploratory, 

because the resulting number of statistical tests increases the possibility that some findings at the 

given error rate have been obtained by chance. However, a further aspect of our further analyses 

sought to reduce this concern. Specifically, for each of the statistically significant (p < .05) or 

marginal (p < 10) two-way interactions, finer-grained analysis of “simple slopes” was conducted 

based on Preacher, Curran, and Bauer (2006). We describe results only for instances when these 

analyses pointed to sizable differences in, and statistical significance of (at p < .05), one or more 

regression slopes in connection with each reported interaction. 



 
 

 

5. Results 

Global Associations of Complexity Factors with Project Performance Factors. As a global test 

of Hypothesis 1 concerning the general effect of complexity on project performance, canonical 

correlation analysis was conducted with the measures listed in the first four and last four rows of 

Table 2. This analysis may be understood to reduce the correlations involving all eight variables 

to produce the summary results, or "global" results, in Table 3. This summary is accomplished by 

forming optimal linear composites of the variables involved. 

In the findings in Table 3, a single canonical correlation, at .52, is seen to be statistically 

significant. The pattern of canonical loadings in the table provides a compelling description of the 

overall association here. Given the generally similar and uniformly positive loadings in the table's 

top section, the complexity factors turn out to be quite consistent in their apparent effects. This 

common effect, according to the table's middle section, is to undermine completion performance, 

as expected given H1, yet enhance innovation performance, contrary to prediction. 

Global Associations of Complexity Factors with Planning Strategy Factors. As a 

preliminary analysis intended to aid interpretation of later findings, the measures of complexity 

types and planning strategy were entered into canonical correlation analysis. This analysis may be 

understood to reduce the correlations in the first 8 rows of Table 2 to produce the summary results, 

or "global" results, in Table 4. This summary is accomplished by forming optimal linear 

composites of the variables involved. 

The column in Table 4 for canonical variate 1 shows that a first pair (top and middle 

sections of first column) of sizably correlated (.56, bottom section) and statistically significant 

linear composites was obtained in the analysis. In the composite weighting scheme for Complexity 

factors, Organizational complexity, especially, and Institutional and Market complexity, 

secondarily, received substantial weight; Technical complexity did not. In the corresponding 

scheme for Planning factors, New knowledge received high positive weight but Existing 

knowledge received high negative weight. These values give emphasis to the pattern of 



 
 

correlations in Table 2 in which New knowledge has a positive and statistically significant 

correlation with all of the planning strategy variables, but Existing knowledge's corresponding 

correlations are mostly negative. There is also a suggestion of greater use overall of Integration 

and lesser use of Separation with greater amounts of these forms of complexity, again consistent 

with the correlations in Table 2 upon which this global analysis was based. 

Values in the table column for canonical variate 2 were obtained by analysis of residual 

associations after application of variate 1 to account for the correlations in Table 2. These values 

and the statistical tests below them indicate that higher Technical complexity (with its loading of 

.92) is associated with greater use of both New knowledge and Existing knowledge. No further 

residual associations were statistically significant. 

These results suggest that project managers have some characteristic ways of responding 

to particular forms of complexity.  When PMs perceive technical complexity they are especially 

likely to use Existing knowledge and they develop New knowledge. With other forms of 

complexity, use of Existing knowledge is less evident but New knowledge remains prominent. 

Performance prediction from Complexity and Planning Strategies and their interactions. 

As detailed under Methods, after forming 4 performance outcome scores (according to table A3 in 

the Appendix), 8 linear predictor terms (see appendix Tables A1 for complexity factors and A2 for 

strategy variables), and the multiplicative terms for interactions between complexity factors and 

strategy variables, a multi-step multiple regression (MR) analysis was conducted for each outcome 

variable. Table 5 provides the unstandardized regression coefficients and the full equation 

parameters and statistics. 

Linear terms’ associations with outcomes.  The 8 linear terms were entered in the first step 

of each MR analysis. Results are shown in the columns C1, I1, O1 and V1 of Table 5. It is 

noteworthy that few tests for direct effects coefficients reached statistical significance (see note to 

the table). Coefficients reflecting the direct influence of complexity on performance provide an 

additional corroboration for Hypothesis 1, which controls for the used strategies. Coefficients were 

mostly negative for the impact of complexity variables on completion outcome, including one 



 
 

marginally significant for technical complexity. However, coefficients were positive for the impact 

of complexity on innovation performance, with one of these associations, concerning market 

complexity, being very close the marginal significance level. Coefficients for relations between 

complexity and other performance variables had mixed signs and no significant values. This 

corroborates the results obtained with the help of canonical correlations and provides some support 

for Hypothesis 1. Regarding the direct impact of planning-stage strategies, which could be used to 

interpret other results, existing knowledge exploitation had mostly negative signs, but the other 

three types of strategies had only positive signs. Of these, Separate organizational strategy has a 

significant positive influence on all dimensions of performance, except for innovation for which 

the level of significance is marginal.  

  Analyses of interactive terms’ associations. By entering only the linear terms in the first 

step and then following with interactions, it was possible to assess the predictive contribution of 

interactions. While keeping in mind the caveat stated under Methods, concerning the statistical 

consequences of stepwise MR procedures, we note that these contributions were sizable, ranging 

from an approximate 50% to a 100% increase (i.e., a doubling) of overall variance explained by 

regression equations that included interactions. For example, explained variance increased from 

0.202 to 0.353 for Completion performance—or from 0.101 to 0.208 in the metric of adjusted R-

square. Further, predicting all four outcomes by linear terms alone was of marginal statistical 

significance, while equations with interactions, except Value creation, were clearly significant. 

The specific interaction terms that reached the specified alpha level for further scrutiny (p 

< .10) are shown in the second column under each outcome variable’s heading in Table 5 (columns 

C2, I2, O2 and V2).  

Figures 2, 3, and 4 describe the particular forms taken by interactions of complexity with 

planning strategies. Each sub-figure (e.g., Fig. 2a) corresponds with an interaction coefficient in 

the table. However, not all coefficients have a corresponding sub-figure, because only interaction 

terms for which one of the simple slopes reached p < .05 are presented in a corresponding graph. 

In these figures, a simple slope describes the association between a planning strategy and an 



 
 

outcome variable for projects with a level of complexity that is either 1 standard deviation (SD) 

below the mean for the particular form of complexity, or 1 SD above the mean (Dawson, 2014; 

Preacher et al., 2006). Significant simple slopes are indicated as such in the figures. 

 Completion performance. Figure 2a suggests an interaction between New Knowledge and 

Technical Complexity. In projects with high Technical Complexity (structural and 

representational), a higher use of New Knowledge increases the chances of high Completion 

performance. This slope is as predicted by our H3a. 

Figure 2b shows a prevalence of low Completion performance among projects with low 

Technical complexity but high use of Existing knowledge. This negative slope was not predicted 

with respect to this representational type of complexity, but the graphical pattern (unlike the 

respective coefficient in Table 5) cannot be considered as an indirect disconfirmation of H3a.  

Figure 2c shows an interaction between New Knowledge and Organizational Complexity. 

Namely, for projects with high Organizational complexity (dynamic and intrinsic) projects with 

higher production of New Knowledge are more often associated with higher completion 

performance. This negative slope was not expected based on H2b, which predicted a beneficial 

impact from interactions between Existing Knowledge and Organizational Complexity.  

Figure 2d also presents a strong positive association between New Knowledge and Market 

Complexity. Specifically, in conditions of high Market Complexity, the higher use of New 

Knowledge production is associated with more prevalence of high Completion performance. This 

slope corroborates the relation predicted by H3b. 

Finally, figure 2e depicts an interaction between Institutional Complexity and New 

Knowledge. In particular, for low Institutional Complexity, a higher production of New 

Knowledge is associated with higher Completion performance. This slope could be interpreted as 

providing indirect support for our H2a, which suggested for high Institutional Complexity a 

positive association of project performance with Existing Knowledge strategies.   

Innovation performance. In Figure 3a the interaction between Institutional complexity and 

Existing knowledge reveals a prevalence of low innovation performance among projects with low 



 
 

Institutional complexity that make higher use of Existing knowledge. This graphical pattern can 

be seen as providing indirect support to our hypothesis H2a, which indicated a beneficial effect on 

project performance from using high levels of Existing Knowledge at high levels of Institutional 

Complexity. In fact, the corresponding coefficient in Table 5, with a significance level near .05, 

would provide just such a confirmation, but we preferred to emphasize the easier to interpret 

graphical analyses.  

Figure 3b indicates that greater use of Separation strategy is associated with greater 

Innovation performance only with projects of low Institutional Complexity. Our hypothesis H4b 

predicted a similar relation for high Institutional Complexity. In Figure 3b, the slope for such high 

levels is slightly positive but not significant. Together, these two slopes (but not the corresponding 

coefficient in Table 5) can be seen as providing indirect support for H4a.   

Figure 3c shows, again, a striking increase in Innovation performance between projects of 

low rather than high Market complexity when a high use of Separation strategy occurs. This 

relation can be seen as providing indirect support for our hypothesis H5a because, which classified 

market complexity as dynamic and hence more suitable for collaboration strategies when its levels 

are high. 

Operation performance. In figure 4a, we observe the increase in Operation performance in 

conditions of High market complexity (dynamic and representational) when higher levels of 

Integrate strategies are used. This relation corroborates our hypothesis H5a.  

Figure 4b shows a sizable increase of Operation performance in conditions of High 

Institutional Complexity (structural and intrinsic) when Separate strategies are used to a higher 

extent. This relation was also expected in light our hypothesis H4b. 

  Value creation performance interactions are not discussed in detail because the overall 

regression equation is only marginally significant and no specific interaction term yields 

significant slopes. The failure to explain the variation in value performance may be caused, by the 

large number of factors that affect this indicator. Also, this long term factor was assessed soon 

after completion, perhaps too early for a definitive picture. 



 
 

 

6. Discussion and conclusions 

Results discussed above corroborate our general theoretical arguments as well as most of our 

detailed theoretical predictions. When some arguments and predictions were not supported, our 

theoretical framework and additional analyses led us to intriguing new interpretations about the 

nature of certain complexity types, and about the representational abilities of certain strategic 

practices. With respect to Hypothesis 1, the canonical analysis suggested that complexity factors 

were collectively associated with a reduction in completion performance, as we predicted, but 

surprisingly, they are also associated with an increase in innovation performance. Regression 

analysis of the direct effects from separate variables to performance reveal a similar pattern of 

technical complexity affecting negatively completion performance and market complexity, 

perhaps, helping increase innovation performance. A commonsensical interpretation of the 

surprising finding for innovation performance is provided by the well-known saying that 

“necessity is the mother of invention.” But, more generally, these results suggest a more careful 

consideration of complexity effects. While project completion, perhaps the closest scrutinized 

performance indicator, is indeed negatively affected by most complexity factors, the others are 

not. Besides innovation, for operation and value creation evidence is mixed at best. Moreover, 

from multiple regressions, institutional complexity seems to have a mostly positive impact on 

performance. This suggests that perceptions of high complexity may generate more intense 

representation efforts, followed by the implementation of special strategies. Evidence for this 

comes from the regression results referring to operation performance that also include interaction 

terms (column O2 in Table 5), which show that technical and organizational complexity have a 

negative effect on this indicator of performance, but this effect may be counterbalanced by some 

interactions terms (and by a positive effect of institutional performance). The negative impact of 

higher levels on some complexity factors may be compensated by the selection of more suitable 

strategies for dealing with them. In general, complexity challenges may lead to more careful 

planning and better strategy selection, with a positive impact on some aspects of performance. 



 
 

 But what strategies are more appropriate for each complexity factor? We summarized the 

results with respect to interactions between complexity factors and planning-stage strategies, re-

organizing them by complexity factor rather than by performance outcome and comparing them 

to the hypothesized relations. The summary presented in Table 6 shows that most predictions are 

corroborated directly or indirectly by these results. Perhaps the clearest corroboration refers to 

market complexity. In line with hypotheses H3b and H5a development strategies that produce new 

knowledge iteratively and project organizations that integrate participants’ contributions and foster 

collaboration between them appear to interact with this complexity factor with beneficial effects 

for performance, the first strategy for completion, and the second one for operation. Indirectly, this 

also validates our assumption that market complexity is representational and dynamic, and that its 

critical aspects are predictive model imperfection and resulting surprises.  

The other factor for which predictions are well supported is institutional complexity. Its 

expected beneficial interaction with strategies that separate the tasks and organizational units into 

modules receives (H4b) one direct and one indirect element of support, from regressions for 

operation and, respectively, innovation performance. The other hypothesized interaction, namely 

with strategies that exploit existing generic knowledge (H2a) receives indirect evidence from two 

equations, for innovation and completion performance. Again, this may provide indirect support 

for assigning institutional complexity to the static and intrinsic ends. It is also interesting to note 

that the two complexity factors for which predictions were corroborated are on the opposite ends 

of our framework, which we interpret as supporting the validity of its dimensions. 

Our predictions regarding technical complexity obtain only partial confirmation. Namely, 

the expected beneficial interaction with new knowledge production strategies (H3a) gets direct 

support with regard to completion performance. However, unexpectedly, strategies that exploit 

existing knowledge also appear to interact with technical complexity, also with beneficial effects 

for completion performance. We return below to further analyze this combination, unexpected for 

what we deemed to be a representational kind of complexity. We also should mention that the 



 
 

expected beneficial interaction between technical complexity and separation strategies (H4a) was 

not supported, which may be interpreted as suggesting that this factor is not so clearly structural. 

Finally, organizational complexity is the only factor for which our hypotheses received no 

support. In fact, rather than interacting with strategies exploiting existing knowledge, as our 

assignment of this factor to the intrinsic category would predict (H2b), it appears to interact with 

new knowledge production, with beneficial effects for completion performance. This suggests that 

this factor belongs to the representational end of complexity, an intriguing result, given the care 

we took to show that organizational complexity is most likely intrinsic. This result may have 

occurred because some organizational aspects, particularly those referring to the execution stage, 

which has the most immediate effect on the assessment of completion performance, may display 

representational characteristics. In other words, the charts used to shape this aspect may in fact 

have high-enough correspondence to enable prediction and control. Also, our expectation that 

organizational complexity will interact with integration strategies with a beneficial effect for 

performance (H5b) did not receive any support, which suggests that this factor may not be on the 

dynamic end. Perhaps the intertwining of social relations with the material aspects of the artifact 

being developed as well as with various tools, electronic forms, surveillance systems, roadways 

and fences, constrains and regularizes these relations to a point when organizational complexity 

acquires structural traits, inducing project managers to compare it to technical complexity. 

In order to understand the lack of support for some hypothesized relations we also probed 

the association between complexity factors affecting a project and the selected planning-stage 

strategies. Canonical correlation results in Table 4 suggest the existence of two configurations of 

complexities in association with planning practices. The first canonical variate implies that, in 

conditions of high organizational and market complexity, which are both considered dynamic, 

together with high institutional complexity, which we deemed structural but intrinsic, thus less 

controllable, planners prefer development processes based on new knowledge production 

combined with collaboration, and avoid rather strongly development processes based on existing 

knowledge and separation. As mentioned in the theory section, we do not assume that managers 



 
 

will always select the right strategies and we make no prediction with respect to their choices, only 

with respect to the effect that an interaction between these choices and complexity factors will 

have for performance. Yet, an issue that could be explored by further research is whether the 

association of organizational complexity and market complexity in this configuration accounts for 

the unexpected interaction of organizational complexity and new knowledge. 

 The second canonical variate in Table 4 suggests that, when technical complexity is the 

dominant concern, which we deem representational in nature, planners prefer to use development 

processes that exploit existing knowledge along with the processes that produce new knowledge. 

Further research should consider whether this second configuration of planning practices may 

account for results featuring, simultaneously, the expected interaction of technical complexity with 

new knowledge production but also, the unexpected one, with strategies that exploit existing 

knowledge. Possibly, regulation, tradition or management fads induce planners to blend existing 

knowledge exploitation with knowledge production, and regression analyses attribute some of the 

beneficial effect on completion performance to the use of existing knowledge.  

 Irrespective of the less well supported predictions, overall results back the more general 

argument that certain planning-stage strategies have a better match for some complexity factors, 

and their interaction has a beneficial effect on performance. The geographic, project and sectoral 

diversity of our sample ensures that these specific and general conclusions have quite broad 

applicability. It is also important to mention that these significant results were obtained with a 

relatively small sample. A number of direct effects and interaction terms, expected or not, may 

have not reached significance with this sample size. Further research, with larger samples and 

research instruments revised using lessons learned from this research, could perhaps corroborate 

the observed relations, uncover additional ones, and help validate and improve the underlying 

theoretical assumptions, and increase the confidence in the eventual practical recommendations.  

 Our theoretical development and empirical results may also provide other contributions to 

complexity research in the project management field. On one end, we distilled a vast generic and 

disciplinary literature, which examined complexity at a fundamental level, into a small set of 



 
 

dimensions and concepts that was then used to make sense of project complexity. On the other end 

of our effort to connect fundamental thinking about complexity with subjective inventories of 

practical complexity factors, we employed a quite original method of theoretical analysis which 

could be, in retrospect, termed the phenomenology of complexity. Moreover, through the second 

order interpretation we made of the theoretical and practice-oriented literature on project 

complexity, this method also has elements of what could be called a hermeneutics of complexity. 

As a proximate outcome, this approach enabled us to assign key complexity factors to our basic 

categories of complexity and hence, connect the abstract and practical streams of research on 

complexity. It also advanced our empirical validation goal by providing a rationale for the use of 

psychometric scales to study complexity. But this approach also opens the door for connecting 

complexity research to the ‘practice turn’ in project management and organization studies. This 

perspective, with its emphasis on micro-level, situated, everyday activities and on observational 

studies enable a more direct observation and interpretation of project managers’ perceptions of 

complexity, and could help us saturate or modify categories such as structural versus dynamic, or 

intrinsic versus representational. Moreover, such studies could help us grasp how planning stage 

strategies lead to practices that, day after day, address the challenges raised by complexity. 

Our results could also contribute to other fields. Our conceptualization of complexity and 

our empirical results can be used in some technical domains to develop theories as well as practical 

approaches that address more specific forms of complexity affecting those fields. Moreover, the 

fact that our theory refers to cognitive, social and organizational aspects of complexity, including 

their dynamic aspects, can help inform more fundamental theories of cognition, team 

collaboration, and organizational structure and processes that address complexity. Together, these 

results could help improve the effectiveness of scientific and technological development activities, 

and of managing teams, organizations and networks of firms in a variety of domains. Besides, our 

results could hopefully inspire new insights that help advance more abstract conceptualizations of 

complexity, the way these nourished our reflection. 



 
 

In practical terms, these results contribute to a deeper understanding of the rationales for 

some of the most commonly used planning-stage strategies, particularly of the way they impact 

the ability of projects to address various types of complexity. The prediction and validation effort 

that we deployed in this paper with respect to entire categories of factors, could be extended, by 

relying on the theoretical framework and methods deployed in this paper, to study more detailed 

complexity factors identified by the practical stream of research, such as the 50 factors of the TOE 

framework. The deeper understanding of these factors and validation of their interactions with 

various project management practices can help improved planning practices by eliminating various 

inessential elements that were included by accident and persists by tradition. It may even lead to 

new practical approaches, specifically designed to address different project complexity factors. 

The more nuanced understanding we propose for the key complexity factors can also result in a 

better mapping of various practices and in criteria for selecting the most appropriate practices for 

a given project, and in improved guidelines for their concrete application.  
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Table 1. Types of project complexity, their markers and effects on planners, corresponding 

categories of practical factors  and their influence on performance 

 Structural Dynamic 

Intrinsic Non-additive aggregation or interactions  

Multilevel frameworks 

 

Effect: unpredictable form 

Typical factor: institutional complexity 

Number and interdependence of variables 

Evolutionary and dialectic frameworks 

 

Effect: path-dependent or chaotic change 

Typical factor: organizational complexity 

Represen- 

tational 

Abstraction and computation difficulties 

Systematic trial and error 

 

Effect: unintended properties 

Typical factor: technical complexity 

Hidden interdependencies 

Contingency planning and early tests 

 

Effect: repeated significant surprises 

Typical factor: market complexity 



 
 

 
Table 2. Inter-correlations of scores for complexity, planning strategy, and performance variables. 

 

Technical             

Organizational -0.10            

Institutional 0.17 0.57**           

Market 0.22† 0.04 0.13          

New Knowledge 0.38** 0.30** 0.27* 0.24*         

Existing Knowledge 0.15 -0.42** -0.23* -0.24* -0.31**        

Integrate 0.21† 0.10 0.09 0.20† 0.33** -0.02       

Separate 0.03 -0.15 -0.12 -0.26* -0.20† 0.41** -0.05      

Completion -0.18 -0.07 -0.11 -0.15 -0.10 0.14 0.13 0.35**     

Innovation 0.22† 0.22† 0.26* 0.25* 0.27* -0.12 0.17 0.09 0.22†    

Operation -0.02 -0.14 0.01 -0.02 -0.07 0.18 0.14 0.36** 0.56** 0.10   

Value Creation 0.03 0.13 0.03 -0.10 0.05 0.10 0.19 0.31** 0.43** 0.29* 0.37**  
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**p < .01, *p < .05, †p < .10   

 



 
 

 
Table 3. Results of canonical correlation analysis relating complexity factors to performance factors. 
 

 Canonical Variate 

  1 

Canonical loadings  

  Complexity Factors  

 Technical .66 

 Organizational .41 

 Institutional .63 

 Market .71 

  Performance Factors  

 Completion -.44 

 Innovation .75 

 Operation -.09 

 Value Creation -.01 

   

Canonical correlation 0.52 

 Chi-square 49.01 

 df 16 

 p-level .026 
 
 
Note. Values entered in the first 8 rows describe correlations of measured variables with the single 
obtained canonical variate that was statistically significant. 
 
 
  



 
 

 
Table 4. Results of canonical correlation analysis relating complexity factors to planning strategy factors. 
 
 

  Canonical Variate 

  1 2 

Canonical loadings   

  Complexity Factors   

 Technical 0.38 0.92 

 Organizational 0.76 -0.34 

 Institutional 0.54 -0.01 

 Market 0.59 -0.12 

  Planning Strategies   

 New Knowledge 0.86 0.48 

 Existing Knowledge -0.71 0.68 

 Integrate 0.44 0.24 

 Separate -0.42 0.32 

    

Canonical correlations 0.56 0.47 

 Chi-square 49.01 21.30 

 df 16 9 

 p-level < .001 0.011 
 
 
Note. Values entered in the first 8 rows describe correlations of measured variables with the two 
obtained canonical variates that were statistically significant. 
 
 
 



 
 

Table 5. Unstandardized regression coefficients and equation statistics from multiple regression analyses 

Complexity and 
Planning Strategy 
Predictor Variables 

Performance outcome variables 

Completion Innovation Operation Value creation 

C1 C2 I1 I2 O1 O2 V1 V2 

Constant 4.912 4.675 4.814 4.674 4.217 4.077 5.068 4.989 

Technical complexity -0.309 -0.296 0.132 0.260 -0.185 -0.382 -0.005 -0.067 

Organizational complexity -0.081 -0.231 0.160 -0.009 -0.279 -0.330 0.216 0.102 

Market complexity -0.069 -0.231 0.350 0.219 0.068 0.074 -0.071 -0.223 

Institutional complexity 0.023 0.212 0.296 0.441 0.256 0.391 -0.039 0.085 

Existing knowledge exploitation strategy -0.028 -0.149 -0.157 -0.316 -0.009 0.049 -0.001 -0.062 

New knowledge production strategy 0.072 0.196 0.226 0.157 0.036 0.190 0.042 0.108 

Separate organization strategy 0.484 0.575 0.441 0.528 0.518 0.516 0.423 0.469 

Collaborate organization strategy 0.239 0.197 0.102 0.080 0.233 0.213 0.216 0.204 

Technical complexity x Existing knowledge  0.407    0.280   

Technical complexity x New knowledge  0.368       

Organization complexity x Existing knowledge      -0.363   

Organizational complexity x New knowledge  0.368      0.365 

Market complexity x New knowledge   0.425      0.369 

Market complexity x Separate organization    -0.815     

Market complexity x Integrate organization      0.438   

Institutional complexity x Existing knowledge    0.421     

Institutional complexity x New knowledge  -0.425      -0.293 

Institutional complexity x Separate organization    -0.454  0.367   

         

R-square 0.202 0.353 0.205 0.395 0.191 0.368 0.169 0.257 

Adjusted R-square 0.101 0.208 0.104 0.284 0.088 0.240 0.062 0.118 

F-ratio 2.00 2.44 2.03 3.56 1.86 2.87 1.57 1.85 

df numerator, denominator 8, 63 13, 58 8, 63 11, 60 8, 63 12, 59 8, 62 11, 59 

p-level 0.051 0.010 0.057 0.001 0.082 0.004 0.151 0.065 

Note:  Regression coefficients are all unstandardized and are in boldface when statistically significant (p < .05) or in italicized boldface when 
marginally significant (p < .10). Underscored coefficients are very close to the next best level of significance 

 



 
 

Table 6. Summary of results compared to initial hypotheses, grouped by complexity factor  

Hypothesized complexity by strategy interaction 
effects with beneficial impact on project 

performance 
(organized by complexity factor)  

Observed results  

Boldface = direct confirmation 

Boldface italics = indirect confirmation 

Regular font = result involving different strategy 

Complexity  Strategy Observed interactions Outcome 

Market 

New knowledge (H3b) Market x New knowledge  Completion 

Integrate organization (H5a) 
Market x Integrate  Operation  

(–) Market complexity x Separate Innovation 

Organization 
Existing knowledge (H2b) Organizational x New knowledge  Completion 

Integrate organization (H5b)   

Technical 
New knowledge (H3a) 

Technical x New knowledge Completion  

Technical x Existing knowledge Completion 

Separate organization (H4a)   

Institutional 

Existing knowledge (H2a) 

Institutional  x Existing knowledge (high 

use of existing knowledge reduces 

performance at low levels of 

institutional complexity) 

Innovation  

 

 

(–) Institutional x New knowledge   Completion 

Separate organization (H4b) 

Institutional x Separate  Operation 

Institutional x Separate          (stronger 

for low complexity) 
Innovation 

Note: When no sign is indicated the interaction has a beneficial effect on the performance indicated on 
the rightmost column; when the sign is negative the effect is detrimental. 

 



 
 

Figure 1: Summary of hypotheses regarding influences and interactions 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 
 
 
 
 

 

 

Note 1: All interactions increase the respective performance indicator in the presence of high 

levels of the particular type of complexity if high levels of the respective planning 

variable are present 

Note 2:  Dotted lines represent the fact that the interaction effect stems from the correspondence 

between a given planning stage strategy and the nature of complexity as expressed by 

the respective lines or columns 
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Figure 2. Graphical depictions of interaction effects for Completion Performance 

2a.  Technical Complexity by New Knowledge 2b. Technical Complexity by Existing Knowledge 

  
2c. Organizational Complexity by New Knowledge 2d. Market Complexity by New Knowledge 

  

2e. Institutional Complexity by New Knowledge  

 

 

 

Note. Differential associations of planning 

strategies with the outcome, at low and high 

levels of the moderating (interacting) 

complexity variable, are depicted by 

showing the regression slopes at +1 Standard 

Deviation and -1 Standard Deviation on the 

complexity variable. This slope  is provided 

on the graph whenever it reached statistical 

significance. 
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 Figure 3. Graphical depictions of interaction effects for Innovation Performance 

3a Institutional Complexity by Existing Knowledge 3b Institutional Complexity by Separation Strategy  

  
3c. Market Complexity by Separation Strategy  

 

 

 

Note. Differential associations of planning 

strategies with the outcome, at low and high 

levels of the moderating (interacting) 

complexity variable, are depicted by 

showing the regression slopes at +1 

Standard Deviation and -1 Standard 

Deviation on the complexity variable. This 

slope  is provided on the graph whenever it 

reached statistical significance. 

 

 

 

  

3

3.5

4

4.5

5

5.5

6

Low Existing

knowledge

High Existing

knowledge

In
n

o
v
a
ti

o
n

 P
er

fo
rm

a
n

ce

Low Institutional Complexity
High Institutional Complexity

3

3.5

4

4.5

5

5.5

6

Low Separation

Strategy

High Separation

Strategy

In
n

o
v
a
ti

o
n

 P
er

fo
rm

a
n

ce

Low Institutional Complexity
High Institutional Complexity

3

3.5

4

4.5

5

5.5

6

Low Separation

Strategy

High Separation

Strategy

In
n

o
v
a
ti

o
n

 P
er

fo
rm

a
n

ce

Low Market Complexity
High Market Complexity

slope = -0.737 
t-value = -2.484 
p = 0.016 

slope = 0.982 
t-value = 3.121 
p = 0.003 

slope = 1.343 
t-value = 4.428 
p < 0.001 



 
 

Figure 4. Graphical depictions of interaction effects for Operation Performance 

4a. Market Complexity by Integrate Strategy  4b. Institutional Complex. by Separate Strategy 

 
 

 
Note. Differential associations of planning strategies with the outcome, at low and high levels of the 

moderating (interacting) complexity variable, are depicted by showing the regression slopes at +1 

Standard Deviation and -1 Standard Deviation on the complexity variable. This slope is provided on the 

graph whenever it reached statistical significance. 
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APPENDIX A. Items and variable statistics 

Table A1. Items, descriptive statistics and factor loadings for project complexity variables 

Items used to measure project complexity Mean 
Standard 
Deviation 

Factor 1 
Technical 

(23%) 

Factor 2 
Organizational 

(19%) 

Factor 3 
Institutional 

(10%) 

Factor 4 
Market 
(6%) 

Technical Complexity   
    

Our challenge was maintaining full control over the behavior of the artifacts we made 4.16 1.87 0.843 0.092 -0.187 0.020 
We strived to gain influence over natural processes affected by many invisible factors 3.88 1.86 0.650 0.004 0.115 -0.066 
Our  problem was ensuring coherent interoperation between scores of artifact functions 4.47 1.75 0.855 -0.023 0.043 0.044 

Organizational Complexity   
    

The project was much larger than all other projects the owner had ever managed 4.17 2.22 0.087 0.566 0.180 -0.261 
The project was the first to implement new project management processes and norms 4.05 2.14 -0.129 0.935 -0.034 0.088 
During this project, the owner organization embarked on a major restructuring 3.86 2.07 0.067 0.498 0.288 0.145 
The project was seen as an occasion for trying new financial or contractual methods 4.30 2.07 0.103 0.677 -0.163 -0.013 

Market Complexity 
      

The project output targeted a market whose emergence and growth were still uncertain 2.81 1.94 -0.043 0.057 0.045 0.776 
The market we intended to serve was known for its severe swings in price and demand 3.27 1.88 0.044 -0.071 -0.024 0.724 

Institutional Complexity 
      

Regulatory approval was a critical precondition for initiating or exploiting the project 5.43 1.86 -0.264 0.062 0.464 -0.040 
The project was likely to become a battleground for political interests and militants 3.62 2.13 0.133 -0.098 0.927 0.036 

 
  



 
 

Table A2.  Items, descriptive statistics and factor loadings for planning-stage strategy variables 

Items used to measure planning-stage strategies Mean 
Standard 
Deviation 

Factor 1 
(New 

knowledge) 
(16%) 

Factor 2 
(Existing 

knowledge) 
(11%) 

Factor 3 
(Integrate 

organization) 
(7%) 

Factor 4 
(Separate 

organization) 
(6%) 

Existing knowledge exploitation       

We fully relied on templates, models and data already existing in our organization 3.84 1.75 0.162 0.891 -0.043 -0.105 
Past learning captured in rules and information systems was more than enough for us 3.34 1.74 -0.217 0.604 0.012 0.227 
Planning decisions followed directly from regulatory norms or industry standards 4.20 1.63 -0.084 0.640 0.010 -0.025 

New knowledge production   
    

We had to produce lots of new data and models before being able to shape this project 4.78 1.71 0.408 -0.002 -0.045 0.186 
We used a pilot project or the early stages of this project in order to gain experience 3.55 2.04 0.565 0.092 -0.020 0.041 
We carefully validated all our decisions based on simulation or external feedback  4.06 1.85 0.519 -0.047 0.106 0.260 
The planning process went through several iterations that totally redefined the project 4.93 1.72 0.499 -0.108 -0.121 -0.086 
The planning was full of twists and turns as a result of our learning and discoveries 4.93 1.71 0.567 -0.127 0.132 -0.099 
We expected to change plans for later phases based on learning from earlier phases 4.58 1.71 0.634 0.083 -0.023 -0.136 

Separate organization   
    

The plan strictly delimited the responsibility area for every participant in the project 4.90 1.49 0.044 0.039 0.221 0.623 
All contracts had to include clear and detailed specifications with substantial penalties   4.61 1.91 0.225 0.152 -0.076 0.475 
Suppliers and contractors had to provide significant warranties and performance bonds 4.96 1.63 -0.140 -0.175 -0.115 0.713 

Integrate organization   
    

Fostering collaboration between participants was seen as the only way to reduce risk 5.23 1.58 0.101 0.034 0.475 0.174 
Cost plus contracts, alliances or joint ventures were preferred as a way to build trust 3.28 1.79 0.243 0.025 0.408 -0.006 
The plan entrusted the parties to major contracts with jointly defining specifications 4.26 1.63 -0.183 0.032 0.766 -0.183 
Quality and expertise, rather than price, were the main contractor selection criteria 4.36 1.86 -0.025 -0.105 0.567 0.062 

 

  



 
 

Table A3. Items, descriptive statistics and factor loadings for project performance variables 

Items used to measure project performance Mean 
Standard 
Deviation 

Factor 1 
Completion 

Factor 2 
Innovation 

Factor 3   
Operation 

Factor 4        
Value creation 

Completion Performance (Alpha = 0.661) 
      

We put into service the entire planned scope of the project and some additional objects 5.61 1.30 0.680 0.045 0.063 0.091 
The project went on line ahead of the planned launch date set when it was approved 4.18 1.92 0.686 0.018 0.032 0.305 
The final project cost was below the budget that was approved at the go-ahead date 3.94 1.90 0.471 -0.095 0.428 0.269 
All specified functional and performance goals were met and some even exceeded 5.82 1.12 0.677 0.407 0.400 -0.134 

Innovation Performance (Alpha = 0.738)   
    

Outstanding technical accomplishments made this project a worldwide reference 5.21 1.59 0.356 0.796 0.024 0.205 
The project implemented technical innovations that were firsts in worldwide practice 4.42 1.81 -0.151 0.907 0.035 0.088 

Operational performance (Alpha = 0.635)   
    

Even when running at top regime, the project had no malfunctions, bugs or accidents 4.08 1.62 0.446 0.021 0.563 -0.071 
The operation and maintenance costs of this project are much lower than expected 3.94 1.21 -0.076 0.151 0.806 0.191 
No major new spending was needed in order to remedy problems with this project 4.56 1.74 0.485 -0.062 0.624 0.081 

Value creation performance (Alpha = 0.609)   
    

Sales and profits from this project are significantly better than expected at go-ahead 4.04 1.60 -0.042 -0.144 0.431 0.666 
The users and stakeholders of this project are delighted with the value it provides them 5.51 1.20 0.415 0.205 0.118 0.650 
The project greatly enhanced the reputation and strategic positioning of its owner 5.66 1.42 0.134 0.267 -0.052 0.767 

 
 

 

 


