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SUMMARY

Online social networks (OSNs) have become more and more popular and have attracted a great many
users. Friend recommendation, which is one of the important service in OSN, can help users discover
their interested friends and alleviate the problem of information overload. However, most of existing
recommendation methods only consider either user link or content information and hence are not effective
enough to provide high quality recommendations. In this paper, we propose a topic community-based
method via Nonnegative Matrix Factorization (NMF). This method first applies joint NMF model to mine
topic communities existing in OSN by combing link and content information. Then it computes user pairwise
similarities and makes friends recommendation based on topic communities. Furthermore, this method can
be implemented using the MapReduce distributed computing framework. Extensive experiments show that
our proposed method not only has better recommendation performance than state-of-the-art methods, but
also has good scalability to deal with the problem of friend recommendation in large-sale OSNs. Moreover,
the application case demonstrates that it can significantly improve friend recommendation service in the real
world OSN. Copyright c⃝ 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: online social networks; topic community mining; friend recommendation; nonnegative
matrix factorization; MapReduce

1. INTRODUCTION

Online social networks (OSNs), such as Facebook, LinkedIn and Twitter, have attracted billions of
users and have become the most popular platforms to publish, share and obtain information. One
of the important driving factors is that OSNs facilitate friendship establishment and maintenance
among users. However, users are often difficult to discover their appropriate and relevant friends
under the environment of information overload in large-scale OSNs and must rely heavily on friend
recommendation service provided in OSNs (Figure 1). Recently, friend recommendation methods
are mostly based on either link information (e.g., friendship or followership) [1, 2, 3] or content
information (e.g., tag, post or profile) [4, 5, 6] existing in users. However, owing to using single
information, these methods are not effective enough to recommend high quality friends to users.
For example, Figure 2 shows an example of undirected OSN graph, where every user has his/her
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2 C. HE ET AL.

own interest tag (e.g., OSN or Big data). If we only consider link information to make friend
recommendation, user u1 and u6 will be recommended to each other to add as friends, because they
have common friend u5. Nevertheless, the possibility that they accept this recommendation may be
slim for their different interest tags. On the other hand, if we only consider content information, u2

and u5 will not be recommended to each other for their different interest tags, but they have two
common friends: u1 and u3 , and thus, they may be very interested in being friends. In real life,
because of the principle known as homophily, people who share more social links and attributes
have greater probability to become friends [7, 8]. Accordingly, to provide more accurate friend
recommendation in OSNs we should both consider link and content information at the same time.
Aiming to this requirement, we propose a kind of friend recommendation method based on topic
community via joint Nonnegative Matrix Factorization (NMF). Users in the same topic community
share more similarities among themselves, including link and content features, than those outside the
community, and are more suitable to become friends. In particular, our method can be implemented
using the MapReduce distributed computing framework and achieve good scalability in processing
the large-scale OSN datasets. To the best of our knowledge, this is the first time to improve the
performance of friend recommendation in OSN using the topic community-based method via joint
NMF and our contributions are as follows:

• We design a topic community mining model that combines both link and content information
using joint NMF. Using this model we develop a multiplicative iterative update algorithm
to mine topic communities. Members in each topic community can be well guaranteed
to share more similar link and content features. Based on the results of topic community
mining we devise an algorithm to recommend Top-K friends to the target user. Moreover, for
improving the scalability of our proposed method we implement the key algorithms based on
the MapReduce distributed computing framework.
• Extensive experiments conducted on three real world OSN datasets demonstrate that the

performance of our proposed method outperforms the state-of-the-art link-based and content-
based friend recommendation methods. Furthermore, our method presents good scalability by
running on the Hadoop cluster platform. The application case also shows that our method can
improve friend recommendation service in OSNs very effectively.
• Our proposed method can address three classic problems existing in friend recommendation

in large-scale OSNs effectively: cold start, data sparsity and scalability. It can make friend
recommendation to cold start users based on their topic communities, reduce data sparsity by
mining topic communities and increase scalability by running as MapReduce programs.

The rest of the paper is organized as follows. Section 2 discusses related work including NMF-
based community mining and some representative methods of friend recommendation in OSNs.
Section 3 describes the framework and key algorithms of our proposed method in detail. Section 4
presents the results of our experimental and application study in real world OSNs. Section 5 gives
the conclusions and future work.

2. RELATED WORK

2.1. NMF-based community mining

NMF proposed by Lee and Seung is a low-rank matrix approximation model that focuses on the
analysis of nonnegative data matrices [9]. Mathematically, NMF can be described as follows: given
a matrix X ∈ Rm×n

+ , then X can be decomposed into basis matrix W and coefficient matrix H ,
such that X ≈WHT , where W ∈ Rm×r

+ and H ∈ Rn×r
+ . r is preassigned and should satisfy r ≪

min(m,n). W and H can be obtained by minimizing an objective function: J(X,WHT ), where J
is the objective function that measures dissimilarity between X and WHT . The most widely used
dissimilarity measure function is the Frobenius norm: J(X,WHT ) =∥ X −WHT ∥2F .

NMF has been proven to be closely related to the K-means and spectral clustering methods
and is widely used in the field of image analysis, text clustering and collaborative filtering
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Figure 1. Friend recommendation service in
LinkedIn OSN.

Figure 2. Toy example of an OSN.

[10, 11, 12, 13, 14]. Meanwhile, NMF-based method for community mining, which is a long-
standing yet very difficult task in social network analysis [15], has also received a lot of attention. In
[16], targeting undirected, directed and compound networks, Wang et al. proposed symmetric NMF,
asymmetric NMF and joint NMF algorithms to mine community, respectively. The correctness and
convergence properties of those algorithms were also studied. In [17], a Bayesian NMF model was
presented to extract overlapping community from a network. This scheme had the advantage of soft-
partitioning solutions and excellent module identification capabilities. Zhang et al. [18] proposed a
so called bounded nonnegative matrix tri-factorization (BNMTF) method that can explicitly model
and learn the community membership of each node as well as the interaction among communities. In
[19], Lin et al. proposed a Meta Graph NMF framework named MetaFac that can extract community
structures from various social contexts and interactions. In particular, MetaFac was also an online
method to handle time-varying relations through incremental factorization. In [20], the authors
explored how to apply the dictionary learning based on NMF to find the community structures
in social networks. Experiment results conducted in both synthetic and real world datasets shown
that this method was highly effective. The work in [21] developed a symmetric binary matrix
factorization model (SBNMF) to identify overlapping communities. This model allowed us not
only to assign community memberships explicitly to nodes, but also to distinguish outliers from
overlapping nodes. In general, existing NMF-based methods for community mining mostly consider
link information only, therefore, they are different from our method that considers both link and
content information to mine topic communities.

2.2. Friend recommendation in OSN

There have been many methods presented for friend recommendation in OSN. Generally, these
methods can be divided into three categories: link-based methods, content-based methods and
hybrid methods. Link-based methods are based on the topological characteristics of OSN. For
example, Zhu et al. [22] presented a link prediction-based approach to friend recommendation
system by combining network topology and probabilistic relational model (PRM) approaches. The
work in [23] proposed an algorithm for recommending relevant users that explores the topology
of the network. This algorithm considered different factors that allowed us to identify candidate
friends that can be considered good information sources. In [24], Carullo et al. also presented an
effective friend recommendation algorithm that exploits the already existing links/relationships and
the scalability is its major advantage. Content-based methods utilize user-generated content and
recommend friends by pairwise user similarities. For example, Akcora et al. [25] proposed a method
based on profile similarity to recommend similar friends and the similarity can be computed with
different measures. Wan et al. [26] recommended friends according to the informational utility. It
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4 C. HE ET AL.

viewed a post in social media as an item and utilized collaborative filtering techniques to predict
the rating for each post. The candidate friends are then ranked according to their informational
utility for recommendation. Hybrid methods can integrate link and content information together
to make friend recommendation. For example, Wang et al. [27] presented a novel semantic-based
friend recommendation system named Friendbook for social networks, which recommended friends
to users based on all kinds of their life styles data including social links and life documents. By
creating heterogeneous networks using user social links and attributes, Dong et al. [28] proposed a
ranking factor graph model (RFG) for predicting friend links in social networks, which effectively
improved the predictive performance. Our proposed method belongs to the hybrid one. However,
our method recommends friends based on topic community discovered by integrating user link and
content information. That is different from methods above and is actually more appropriate to reflect
user preferences on friend selection.

3. PROPOSED FRAMEWORK

Our proposed framework comprises three main phases. The first phase constructs user link matrix
and content feature matrix after data extraction and preprocessing. The second phase mines topic
communities via joint NMF model so that user membership can be determined according to his
strength distribution over given communities. The third phase computes pairwise user similarities
in each community to generate a list of candidate friends. We then combine these candidate lists
to obtain the Top-K recommendation friends for each target user. The overall framework of our
proposed method is shown in Figure 3. Before we describe the details of each phase, in Table I we
summarize the major notations used in the following sections.

OSN users

Tag

Post

Profile

Link

Link matrix

Content feature

matrix

Data

preprocessing

Joint

NMF Topic

community 1

Topic

community r

. . .

Similarity

computing

Score ranking

&Top-K friends

recommendation

Figure 3. Topic community-based friend recommendation framework.

Table I. Notations used.

Notation Description

U = {u1, u2, ..., un} The set of users
eij A linkage from ui to uj

E = {eij |ui ∈ U ∧ uj ∈ U} The set of all linkages between users
A = {a1, a2, ..., am} The set of content features
X = [xij ]

n×n ∈ Rn×n
+ The user link matrix

Y = [yij ]
m×n ∈ Rm×n

+ The content feature-user matrix
r The number of topic community

C = {c1, c2, ..., cr} The set of topic community
λ The coefficient of the regularization

3.1. Topic community mining using joint NMF

Formally, OSN which comprises link and content information can be denoted as OSN =
{U,E,A,X, Y }. Without loss of generality, we model the corresponding OSN link graph as a

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
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directed unweighted graph. Namely, for ∀xij ∈ X , if eij ∈ E, then xij = 1, else xij = 0. Because
content information, which includes user tag, post and profile, belongs to text type, the bag-of-
words model can be applied to extract content features. After filtering stop words, we use the tf -
idf (term frequency-inverse document frequency) [29] of each word as a content feature value
for corresponding users. Namely, for ∀yij ∈ Y , we compute tf -idf of feature ai in uj content
information text as its value. After data preprocessing above, we can obtain two nonnegative
matrices: X and Y , which are both fit for factorization using NMF separately. To employ both the
link and content information for mining topic community we combine X and Y into the following
joint NMF model:

min J(H,S,W ) =
1

2
(α||X −HSHT ||2F + (1− α)||Y −WHT ||2F + λ(||H||2F + ||S||2F + ||W ||2F ))

(1)
where H ∈ Rn×r

+ , S ∈ Rr×r
+ and W ∈ Rm×r

+ are the topic community indicator, the topic
community internal-strength indicator and the topic word affiliation indicator matrices, respectively.
α ∈ [0, 1] is a hyper-parameter that controls the importance of each factorization. Using the property
of Frobenius norm and the matrix trace, the objective function J can be rewritten as follows:

J =
1

2
(αtr(XXT )− αtr(XHSTHT )− αtr(HSHTXT ) + αtr(HSHTHSTHT )

+(1− α)tr(Y Y T )− 2(1− α)tr(Y HWT ) + (1− α)tr(WHTHWT )

+λtr(HTH) + λtr(STS) + λtr(WTW ))

(2)

Let H = [hij ]
n×r, S = [spq]

r×r and W = [wab]
m×r, then the minimization problem of J can be

restated as follows: minimizing J with respect to H , S and W under the constraints of hij ≥ 0,
spq ≥ 0 and wab ≥ 0. This is a typical constraint optimization problem and can be solved using the
Lagrange multiplier method. Let δij , φpq and θab be the Lagrange multipliers for constraint hij ≥ 0,
spq ≥ 0 and wab ≥ 0, respectively, then the Lagrange function L is:

L = J + δtr(HT ) + φtr(ST ) + θtr(WT ) (3)

where δ = [δij ]
n×r, φ = [φpq]

r×r and θ = [θab]
m×r. The derivatives of L with respect to H , S and

W are:

∂L

∂H
= α(HSHTHST +HSTHTHS −XHST −XTHS)

−(1− α)(Y TW −HWTW ) + λH + δ
(4)

∂L

∂S
= α(HTHSHTH −HTXH) + λS + φ (5)

∂L

∂W
= (1− α)(WHTH − Y H) + λW + θ (6)

Let ∂L/∂H = 0, ∂L/∂S = 0 and ∂L/∂W = 0, and follow the KKT complementary slackness
condition hijδij = 0, spqφpq = 0 and wabθab = 0, we derive the following multiplicative update
rules for hij , spq and wab:

hij = hij
[α(XHST +XTHS) + (1− α)Y TW ]ij

[α(HSHTHST +HSTHTHS) + (1− α)HWTW + λH]ij
(7)

spq = spq
[αHTXH]pq

[αHTHSHTH + λS]pq
(8)

wab = wab
[(1− α)Y H]ab

[(1− α)WHTH + λW ]ab
(9)

It has been proven by Lee and Seung that the objective function J is non-increasing under the
above iterative updating rules, and that the convergence of the iteration is guaranteed [9]. When the

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
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6 C. HE ET AL.

objective function J converges, we can get the local optimal solution for H,S and W , respectively.
The community membership of every user can be identified based on H . Namely, ∀hij ∈ H
represents the strength of ui belongs to community cj and we can obtain the result of community
mining by assigning every user to his maximum membership strength community. Moreover, the
topic of every community can be described using representative topic words extracted from W . The
topic community mining algorithm is summarized in Algorithm 1.

Algorithm 1 Topic community mining using joint NMF

Input: X,Y, U, r, α, λ;
Output: C = {c1, c2, ..., cr};

1: Initialize H,S and W with random nonnegative values;
2: repeat
3: Update H,S and W based on equation 7, 8 and 9, respectively;
4: until stopping condition;
5: ∀i = 1...r ci ← Ø;
6: for each ui ∈ U do
7: p = argmax

l
hil;

8: cp = cp
∪
{ui};

9: end for
10: for each ci ∈ C do
11: Extract representative topic words based on corresponding column vector W (:, i);

3.2. Friend recommendation based on topic community

After discovering topic communities, the next phase is to generate candidate friends from these
communities for recommendation. Users in the same topic community share more similar link and
content features, so they are better representatives with similar interests in comparison with those
outside the community and could be preferentially selected as candidate friends to the target user.
The rank score of every candidate friend can be computed using a community-based similarity
measure. Namely, given the candidate friend ui and the target user uj , the rank score score(i, j) can
be computed as follows:

score(i, j) = [HHT ]ij (10)

where H is derived by Algorithm 1. Finally, we sort these scores and output the Top-K friends to
recommend to uj . The complete recommendation procedure is summarized in Algorithm 2.

Algorithm 2 Friend recommendation based on topic community

Input: X,H,C,U ;
Output: Ranked recommendation list;

1: Compute community-based similarity matrix Q = HHT ;
2: for each ui ∈ U do
3: Obtain the community c which ui belongs to;
4: for each uj ∈ c ∧ xij = 0 do
5: score(i, j)← [Q]ij ;
6: Ranklist.add(i, j, score(i, j));
7: end for
8: end for
9: Return the ranked lists of friends for each user;

We use the toy example of an OSN in Figure 2 to illustrate our method. Let
U = {u1, u2, u3, u4, u5, u6, u7, u8}, A = {OSN,BigData}, r = 2, α = 0.5 and λ = 1, using
joint NMF model discussed in section 3.1 we can obtain matrices H , S and W after convergence:

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
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A TOPIC COMMUNITY-BASED METHOD FOR FRIEND RECOMMENDATION IN LARGE-SCALE OSNS 7

HT =

[
0.04 0.00 0.04 0.08 0.45 0.87 0.76 0.76
0.68 0.69 0.68 0.41 0.64 0.11 0.00 0.00

]
, S =

[
0.81 0.03
0.03 0.82

]
,W =

[
0.11 0.89
0.82 0.00

]
.

Matrix H clearly indicates that the topic community c1 = {u1, u2, u3, u4, u5} and c2 = {u6, u7, u8}.
H also advises that u5 should be an overlapping user due to its significant contribution to both
communities. Matrix S indicates that each detected topic community attains its perfect internal
strength. Matrix W indicates that the strongly correlated topic word of c1 is “Big Data” and
c2 is “OSN”. In the recommendation phase, we compute the community-based similarity matrix
Q = HHT and then can produce candidate friends for any user using Algorithm 2. For example,
the ranked friend recommendation list of u5 includes u2 and his corresponding rank score is 0.45.
Although u2 has different interest tag, but its rank score is the highest by combining link features.
For u1, his ranked friend recommendation list is {u3, u4} and the corresponding rank score is
0.47 and 0.29, respectively. Although u6 has common friend u5 with u1, he is not recommended
to u1 by combining content features. Actually, u6 and u1 are not in the same community and
the rank score of u6 to u1 is 0.11, which is much smaller than those of u4 and u3. Based on
the illustrative example above, we can see that our proposed method is feasible to make friend
recommendation by combining link and content information via joint NMF. It is also effective to
address cold start and data sparsity problems that often persecute friend recommendation in OSNs.
Although cold start users have no link information, by using content information extracted from their
profiles they are still be grouped into topic communities to find similar users. Extensive researches
on information recommendation have indicated that reducing data sparsity is a good strategy to
improve recommendation performance [30, 31]. Our method also has this feature by using low-rank
matrix factorization. For the toy example above, the sparsity of X , Y and H is 0.72, 0.44 and 0.19,
respectively. It is obviously that the sparsity of H is much lower than that of X and Y .

3.3. Improving scalability using MapReduce

It is not hard to recognize that updating H,S and W iteratively is the most time-consuming task
in Algorithm 1 and Algorithm 2. If we use the simple matrix multiplication, the approximate
time complexity of updating H,S and W in each iteration is O(n2r + nr2 + rm2 + nmr + nr),
O(n2r + r3 + r2) and O((m+ r)n2 +mr2 +mr), respectively. Although we can use sparse
matrix multiplication or other optimization strategies to further decrease the time complexity,
the computational cost is still heavy in large-scale OSNs. Therefore, improving the scalability
of updating H , S and W iteratively is very necessary. Some studies have proved that the
MapReduce distributed computing framework is fit for dealing with the problem of large-scale
matrix multiplication [32, 33, 34], so multiplicative update rules for H , S and W can also be
implemented using MapReduce. Considering the computation principles of multiplicative update
rules for H , S and W are the same, due to space limitations we only present the implementation
schema of multiplicative update rule for H (namely Equation 7) using MapReduce.

The MapReduce programming model was designed to simplify the processing of large files on
a parallel system through user-defined Map and Reduce operations. A MapReduce job consists of
two phases: a Map phase and a Reduce phase. During the Map phase, the Map operation transforms
the input data into < key, value > pairs in parallel. These pairs can be stored and shuffled by the
system so as to accumulate all values for each key. During the Reduce phase, the Reduce operation
is used to perform aggregations of all values associated with the same intermediate key in parallel
and finally output the results in the form of < key, value > pairs [33]. Obviously, data processed
using the MapReduce must be presented as key-value pairs. In Equation 7, matrices X and Y are
all sparse and they can be naturally stored in the format of < i, j, xij > and < i, j, yij > key-value
pairs, respectively. For maximizing the data locality and minimizing the communication cost in
computing Equation 7, we partition dense matrices H and W along the short dimension and this

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
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8 C. HE ET AL.

partition renders the following view of H and W .

H =

 h1

h2

· · ·
hn

 and W =

 w1

w2

· · ·
wm

 (11)

where hi(1 ≤ i ≤ n) and wj(1 ≤ j ≤ m) are all r-dimension row vectors. Consequently, H and W
can be stored in the format of < i, hi > and < j,wj > key-value pairs, respectively. In particular,
S is a r × r small matrix and hence can be directly stored in the distributed cache of machine
clusters. For maximizing parallelism, we divide Equation 7 into 6 components: P1 = α(XHST +
XTHS), P2 = (1− α)Y TW , P3 = α(HSHTHST +HSTHTHS), P4 = (1− α)HWTW , P5 =
λH and H = H. ∗ (P1 + P2)./(P3 + P4 + P5), where every component can be computed using
MapReduce. The entire flowchart of updating H on MapReduce cluster is depicted in Figure 4
and the computing process of every component is described as follows, respectively.

(1) Computing P1 = α(XHST +XTHS). We first compute XH and XTH . Let T1 = XH and
T2 = XTH . Further let T1i and T2i denote the ith row vector of T1 and T2, respectively, then
T1i =

∑n
j=1 xijhj and T2i =

∑n
j=1 xjihj , which can be implemented by two sets of MapReduce

operations at the same time.

• Map-I: map < j, (i, xij) > and < j, hj > on j such that tuples with the same j are shuffled to
the same machine in the form of < j, {hj , (i, xij)} >.
• Reduce-I: read < j, {hj , (i, xij)} >, emit < (T1, i), xijhj > and < (T2, i), xjihj >.
• Map-II: map < (T1, i), xijhj) > and < (T2, i), xjihj) > such that tuples with the same (T1, i)

or (T2, i) are shuffled to the same machine in the form of < i, T1i > or < i, T2i > .
• Reduce-II: read < i, {T1i, T2i} > , emit < i, P1i >, where P1i = α(T1iS

T + T2iS).

(2) Computing P2 = (1− α)Y TW . Let P2i denote the ith row vector of P2, then P2i =∑m
j=1(1− α)yjiwj . P2i can also be implemented by two sets of MapReduce operations: Map-III,

Reduce-III, Map-IV and Reduce-IV, which are similar to those used in computing XTH above and
the operation Reduce-IV finally emits < i, P2i >.

(3) Computing P3 = α(HSHTHST +HSTHTHS). Let T3 = HS, T4 = HTHST , T5 = HST

and T6 = HTHS. Because T4 and T6 are all r × r small matrix, it is better to compute T4 and
T6 first to greatly reduce intermediate data. T4 and T6 can be implemented by single MapReduce
operation at the same time.

• Map-V: map < i, hi > to < 0, hT
i hi > , where 0 is a dummy key value for data shuffling.

• Reduce-V: read < 0, {hT
i hi} >, compute T ′ =

∑n
i=1 h

T
i hi, emit < T4, (i, T

′
iS

T ) > and <
T6, (i, T

′
iS) > where T ′

i is the ith row vector of T ′. Next, we can copy T4 and T6 to all the
machines that host hi and compute P3 using single MapReduce operation.
• Map-VI: read < i, hi >, emit < i, hiST4 > and < i, hiS

TT6 >.
• Reduce-VI: read < i, {hiST4, hiS

TT6} >, emit < i, P3i >, where P3i = α(hiST4 +
hiS

TT6).

(4) Computing P4 = (1− α)HWTW . Similar to the computing of P3, we first compute T7 =
WTW and then compute P4 = (1− α)HT7. The computing T7 and P4 all need single MapReduce
operation: Map-VII, Reduce-VII, Map-VIII and Reduce-VIII, which are similar to those used in
computing HSHTHST above and the operation Reduce-VIII finally emits < i, P4i >.

(5) Computing P5 = λH . It only needs single MapReduce operation to compute P5.

• Map-IX: read < i, hi >,
• Reduce-IX: emit < i, P5i >, where P5i = λhi.

(6) Computing H = H. ∗ (P1 + P2)./(P3 + P4 + P5). Updating H can be parallelized through
the single MapReduce operation.

• Map-X: read < i, hi >, < i, P1i >, < i, P2i >, < i, P3i >, < i, P4i > and < i, P5i > on
i such that tuples with the same i are shuffled to the same machine in the form of <
i, {hi, P1i, P2i, P3i, P4i, P5i} >.
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• Reduce-X: read < i, {hi, P1i, P2i, P3i, P4i, P5i} > and emit < i, hnew
i >, where hnew

i = hi. ∗
(P1i + P2i)./(P3i + P4i + P5i).

X:(i,j,xij)

...

H:(i,hi)

...

W:(i,wi)

...

Y:(i,j,yij)

...

Map-I

...(j,{hj,(i,xij)})

Reduce-I

...((T1,i),xijhj))

Map-II

...

Reduce-II

(i,P1i)

...

...

...

Map-

(j,{wj,(i,yji)})

Reduce-

(i,yjiwj)

Map-IV

(i,{yjiwj})

Reduce-IV

(i,P2i)

Map-V

(0,hiThi)

Reduce-V

(T4,HTHST)

Map-VI

(i,hiST4)

Reduce-VI

(i,P3i)

Map-VII

(0,wiTwi)

Reduce-VII

(0,WTW)

Map-VIII

Reduce-VIII

(i,hiWTW)

(i,P4i)

... ... ......

...

...

(i,P5i)

...

Map-IX

Reduce-IX

(i,λhi)

Map-X

Reduce-X

(i,hi,P1i,P2i,P3i,P4i,P5i)

(i,hinew)

((T2,i),xjihj))

(i,T1i)

(i,T2i)

(T6,HTHS)

(i,hiSTT6)

Figure 4. Computing H on MapReduce.

3.4. Theoretical modelling on α

In Equation 1, when α = 1, our method follows traditional ways of friend recommendation using
link information. When α = 0, users are more preferably recommended by several of tags extracted
from content information instead of by sharing friends connections. Here another question arises,
what kind of α would be our methods initial setting? Basically, we can use a theory to support and
define the initial value for α, denoted as α0. Then the parameter can vary with respect to time, for
later analysis of how important is the link information when comparing it with the tags, we can have
a sequence of

αiT = α(i−1)T + εiT (12)

where i ≥ 1 and “T” just indicates that αi and εi vary with respect to a certain period of time like
one week or 1,000,000 counted views. Since we have introduced a static variable εi, such that when
εi > 0, means with previous αi, more user want result recommended more related to links, and
opposite for εi < 0. One advantage of using this model is that, we can allow later data analysis of
how the user finds the importance of links and tags. In advance, if we group the tags, we can then
analyze what kind of tags will be affected the most and the change of the importance with respect
to time period.

One possible way to set up α0 would be using six degrees of separation theory. That is, you can
find everyone in the social network within six steps. Hence, the status zero is yourself, and status one
is friends you already know in your social network, so you at most need five intermediate friends.
Therefore, based upon this theory, we have when d = 1, α = 1; and when d = 6, α = 0, where d
is our degrees. Then we use the following method: use continuous function to estimate discrete
degrees, and find both continuous mean and discrete mean. In order to satisfy the above condition,
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we may use linear model to path those two points: It is not hard to find out the equation would be
α = −1/5 ∗ d+ 6/5. From this equation, we find out our continuous mean would be:

α0 = 1/(6− 1)

∫ 6

1

(−1/5 ∗ d+ 6/5)dd = 0.5 (13)

In addition, we have the following discrete table:

Table II. Discrete table.

d α

1 1
2 4/5
3 3/5
4 2/5
5 1/5
6 0

Hence, our discrete mean would be 0.5.
For the linear case, our continuous mean is equal to the discrete mean. Therefore, if we apply

strong six degree of separation with linear model, our α0 can be suggested to be 0.5. Note that our
OSNs do not fully satisfy the conditions of six degrees of separation theory, we will discuss the
weight parameter selection in section 4.3.2. Also, there are a lot of other theories and models to give
a suggested α0. But due to space limitation, we omit them here.

4. EXPERIMENTAL STUDY

4.1. Comparative methods and experimental datasets

We compare the performance of our proposed method (For convenience, we call it TCB hereafter)
with the following methods:

• Friends-of-Friends (FoF) [35]. This is a classical link-based method which is often used in
OSNs. If a particular user has many common friends with a target user, then he or she might
be very interested in being friends with the target user too. Therefore, we can recommend the
Top-K users with the most common friends to the target user.
• Profile-based (PB) [25]. This is a content-based method which is also often used in OSNs.

Given a target user, we compute his/her pairwise profile similarities with others. Then we find
the Top-K users with the highest similarities to recommend to the target user.
• RFG [28]. This is a hybrid method that considers user link and content information for

recommendation. We first construct heterogeneous networks by combining features of users
link and content information and then use the ranking factor graph model (RFG) to predict
friend links in OSN.

We use three real world OSN datasets for our experiments. The first one is from LinkedIn†.
The second one is from Weibo‡, which is the biggest microblog system in China. The third one
is Flixster§, which is a popular movie review OSN. All of datasets include public friendship or
followership links, tags, profiles and posts crawled from users. Table III gives the statistics of these
datasets after preprocessing, where Sparisity(X) = 1− |E|/(|U | × |U |) and Sparisity(Y ) = 1−
|{yij |yij ∈ Y ∧ yij ̸= 0}|(|U | × |A|). From Table III we can see that X and Y are all extremely
sparse matrices.

†http://www.linkedin.com
‡http://weibo.com
§http://www.flixster.com/
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Table III. Statistics of datasets.

Statistics LinkedIn Weibo Flixster

|U | 183647 234832 126936
|E| 21710923 33231784 14271458
|A| 70631 94537 60315

Sparsity(X) 99.9% 99.9% 99.9%
Sparsity(Y ) 99.9% 99.9% 99.9%

4.2. Evaluation metrics

To evaluate the performance of various friend recommendation methods above, we select conversion
rate (CR), precision and recall suggested in [35] as our evaluation metrics. CR is a widely used
metric in recommender systems to evaluate if a user has obtained at least one good recommendation.
CR is a rough metric, but precision and recall are all precise metrics. If L is the list of recommended
friends and L′ is the list of friends actually accepted by the user, then the standard definitions for
CR, precision and recall are:

CR =

{
1 if |L

∩
L′| > 0

0 otherwise
(14)

Precision =
|L

∩
L′|

L
(15)

Recall =
|L

∩
L′|

L′ (16)

In our next experiments except the scalability tests, for every dataset we randomly choose 10%
friends of each user as the testing dataset, and the rest as the training dataset. We compute the CRs,
Precisions and Recalls of the various methods by taking the average of values computed for each
test user. Meanwhile, every experiment is repeated 5 times and selects the average of every metric
value as the final result.

4.3. Parameter sensitivity experiments

In this part we examine how parameters r and α affect the performance of our proposed TCB
method. Their optimal settings will be used in our comparative experiments with other methods.

4.3.1. Number of communities r analysis. The appropriate setting of r can obtain high-quality
topic communities that are very useful for improving the performance of friend recommendation.
To evaluate the quality of topic community mining in OSN, we use two metrics of Density and
Entropy presented in [36]. Their definitions are as follows.

Density({ci}ri=1) =

r∑
i=1

|{(up, uq)|up, uq ∈ ci, epq) ∈ E}|
|E|

(17)

Entropy({ci}ri=1) =

m∑
i=1

r∑
j=1

|cj |
|U |

entropy(ai, cj) (18)

where entropy(ai, cj) = −pij log2 pij , pij is the percentage of users in community j which have
values on content feature ai. Members in the ideal topic community not only link densely, but also
share more similar content features. Therefore, the larger of Density and the smaller of Entropy,
the quality of topic community mining will be better. We fix α = 0.5, λ = 1 for LinkedIn, Weibo and
Flixster datasets, and vary the number of communities r to evaluate the quality of topic community
mining and the corresponding performance of Top-K friends recommendation. The results are
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shown in Table IV and Table V (Due to space limitations, we only show the results of Top-10
friends recommendation), respectively. From the results, we find that when we set r = 1500, 2000
and 1000 for LinkedIn, Weibo and Flixster datasets, respectively, they all obtain the best quality
of topic community mining. Meanwhile, they also obtain the best performance of Top-K friends
recommendation. The results provide evidence that high quality topic community is an important
guarantee to improve friend recommendation. In the rest of the experiments, we set r = 1500 for
the LinkedIn dataset, r = 2000 for the Weibo dataset and r = 1000 for the Flixster dataset.

Table IV. Topic community mining quality with different r.

Dataset Metric r = 1000 r = 1500 r = 2000 r = 2500 r = 3000

LinkedIn Density 0.3236 0.4567 0.2987 0.3124 0.3098
Entropy 7.5684 5.6245 6.4896 7.2153 8.6354

Weibo Density 0.2965 0.3126 0.3984 0.3654 0.2846
Entropy 8.1563 8.6984 7.1236 7.9864 9.0123

Flixster Density 0.4012 0.3845 0.3624 0.3321 0.3526
Entropy 6.5368 7.4587 7.8694 8.9654 9.4568

Table V. Performance of Top-10 friends recommendation with different r.

Dataset Metric r = 1000 r = 1500 r = 2000 r = 2500 r = 3000

LinkedIn
CR 0.42 0.48 0.41 0.39 0.38

Precision 0.25 0.30 0.26 0.23 0.27
Recall 0.26 0.36 0.24 0.28 0.23

Weibo
CR 0.33 0.36 0.43 0.35 0.37

Precision 0.25 0.27 0.29 0.24 0.26
Recall 0.23 0.26 0.33 0.28 0.29

Flixster
CR 0.37 0.31 0.36 0.33 0.32

Precision 0.30 0.26 0.24 0.25 0.23
Recall 0.31 0.25 0.27 0.25 0.26

4.3.2. Weight parameter α analysis. In Equation 1, the weight parameter α is used to control
contributions to the final solution for link and content information. Small values of α under-fit
whereas large values of α over-fit the data and this will lead to poor performance. Thus, we have to
find a balance between the two kinds of information that fits best the dataset at hand. We conduct
experiments on three datasets to recommend Top-2, Top-4, Top-5, Top-8 and Top-10 friends by
constantly changing the value of α and find that setting α between 0.5 and 0.7 can achieve stable
and high performance (Figure 5-7). The results suggest that giving slightly more importance to the
link information is helpful to improve friend recommendation performance. Furthermore, we could
compute the degree d is in [2.5, 3.5] based on six degree of separation linear model discussed in
section 3.4. It is a reasonable distance that user discovers interested friends in the real world OSN,
since most people like to add friends within 2 intermediate friends. The reason of having computed
half degrees might cause by that the experiments network density is not enough to be fully using
the strong six degree of separation. Therefore, one advanced research question might be: would
choosing different α0 improve the performance of friend recommendation?

From the results shown in Figure 5 to Figure 7, we can also find that TCB method still has a
good recommendation performance when α = 0. It means that cold start users without any link
information still can obtain friend recommendation. Therefore, our proposed method is effective to
address the problem of cold start by combing user link and content information.
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Figure 5. Performance on LinkedIn dataset with different α.
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Figure 6. Performance on Weibo dataset with different α.
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Figure 7. Performance on Flixster dataset with different α.

4.4. Comparative experiments

We first set the optimal parameters suggested in section 4.3 for LinkedIn, Weibo and Flixster
dataset and then compare the performance of various methods to recommend Top-2, Top-4, Top-
5, Top-8 and Top-10 friends, respectively. Figure 8 to Figure 10 show the comparison results of
various evaluation metrics on these three datasets. From the results, it is clear that hybrid methods
(TCB and RFG) outperform link-based (FoF) and content-based (PB) methods. This is a further
verification that it is more effective to make friend recommendation by combining user link and
content information. Among the two hybrid methods, our proposed TCB method performs better
than RFG method. This is because RFG needs to compute user pairwise similarities based on the X
and Y matrices for constructing an attribute augmented friendship network, but in Table III, X and
Y on three datasets are so sparse that it is easy to produce errors in computing user similarity and
will finally affect the recommendation performance of the RFG model. However, TCB computes
the similarity based on the community indicator matrix H . H is a low-rank matrix and has much
lower sparsity compared to X and Y . More importantly, H performs well in terms of keeping the
main features of every user, so TCB still can improve the computational accuracy of similarity and
the final recommendation performance under the condition of data sparsity.

4.5. Scalability test on Hadoop cluster

We select the open source cloud computing platform Hadoop to test the scalability of TCB
implemented by MapReduce. Our Hadoop cluster is composed of 10 machines which have the
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Figure 8. Comparative results on LinedIn dataset.

0

10

20

30

40

50

60

2 4 5 8 10

Top K

(a)

C
R

  
(%

)

FoF PB RFG TCB

0

10

20

30

40

50

60

2 4 5 8 10

Top K

(b)

P
re

ci
si

o
n

  
(%

)

FoF PB RFG TCB

0

10

20

30

40

50

60

2 4 5 8 10

Top K

(c)

R
ec

al
l 

 (
%

)

FoF PB RFG TCB

Figure 9. Comparative results on Weibo dataset.
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Figure 10. Comparative results on Flixster dataset.

same configuration: 2.93G Hz CPU, 8GB memory and 1TB disk. Because updating H , S and W
iteratively is the most time-consuming task in TCB, we mainly test the scalability of updating H , S
and W iteratively on Hadoop cluster. Firstly, we stored the corresponding X and Y of three datasets
in the format of key-value pairs. In the Hadoop distributed file system, matrix file sizes of X and
Y of LinkedIn dataset are 135.2MB and 21.5MB, respectively. Matrix file sizes of X and Y of
Weibo dataset are 213.5MB and 28.7MB, respectively. Matrix file sizes of X and Y of Flixster
dataset are 91.7MB and 18.9MB, respectively. For H , S and W , they are all dense matrices after
the first initialization and are also suitable to be stored in the format of key-value pairs. Table VI
lists the corresponding matrix file sizes of H , S and W of three datasets (in MB) when we set
r = 1000, 1500, 2000, 2500, 3000, respectively. From Table VI, we can see that S matrix file size
is small, so it is easy to be directly loaded into the Hadoop cluster distributed cache. However, H
and W matrix file sizes are so large that they are hard to be processed using single machine due
to limited CPU and memory resources. We update H , S and W iteratively on Hadoop cluster and
test the scalability through changing the number of worker machines in cluster and the value of
r. We introduce the Speedup = Ts/Tc as the evaluation criterion, where Ts is the running-time of
Hadoop clusters under standalone mode, namely only includes one worker machine, and Tc is the
running-time of Hadoop cluster with specified number of worker machines [37]. The corresponding
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Table VI. H , S and W matrices initialization file size with different r.

Dataset Matrix file r = 1000 r = 1500 r = 2000 r = 2500 r = 3000

LinkedIn
H 1722 2741 3445 4330 5212
S 9 12 20 24 33
W 1275 1910 2502 3190 3846

Weibo
H 2050 3118 4075 5015 6355
S 9 12 20 24 33
W 1497 2250 3015 3781 4568

Flixster
H 1411 2107 2615 3246 3864
S 9 12 20 24 33
W 1286 1903 2436 3053 3585

speedup changing curves of updating H , S and W in the first iteration on different dataset are shown
in Figure 11-13, respectively.
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Figure 11. Speedup of updating H, S and W on LinkedIn dataset.
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Figure 12. Speedup of updating H , S and W on Weibo dataset.

From Figure 11-13, we can see that all the speedup changing curves increase linearly with
the increase in the number of worker machines in cluster. However, when the number of worker
machines continues to increase to a threshold, the speedup will not grow any more, and stabilize
at a certain value. The reason is that the size of dataset limits the number of MapReduce tasks.
When the number of worker machines is greater than the number of tasks, the tasks cannot be
fully parallelized to all worker machines in the cluster, so the speedup will no longer increase. For
example, in Figure 11(b) all the speedup changing curves of updating S on LinkedIn dataset become
stable after the number of worker machines increases to 6. This phenomenon can also be discovered
in other Figures. Interestingly, we notice that when matrices H and W becomes more and more
sparser through continuous iterative updating, their speedups actually drops in every iteration. This
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Figure 13. Speedup of updating H , S and W on Flixster dataset.

suggests that the overhead actually outweighs real computation for these small datasets that can be
processed with very few worker machines. In other words, the Hadoop cluster is not yet saturated.

To further validate the scalability of TCB, we make a comparison with a baseline method named
HAMA MM presented in [34]. HAMA MM can also use a series of MapReduce jobs to implement
matrix multiplication. It directly maps every element in matrices into the matrix multiplication
phase, and then it will produce large amount of intermediate data. Therefore, its implementation
strategy is different from TCB. We change the number of worker machines in cluster and compare
their running time of updating H , S and W in the first iteration on different dataset. For simplicity,
every dataset selects the optimal parameters suggested in section 4.3. The results are shown in
Figure 14-16, from which we can see that the running time of TCB is obviously less than that of
HAMA MM. That is because large amount of intermediate data in HAMA MM increases its cost of
data transferring and shuffling, but TCB is effective to control the the amount of intermediate data
by mapping partitions along the short dimension of matrices into the matrix multiplication phase.
Based on related experiments above, it is clear that TCB implemented by MapReduce has good
scalability and is efficient enough to process the large-scale OSN datasets.
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Figure 14. Running time of updating H , S and W on LinkedIn dataset.
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Figure 15. Running time of updating H, S and W on Weibo dataset.
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Figure 16. Running time of updating H , S and W on Flixster dataset.

4.6. Application in SCHOLAT OSN

SCHOLAT¶ is a vertical OSN website, which is developed by our research team and mainly
provides services to scientific researchers. It is very useful to help users to publish, share and
obtain academic information that they are interested in. Recently, SCHOLAT has attracted over
one hundred thousand registered users and has become a very promising scientific researchers
OSN in China. We developed the corresponding friend recommendation system based on TCB
method to provide friend recommendation service in SCHOLAT OSN. Its architecture is shown
in Figure 17. Actually, the recommendation system comprises offline data processing and online
recommendation service. The Data Extrator module periodically extracts various user data from
SCHOLAT OSN database, including profiles, academic publications and friendship links. After data
preprocessing, the link and content feature matrix files will be directly stored in Hadoop distributed
file system. Topic community mining and user similarity computing modules, which are respectively
based on Algorithm 1 and Algorithm 2, can process these large-scale offline data in Hadoop
distributed platform. The Usersim Loader module will load the final results into SCHOLAT OSN
database to provide users with online friend recommendation service. By analyzing user feedback
data within a certain period of time, we find that our recommendation system is very effective in
improving friend recommendation quality. For example, every member in a typical social network
topic community (Figure 18) has high probability to accept friend recommendation from the same
community. Characteristics of this community before and after recommendation are shown in Table
VII, respectively. It is obvious that links become more dense in this community. Members in this
community not only link more densely but also share more similar research interests. Therefore,
they are more likely to become friends with each other.

...

Hadoop distributed computing platform

Topic community

mining module

User similarity

computing module

SCHOLAT OSN

Database Data_Extrator

Usersim_Loader

Friend recommendation

service

Figure 17. Architecture of friend recommendation system in SCHOLAT OSN.

¶http://www.scholat.com
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Figure 18. Visualization of the social network topic community in SCHOLAT OSN.

Table VII. Characteristics of social network topic community.

Status Avg(degree) Density Cluster coefficient

Before recommendation 5.123 0.007 0.246
After recommendation 11.88 0.017 0.596

5. CONCLUSIONS AND FUTURE WORK

In this paper, we study the problem of friend recommendation in OSN and propose a topic
community-based method. Our method firstly mines topic communities via joint NMF model and
then makes friend recommendation based on the topic communities. Experimental and application
results demonstrate its effectiveness and its ability to improve friend recommendation service in the
real-world OSNs. Furthermore, our method can be implemented using MapReduce and hence has
good scalability to process large-scale OSN datasets. Through comparison with other representative
methods we find that: (1) Combining user link and content information for recommendation is more
appropriate to reflect user preferences on friend selection. (2) Mining topic communities enables us
to reduce data sparsity and improve recommendation performance. Actually, our proposed method
provides a good solution to three classic problems existing in friend recommendation in large-scale
OSNs effectively: cold start, data sparsity and scalability. As future work, we will continue to study
more strategies to improve the friend recommendation performance in OSNs and compare with
more existing methods to further demonstrate the advantages of our method. Especially we have
noticed that matrix X describes only the direct links, i.e., xij = 0 if user i and user j are not directly
linked. However, user i and user j may be some degree of separation and this is not described
in X . We will extend matrix X by, e.g., assigning xij = (1/2)n if user i and user j are n degree
of separation. We will investigate whether this way of representing user links will achieve higher
performance.
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