

Cross-validation aggregation for
combining autoregressive neural network
forecasts

Barrow, DK & Crone, SF

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Barrow, DK & Crone, SF 2016, 'Cross-validation aggregation for combining autoregressive
neural network forecasts' International Journal of Forecasting, vol 32, no. 4, pp. 1120–1137
https://dx.doi.org/10.1016/j.ijforecast.2015.12.011

DOI 10.1016/j.ijforecast.2015.12.011
ISSN 0169-2070

Publisher: Elsevier

NOTICE: this is the author’s version of a work that was accepted for publication in
International Journal of Forecasting. Changes resulting from the publishing process, such
as peer review, editing, corrections, structural formatting, and other quality control
mechanisms may not be reflected in this document. Changes may have been made to this
work since it was submitted for publication. A definitive version was subsequently
published in International Journal of Forecasting, [32, 4, (2016)] DOI:
10.1016/j.ijforecast.2015.12.011

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A
copy can be downloaded for personal non-commercial research or study, without prior permission
or charge. This item cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the copyright holder(s). The content must not be changed in any way or
sold commercially in any format or medium without the formal permission of the copyright
holders.

This document is the author’s post-print version, incorporating any revisions agreed during the
peer-review process. Some differences between the published version and this version may
remain and you are advised to consult the published version if you wish to cite from it.

https://dx.doi.org/10.1016/j.ijforecast.2015.12.011
http://dx.doi.org/10.1016/j.ijforecast.2015.12.011
http://creativecommons.org/licenses/by-nc-nd/4.0/

1

Cross-validation aggregation for combining

autoregressive neural network forecasts

Devon K. Barrow1 and Sven F. Crone2

1School of Strategy and Leadership, Coventry University, Priory Street, Coventry, CV1 5FB
2Lancaster University Management School, Department of Management Science, Lancaster, Lancashire, LA1 4YX, UK

Abstract

This paper evaluates k-fold and Monte Carlo cross-validation and aggregation (crogging) for

combining neural network autoregressive forecasts. We introduce Monte Carlo crogging which

combines bootstrapping and cross-validation in a single approach through repeated random splitting

of the original time series into mutually exclusive datasets for training. As the training/validation

split is independent of the number of folds, the algorithm offers more flexibility in the size, and

number of training samples compared to k-fold cross-validation. The study also provides for

crogging and bagging: (1) the first systematic evaluation across time series length and combination

size, (2) a bias and variance decomposition of the forecast errors to understand improvement gains,

and (3) a comparison to established benchmarks of model averaging and selection. Crogging can

easily be extended to other autoregressive models. Results on real and simulated series demonstrate

significant improvements in forecasting accuracy especially for short time series and long forecast

horizons.

Key words: Forecast combination; bootstrapping, Monte Carlo, time series, cross-validation

autoregression

1Corresponding author. Tel.: +44 (0) 779 626 76 74

Email address: devon.barrow@coventry.ac.uk (D.K. Barrow).

Present address: Coventry University, School of Strategy and Leadership, Faculty of Business and Law,

Priory Street, Coventry, CV1 5FB

mailto:devon.barrow@coventry.ac.uk

2

1. Introduction

Improving the accuracy of a univariate time series forecast remains important in many

disciplines, from environmental sciences to business and finance. The approach of combining

multiple forecasts has shown particular promise (Clemen and Winkler 1986; Timmermann

2006) as evidenced by various empirical studies (Aksu and Gunter 1992; Macdonald and

Marsh 1994; Stock and Watson 2004; Clements and Hendry 2007; Jose and Winkler 2008;

Kourentzes, Barrow, and Crone 2014) and objective forecasting competitions (Makridakis et

al. 1982; Makridakis and Hibon 2000). The traditional approaches to forecast combination

typically involve a set of independent, pre-specified forecasts from different algorithms,

which are combined in a second step using a variety of different weighting schemes.

As an alternative to combining predictions of different algorithms, research in

machine learning for predictive classification routinely apply repeated subsampling of the

dataset on which a single algorithm is parameterised, creating diversity in data rather than in

algorithms. Most widely studied, bagging (Breiman 1996a) and k-fold cross-validation

ensembles (Krogh and Vedelsby 1995) adopt different data resampling techniques,

bootstrapping and cross-validation respectively, to actively create diverse estimates of the

same base learner algorithm for successive combination of the predictions. Their success in

improving performance and robustness of predictions in classification has been empirically

proven in a large number of research studies (see e.g. Dietterich 2000; Zhou, Wu, and Tang

2002), with their wide use reflected in published textbooks (see e.g. Perrone and Cooper

1992) and their availability in standard software packages (see e.g. Matlab and Salford

Predictive Modeler Software Suite).

Despite both methods having been extended to regression in general, and time series

forecasing in particular, this class of algorithms has received relatively limited attention in

forecasting research. While bagging has been assessed in select studies, only recently have

3

Donate et al (2013) and Soric and Lolic (2013) studied cross-validation for time series

forecast combination, with promising results (Donate et al. 2013; Sorić and Lolić 2013).

However, both studies were constrained to the variant of k-fold cross-validation, applying a

fixed and predetermined number of subsamples to create diversity. In contrast Monte Carlo

cross-validation which combines the benefits of both cross-validation and bootstrapping –

repeated random sampling with replacement – in a single approach has been relatively

ignored for forecast combination.

In this study we use cross-validation for combining autoregressive forecasts. The

forecast combination averages over a set of forecast models trained using mutually exclusive

cross-validation replicates, sampled from a given learning set. Within the general framework

of cross-validation and aggregating, or crogging for short, we introduce a new method of

forecast combination, Monte Carlo crogging and evaluate against k-fold crogging and

bagging for the first time in a single study. The contributions of this research study are

therefore fourfold: (1) the first time application of Monte Carlo cross-validation for forecast

combination; (2) the first systematic empirical evaluation of different cross-validation

approaches and bagging across data conditions of time series length and equal number of

samples using a simulated study on linear and nonlinear data as well as empirical data; (3) an

assessment of performance in terms of a bias and variance decomposition of the mean

squared error (MSE) of the forecasts; and (4) a comparison of cross-validation to bagging and

established benchmark methods of model averaging and model selection utilising the 111

time series of the NN3 competition (Crone, Hibon, and Nikolopoulos 2011).

This paper is organised as follows: in Section 2 which follows, we review the

literature on foreast combination, error estimation and data sampling, linking the three main

areas of this research. In Section 3, we desribe how boostrapping and cross-validation are

applied for forecast combination through bagging and the proposed crogging framework. We

4

describe several crogging strategies including the proposed combination based on Monte

Carlo cross-validation and provide some theoretical insights into crogging to understand why

it should be an effective strategy for forecast combination. In Section 4, we evaluate through

extensive simulation, the difference between crogging and Bagging in terms of bias and

variance, varying combination size and time series length, while Section 5 presents results of

the empirical evaluation based on data of the NN3 competition. The final section provides a

summary and concluding comments.

2. Forecast combination, error estimation and data sampling

In the 50 years since the seminal paper by Bates and Granger (1969) on forecast

combination, the majority of papers have resorted to combining the results of multiple

forecast models previously specified, or multiple training initializations thereof, each one

parameterized on the same complete learning data. In contrast, recent methods based on

bootstrapping and cross-validation focus on model estimation and actively creating diverse

predictions over which to average. In this research we focus on cross-validation originally

developed for the estimation of prediction error and to faciliate model selection. While our

interest is in forecast combination, most existing research on cross-validation exists in the

model selection literature (see review by Arlot and Celisse 2010). Here the estimation of

predictive accuracy is important, both for evaluating the accuracy of statistical models, and

for deciding the final model selected.

The statistical resampling technique of cross-validation (CV) assesses how the results

of a statistical estimate will generalize to an independent data set (Stone 1974). Out-of-

sample predictive accuracy is esimated by repeatedly spliting the original data into a training

set for estimating the model, and a validation set for estimating the error in the predictions.

This has the attractive feature of producing nearly unbiased estimates of the preidction error

and provides a more representative estimation of the true ex ante performance of the model

5

(Efron 1983; Kohavi 1995). The technique is used most popurlarly in out-of-sample

evaluations with a single hold-out dataset (Tashman 2000) and in specific application areas,

such as climate forecasting (Michaelsen 1987), and financial forecasting with statistics and

neural networks (Wolff 1987; Clarida et al. 2003; Hu et al. 1999). Despite the advantages in

the approach, several research studies have also pointed out its limitations. For example, the

advantage in obtaining an unbiased estimation is known to fail when the number of models

grows exponentially with the number of observations. Birgé and Massart (2007) and Hardle

and Marron (1985) showed that in the presence of outliers, cross-validation was prone to

failure. Hart and Wehrly (1986) proved that cross-validation overfits for positively correlated

data (see also Opsomer, Wang, and Yang 2001; Altman 1990; Hart 1991), although Burman

and Nolan (1992) later showed it to be asymptotically optimal for stationary Markov process

though within a specific framework. Less than persuasive early results were also obtained in

the case of the leave-one-out cross-validation albeit for error estimation rather than forecast

combination (see results of Burman and Nolan 1992; Burman, Chow, and Nolan 1994).

Recent research on cross-validation for time series forecast combination though very

few, have produced promising results. Recently, Donate et al. (2013) employed a weighted k-

fold cross-validation scheme for generating neural network ensembles in predicting six real

world time series, improving accuracy for short and medium series in comparison to Holt-

Winters exponential smoothing. Around the same time Sorić and Lolić (2013) propose the

use of the leave-h-out cross-validation (Jackknife) combination for time series forecasting of

euro area (EA) inflation, following the work on Jackknifing and model averaging by Hansen

and Racine (2012). While the approach did not seem to offer any improvements in forecast

accuracy at short horizons, results demonstrated that for the longer-horizons, forecasts were

significantly more precise when using cross-validation.

6

In addition to the limited number studies which evaluate cross-validation for forecast

combination, none of which consider Monte Carlo cross-valiation, existing studies also fail to

compare cross-validation to the effective benchmark of bagging (short for “bootstrap

aggregating”). Bagging preceeded the use of cross-validation for aggregation, employing

instead bootstrapping for generating candidate forecasts. Like cross-validation, bootstrapping

is an established statistical technique involving data resampling from observed data, used to

assign measures of accuracy such as prediction error to a sample estimate (Efron 1979; Efron

1983; Efron and Tibshirani 1993). It is known to be particularly effective at reducing the

variance of an estimator, but unlike cross-validation suffers from potentially large bias (Efron

1983; Kohavi 1995). Bagging has become widely applied and researched in time series

forecasting, with recent applications in macro-economic forecasting (Watson 2005; Inoue and

Kilian 2008), stock market volatility prediction (Hillebrand and Medeiros 2010),

meteorological forecasting (Brenning, Andrey, and Mills 2011) and business forecasting

(Kourentzes, Barrow, and Crone 2014) to name a few, and applications to new families of

methods including exponential smoothing (Bergmeir and Hyndman 2014). This makes it a

strong benchmark. Also by considering bagging we make this the first evaluation and

comparision of bootstraping and cross-validation sampling strategies for forecast

combination.

3. Cross validation and bootstrapping for forecast aggregation

In this section we describe cross-validation and the contender approach of

bootstrapping within a general framework for forecast combination of autoregressive models,

while introducing Monte Carlo cross-validation for combining forecasts. Given a a univariate

time series 𝒀𝑇 = {𝑦1, … , 𝑦𝑇}, our goal is to forecast at time 𝑇 , the future 𝐻 observations

{𝑦𝑇+1, … , 𝑦𝑇+ℎ, 𝑦𝑇+𝐻} of some variable 𝑦. If we assume that the data comes from a possibly

7

nonlinear autoregressive (AR) process of order p, AR(p), a time series model 𝑚 of the

following form:

𝑦𝑡 = 𝑚(𝐳t−1; 𝜽) + 𝑒𝑡

(1)

where 𝐳t−1 = [𝑦𝑡−1, … , 𝑦𝑡−𝑝], 𝜽 are the model parameters to be estimated, and 𝑝 is the order

of the autoregressive lag, can be used to produce the required forecasts. The learning set 𝐿

used for model parameter estimation consists of the set of 𝐷 = 𝑇 − 𝑝 input/output pairs

{(𝑦𝑡, 𝐳t−1)}𝑡=𝑝+1
𝑇 , where 𝐳t−1 is a sequence of 𝑝 consecutive (past) observations, and 𝑦𝑡 is the

one-step-ahead observation in that same sequence to be forecasted. Given a set of 𝐾 forecasts

�̂�𝑘
ℎ(𝐳t−1), the goal of forecast combination is to produce the combined forecast:

�̂�ℎ(𝐳t−1) = ∑ 𝑤𝑘�̂�𝑘
ℎ(𝐳t−1)

𝐾

𝑘=1

(2)

where 𝑤𝑘 is the weight given to forecasts from model 𝑚𝑘 and ∑ 𝑤𝑘 = 1𝑘 .

3.1. Bootstrap aggregating

Breiman (1996a) in a milestone contribution proposed the use bootstrapping as a

method for prediction aggregation introducing the bagging algorithm. Rather than use one

model trained on only a single learning set 𝐿, bagging generates the set {𝐿𝐾} consisting of 𝐾

repeated bootstraps samples from 𝐿, based on which multiple models are estimated and their

predictions aggregated. Each bootstrap sample is formed by drawing a set of 𝐷 pairs at

random with replacement from 𝐿, according to a discrete uniform distribution, where each

pair in 𝐿 has equal probability of being chosen. In contrast to cross-validation, bootstrapping

does not make use of a validation set. Rather the result of bootstrapping is a new dataset for

model parameter estimation utilizing approximately 1-(1-(1⁄D))D=63.2% unique observations

from the original learning set (Efron 1983). Each of the 𝐾 bootstrap replicates are then used

to estimate a model {𝑚𝑘(𝐳t−1, 𝐿𝑘)}. To aggregate the set of forecasts from these models, one

takes the simple average as follows:

8

�̂�ℎ(𝐳t−1) =
1

𝐾
∑ �̂�𝑘

ℎ(𝐳t−1, 𝐿𝑘)

𝐾

𝑘=1

(3)

In this study we consider the ordinary bootstrap method (Efron 1979) where all the

memory of the past required for predicting one-step-ahead is preserved in the lagged

autoregressive vectors 𝐳t−1. Alternatively this may be viewed as adopting a moving block

bootstrap approach (Kunsch 1989; Efron and Tibshirani 1993), where the overlapping

bootstrap blocks, correspond to the lagged vectors 𝐳t−1, and the length of the bootstrap block

is exactly 𝑝, the order of the autoregressive term, or larger.

Two popular approaches to the implementation of bagging are evaluated. In the first

approach referred to in the classification literature as out-of-bag esimation (Breiman 1996b;

Breiman 2001), we first bootstrap the entire learning set 𝐿 to create the training set 𝐿𝑇𝑟𝑎𝑖𝑛 ,

and use the remaining observations not selected for training as a validation set 𝐿𝑉𝑎𝑙𝑖𝑑. In this

situation the ‘out-of-bag’ observations, those not selected for training, form a validation set

and change with every bootstrap sample. We label this as BagMoob for bagging using moving

‘out-of-bag’ observations. In the second approach, we first separate the learning set 𝐿 into a

training and validation set. We then bootstrap only the training set, keeping the validation set

fixed. As such we call this approach BagFoob, for bagging with a fixed ‘out-of-bag’ or fixed

validation set. The validation set will be used during neural network training to reduce

overfitting. We also later use as a benchmark, the original bagging method without any

validation set, bootstrapping the whole learning set.

3.2. Cross-validation and aggregating

Recently cross-validation has been applied to combining forecasts using k-fold cross-

validation as an alternative to forecasting model selection. Donate et al. (2013) recently

applied k-fold cross-validation to average forecasts from multiple models trained on different

9

data subsets created using cross-validation. In this study, we extend our consideration of

cross-validaiton beyond k-fold cross-validatiion to include several other variants of cross-

validation including Monte Carlo cross-validation. This is done within a single framework of

cross-validation and aggregating or crogging for short. Each strategy differs depending on the

number of learning set splits and whether the resulting training-validation dataset splits are

mutually exclusive or overlapping

Figure 1. Pseudo code of Crogging

Figure 1 is a pseudo code of the crogging framework for combining forecasts. Given a

time series we generate a set of input/output pairs as described in Section 3. Having selected

a cross-validation strategy, described later, we generate a set of 𝐾 training sets each used to

estimate a single forecast model. Each training set is the result of a split of the learning set

into a training dataset for estimating the forecast model, and a validation dataset for early stop

training to reduce overfitting. Note that a separate test set will be used which will be the

holdout sample on which out-of-sample accuracy is evaluated. The aggregate forecast is

taken as the simple average of all 𝐾 forecasts as follows:

�̂�ℎ(𝐳t−1) =
1

𝐾
∑ �̂�𝑘

ℎ(𝐳t−1, 𝐿𝑘
𝑇𝑟𝑎𝑖𝑛)

𝐾

𝑘=1

 (4)

𝒀𝑇 = {𝑦1, … , 𝑦𝑇}: Time series with 𝑇 observation

1: Generate a learning set 𝐿 = {(𝑦𝑡 , 𝐳t−1)}𝑡=𝑝+1
𝑇 from 𝒀𝑇

2: For a given CV strategy, generate {𝐿𝐾
𝑇𝑟𝑎𝑖𝑛}, consisting of 𝐾 CV training sets from 𝐿

3: For 𝑘 = 1 𝑡𝑜𝐾{

a. Select training set 𝐿𝑘
𝑇𝑟𝑎𝑖𝑛 from {𝐿𝐾

𝑇𝑟𝑎𝑖𝑛}

b. Using set 𝐿𝑘
𝑇𝑟𝑎𝑖𝑛 construct a model 𝑚𝑘(𝐳t−1, 𝐿𝑘

𝑇𝑟𝑎𝑖𝑛)

}

4: Combine the forecasts of all models 𝑚𝑘 to obtain:

�̂�ℎ(𝐳t−1) =
1

𝐾
∑ �̂�𝑘

ℎ(𝐳t−1, 𝐿𝑘
𝑇𝑟𝑎𝑖𝑛)

𝐾

𝑘=1

10

where 𝐿𝑘
𝑇𝑟𝑎𝑖𝑛 is the 𝑘𝑡ℎ training dataset and �̂�𝑘(𝐳t−1, 𝐿𝑘

𝑇𝑟𝑎𝑖𝑛) is the model estimated using that

dataset.

3.2.1. k-fold crogging

Within the general setting provided in Section 3.2, we define a k-fold cross-validation

over the learning set 𝐿, as a division or splitting of 𝐿 into k none-overlapping and mutually

exclusive subsamples or folds of approximately equal size, with 𝑘 ≤ 𝐷. The procedure for

doing this is depicted in Figure 2.

Subset s=1 Subset s=2 Subset s=3 Subset s=4 … Subset s=k

 Train

Train

Train

Train

…

Train

…

…

…

… … … … … …

Valid Valid Valid Valid … Valid

�̂�1

�̂�2 �̂�3 �̂�4 … �̂�k

Figure 2. Example of k-fold cross-validation

Observations are drawn at random, but unlike in a bootstrap sample, without replacement. In

each round 𝑘 , we obtain a dataset 𝐿𝑘
𝑇𝑟𝑎𝑖𝑛 comprised of k-1 subsamples, and use this to

estimate the parameters of a forecast model �̂�𝑘(𝐳t−1, 𝐿𝑘
𝑇𝑟𝑎𝑖𝑛). This process is repeated k-

times, so that each of the 𝑘 subsamples are used exactly k-1 times as training data and once as

validation data (see Figure 2). The combined forecast is then aggregated using Eq. (4),

resulting in a combined forecast based on the given 𝑘-fold cross-validation strategy. In this

case k the number of subset folds is also equal to 𝐾 the sampling size. Where a single model

is estimated on each sample then 𝐾 is also the combination size.

Typically, k-fold cross-validation can apply a different number of folds with different

properties depending on the value of k. For k= 2 we obtain a split of the learning set into 2

subsamples of approximately equal size, the first used for training and the second for

T
ra

in
in

g
 a

n
d
 v

a
lid

a
ti
o

n

11

validation, and visa versa. The 10-fold cross-validation is the most commonly applied cross-

validation strategy having obtained good results in practice (Kohavi 1995; Hu et al. 1999),

and with some theoretical evidence (Bengio and Grandvalet 2004). The learning set is split

into 10 approximately equal subsamples, training on a dataset of 9 subsamples, with one

subsample for validation. Another common strategy is the leave-one-out (LOO) cross-

validation, training on 𝑁 − 1 subsamples, with each subsample containing a single

observation for validation. The general form of k-fold will be evaluated for different sample

sizes including 2-fold and 10-fold, while the leave-one-out method will serve as a benchmark

for our evaluation on real data.

An overall advantage of 𝑘-fold cross-validation, is that each observation is used both

for training and validation, with equal weight of 𝑘 − 1 during training, and once for

validation. A potential drawback is that 𝑘 controls the trade-off between data available to

train each model for a valid in-sample estimation, and data available for validation to

estimate out-of-sample accuracy and control overfitting, LOO cross-validation being the

extreme case.

3.2.2. Monte Carlo crogging

Each method suffers from one of more limitations as described previously. For

example, k-fold and leave-one-out cross-validation are known to be asymptotically

inconsistent (Efron 1983; Efron and Tibshirani 1986; Shao 1993; Stone 1977; Shao 1997). In

the context of forecasting combination this means that both approaches may lead to

overfitting, performing well in-sample but poorly out-of-sample. While k-fold cross

validation has been found in some cases to perform better than leave-one-out (Breiman 1984;

Burman 1989; Zhang 1993), it can suffer from unacceptably high variance leading to

unreliable estimates (Efron 1983; Kohavi 1995).

12

In contrast the Monte Carlo cross-validation strategy (Picard and Cook 1984),

sometimes referred to as repeated random subsampling validation is known to be

assymptotically consistent, and less prone to overfitting (Shao 1993). The reduced overfitting

is a consequence of the decoupling of the validation set and sampling size which enhances

the potential impact of validation and therefore reduces the risk of overfitting. A larger

validation set may however hinder the accurate estimate of the prediction error, due to the

smaller training set, a trade-off between model parameter estimation and validation. Where

predictive accuracy is the goal as is the case in forecasting, it was shown that Monte Carlo

cross-validation provides a larger probability than Leave-one-out cross-validaton of selecting

the model with best prediction ability (Shao 1993).

Monte Carlo cross-validation works by randomly splitting the learning set 𝐾 times,

each time randomly drawing without replacement 𝐽 pairs to form the training set 𝐿𝑇𝑟𝑎𝑖𝑛, and

using the remaining 𝐷 − 𝐽 pairs to form 𝐿𝑉𝑎𝑙𝑖𝑑. In this regard Monte Carlo cross-validation is

similar to Bagging where ‘out-of-bag’ observations are used as validation set, the main

difference being that with the later sampling is performed with replacement. On each round

of Monte Carlo cross-validation, a forecast model is estimated, and the aggregate of all 𝐾

forecasts is obtained using Eq. (4). Although the training and validation datasets are mutually

exclusive for each round of Monte Carlo cross-validation as in k-fold cross-validation,

between rounds an observation may appear in the training or validation dataset any number of

times depending on the independent random sampling between rounds, as in bagging. This is

because on each round, sampling is performed without replacement (therefore the same

observation does not appear in both the training and validation sets), whereas between

rounds, sampling is performed with replacement similar to the bootstrap sampling in each

round of bagging. Another potential advantage over 𝑘-fold cross-validation is in the number

of training sets. By decoupling sampling size K from the number of folds as in k-fold cross-

13

validation, Monte Carlo cross-validation is able to create forecast combinations (training sets)

much larger than k, theoretically infinite, albeit at the expense of determining another

metaparameter of the number of Monte Carlo samples. This study provides the first empirical

results on the application of Monte Carlo cross-validation for forecast combination.

3.2.3. Holdout cross-validation

A special case of k-fold and Monte Carlo cross-validation widely is the holdout

method which results in a single split of the learning set into a training and validation set

(Bengio and Grandvalet 2004). With observations of a time series often split sequentially,

with the validation data containing the most recent observations consecutively, holdout cross-

validation is more similar to k-fold than Monte Carlo cross-validation, although non-

sequential splitting as in Monte Carlo cross-validation is also feasible. One criticism of the

holdout method is that it does not account for the variance with respect to the training set

(Dietterich 1998). Research on the optimal number of observations to include in either dataset

is also inconclusive, with heuristic rule of thumb, 70%:30% split into training and validation

typically applied in practice. As there is only a single data split, the strategy cannot be applied

directly for forecast aggregation. However due to its simplicity, the holdout method is widely

applied in model selection (Arlot and Celisse 2010), and common in neural network training

with early stopping to prevent overfitting. In this study we will use the holdout method as a

benchmark for 1) forecast model selection referring to it as Holdoutselect and model averaging

referring to it as Holdoutavg. We also evaluate model averaging without the use of a

validation set. Each network is trained on the entire learning set and allowed to overfit, with

the forecasts subsequently averaged to obtain the combined forecast. We refer to this method

as Noholdoutavg.

14

3.3. Theoretical performance of crogging

In this section we apply the ambiguity decomposition of Brown et al. (2005) in

assessing the predictive performance of crogging. We show that for a given observation, the

squared error of the combined 1-step-ahead forecast is no more than the average squared

error of the individual forecasts. This means that with no guarantee of selecting a forecast

with error lower than the combined forecast, we are at least guaranteeed of having 1-step-

ahead performance better on average than a forecast selected at random.

For crogging, we write the squared error (SE) of the combined forecast given by Eq.

(2) for the 1-step-ahead forecast as SE = (�̂�(𝐳𝑡−1) − 𝑦𝑡)
2

. In comparison the average

squared error of the constituent forecast models can be expressed as:

∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − 𝑦𝑡)2

𝑘

= ∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − �̂�(𝐳𝑡−1) + �̂�(𝐳𝑡−1) − 𝑦𝑡)

2

𝑘

 = ∑
1

𝐾
[(�̂�𝑘(𝐳𝑡−1) − �̂�(𝐳𝑡−1))

2
+ (�̂�(𝐳𝑡−1) − 𝑦𝑡)

2

𝑘

 + 2 (�̂�𝑘(𝐳𝑡−1) − �̂�(𝐳𝑡−1)) (�̂�(𝐳𝑡−1) − 𝑦𝑡)]

Using ∑
1

𝐾
= 1𝑘 and �̂�(𝐳𝑡−1) = ∑

1

𝐾𝑘 �̂�𝑘(𝐳𝑡−1) cross-terms disappear and we get:

∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − 𝑦𝑡)2

𝑘

= ∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − �̂�(𝐳𝑡−1))

2
+ (�̂�(𝐳𝑡−1) − 𝑦𝑡)

2

𝑘

 = ∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − �̂�(𝐳𝑡−1))

2
𝑘 + SE

Rearranging we obtain:

SEℎ = ∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − 𝑦𝑡)2

𝑘

− ∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − �̂�(𝐳𝑡−1))

2

𝑘

Observe that the second term ∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − �̂�(𝐳𝑡−1))2

𝑘 , the ambiguity term, is always

positive and therefore reduces the first term, the average error of the individual forecasts. The

larger the ambiguity term or equivalently the variance among the individual forecasts, the

smaller the error of the combined forecast, SE . This means that the more variable the

15

individual 1-step-ahead forecasts �̂�𝑘(𝐳𝑡−1) generated based on the cross-validation replicates

of 𝐿, the larger the potential improvement from crogging. Conversely if the 1-step-ahead

forecasts are very similar, the ambiguity will be small and the error of the combined forecast

will be close to the average error of the individual forecasts.

While an h-step-ahead analysis is beyond the scope of this study, it has been shown

that the 1-step-ahead bias and variance affects the h-step-ahead bias and variance for the

recursive multi-step forecasting strategy (Taieb and Atiya 2015). In particular they find that

for complex model’s such as neural networks (NNs), both the bias and variance tend to

increase with the forecast horizon, in particular due to the large variance. We hypothesize that

as cross-validation involves systematic resampling and training on the complete learning set,

it will be effective at increasing ambiguity, while not adversely affecting the bias of the

individual forecasts, and as a consequence improve the accuracy of the combined forecast. In

the next section we investigate the performance of crogging from a bias and variance

perpective estimated via Monte Carlo simulation. Future research should pursue a more

detailed theoretical analysis of the h-step-ahead bias and variance in assessing the impact of

each method.

4. Bias and variance decomposition of Crogging

4.1. Overview

In order to assess the efficacy of k-fold and Monte Carlo crogging algorithms, we

carry out a Monte Carlo simulation study to investigate the impact of the size of the forecast

combination, and the time series length on the bias and variance of the prediction. With

forecast performance measured by MSE, we decompose the MSE of the combined forecast

into its bias and variance components (Geman, Bienenstock, and Doursat 1992), using the

decomposition methodology of Taieb and Hyndman (2014) for multi-step-ahead forecasting.

16

The results are compared to bagging in order to allow a comparison to its better understood

properties.

We adopt the same terminology as in Taieb and Hyndman (2014) and assuming that

the process defined in Eq. (1) is stationary, we obtain the bias and variance components of the

mean squared error of h-step-ahead combined forecast MSEℎ as follows:

MSEℎ = 𝔼𝐱t
[(𝑦𝑡+ℎ − �̂�ℎ(𝐳𝑡−1))

2
| 𝐱t]

= 𝔼𝐱t,ε [(𝑦𝑡+ℎ − 𝜇𝑡+ℎ|𝑡)
2

| 𝐱t] Noise

+𝔼𝐱t
[(𝜇𝑡+ℎ|𝑡 − 𝑀ℎ(𝐳𝑡−1))

2
] Squared Bias

+𝔼𝐱t,𝒀𝑇
[(�̂�ℎ(𝐳𝑡−1) − 𝑀ℎ(𝐳𝑡−1))

2
| 𝐱t] Variance

(5)

where 𝑀ℎ(𝐳𝑡−1) = 𝔼[�̂�ℎ(𝐳𝑡−1)] , �̂�ℎ(𝐳𝑡−1) is the combined ℎ -step-ahead forecast for a

given combination strategy, and 𝔼𝑥 and 𝔼[∙|𝑥] represent the expectation over 𝑥 , and the

expectation conditional on 𝑥, respectively. The resulting decomposition gives us a measure of

the noise, the squared bias, and an estimate of the variance of the combination method.

4.2. Experimental design and data

For each combination strategy we estimate Eq.(5) via simulation considering a linear

AR(6) and a nonlinear Smooth Transition Autoregressive (STAR) data generating process

(DGP) also used by Ben Taieb and Hyndman (2014). The linear AR(6) process is given by:

𝑦𝑡 = 1.32𝑦𝑡−1 − 0.52𝑦𝑡−2 − 0.16𝑦𝑡−3 + 0.18𝑦𝑡−4 − 0.26𝑦𝑡−5 +

0.19𝑦𝑡−6 + 𝜀𝑡 .

(6)

where 𝜀𝑡~NID(0, 1) . The STAR process has been used in several other studies (e.g.

Terasvirta and Anderson 1992; Berardi and Zhang 2003) for understanding nonlinearities in

the context of autoregressive forecast models and is given by:

17

𝑦𝑡 = 0.3𝑦𝑡−1 + 0.6𝑦𝑡−2 + (0.1 − 0.9𝑦𝑡−1 + 0.8𝑦𝑡−2)[1 + 𝑒(−10𝑦𝑡−1)]
−1

+ 𝜀𝑡 (7)

where𝜀𝑡~NID(0, 𝜎2) and the error variance set to 𝜎2 = 0.052.

We generate time series of length 𝑇 ∈ {50, 400} in order to assess the impact of time

series length on the bias and variance of each strategy. The number of forecasts included in

the final combination is deemed critical to its performance (de Menezes, Bunn, and Taylor

2000). This is determined by the number of training sets or sampling size of each strategy

which in turn determines the number of models which can be estimated. The sampling sizes

evaluated are taken from the set {2, 5, 10,15, 20, 30}. For k-fold cross-validation this sample

size is also equalivalent to the number of folds 𝑘 , while for Monte Carlo crogging and

bagging this is equivalent to the number of random splits and the number of bootstraps

respectively. If for every sample bootstrap or cross-validation a single model is estimated,

then the sampling size is also equal to the forecast combination size 𝐾.

4.3. Estimation

We generate for each DGP, a set of 1000 independent time series 𝑆𝑖 = {𝑦1, … , 𝑦𝑇} on

which to train and estimate model parameters. To give an objective measure of the bias and

variance components, we generate an independent time series from the same DGP serving as

a test set. From this independent series, we obtain a set of 2000 input/output pairs

{(𝐲𝑗, 𝐳𝑗)}
𝑗=1

2000
 where 𝐳𝑗 is the lagged vectors of inputs, and the vector 𝐲𝑗 is the next 𝐻

consecutive observations representing the lead time to be forecasted, in our case set to 10.

The MSE is then calculated as follows:

MSEℎ =
1

1000 × 2000
∑ ∑ (𝐲𝑗

ℎ − �̂�𝑆𝑖

ℎ (𝐳𝑗))
𝟐

2000

𝑗=1

1000

𝑖=1

The three components can be estimated as follows:

18

Noiseℎ =
1

2000
∑ (𝐲𝑗

ℎ − 𝔼[𝐲𝑗
ℎ | 𝐳𝑗])

𝟐
2000

𝑗=1

Biasℎ
2 =

1

2000
∑ (𝔼[𝐲𝑗

ℎ | 𝐳𝑗] − �̅�(𝐳𝑗))
𝟐

2000

𝑗=1

Varianceℎ =
1

1000 × 2000
∑ ∑ (�̂�𝑆𝑖

ℎ (𝐳𝑗) − �̅�(𝐳𝑗))
𝟐

2000

𝑗=1

1000

𝑖=1

where �̅�(𝐳𝑗) =
1

1000
∑ �̂�𝑆𝑖

ℎ (𝐳𝑗)1000
𝑗=1 is an estimate of 𝑀ℎ(𝐳𝑗) and �̂�𝑆𝑖

ℎ (𝐱𝑗) is the combined

forecast produced using dataset 𝑆𝑖 . The variable 𝐲𝑗
ℎ is the ℎ th element of the vector 𝐲𝑗 ,

representing the h-step-ahead forecast. Throughout this study, forecasts are produced using

the recursive strategy due to its simplicty, intuition, widespread use in research and practice,

and reduced computational load. This is in contrast to the direct strategy which although

being immune to propagation of forecast errors, would require a different model combination

for each forecast horizon, and becoming rather intensive computationally (Taieb et al. 2012).

The conditional mean 𝔼[𝐲𝑗
ℎ | 𝐳𝑗] for the linear process is calculated analytically. In the case

of the nonlinear process, we average over a large number of possible values for each future

time point of the series using simulation. In all cases we use a Multilayer Perceptron (MLP),

a feedforward neural network capable of approximating linear and nonlinear data generating

processes. We employ the same MLP setup as described in Section 5.3 with 𝑝 = 6. For

Monte Carlo crogging we set the training-validation split to 70% - 30%.

4.4. Experimental Results

Results of the bias-variance decomposition including the MSE (first column), the bias

(second column) and the variance (third column) for the linear and nonlinear DGP are shown

in Figure 3 and Figure 4 respectively, for short series having length 𝑇 = 50 . The MSE

provides a measure of the forecast error of the different combination approaches, Monte

Carlo, 𝑘 -fold, BagMoob and BagFoob, while the decomposed bias and variance allows an

19

examination of the strengths of the competing approaches across sampling sizes. For both

DGPs, we can see that the largest of the three components is the bias which, as the number of

samples and forecast horizon increases, is nearly two to three times as large as the variance.

This suggests that the neural network base model structure with 2 hidden nodes and 𝑝 = 6

autoregressive inputs, may not be sufficient to approximate the underlying DGP in the

presence of the given noise level. Nevertheless, this scenario reflects the core challenge in

real forecasting problems, where often the ’true‘ model stucture is not known in advance of

model fitting and the data has significant levels of noise relative to the signal in the data. In

contrast, where the model structure is known, then the DGP can trivally be estimated to high

accuracy using NNs.

Considering the differences between the methods, Figure 3 shows that for the linear

process, BagFoob and k-fold both have the highest variance while Monte Carlo consistently

has the smallest variance on average across all horizons. This improvement has however not

induced a large increase in bias. On the contrary, the bias of Monte Carlo is generally equal

to, if not less than other methods, and consequently the forecasts for Monte Carlo outperform

bagging and k-fold based on MSE.

20

Figure 3.Decomposition for linear AR(6) processfor different sampling sizes showing MSE,

bias and variance for time series length T=50 and forecast horizon of10.

BagMoob is often nearly as good as Monte Carlo particularly at small sampling sizes

where it has similar performance in terms of variance and on average across horizons

outperforms k-fold and BagFoob. As sampling size increases up to 30 samples, this relative

performance in terms of variance is still present; however the difference between methods in

terms of bias is smaller. The difference in performance among methods appear to come

mainly from the reduction in the variance of the combined forecast.

21

Figure 4.Decomposition for nonlinear STAR processfor different sampling sizes showing

MSE, bias and variance for time series length T=50 and forecast horizon of 10.

Results of the nonlinear DGP shown in Figure 4 are similar to those obtained on the

linear DGP, with Monte Carlo on average having the lowest variance and best forecasts in

terms of MSE across sampling sizes. This is followed closely by BagMoob which at sampling

sizes less than 20 performs similarly. As sample size increases, both BagFoob and k-fold

improve in performance however no consistent difference is noted between the two methods.

However with the exception of sampling size 10 where BagFoob performs well on variance,

Monte Carlo is always better.

22

Figure 5.Decomposition for linear AR(6)processfor different sampling sizes showing MSE,

bias and variance for time series length T=400 and forecast horizon of 10.

The evidence therefore indicates that Monte Carlo is best at reducing variance while

not adversely increasing the bias of the combined forecast, and that BagMoob is on average

always better than BagFoob. In fact, for both the linear and nonlinear DGP and across all

sampling sizes, Monte Carlo always produces a forecast having smaller bias than k-fold and

BagFoob, and which consequently leads to improved accuracy overall. On linear time series, k-

fold on average outperforms BagFoob across all sampling sizes and forecast horizons while for

nonlinear time series at length 50, the difference in performance is less clear.

23

Figure 6.Decomposition for nonlinear STARprocessfor different sampling sizes showing

MSE, bias and variance for time series length T=400 and forecast horizon of 10.

This is possibly due to the sampling scheme of cross-validation and BagMoob which uses a set

of ‘out of bag’ observations which guarantees that all observations in the learning set are used

for training. In contrast for BagFoob observations in the validation set are never used for

training. Additionally for short time series, linear or nonlinear Monte Carlo which like

bagging involves some random sampling appears to be much more effective at reducing

variance than 𝑘-fold.

24

These results hold, if not much clearer, for the longer time series having 400

observations. For both the linear and nonlinear DGP, total forecast error is reduced with the

significant reductions coming from the variance component. In fact the bias for all four

methods, which is now considerably larger than the variance, is nearly equal across all

sample sizes for all methods, while the variance of Monte Carlo and BagMoob is on average

always lower than k-fold and BagFoob. Though small this results in a consistent improvement

in MSE from using Monte Carlo over k-fold crogging, and BagMoob compared to BagFoob.

5. Empirical Evaluation Experiment

5.1. Design of combination methods

In this real-world experiment, we compare the forecasting accuracy of 𝑘-fold and

Monte Carlo crogging to bagging, conventional neural network model averaging over

multiple initialisations, and individual neural network model selection. One objective of this

study is to determine which, if any, of the combination strategies is best for forecast

combination, and under what conditions of sample size, and time series length. For each

method we use the same number of samples to train, using the identical neural network set up

and weight initialisation, to ensure that any differences in the forecast accuracy are

attributable directly to the method of choice, allowing a fair and robust comparison. We train

a total of 50 networks, each with different random starting weights to account for error

variance from local minima in the network training.

For 𝑘-fold cross-validation we evaluate 𝑘 = 2, 5, 10, 15, 20, 25 and 30producing a

corresponding number of data splits for training. For example, in the case of 2-fold cross-

validation, we obtain 2 splits of the learning set and for each split, train 50 similarly

initialized networks producing altogether 100 forecasts. Similarly when k=10 we have 10-

fold cross-validation, and a combination size of 10 × 50 forecasts. In order to provide a

25

direct comparison with k-fold crogging, we again create Monte Carlo cross-validation

samples of size 2, 5, 10, 15, 20, 25 and 30 using the same randomly initialized networks. We

implement BagFoob, and BagMoob in the same manner allowing a fair and robust comparison.

5.2. NN3 competition Dataset

To empirically evaluate the performance of each method, we utilise the 111 time

series from the NN3 competition dataset consisting of a representative set of long and short,

seasonal and non-seasonal monthly time series drawn from a homogenous population of

empirical business series (Crone, Hibon, and Nikolopoulos 2011). The time series contain

between 68 and 144 observations. The reduced dataset contains a mixture of all time series

types of which three are characterised as difficult to forecast, 4 as seasonal and the remaining

7 as non-seasonal containing also outliers and structural breaks. A summary of the

characteristics of the time series is provided in Table 1.

Table 1: Summary description of NN3 competition time series dataset

 Complete Dataset

 Reduced Dataset

 Short Long Normal Difficult SUM

Non-Seasonal
25

(NS)

25

(NL)

4

(NN)

3

(ND)
57

Seasonal
25

(SS)

25

(SL)

4

(SN)
- 54

SUM 50 50 8 3 111

For each method using a fixed validation set the number of observations is set to 14 to allow

for estimating of monthly seasonlity in the shortest possible series being 68 observations and

with 18 needed for the test dataset. However these observations are not always fixed as with

Monte Carlo crogging and BagMoob which sample different obervations for the validation set.

5.3. Design of benchmark Algorithms

For each of the benchmarks previously described, Holdoutselect, Holdoutavg,

26

Noholdoutavg and BagNoob we use the same identically initialized 50 MLPs as with the

principal combination methods. In the case of Holdoutselect or individual model selection we

select the network from the 50 differently initialized MLPs having the smallest MSE on the

fixed size validation set. For Holdoutavg we average over the predictions of these same

networks while for the Noholdoutavg method we average over each network this time trained

without a validation set. This approach of averaging over multiple weight initializations of

the same neural network architecuture is also known as neural network model averaging

(Hansen and Salamon 1990). Both model averaging and model selection are two established

methods of building neural network models for time series forecasting (Zhang and Berardi

2001; Naftaly, Intrator, and Horn 1997) both based on the Holdout method. Consequently

they provide strong benchmarks for this study, and allow investigating the benefits of cross-

validation versus ordinary validation (holdout). In the case of BagNoob we train each of the 50

networks on a bootstrap sample but unlike BagFoob and BagMoob no validation set is used

therefore the entire learning set is bootstrapped.

5.4. MLP setup

For the implementation of crogging, bagging, neural network averaging and selection

we use the same base learner of a univariate Multilayer Perceptron (MLP). MLPs are well

researched, and their ability to approximate and generalize well any functional relationship to

an arbitrary degree of accuracy has been proven (Hornik, Stinchcombe, and White 1989;

Hornik 1991). In particular, they have been shown empirically to be able to forecast linear

and nonlinear time series of different forms (Zhang, Patuwo, and Hu 1998). The functional

form of these networks is given by:

�̂�(𝐳𝑡) = 𝛽0 + ∑ 𝛽ℎ𝑔 (𝛾0𝑖 + ∑ 𝛾ℎ𝑖

𝐼

𝑖=0

𝑝𝑖)

𝐻

𝑘=1

(8)

27

with 𝐼 = 13, inputs 𝑝𝑖, connected to each of 𝐻 hidden nodes in a single hidden layer using

the hyperbolic tangent transfer function, and a single output node with an identity function.

This is sufficient to model monthly seasonality stochastically in addition to trends effectively

combining an 𝐴𝑅(12) and 𝐴𝑅(1) process. To evaluate the impact of model complexity we

consider neural networks having hidden nodes 𝐻 = 1, … ,5. The architecture of the MLP is

otherwise exactly the same allowing a fair assessment of the impact of the number of hidden

nodes on performance of each combination method. Each time series is modelled directly

without prior differencing or further data transformation to estimate level, seasonality, and

potential trend directly in the network weights and the bias terms. Additionally all time series

are linearly scaled into the interval of [-0.5, 0.5] to allow headroom for possible non-

stationarity prior to training. We produce multistep forecasts using an iterative prediction,

recursively generating one-step-ahead forecasts.

For parameter estimation the Levenberg-Marquardt algorithm (Hagan, Demuth, and

Beale 1996) is used to minimise the MSEloss function up to a maximum of 1000 epochs. The

algorithm requires setting a scalar 𝜇𝐿𝑀 and its increase and decrease steps, using 𝜇𝐿𝑀 =

10−3 , with an increase factor of 𝜇𝑖𝑛𝑐 = 10 and a decrease factor of 𝜇𝑑𝑒𝑐 = 10−1 . All

network training employ an early stopping criterion in order to avoid overfitting. This means

that we track the MSE on the training and the validation set, and halt the training process and

retain the network weights with the lowest error on the validation data after the error has not

decrease for more than 50 epochs, or if 𝜇𝐿𝑀 exceeds 𝜇𝑚𝑎𝑥 = 1010. For each new forecast

model, we randomly initialize the starting weights for each MLP allowing for different

solutions of the network to be achieved, taking care to ensure that the same starting weights

are used for each method. This is in addition to the randomness introduced by the k-fold,

Monte Carlo and bootstrap methods.

28

5.5. Evaluation

The forecast horizon for all methods is set to 12 months using a holdout sample of 1

to 18 months in the future, and a rolling origin evaluation to assess forecasting accuracy and

performance (Tashman 2000). The size of the validation set during training depends on the

method used, leaving the remaining observations for training. Where a fixed size validation

set is used then it is set to 14 observations as explained in Section 5.2. In comparing results to

that of the NN3 competitors (benchmarking), the forecast horizon will later be extended to 18

steps ahead forecasting from a fixed origin, as required by competition guidelines. We

calculate the mean absolute scaled error (MASE) and the symmetric mean absolute error

(SMAPE) for all methods in assessing forecast accuracy and performance. For a given actual

𝑋𝑡, and forecast 𝐹𝑡 the SMAPE (Chen and Yang 2004) provides a scale independent measure

that can be used to compare accuracy across time series . It is calculated as follows:

𝑆𝑀𝐴𝑃𝐸 =
1

𝑁
∑ (

|𝑋𝑡 − 𝐹𝑡|

(|𝑋𝑡| + |𝐹𝑡|) 2⁄
)

𝑁

𝑡=1

 (9)

where 𝑁 is the number of observations in the training set and 𝐻 is the number of values being

forecasted in the out-of-sample test set.

Hyndman and Koehler (2006) propose the use of the MASE as it is less sensitive to

outliers and more easily interpretable than other scaled error measures. The MASE is defined

as follows:

𝑀𝐴𝑆𝐸 =
1

𝐻
∑ (

|𝑋𝑡 − 𝐹𝑡|

(𝑁 − 1)−1 ∑ |𝑋𝑖 − 𝑋𝑖−1|𝑁
𝑖=2

)

𝐻

ℎ=1

 (10)

To assess whether observed differences in MASE and SMAPE are statistically significant,

the nonparametric Friedman test (Milton 1940, 1937) which requires no assumption about the

distribution of forecast errors, and the post-hoc Nemenyi test (Nemenyi 1962) are employed.

The Friedman test evaluates whether there is enough evidence that at least one method is

29

statistically different from the rest outputting a p-value. The Nemenyi test is based on the

minimum distance between methods being compared such that methods are considered to be

statistically different if the difference between the ranks of methods compared is larger than

this ‘critical’ distance.

6. Results

6.1. Overall performance

The overall results on bagging and crogging are provided in Table 2. For ease of

presentation, results are shown using only MASE as no statistically significant differences are

noted between results based on MASE and SMAPE. It gives the results for the NN3

competition data for training, validation and test dataset, showing MASE averaged across all

time series, sampling sizes and number of hidden nodes. Ranks based on the Nemenyi test

are also shown for all datasets. Methods having no statistically significant difference in

performance share the same ranking should in brackets. The method with the lowest average

error is highlighted in bold, while those with the best model ranking is highlight in bold and

underlined where the average ranking is best.

Table 2. Average errors and and rank of errors on the complete dataset by method. Ranking of errors

is based on the Nemenyi Test.

Method
Average errors Rank across all methods

Train Validation Test Train Validation Test

BagMoob 0.80 0.77 1.10 2.81 (2) 2.83 (2) 1.92 (1)

BagFoob 0.97 0.92 1.15 3.67 (3) 3.46 (3) 3.23 (3)

k-fold 0.79 0.76 1.15 1.84 (1) 1.85 (1) 2.93 (2)

Monte-Carlo 0.78 0.75 1.09 1.68 (1) 1.86 (1) 1.92 (1)

The best method in each column is in boldface. The method with the best ranking is underlined.

Methods with no statistically significant differences at the 0.05 level of significance share the same

model ranking shown in brackets.

Across all series, Monte Carlo crogging, Monte-Carlo, has the lowest average MASE

on the test set, as well as the best average ranking although results indicate no statistically

significant difference in performance over bagging with moving ‘out-of-bag’, BagMoob. Both

Monte-Carlo and BagMoob are however found to be significantly better than k-fold and

30

bagging with fixed ‘out-of-bag’, BagFoob. k-fold crogging outperforms and is statistically

better than BagFoob suggesting that there are benefits in acurracy from having diffferent

samples in the validation sets. For all methods out-of-sample results are consistent with those

obtained in-sample on the training and validation datasets in terms of average errors, however

results on rankings suggest that Monte-Carlo is more consistent. In-sample it ranks

statistically better than BagMoob on training and validation datasets, and out-of-sample is just

as good if not better on average error. This suggests that crogging is likely to be more robust

to overfitting and issues of method selection particularly when selection is based on in-

sample model fit. In the next section we consider performance based on the properties of the

tiem series data.

6.2. Data properties

Table 3 shows the results of average MASE and ranking for long and short series

across sample size and number of hidden nodes for all four methods. Results show no

statistically significant differnces between Monte-Carlo and BagMoob. While BagMoob ranks

best on the test set with an average rank of 2.04 for long series, Monte-Carlo is best on short

series having an average ranking of 1.78. In-sample k-fold performs well ranked best on

training and validation dataset for short time series. However unlike Monte-Carlo which also

performs well on the test set, k-fold does not show similar performance out-of-sample

indicating evidence of overfitting as previously discussed. The effect of overfitting seems

reduced on long series where it is ranked joint first with no statistically significant difference

in performance compared to Monte-Carlo and BagMoob. BagFoob is always outranked by

Monte-Carlo and BagMoob across all datasets although it does well in terms of average errors

on test set for long series. This difference between ranks of errors and average errors suggests

that there are several difficult time series, particularly affecting the less robust average of

errors.

31

Table 3. Average errors and and rank of errors on the test dataset by method and time series length.

Ranking of errors is based on the Nemenyi Test.

Type Method
Average errors Rank across all methods

Train Validation Test Train Validation Test

Long BagMoob 0.99 0.99 1.58 2.88 (2) 2.86 (2) 2.04 (1)

 BagFoob 1.22 1.15 1.52 3.80 (3) 3.52 (2) 3.24 (2)

 k-fold 0.98 0.98 1.56 1.96 (1) 2.02 (1) 2.64 (1,2)

 Monte-Carlo 0.95 0.96 1.55 1.36 (1) 1.60 (1) 2.08 (1)

Short BagMoob 0.60 0.58 0.69 2.86 (2) 2.84 (2,3) 1.82 (1)

 BagFoob 0.68 0.66 0.79 3.46 (2) 3.30 (3) 3.18 (2)

 k-fold 0.58 0.56 0.81 1.56 (1) 1.64 (1) 3.22 (2)

 Monte-Carlo 0.59 0.57 0.69 2.12 (1) 2.22 (1,2) 1.78 (1)

The best method in each column is in boldface. The method with the best ranking is underlined.

Methods with no statistically significant differences at the 0.05 level of significance share the same

model ranking shown in brackets.

The order of rankings is similar when considering seasonal and non-seasonal data as

shown in

Table 4. Again no statistically significant difference is noted in the ranking of Monte-

Carlo and BagMoob although Monte-Carlo gives the best ranking on seasonal time seris while

on non-seasonal BagMoob is ranked best. While both methods show no staistically significant

differnces on the test set, on the training and validation datset, Monte-Carlo is always

statistically better than BagMoob. This may potentially be explained by the structured nature of

the sampling in Monte Carlo crogging, in that while observations are drawn at random, it is

done without replacement ensuring that observations only appear in the trainining set once

and therefore more distrinct observations can be sampled. In contrast, when BagMoob is used,

observations in the training set may repeat offfering fewer distinct obsevations on which to

train. The performance of Monte-Carlo and BagMoob would suggest that the feature of the

randam sampling across both the training and validation set are important; coventional

bagging which in contrasts involves random sampling but only of the training set appears to

be inferior

Table 4. Average errors and and rank of errors on the test dataset by method and time series type.

Ranking of errors is based on the Nemenyi Test.

32

Type
MASE Average errors Rank across all methods
Method Train Validation Test Train Validation Test

Non-seasonal BagMoob 0.98 0.99 1.56 2.74 (2) 2.76 (2) 1.96 (1)

 BagFoob 1.21 1.15 1.52 3.56 (3) 3.40 (2) 3.20 (2)

 k-fold 0.98 0.98 1.56 1.86 (1) 1.76 (1) 2.86 (2)

 Monte-Carlo 0.96 0.97 1.53 1.84 (1) 2.08 (1) 1.98 (1)

Seasonal BagMoob 0.61 0.58 0.71 3.00 (2) 2.94 (2) 1.90 (1)

 BagFoob 0.69 0.67 0.80 3.70 (3) 3.42 (2) 3.22 (2)

 k-fold 0.58 0.56 0.80 1.66 (1) 1.90 (1) 3.00 (2)

 Monte-Carlo 0.59 0.57 0.71 1.64 (1) 1.74 (1) 1.88 (1)

The best method in each column is in boldface. The method with the best ranking is underlined.

Methods with no statistically significant differences at the 0.05 level of significance share the same

model ranking shown in brackets.

While the above provides a good overview of the performance of the four methods, it

is does not account for the potential difference in forecasting accuracy of each method as

sampling size and number of time series observations change, discussed next.

6.3. Sampling size

We investigate how the choice of sampling size and the interaction with time series

length affects forecasting accuracy. Recall that for k-fold cross-validation the number of

training sets is equivalent to the number of folds 𝑘, while for Monte Carlo crogging and

bagging this is equivalent to the number of random splits and the number of bootstraps

respectively. Table 5 shows the results for the average MASE and ranking by time series

length and sample size. The most accurate method on average for each sampling size (by

row) is highlighted in bold, while the most accurate method across sampling sizes is

underlined, for both long and short series. Ranking is done by method for each sample size.

Results of average error indicate that Monte-Carlo and BagMoob rank best on short

series for nearly all sampling sizes. In contrast both methods perform comparatively poorly

on long time series and are outperformed by BagFoob across nearly all sample sizes. Results

based on rankings are somewhat different and show Monte-Carlo to be robust across time

series length achieving good performance on both long and short time series. In contrast for

33

Table 5. Average errors and and rank of errors on test dataset by method and sampling size. Ranking

of errors is based on the Nemenyi Test.

Type Size

Average errors Rank across all methods

Monte-

Carlo
k-fold BagMoob BagFoob

Monte-

Carlo
k-fold BagMoob BagFoob

Long 2 1.56 1.57 1.56 1.56 2.15 (1) 2.46 (1) 2.25 (1) 3.14 (2)

 5 1.59 1.53 1.57 1.51 2.36 (1,2) 2.22 (1) 2.44 (1,2) 2.98 (2)

 10 1.57 1.59 1.57 1.44 2.29 (1) 2.42 (1) 2.57 (1) 2.72 (1)

 15 1.47 1.54 1.56 1.49 2.19 (1) 2.78 (1) 2.37 (1) 2.66 (1)

 20 1.52 1.56 1.56 1.50 2.35 (1) 2.62 (1) 2.33 (1) 2.70 (1)

 25 1.59 1.54 1.56 1.52 2.39 (1) 2.63 (1) 2.30 (1) 2.68 (1)

 30 1.51 1.50 1.60 1.54 2.15 (1) 2.59 (1) 2.42 (1) 2.84 (1)

Short 2 0.69 0.69 0.70 0.78 2.02 (1) 2.10 (1) 2.38 (1) 3.50 (2)

 5 0.70 0.70 0.69 0.76 2.02 (1) 2.48 (1) 2.32 (1) 3.18 (2)

 10 0.69 0.78 0.69 0.79 1.86 (1) 3.04 (2) 2.06 (1) 3.04 (2)

 15 0.69 0.79 0.69 0.80 2.03 (1) 3.26 (2) 2.01 (1) 2.70 (2)

 20 0.69 0.86 0.69 0.76 2.02 (1) 3.16 (2) 2.06 (1) 2.76 (2)

 25 0.69 0.89 0.69 0.77 1.78 (1) 3.50 (3) 1.94 (1) 2.78 (2)

 30 0.69 1.01 0.69 0.76 1.92 (1) 3.44 (3) 2.00 (1,2) 2.64 (2)

The best method in each row is in boldface. The method with the best ranking is underlined. Methods

with no statistically significant differences at the 0.05 level of significance share the same model

ranking shown in brackets.

short series k-fold is observed to degrade rather quickly as sample size increases. This is

because as sample size increases fewer observations are available for the validaiton set. For

short series BagFoob which uses a fixed size validation set also performs poorly. This is

explained by observing that while Monte-Carlo and BagMoob train on the entire learning set,

with different observations used either as training or validation datasets which BagFoob uses a

fixed size validation set of the same observations. For long series this sample size

performance tradeoff is less noticable.

Results of average ranking however shows no statistically significant differences

among any of the methods for long series at nearly all sample sizes suggesting that given a

sufficient number of observations, each method is capable of performing similarly.

Difference in reported performance using average errors and ranking is due to a few difficult

to forecast series. For short series which are much harder to forecast, results of rankings

remain consistent with those of average errors, and both Monte-Carlo and BagMoob

outperform k-fold and BagFoob with statistical significance for sample sizes greater than 5. If

34

we consider average error, then BagFoob with 10 bootstraps has the lowest error for long time

series, while several sizes of Monte-Carlo and BagMoob record the lowest error on short series.

6.4. Network parameters

Next, we seek to assess the sensitivity of each method to the complexity of the neural

network base model. For each combination method we consider the impact of the number of

hidden nodes on forecast accuracy. Table 6 summarises the performance of each combination

method on the test dataset across different numbers of hidden nodes. The best performing

method in each row corresponding to the number of hidden nodes is highlighted in boldface.

Results based on rankings across all time series and sample sizes show that Monte-Carlo and

BagMoob are always ranked better than k-fold or BagFoob and statistically better than BagFoob for

all but hidden node size 4. Results are clear in showing that bagging with moving ‘out-of-bag’ should

be preferred to a bagging with fixed ‘out-of-bag’ approach. In addition it suggests that Monte-Carlo

should be preferred to k-fold.

Table 6. Average errors and rank of errors on test dataset by method and number of hidden nodes.

Ranking of errors by method is based on the Nemenyi Test and done for each number of hidden

nodes.

MASE Average errors

Rank across all methods

Hidden

Nodes

Monte-

Carlo
k-fold BagMoob BagFoob

Monte-

Carlo
k-fold BagMoob BagFoob

1 1.11 1.14 1.09 1.28

2.16 (1) 2.44 (1) 2.15 (1) 3.26 (2)

2 1.14 1.28 1.07 1.18

2.13 (1) 2.84 (2) 1.88 (1) 3.15 (2)

3 1.06 1.11 1.08 1.12

1.80 (1) 2.98 (2) 2.19 (1) 3.03 (2)

4 1.09 1.14 1.15 1.10

2.21 (1) 2.85 (2) 2.29 (1) 2.65 (1,2)

5 1.09 1.09 1.10 1.05

2.39 (1,2) 2.55 (1,2) 2.31 (1) 2.76(2)

The best method in each row is in boldface. The method with the best ranking is underlined. Methods

with no statistically significant differences at the 0.05 level of significance share the same model

ranking shown in brackets.

Results of average errors suggests that for BagFoob, Monte-Carlo and k-fold forecast

accuracy generally improves with the number of hidden nodes, showing reductions of 18%,

2% and 4% respectively from the use of 1 hidden node versus 5 hidden nodes. To further

validate our finding, we perform for each method a ranking of the MASE across all time

35

series based on the number of hidden nodes in the neural network. Results of Nemenyi model

ranking and Friedman test shown in Table 7 show no statistically significant differences in

accuracy due to number of hidden nodes for Monte-Carlo and similarly for BagMoob. In

contrast k-fold and BagFoob methods perform statistically better with larger networks.

Table 7. Rank of errors on test dataset by method and number of hidden nodes. Ranking of errors by

number of hidden nodes is based on the Nemenyi Test and done for each method.

MASE Mean rank

Model rank

Hidden

Nodes

Monte-

Carlo
k-fold BagMoob BagFoob

Monte-

Carlo
k-fold BagMoob BagFoob

1 3.20 2.82 3.41 3.68

1 1 2 3

2 2.69 3.60 2.94 3.50

1 2 1,2 2, 3

3 3.16 3.23 2.80 3.09

1 2 1 2

4 3.13 2.86 3.05 2.51

1 1 1,2 1

5 2.82 2.50 2.80 2.21

1 1 1 1

The best method in each column is in boldface. Methods with no statistically significant differences at

the 0.05 level of significance share the same model ranking.

6.5. Select best versus Benchmarks

In this section we select for each time series and for each of the four methods

previously evaluated, the best performing combination of sample size and number of hidden

nodes. For each time series the sample size and hidden nodes having the producing lowest

MASE on the validation set is selected. For each benchmark method, the number of hidden

nodes is also selected based on the validation set accuracy. When the Holdout, Noholdout and

BagNoob methods are used, the sample size is set to 50. Results of the average error and

ranking of errors for each method aross all time series are presented in Table 8. Considering

the average MASE across all time series, we see that the method with the lowest forecast

error on the test set is BagMoob followed by k-fold. These results are however not statistically

significant as observed by rankings which suggest no statistically significant difference

between Monte-Carlo, k-fold and BagMoob when selecting based on in-sample accuracy on the

validation set.

Table 8. Average errors and and rank of errors on test dataset by method and number of hidden nodes.

Ranking of errors is based on the Nemenyi Test.

36

MASE Average errors Rank across all methods

Method Train Validation Test Train Validation Test

BagMoob 0.77 0.63 0.86 6.34 (3,4) 5.37 (3,4) 4.73 (1)

BagFoob 0.80 0.60 0.94 5.42 (2,3) 3.79 (1,2) 4.90 (1,2)

k-fold 0.67 0.55 0.89 2.59 (1) 2.75 (1) 4.51 (1)

Monte-Carlo 0.73 0.60 0.98 4.42 (2) 4.32 (2,3) 4.78 (1)

Holdoutavg 0.79 0.72 1.05 5.56 (3,4) 7.22 (5) 5.17 (1,2)

Noholdoutavg 0.77 0.65 1.05 6.02 (3,4) 6.42 (3,4) 5.05 (1,2)

Holdoutselect 0.91 0.65 1.15 6.65 (4) 5.66 (3,4) 5.99 (1,2)

Leave-one-out 0.63 0.58 0.93 2.31 (1) 3.03 (1) 4.86 (1,2)

BagNoob 0.79 0.68 0.94 5.68 (3,4) 6.04 (3,4) 5.02 (1,2)

The best method in each column is in boldface. The method with the best ranking is underlined.

Methods with no statistically significant differences at the 0.05 level of significance share the same

model ranking shown in brackets.

Leave-one-out and k-fold perform are stistically better than all other methods on the training

and validation datasets which is not surprising given the tendency to overfitt. These resullts

suggest that use of the valiation set for individual time series parameter (sample size and

hidden nodes) selection is not particularly effective at discriminating among the methods.

6.6. Relative Ranking on results of NN3 competition

Table 9 reports the results obtained by the first eight participants of the NN3

competition and the benchmark model of the competition (AutomatANN). To these we

compare Monte-Carlo crogging, k-fold crogging, both forms of bagging, as well as the set of

benchmark approaches previously discussed. These are highlighted in boldface with the best

method in each column underlined. For each method the sample size and number of hidden

nodes is determined using in-sample mean forecast error on the validation set. To remain

consistent with the reporting format of the competition, we report rankings using SMAPE and

MASE. While these rankings provide evidence of each method’s ability to accurately forecast

relative to competition benchmark, it is not possible to performance tests of statistical

significance having no access to the competition forecasts. Among all methods BagMoob and

Monte-Carlo ranked 3rd and 5th overall according to SMAPE, and 1st and 2nd based on

MASE across all time series. Monte-Carlo and BagMoob method outperforms well known

statistical benchmarks including damped exponential smoothing (DES) and the simple

37

average of damped, single and holt exponential smoothing (Comb-S-H-D) shown to work

well in other competitions (Makridakis and Hibon 2000). Most encouraging is the

improvement in accruacy over model selection with Monte-Carlo and BagMoob showing a

19% and 21% improvement over HoldoutSelect according to SMAPE, and 15% and 16%

according to MASE.

Table 9. Average errors and ranks of errors across all time series of the NN3 competition.

Average errors Ranking all methods Ranking NN/CI

SMAPE MASE SMAPE MASE SMAPE MASE

B09 Wildi 14.84 1.13 1 3 − −

B07 Theta 14.89 1.13

2 3

− −

** BagMoob 15.13 1.11

3 1

1 1

C27 Illies 15.18 1.25

3 15

2 8

B03 ForecastPro 15.44 1.17

4 7

− −

** Monte-Carlo 15.47 1.12

5 2

3 2

B16 DES 15.9 1.17

6 7

− −

B17 Comb S-H-D 15.93 1.21

7 13

− −

** Noholdoutavg 15.94 1.19

8 10

4 5

B05 Autobox 15.95 1.18

9 9

− −

** BagFoob 15.95 1.17

10 6

5 4

** BagNoob 15.99 1.13

11 5

6 3

C03 Flores 16.31 1.20

12 12

7 6

** k-fold 16.34 1.20

13 11

8 6

B00 AutomatANN 16.81 1.21

14 13

9 7

** Holdoutavg 17.12 1.25

15 16

10 8

** Leave-one-out 17.87 1.33

16 18

11 10

** Holdoutselect 19.10 1.32 17 17 12 9

Methods implemented in this study are highlighted in bold. The best method in each column is

underlined.

Among the computational intelligence (NN/CI) methods, BagMoob and Monte-Carlo

ranked 1st and 3rd respectively according to SMAPE, and 1st and 2nd according to MASE.

This reflects rather good performance by the proposed Monte-Carlo combination method and

BagMoob. BagFoob ranks slight better than Neural network model averaging with no validation

set (NoHoldoutAvg), while both the HoldoutSelect and leave-one-out are ranked worst than the

competition benchmark method AutomatANN both in terms of SMAPE and MASE.While

we do not show these results to be statistically significant relative to competition methods,

they are not surprising given evidence already presenting showing Monte-Carlo and

38

BagMoob to perform better on average than the other methods evaluated in this study. Also

this needs to be verified, results using SMAPE and the more robust MASE suggest that both

methods outperform other neural network based methods of the competition. This includes

the more complex approaches of Illies, Jäger, Kosuchinas, Rincon, Sakenas and Vaskevcius

(C27) which is based on a combination of time series clustering, decomposition and the use

of Echo State Networks (ESN), a type of recurrent NN, and the method of Flores et. al.

(C03), which combines a self adaptive genetic algorithm to determine the terms of a seasonal

ARIMA (p,d,q)(P,D,Q) model.

7. Summary and conclusions

We have presented the first application and evaluation of Monte Carlo cross-

validation as a method for producing combinations of univariate time series forecasts within a

general framework of cross-validation aggregation (crogging). This general framework for

combining autoregressive forecasts draws inspiration from bagging. Bagging which is based

on bootstrap resampling is used for forecast combination as a relatively easy way to improve

accuracy of an existing model and has grown in popularity over the last two decades. Several

cross-validation sampling schemes are evaluated for combining forecasts including 2-fold,

10-fold, leave-one-out and Monte Carlo cross-validation.

Beyond Monte Carlo cross-validation, this study provides evidence that crogging

which is relatively simple to implement, turns out to be even more effective at reducing the

variance of the final forecast, and improving accuracy, in comparison to bagging with a fixed

validation set, and neural network model averaging. Where bagging is implemented using a

validation set, the ‘out-of-bag’ approach, then bagging performs just as good as Monte Carlo

crogging. This is first shown theoretically through a decomposition of the mean squared error

into its bias and variance components, which are both estimated through Monte and BagMoob

are both effective at reducing variance, and in some cases, the bias of the combined forecast.

39

Secondly using competition data consisting of monthly real business time series, it was found

that Monte-Carlo crogging and BagMoob, outperformed k-fold crogging and other benchmark

methods, making Monte-Carlo a valid and attractive alternative for time series forecasting

with autoregressive models.

With the exception of BagFoob the number of hidden nodes used was found to have no

statistical impact on forecast accuracy. However for short series and large combination sizes,

k-fold and BagFoob were outperformed by both Monte-Carlo crogging and BagMoob. In contrast

for long time series little statistical difference was noted among the four principal methods

evaluated. Our results show evidence of better in-sample performance on the validation set by

Monte-Carlo versus BagMoob, however this resulted in no improvement in terms of model

selection of sample size and hidden node parameters even when using the validation set. This

can be explained by the relative invariace of both methods to both paramaters. While Monte-

Carlo crogging and BagMoob are most effective at larger sampling sizes, k-fold crogging

performed poorly; attributable to the trade-off between the number of folds, and the number

of time series observations available for training. As the number of folds increases, and

likewise the number of forecasts combined, the size of the validation dataset decreaces. This

suggests that with fewer observations available for early stopping, model estimation becomes

poorer. This appears to be the biggest advantage that the Monte-Carlo and bagging with ‘out-

of-bag’ methods afford, in that they decouples the number of samples available for forecast

model estimation from the size of the training/validation datasets.

While this study has shown that crogging can be used to improve forecasting accuracy

when applied to neural networks, further evidence is required using other forecasting

methods e.g. regression to which crogging can be easily applied. Additionally, an obvious

next step would be to investigate the application of crogging beyond autoregressive models to

40

moving average processes as proposed by Bergmeir and Hyndman (2014) for bagging

exponential smoothing methods.

References

Aksu, C., and S. I. Gunter. 1992. An empirical analysis of the accuracy of SA, OLS, ERLS

and NRLS combination forecasts. International Journal of Forecasting 8 (1):27-43.

Altman, NS. 1990. Kernel smoothing of data with correlated errors. Journal of the American

Statistical Association 85 (411):749-759.

Arlot, Sylvain, and Alain Celisse. 2010. A survey of cross-validation procedures for model

selection. Statistics Surveys 4 (0):40-79.

Assaad, M., R. Bone, and H. Cardot. 2008. A new boosting algorithm for improved time-

series forecasting with recurrent neural networks. Information Fusion 9 (1):41-55.

Bates, J. M., and C. W. J. Granger. 1969. Combination of Forecasts. Operational Research

Quarterly 20 (4):451-&.

Ben Taieb, Souhaib, and Rob Hyndman. 2014. Boosting multi-step autoregressive forecasts.

Paper read at Proceedings of The 31st International Conference on Machine Learning.

Bengio, Yoshua, and Yves Grandvalet. 2004. No unbiased estimator of the variance of k-fold

cross-validation. The Journal of Machine Learning Research 5:1089-1105.

Berardi, V. L., and G. P. Zhang. 2003. An empirical investigation of bias and variance in time

series forecasting: Modeling considerations and error evaluation. Ieee Transactions on

Neural Networks 14 (3):668-679.

Bergmeir, Christoph, and Rob J Hyndman. 2014. Bagging Exponential Smoothing Methods

using STL Decomposition and Box-Cox Transformation. Monash University,

Department of Econometrics and Business Statistics.

Birgé, Lucien, and Pascal Massart. 2007. Minimal penalties for Gaussian model selection.

Probability Theory and Related Fields 138 (1-2):33-73.

Breiman, L. 1984. Classification and regression trees: Wadsworth International Group.

Breiman, L. 1996a. Bagging predictors. Machine Learning 24 (2):123-140.

Breiman, L. 1996b. Out-of-bag estimation. Technical report, Statistics Department,

University of California Berkeley, Berkeley CA 94708, 1996b. 33, 34.

Breiman, L. 2001. Random forests. Machine learning, 45(1): 5-32.

Brenning, A., J. Andrey, and B. Mills. 2011. Indirect modeling of hourly meteorological time

series for winter road maintenance. Environmetrics 22 (3):398-408.

Brown, Gavin, Jeremy Wyatt, Rachel Harris, and Xin Yao. 2005. Diversity creation methods:

a survey and categorisation. Information Fusion 6 (1):5-20.

Burman, Prabir. 1989. A comparative study of ordinary cross-validation, v-fold cross-

validation and the repeated learning-testing methods. Biometrika 76 (3):503-514.

Burman, Prabir, Edmond Chow, and Deborah Nolan. 1994. A cross-validatory method for

dependent data. Biometrika 81 (2):351-358.

Burman, Prabir, and Deborah Nolan. 1992. Data-dependent estimation of prediction

functions. Journal of Time Series Analysis 13 (3):189-207.

Chen, Z., and Y. Yang. 2004. Assessing forecast accuracy measures. In Working Paper.

Clarida, R. H., L. Sarno, M. P. Taylor, and G. Valente. 2003. The out-of-sample success of

term structure models as exchange rate predictors: a step beyond. Journal of

International Economics 60 (1):61-83.

Clemen, R. T., and R. L. Winkler. 1986. Combining economic forecasts. Journal of Business

& Economic Statistics 4 (1):39-46.

41

Clements, Michael P., and David F. Hendry. 2007. An Overview of Economic Forecasting. In

A Companion to Economic Forecasting, edited by D. F. H. Michael P. Clements.

Cleveland, Robert B, William S Cleveland, Jean E McRae, and Irma Terpenning. 1990. STL:

A seasonal-trend decomposition procedure based on loess. Journal of Official

Statistics 6 (1):3-73.

Crone, Sven F., Michèle Hibon, and Konstantinos Nikolopoulos. 2011. Advances in

forecasting with neural networks? Empirical evidence from the NN3 competition on

time series prediction. International Journal of Forecasting 27 (3):635-660.

de Menezes, L. M., D. W. Bunn, and J. W. Taylor. 2000. Review of guidelines for the use of

combined forecasts. European Journal of Operational Research 120 (1):190-204.

Deng, Y. F., X. Jin, Y. X. Zhong, and Ieee. 2005. Ensemble SVR for prediction of time series,

Proceedings of 2005 International Conference on Machine Learning and Cybernetics,

Vols 1-9. New York: Ieee.

Dietterich, Thomas G. 1998. Approximate statistical tests for comparing supervised

classification learning algorithms. Neural Computation 10 (7):1895-1923.

Dietterich, ThomasG. 2000. Ensemble Methods in Machine Learning. In Multiple Classifier

Systems: Springer Berlin Heidelberg.

Donate, J. P., P. Cortez, G. G. Sanchez, and A. S. de Miguel. 2013. Time series forecasting

using a weighted cross-validation evolutionary artificial neural network ensemble.

Neurocomputing 109:27-32.

Efron. 1983. Estimating the Error Rate of a Prediction Rule - Improvement on Cross-

Validation. Journal of the American Statistical Association 78 (382):316-331.

Efron, Bradley. 1979. 1977 Rietz Lecture - Bootstrap Methods - Another Look at the

Jackknife. Annals of Statistics 7 (1):1-26.

Efron, Bradley, and Robert Tibshirani. 1986. Bootstrap methods for standard errors,

confidence intervals, and other measures of statistical accuracy. Statistical

Science:54-75.

Efron, Bradley, and Robert Tibshirani. 1993. An Introduction to the bootstrap. London:

Chapman and Hall.

Geman, S., E. Bienenstock, and R. Doursat. 1992. Neural networks and the bias variance

dilemma. Neural Computation 4 (1):1-58.

Hagan, M.T., H.B. Demuth, and M.H. Beale. 1996. Neural Network Design: Pws Pub.

Hansen, Bruce E., and Jeffrey S. Racine. 2012. Jackknife model averaging. Journal of

Econometrics 167 (1):38-46.

Hansen, L. K., and P. Salamon. 1990. Neural Network Ensembles. IEEE Transactions on

Pattern Analysis and Machine Intelligence 12 (10):993-1001.

Hardle, Wolfgang, and James Stephen Marron. 1985. Optimal bandwidth selection in

nonparametric regression function estimation. The Annals of Statistics:1465-1481.

Hart, Jeffrey D. 1991. Kernel regression estimation with time series errors. Journal of the

Royal Statistical Society. Series B (Methodological):173-187.

Hart, Jeffrey D, and Thomas E Wehrly. 1986. Kernel regression estimation using repeated

measurements data. Journal of the American Statistical Association 81 (396):1080-

1088.

Hillebrand, E., and M. C. Medeiros. 2010. The Benefits of Bagging for Forecast Models of

Realized Volatility. Econometric Reviews 29 (5-6):571-593.

Hornik, K. 1991. Approximation capabilities of multilayer feedforward networks. Neural

Networks 4 (2):251-257.

Hornik, K., M. Stinchcombe, and H. White. 1989. Multilayer Feedforward Networks Are

Universal Approximators. Neural Networks 2 (5):359-366.

42

Hu, M. Y., G. Q. Zhang, C. Z. Jiang, and B. E. Patuwo. 1999. A cross-validation analysis of

neural network out-of-sample performance in exchange rate forecasting. Decision

Sciences 30 (1):197-216.

Hu, Michael Y., Guoqiang Zhang, Christine X. Jiang, and B. Eddy Patuwo. 1999. A Cross-

Validation Analysis of Neural Network Out-of-Sample Performance in Exchange

Rate Forecasting. Decision Sciences 30 (1):197-216.

Hyndman, Rob J., and Anne B. Koehler. 2006. Another look at measures of forecast

accuracy. International Journal of Forecasting 22 (4):679-688.

Inoue, A., and L. Kilian. 2008. How useful is bagging in forecasting economic time series? A

case study of US consumer price inflation. Journal of the American Statistical

Association 103 (482):511-522.

Jose, V. R. R., and R. L. Winkler. 2008. Simple robust averages of forecasts: Some empirical

results. International Journal of Forecasting 24 (1):163-169.

Kohavi, Ron. 1995. A study of cross-validation and bootstrap for accuracy estimation and

model selection. In Proceedings of the 14th international joint conference on

Artificial intelligence - Volume 2. Montreal, Quebec, Canada: Morgan Kaufmann

Publishers Inc.

Kourentzes, Nikolaos, Devon K. Barrow, and Sven F. Crone. 2014. Neural network ensemble

operators for time series forecasting. Expert Systems with Applications 41 (9):4235-

4244.

Krogh, Anders, and Jesper Vedelsby. 1995. Neural network ensembles, cross validation, and

active learning. Advances in neural information processing systems:231-238.

Kunsch, H. R. 1989. The Jackknife and the Bootstrap for General Stationary Observations.

Annals of Statistics 17 (3):1217-1241.

Macdonald, R., and I. W. Marsh. 1994. Combining exchange-rate forecasts - what is the

optimal consensus measure. Journal of Forecasting 13 (3):313-332.

Makridakis, S., A. Andersen, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton,

E. Parzen, and R. Winkler. 1982. The accuracy of extrapolation (time series) methods:

Results of a forecasting competition. Journal of Forecasting 1 (2):111-153.

Makridakis, S., and M. Hibon. 2000. The M3-Competition: results, conclusions and

implications. International Journal of Forecasting 16 (4):451-476.

Michaelsen, J. 1987. Cross-Validation in Statistical Climate Forecast Models. Journal of

Climate and Applied Meteorology 26 (11):1589-1600.

Naftaly, U., N. Intrator, and D. Horn. 1997. Optimal ensemble averaging of neural networks.

Network-Computation in Neural Systems 8 (3):283-296.

Opsomer, Jean, Yuedong Wang, and Yuhong Yang. 2001. Nonparametric regression with

correlated errors. Statistical Science:134-153.

Perrone, Michael P., and Leon N. Cooper, eds. 1992. When networks disagree: ensemble

methods for hybrid neural networks. Edited by R. J. Mammone, Neural Networks for

Speech and Image processing: Chapman-Hall.

Picard, Richard R, and R Dennis Cook. 1984. Cross-validation of regression models. Journal

of the American Statistical Association 79 (387):575-583.

Shao, J. 1997. An asymptotic theory for linear model selection. Statistica Sinica 7 (2):221-

242.

Shao, L. 1993. Linear model selection via cross-validation. Journal of the American

Statistical Association 88 (422):486-494.

Sorić, Petar, and Ivana Lolić. 2013. A note on forecasting euro area inflation: leave-h-out

cross validation combination as an alternative to model selection. Central European

Journal of Operations Research:1-10.

43

Stock, James H., and Mark W. Watson. 2004. Combination forecasts of output growth in a

seven-country data set. Journal of Forecasting 23 (6):405-430.

Stone, M. 1974. Cross-Validatory Choice and Assessment of Statistical Predictions. Journal

of the Royal Statistical Society. Series B (Methodological) 36 (2):111-147.

Stone, M. 1977. An Asymptotic Equivalence of Choice of Model by Cross-Validation and

Akaike's Criterion. Journal of the Royal Statistical Society. Series B (Methodological)

39 (1):44-47.

Taieb, S. B., Bontempi, G., Atiya, A. F., & Sorjamaa, A. 2012. A review and comparison of

strategies for multi-step ahead time series forecasting based on the NN5 forecasting

competition. Expert systems with applications, 39(8): 7067-7083.
Taieb, S. B., & Atiya, A. F. 2015. A Bias and Variance Analysis for Multistep-Ahead Time

Series Forecasting. IEEE transactions on neural networks and learning systems.

Tashman, J. 2000. Out-of-sample tests of forecasting accuracy: an analysis and review.

International Journal of Forecasting 16 (4):437-450.

Terasvirta, T., and H. M. Anderson. 1992. Characterizing nonlinearities in business cycles

using smooth transition autoregressive models. Journal of Applied Econometrics 7

(S1):S119-S136.

Timmermann, A. 2006. Forecast combinations. In Handbook Of Economic Forecasting,

edited by G. Elliott, C. W. J. Granger and A. Timmermann. Amsterdam Elsevier.

Watson, James H. Stock and Mark W. 2005. An empirical comparison of methods for

forecasting using many predictors. Princeton University.

Wolff, C. C. P. 1987. Time-Varying Parameters and the out-of-Sample Forecasting

Performance of Structural Exchange-Rate Models. Journal of Business & Economic

Statistics 5 (1):87-97.

Zhang, G. P., and V. L. Berardi. 2001. Time series forecasting with neural network

ensembles: an application for exchange rate prediction. Journal of the Operational

Research Society 52 (6):652-664.

Zhang, G. Q., B. E. Patuwo, and M. Y. Hu. 1998. Forecasting with artificial neural networks:

The state of the art. International Journal of Forecasting 14 (1):35-62.

Zhang, Ping. 1993. Model selection via multifold cross validation. The Annals of

Statistics:299-313.

Zhou, Zhi-Hua, Jianxin Wu, and Wei Tang. 2002. Ensembling neural networks: Many could

be better than all. Artificial Intelligence 137 (1–2):239-263

