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Abstract 

This paper evaluates k-fold and Monte Carlo cross-validation and aggregation (crogging) for 

combining neural network autoregressive forecasts. We introduce Monte Carlo crogging which 

combines bootstrapping and cross-validation in a single approach through repeated random splitting 

of the original time series into mutually exclusive datasets for training. As the training/validation 

split is independent of the number of folds, the algorithm offers more flexibility in the size, and 

number of training samples compared to k-fold cross-validation. The study also provides for 

crogging and bagging: (1) the first systematic evaluation across time series length and combination 

size, (2) a bias and variance decomposition of the forecast errors to understand improvement gains, 

and (3) a comparison to established benchmarks of model averaging and selection. Crogging can 

easily be extended to other autoregressive models. Results on real and simulated series demonstrate 

significant improvements in forecasting accuracy especially for short time series and long forecast 

horizons. 
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1. Introduction 

Improving the accuracy of a univariate time series forecast remains important in many 

disciplines, from environmental sciences to business and finance. The approach of combining 

multiple forecasts has shown particular promise (Clemen and Winkler 1986; Timmermann 

2006) as evidenced by various empirical studies (Aksu and Gunter 1992; Macdonald and 

Marsh 1994; Stock and Watson 2004; Clements and Hendry 2007; Jose and Winkler 2008; 

Kourentzes, Barrow, and Crone 2014) and objective forecasting competitions (Makridakis et 

al. 1982; Makridakis and Hibon 2000). The traditional approaches to forecast combination 

typically involve a set of independent, pre-specified forecasts from different algorithms, 

which are combined in a second step using a variety of different weighting schemes. 

As an alternative to combining predictions of different algorithms, research in 

machine learning for predictive classification routinely apply repeated subsampling of the 

dataset on which a single algorithm is parameterised, creating diversity in data rather than in 

algorithms. Most widely studied, bagging (Breiman 1996a) and k-fold cross-validation 

ensembles (Krogh and Vedelsby 1995) adopt different data resampling techniques, 

bootstrapping and cross-validation respectively, to actively create diverse estimates of the 

same base learner algorithm for successive combination of the predictions. Their success in 

improving performance and robustness of predictions in classification has been empirically 

proven in a large number of research studies (see e.g. Dietterich 2000; Zhou, Wu, and Tang 

2002), with their wide use reflected in published textbooks (see e.g. Perrone and Cooper 

1992) and their availability in standard software packages (see e.g. Matlab and Salford 

Predictive Modeler Software Suite). 

Despite both methods having been extended to regression in general, and time series 

forecasing in particular, this class of algorithms has received relatively limited attention in 

forecasting research. While bagging has been assessed in select studies, only recently have 
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Donate et al (2013) and Soric and Lolic (2013) studied cross-validation for time series 

forecast combination, with promising results (Donate et al. 2013; Sorić and Lolić 2013). 

However, both studies were constrained to the variant of k-fold cross-validation, applying a 

fixed and predetermined number of subsamples to create diversity. In contrast Monte Carlo 

cross-validation which combines the benefits of both cross-validation and bootstrapping – 

repeated random sampling with replacement – in a single approach has been relatively 

ignored for forecast combination.  

In this study we use cross-validation for combining autoregressive forecasts. The 

forecast combination averages over a set of forecast models trained using mutually exclusive 

cross-validation replicates, sampled from a given learning set. Within the general framework 

of cross-validation and aggregating, or crogging for short, we introduce a new method of 

forecast combination, Monte Carlo crogging and evaluate against k-fold crogging and 

bagging for the first time in a single study. The contributions of this research study are 

therefore fourfold: (1) the first time application of Monte Carlo cross-validation for forecast 

combination; (2) the first systematic empirical evaluation of different cross-validation 

approaches and bagging across data conditions of time series length and equal number of 

samples using a simulated study on linear and nonlinear data as well as empirical data; (3) an 

assessment of performance in terms of a bias and variance decomposition of the mean 

squared error (MSE) of the forecasts; and (4) a comparison of cross-validation to bagging and 

established benchmark methods of model averaging and model selection utilising the 111 

time series of the NN3 competition (Crone, Hibon, and Nikolopoulos 2011). 

This paper is organised as follows: in Section 2 which follows, we review the 

literature on foreast combination, error estimation and data sampling, linking the three main 

areas of this research. In Section 3, we desribe how boostrapping and cross-validation are 

applied for forecast combination through bagging and the proposed crogging framework. We 
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describe several crogging strategies including the proposed combination based on Monte 

Carlo cross-validation and provide some theoretical insights into crogging to understand why 

it should be an effective strategy for forecast combination. In Section 4, we evaluate through 

extensive simulation, the difference between crogging and Bagging in terms of bias and 

variance, varying combination size and time series length, while Section 5 presents results of 

the empirical evaluation based on data of the NN3 competition. The final section provides a 

summary and concluding comments. 

2. Forecast combination, error estimation and data sampling 

In  the 50 years since the seminal paper by Bates and Granger (1969) on forecast 

combination, the majority of papers have resorted to combining the results of multiple 

forecast models previously specified, or multiple training initializations thereof, each one 

parameterized on the same complete learning data. In contrast, recent methods based on 

bootstrapping and cross-validation focus on model estimation and actively creating diverse 

predictions over which to average. In this research we focus on cross-validation originally 

developed for the estimation of prediction error and to faciliate model selection. While our 

interest is in forecast combination, most existing research on cross-validation exists in the 

model selection literature (see review by Arlot and Celisse 2010). Here the estimation of 

predictive accuracy is important, both for evaluating the accuracy of statistical models, and 

for deciding the final model selected.  

The statistical resampling technique of cross-validation (CV) assesses how the results 

of a statistical estimate will generalize to an independent data set (Stone 1974). Out-of-

sample predictive accuracy is esimated by repeatedly spliting the original data into a training 

set for estimating the model, and a validation set for estimating the error in the predictions.  

This has the attractive feature of producing nearly unbiased estimates of the preidction error 

and provides a more representative estimation of the true ex ante performance of the model 



5 
 

(Efron 1983; Kohavi 1995). The technique is used most popurlarly in out-of-sample 

evaluations with a single hold-out dataset (Tashman 2000) and in specific application areas, 

such as climate forecasting (Michaelsen 1987), and financial forecasting with statistics and 

neural networks (Wolff 1987; Clarida et al. 2003; Hu et al. 1999). Despite the advantages in 

the approach, several research studies have also pointed out its limitations. For example, the 

advantage in obtaining an unbiased estimation is known to fail when the number of models 

grows exponentially with the number of observations. Birgé and Massart (2007) and Hardle 

and Marron (1985) showed that in the presence of outliers, cross-validation was prone to 

failure. Hart and Wehrly (1986) proved that cross-validation overfits for positively correlated 

data (see also Opsomer, Wang, and Yang 2001; Altman 1990; Hart 1991), although Burman 

and Nolan (1992) later showed it to be asymptotically optimal for stationary Markov process 

though within a specific framework. Less than persuasive early results were also obtained in 

the case of the leave-one-out cross-validation albeit for error estimation rather than forecast 

combination (see results of Burman and Nolan 1992; Burman, Chow, and Nolan 1994). 

Recent research on cross-validation for time series forecast combination though very 

few, have produced promising results. Recently, Donate et al. (2013) employed a weighted k-

fold cross-validation scheme for generating neural network ensembles in predicting six real 

world time series, improving accuracy for short and medium series in comparison to Holt-

Winters exponential smoothing. Around the same time Sorić and Lolić (2013) propose the 

use of the leave-h-out cross-validation (Jackknife) combination for time series forecasting of 

euro area (EA) inflation, following the work on Jackknifing and model averaging by Hansen 

and Racine (2012). While the approach did not seem to offer any improvements in forecast 

accuracy at short horizons, results demonstrated that for the longer-horizons, forecasts were 

significantly more precise when using cross-validation. 
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In addition to the limited number studies which evaluate cross-validation for forecast 

combination, none of which consider Monte Carlo cross-valiation, existing studies also fail to 

compare cross-validation to the effective benchmark of bagging (short for “bootstrap 

aggregating”). Bagging preceeded the use of cross-validation for aggregation,  employing 

instead bootstrapping for generating candidate forecasts. Like cross-validation, bootstrapping 

is an established statistical technique involving data resampling from observed data, used to 

assign measures of accuracy such as prediction error to a sample estimate (Efron 1979; Efron 

1983; Efron and Tibshirani 1993). It is known to be particularly effective at reducing the 

variance of an estimator, but unlike cross-validation suffers from potentially large bias (Efron 

1983; Kohavi 1995). Bagging has become widely applied and researched in time series 

forecasting, with recent applications in macro-economic forecasting (Watson 2005; Inoue and 

Kilian 2008), stock market volatility prediction (Hillebrand and Medeiros 2010), 

meteorological forecasting (Brenning, Andrey, and Mills 2011) and business forecasting 

(Kourentzes, Barrow, and Crone 2014) to name a few, and applications to new families of 

methods including exponential smoothing (Bergmeir and Hyndman 2014). This makes it a 

strong benchmark. Also by considering bagging we make this the first evaluation and 

comparision of bootstraping and cross-validation sampling strategies for forecast 

combination.  

3. Cross validation and bootstrapping for forecast aggregation 

In this section we describe cross-validation and the contender approach of 

bootstrapping within a general framework for forecast combination of autoregressive models, 

while introducing Monte Carlo cross-validation for combining forecasts. Given a a univariate 

time series 𝒀𝑇 = {𝑦1, … , 𝑦𝑇}, our goal is to forecast at time 𝑇 , the future 𝐻  observations 

{𝑦𝑇+1, … , 𝑦𝑇+ℎ, 𝑦𝑇+𝐻} of some variable 𝑦. If we assume that the data comes from a possibly 
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nonlinear autoregressive (AR) process of order p, AR(p), a time series model 𝑚  of the 

following form: 

𝑦𝑡 =  𝑚(𝐳t−1; 𝜽) + 𝑒𝑡 
 

(1) 

where 𝐳t−1 = [𝑦𝑡−1, … , 𝑦𝑡−𝑝], 𝜽 are the model parameters to be estimated, and 𝑝 is the order 

of the autoregressive lag, can be used to produce the required forecasts. The learning set 𝐿 

used for model parameter estimation consists of the set of 𝐷 = 𝑇 − 𝑝  input/output pairs 

{(𝑦𝑡, 𝐳t−1)}𝑡=𝑝+1
𝑇 , where 𝐳t−1 is a sequence of 𝑝 consecutive (past) observations, and 𝑦𝑡 is the 

one-step-ahead observation in that same sequence to be forecasted. Given a set of 𝐾 forecasts 

�̂�𝑘
ℎ(𝐳t−1), the goal of forecast combination is to produce the combined forecast: 

�̂�ℎ(𝐳t−1) = ∑ 𝑤𝑘�̂�𝑘
ℎ(𝐳t−1)

𝐾

𝑘=1

 

 

(2) 

where 𝑤𝑘 is the weight given to forecasts from model 𝑚𝑘 and ∑ 𝑤𝑘 = 1𝑘 . 

3.1. Bootstrap aggregating 

Breiman (1996a) in a milestone contribution proposed the use bootstrapping as a 

method for prediction aggregation introducing the bagging algorithm. Rather than use one 

model trained on only a single learning set 𝐿, bagging generates the set {𝐿𝐾} consisting of 𝐾 

repeated bootstraps samples from 𝐿, based on which multiple models are estimated and their 

predictions aggregated. Each bootstrap sample is formed by drawing a set of 𝐷  pairs at 

random with replacement from 𝐿, according to a discrete uniform distribution, where each 

pair in 𝐿 has equal probability of being chosen. In contrast to cross-validation, bootstrapping 

does not make use of a validation set. Rather the result of bootstrapping is a new dataset for 

model parameter estimation utilizing approximately 1-(1-(1⁄D))D=63.2% unique observations 

from the original learning set (Efron 1983). Each of the 𝐾 bootstrap replicates are then used 

to estimate a model {𝑚𝑘(𝐳t−1, 𝐿𝑘)}. To aggregate the set of forecasts from these models, one 

takes the simple average as follows: 
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�̂�ℎ(𝐳t−1) =
1

𝐾
∑ �̂�𝑘

ℎ(𝐳t−1, 𝐿𝑘)

𝐾

𝑘=1

 

 

(3) 

In this study we consider the ordinary bootstrap method (Efron 1979) where all the 

memory of the past required for predicting one-step-ahead is preserved in the lagged 

autoregressive vectors 𝐳t−1. Alternatively this may be viewed as adopting a moving block 

bootstrap approach (Kunsch 1989; Efron and Tibshirani 1993), where the overlapping 

bootstrap blocks, correspond to the lagged vectors 𝐳t−1, and the length of the bootstrap block 

is exactly 𝑝, the order of the autoregressive term, or larger.  

Two popular approaches to the implementation of bagging are evaluated. In the first 

approach referred to in the classification literature as out-of-bag esimation (Breiman 1996b; 

Breiman 2001), we first bootstrap the entire learning set 𝐿 to create the training set  𝐿𝑇𝑟𝑎𝑖𝑛 , 

and use the remaining observations not selected for training as a validation set 𝐿𝑉𝑎𝑙𝑖𝑑. In this 

situation the ‘out-of-bag’ observations, those not selected for training, form a validation set 

and change with every bootstrap sample. We label this as BagMoob for bagging using moving 

‘out-of-bag’ observations. In the second approach, we first separate the learning set 𝐿 into a 

training and validation set. We then bootstrap only the training set, keeping the validation set 

fixed. As such we call this approach BagFoob, for bagging with a fixed ‘out-of-bag’ or fixed 

validation set. The validation set will be used during neural network training to reduce 

overfitting. We also later use as a benchmark, the original bagging method without any 

validation set, bootstrapping the whole learning set. 

3.2. Cross-validation and aggregating 

Recently cross-validation has been applied to combining forecasts using k-fold cross-

validation as an alternative to forecasting model selection. Donate et al. (2013) recently 

applied k-fold cross-validation to average forecasts from multiple models trained on different 
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data subsets created using cross-validation. In this study, we extend our consideration of 

cross-validaiton beyond k-fold cross-validatiion to include several other variants of cross-

validation including Monte Carlo cross-validation. This is done within a single framework of 

cross-validation and aggregating or crogging for short. Each strategy differs depending on the 

number of learning set splits and whether the resulting training-validation dataset splits are 

mutually exclusive or overlapping 

 
Figure 1. Pseudo code of Crogging 

Figure 1 is a pseudo code of the crogging framework for combining forecasts. Given a 

time series we generate a set of input/output pairs as described in Section 3. Having selected 

a cross-validation strategy, described later, we generate a set of 𝐾 training sets each used to 

estimate a single forecast model. Each training set is the result of a split of the learning set 

into a training dataset for estimating the forecast model, and a validation dataset for early stop 

training to reduce overfitting. Note that a separate test set will be used which will be the 

holdout sample on which out-of-sample accuracy is evaluated. The aggregate forecast is 

taken as the simple average of all 𝐾 forecasts as follows: 

�̂�ℎ(𝐳t−1) =
1

𝐾
∑ �̂�𝑘

ℎ(𝐳t−1, 𝐿𝑘
𝑇𝑟𝑎𝑖𝑛)

𝐾

𝑘=1

 (4) 

𝒀𝑇 = {𝑦1, … , 𝑦𝑇}: Time series with 𝑇 observation 

1: Generate a learning set 𝐿 = {(𝑦𝑡 , 𝐳t−1)}𝑡=𝑝+1
𝑇  from 𝒀𝑇 

2: For a given CV strategy, generate {𝐿𝐾
𝑇𝑟𝑎𝑖𝑛}, consisting of 𝐾 CV training sets from 𝐿 

3: For 𝑘 = 1 𝑡𝑜𝐾{  

a. Select training set 𝐿𝑘
𝑇𝑟𝑎𝑖𝑛 from {𝐿𝐾

𝑇𝑟𝑎𝑖𝑛} 

b. Using set 𝐿𝑘
𝑇𝑟𝑎𝑖𝑛 construct a model 𝑚𝑘(𝐳t−1, 𝐿𝑘

𝑇𝑟𝑎𝑖𝑛) 

} 

4: Combine the forecasts of all models 𝑚𝑘 to obtain: 

�̂�ℎ(𝐳t−1) =
1

𝐾
∑ �̂�𝑘

ℎ(𝐳t−1, 𝐿𝑘
𝑇𝑟𝑎𝑖𝑛)

𝐾

𝑘=1
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where 𝐿𝑘
𝑇𝑟𝑎𝑖𝑛 is the 𝑘𝑡ℎ training dataset and �̂�𝑘(𝐳t−1, 𝐿𝑘

𝑇𝑟𝑎𝑖𝑛) is the model estimated using that 

dataset. 

3.2.1. k-fold crogging 

Within the general setting provided in Section 3.2, we define a k-fold cross-validation 

over the learning set 𝐿, as a division or splitting of 𝐿 into k none-overlapping and mutually 

exclusive subsamples or folds of approximately equal size, with 𝑘 ≤ 𝐷. The procedure for 

doing this is depicted in Figure 2. 

 

Subset s=1 Subset s=2 Subset s=3 Subset s=4     … Subset s=k 

 Train 
 

Train 
 

Train 
 

Train 
 

… 

Train 
  

… 

 
… 

 
… 

 
… … … … … … 

 
Valid Valid Valid Valid … Valid 

 
�̂�1 

 

�̂�2 �̂�3 �̂�4 … �̂�k 

 

Figure 2. Example of k-fold cross-validation  

Observations are drawn at random, but unlike in a bootstrap sample, without replacement. In 

each round 𝑘 , we obtain a dataset  𝐿𝑘
𝑇𝑟𝑎𝑖𝑛  comprised of k-1 subsamples, and use this to 

estimate the parameters of a forecast model �̂�𝑘(𝐳t−1, 𝐿𝑘
𝑇𝑟𝑎𝑖𝑛). This process is repeated k-

times, so that each of the 𝑘 subsamples are used exactly k-1 times as training data and once as 

validation data (see Figure 2). The combined forecast is then aggregated using Eq. (4), 

resulting in a combined forecast based on the given 𝑘-fold cross-validation strategy. In this 

case k the number of subset folds  is also equal to 𝐾 the sampling size. Where a single model 

is estimated on each sample then 𝐾 is also the combination size.  

Typically, k-fold cross-validation can apply a different number of folds with different 

properties depending on the value of k.  For k= 2 we obtain a split of the learning set into 2 

subsamples of approximately equal size, the first used for training and the second for 
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validation, and visa versa. The 10-fold cross-validation is the most commonly applied cross-

validation strategy having obtained good results in practice (Kohavi 1995; Hu et al. 1999), 

and with some theoretical evidence (Bengio and Grandvalet 2004). The learning set is split 

into 10 approximately equal subsamples, training on a dataset of 9 subsamples, with one 

subsample for validation. Another common strategy is the leave-one-out (LOO) cross-

validation, training on 𝑁 − 1  subsamples, with each subsample containing a single 

observation for validation.  The general form of k-fold will be evaluated for different sample 

sizes including 2-fold and 10-fold, while the leave-one-out method will serve as a benchmark 

for our evaluation on real data. 

An overall advantage of 𝑘-fold cross-validation, is that each observation is used both 

for training and validation, with equal weight of 𝑘 − 1  during training, and once for 

validation. A potential drawback is that 𝑘 controls the trade-off between data available to 

train each model for a valid in-sample estimation, and data available for validation to 

estimate out-of-sample accuracy and control overfitting, LOO cross-validation being the 

extreme case. 

3.2.2. Monte Carlo crogging 

Each method suffers from one of more limitations as described previously. For 

example, k-fold and leave-one-out cross-validation are known to be asymptotically 

inconsistent (Efron 1983; Efron and Tibshirani 1986; Shao 1993; Stone 1977; Shao 1997). In 

the context of forecasting combination this means that both approaches may lead to 

overfitting, performing well in-sample but poorly out-of-sample. While k-fold cross 

validation  has been found in some cases to perform better than leave-one-out (Breiman 1984; 

Burman 1989; Zhang 1993), it can suffer from unacceptably high variance leading to 

unreliable estimates (Efron 1983; Kohavi 1995). 
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In contrast the Monte Carlo cross-validation strategy (Picard and Cook 1984), 

sometimes referred to as repeated random subsampling validation is known to be 

assymptotically consistent, and less prone to overfitting (Shao 1993). The reduced overfitting 

is a consequence of the decoupling of the validation set and sampling size which enhances 

the potential impact of validation and therefore reduces the risk of overfitting. A larger 

validation set may however hinder the accurate estimate of the prediction error, due to the 

smaller training set, a trade-off between model parameter estimation and validation. Where 

predictive accuracy is the goal as is the case in forecasting, it was shown that Monte Carlo 

cross-validation provides a larger probability than Leave-one-out cross-validaton of selecting 

the model with best prediction ability (Shao 1993).  

Monte Carlo cross-validation works by randomly splitting the learning set 𝐾 times, 

each time randomly drawing without replacement 𝐽 pairs to form the training set 𝐿𝑇𝑟𝑎𝑖𝑛, and 

using the remaining 𝐷 − 𝐽 pairs to form 𝐿𝑉𝑎𝑙𝑖𝑑. In this regard Monte Carlo cross-validation is 

similar to Bagging where ‘out-of-bag’ observations are used as validation set, the main 

difference being that with the later sampling is performed with replacement. On each round 

of Monte Carlo cross-validation, a forecast model is estimated, and the aggregate of all 𝐾 

forecasts is obtained using Eq. (4). Although the training and validation datasets are mutually 

exclusive for each round of Monte Carlo cross-validation as in k-fold cross-validation, 

between rounds an observation may appear in the training or validation dataset any number of 

times depending on the independent random sampling between rounds, as in bagging. This is 

because on each round, sampling is performed without replacement (therefore the same 

observation does not appear in both the training and validation sets), whereas between 

rounds, sampling is performed with replacement similar to the bootstrap sampling in each 

round of bagging. Another potential advantage over 𝑘-fold cross-validation is in the number 

of training sets. By decoupling sampling size K from the number of folds as in k-fold cross-
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validation, Monte Carlo cross-validation is able to create forecast combinations (training sets) 

much larger than k, theoretically infinite, albeit at the expense of determining another 

metaparameter of the number of Monte Carlo samples. This study provides the first empirical 

results on the application of Monte Carlo cross-validation for forecast combination. 

3.2.3. Holdout cross-validation 

A special case of k-fold and Monte Carlo cross-validation widely is the holdout 

method which results in a single split of the learning set into a training and validation set 

(Bengio and Grandvalet 2004). With observations of a time series often split sequentially, 

with the validation data containing the most recent observations consecutively, holdout cross-

validation is more similar to k-fold than Monte Carlo cross-validation, although non-

sequential splitting as in Monte Carlo cross-validation is also feasible. One criticism of the 

holdout method is that it does not account for the variance with respect to the training set 

(Dietterich 1998). Research on the optimal number of observations to include in either dataset 

is also inconclusive, with heuristic rule of thumb, 70%:30% split into training and validation 

typically applied in practice. As there is only a single data split, the strategy cannot be applied 

directly for forecast aggregation. However due to its simplicity, the holdout method is widely 

applied in model selection (Arlot and Celisse 2010), and common in neural network training 

with early stopping to prevent overfitting. In this study we will use the holdout method as a 

benchmark for 1) forecast model selection referring to it as Holdoutselect and model averaging 

referring to it as Holdoutavg.  We also evaluate model averaging without the use of a 

validation set. Each network is trained on the entire learning set and allowed to overfit, with 

the forecasts subsequently averaged to obtain the combined forecast. We refer to this method 

as Noholdoutavg.  
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3.3. Theoretical performance of crogging 

In this section we apply the ambiguity decomposition of Brown et al. (2005) in 

assessing the predictive performance of crogging. We show that for a given observation, the 

squared error of the combined 1-step-ahead forecast is no more than the average squared 

error of the individual forecasts. This means that with no guarantee of selecting a forecast 

with error lower than the combined forecast, we are at least guaranteeed of having 1-step-

ahead  performance better on average than a forecast selected at random. 

For crogging, we write the squared error (SE) of the combined forecast given by Eq. 

(2) for the 1-step-ahead forecast as SE = (�̂�(𝐳𝑡−1) − 𝑦𝑡)
2

. In comparison the average 

squared error of the constituent forecast models can be expressed as: 

∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − 𝑦𝑡)2

𝑘

= ∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − �̂�(𝐳𝑡−1) + �̂�(𝐳𝑡−1) − 𝑦𝑡)

2

𝑘

 

                                              = ∑
1

𝐾
[(�̂�𝑘(𝐳𝑡−1) − �̂�(𝐳𝑡−1))

2
+ (�̂�(𝐳𝑡−1) − 𝑦𝑡)

2

𝑘

 

                                              + 2 (�̂�𝑘(𝐳𝑡−1) − �̂�(𝐳𝑡−1)) (�̂�(𝐳𝑡−1) − 𝑦𝑡)]                                                  

Using ∑
1

𝐾
= 1𝑘   and �̂�(𝐳𝑡−1) = ∑

1

𝐾𝑘 �̂�𝑘(𝐳𝑡−1) cross-terms disappear and we get: 

∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − 𝑦𝑡)2

𝑘

= ∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − �̂�(𝐳𝑡−1))

2
+ (�̂�(𝐳𝑡−1) − 𝑦𝑡)

2

𝑘

 

                                        = ∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − �̂�(𝐳𝑡−1))

2
𝑘 + SE 

Rearranging we obtain: 

SEℎ  =  ∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − 𝑦𝑡)2

𝑘

− ∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − �̂�(𝐳𝑡−1))

2

𝑘

 

Observe that the second term ∑
1

𝐾
(�̂�𝑘(𝐳𝑡−1) − �̂�(𝐳𝑡−1))2

𝑘 , the ambiguity term, is always 

positive and therefore reduces the first term, the average error of the individual forecasts. The 

larger the ambiguity term or equivalently the variance among the individual forecasts, the 

smaller the error of the combined forecast, SE . This means that the more variable the 
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individual 1-step-ahead forecasts �̂�𝑘(𝐳𝑡−1) generated based on the cross-validation replicates 

of 𝐿, the larger the potential improvement from crogging. Conversely if the 1-step-ahead 

forecasts are very similar, the ambiguity will be small and the error of the combined forecast 

will be close to the average error of the individual forecasts.  

While an h-step-ahead analysis is beyond the scope of this study, it has been shown 

that the 1-step-ahead bias and variance affects the h-step-ahead bias and variance for the 

recursive multi-step forecasting strategy (Taieb and Atiya 2015). In particular they find that 

for complex model’s such as neural networks (NNs), both the bias and variance tend to 

increase with the forecast horizon, in particular due to the large variance. We hypothesize that 

as cross-validation involves systematic resampling and training on the complete learning set, 

it will be effective at increasing ambiguity, while not adversely affecting the bias of the 

individual forecasts, and as a consequence improve the accuracy of the combined forecast. In 

the next section we investigate the performance of crogging from a bias and variance 

perpective estimated via Monte Carlo simulation. Future research should pursue a more 

detailed theoretical analysis of the h-step-ahead bias and variance in assessing the impact of 

each method. 

4. Bias and variance decomposition of Crogging 

4.1. Overview 

In order to assess the efficacy of k-fold and Monte Carlo crogging algorithms, we 

carry out a Monte Carlo simulation study to investigate the impact of the size of the forecast 

combination, and the time series length on the bias and variance of the prediction. With 

forecast performance measured by MSE, we decompose the MSE of the combined forecast 

into its bias and variance components (Geman, Bienenstock, and Doursat 1992), using the 

decomposition methodology of Taieb and Hyndman (2014) for multi-step-ahead forecasting. 
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The results are compared to bagging in order to allow a comparison to its better understood 

properties.  

We adopt the same terminology as in Taieb and Hyndman (2014) and assuming that 

the process defined in Eq. (1) is stationary, we obtain the bias and variance components of the 

mean squared error of h-step-ahead combined forecast  MSEℎ  as follows: 

MSEℎ = 𝔼𝐱t
[(𝑦𝑡+ℎ − �̂�ℎ(𝐳𝑡−1))

2
| 𝐱t] 

= 𝔼𝐱t,ε [(𝑦𝑡+ℎ − 𝜇𝑡+ℎ|𝑡)
2

| 𝐱t]                        Noise 

+𝔼𝐱t
[(𝜇𝑡+ℎ|𝑡 − 𝑀ℎ(𝐳𝑡−1))

2
]                           Squared Bias 

+𝔼𝐱t,𝒀𝑇
[(�̂�ℎ(𝐳𝑡−1) − 𝑀ℎ(𝐳𝑡−1))

2
| 𝐱t]               Variance 

(5) 

where  𝑀ℎ(𝐳𝑡−1) = 𝔼[�̂�ℎ(𝐳𝑡−1)] , �̂�ℎ(𝐳𝑡−1)  is the combined ℎ -step-ahead forecast for a 

given combination strategy, and 𝔼𝑥  and 𝔼[∙|𝑥]  represent the expectation over 𝑥 , and the 

expectation conditional on 𝑥, respectively. The resulting decomposition gives us a measure of 

the noise, the squared bias, and an estimate of the variance of the combination method. 

4.2. Experimental design and data  

For each combination strategy we estimate Eq.(5) via simulation considering a linear 

AR(6) and a nonlinear Smooth Transition Autoregressive (STAR) data generating process 

(DGP) also used by Ben Taieb and Hyndman (2014). The linear AR(6) process is given by: 

𝑦𝑡 = 1.32𝑦𝑡−1 − 0.52𝑦𝑡−2 − 0.16𝑦𝑡−3 + 0.18𝑦𝑡−4 − 0.26𝑦𝑡−5 +

0.19𝑦𝑡−6 + 𝜀𝑡   . 

(6) 

where 𝜀𝑡~NID(0, 1) . The STAR process has been used in several other studies (e.g. 

Terasvirta and Anderson 1992; Berardi and Zhang 2003) for understanding nonlinearities in 

the context of autoregressive forecast models and is given by: 
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𝑦𝑡 = 0.3𝑦𝑡−1 + 0.6𝑦𝑡−2 + (0.1 − 0.9𝑦𝑡−1 + 0.8𝑦𝑡−2)[1 + 𝑒(−10𝑦𝑡−1)]
−1

+ 𝜀𝑡 (7) 

where𝜀𝑡~NID(0, 𝜎2) and the error variance set to 𝜎2 = 0.052.  

We generate time series of length 𝑇 ∈ {50, 400} in order to assess the impact of time 

series length on the bias and variance of each strategy. The number of forecasts included in 

the final combination is deemed critical to its performance (de Menezes, Bunn, and Taylor 

2000). This is determined by the number of training sets or sampling size of each strategy 

which in turn determines the number of models which can be estimated. The sampling sizes 

evaluated are taken from the set {2, 5, 10,15, 20, 30}. For k-fold cross-validation this sample 

size is also equalivalent to the number of folds 𝑘 , while for Monte Carlo crogging and 

bagging this is equivalent to the number of random splits and the number of bootstraps 

respectively. If for every sample bootstrap or cross-validation a single model is estimated, 

then the sampling size is also equal to the forecast combination size 𝐾. 

4.3. Estimation 

We generate for each DGP, a set of 1000 independent time series 𝑆𝑖 = {𝑦1, … , 𝑦𝑇} on 

which to train and estimate model parameters. To give an objective measure of the bias and 

variance components, we generate an independent time series from the same DGP serving as 

a test set. From this independent series, we obtain a set of 2000 input/output pairs 

{(𝐲𝑗, 𝐳𝑗)}
𝑗=1

2000
 where 𝐳𝑗  is the lagged vectors of inputs, and the vector 𝐲𝑗  is the next 𝐻 

consecutive observations representing the lead time to be forecasted, in our case set to 10. 

The MSE is then calculated as follows: 

MSEℎ =
1

1000 × 2000
∑ ∑ (𝐲𝑗

ℎ − �̂�𝑆𝑖

ℎ (𝐳𝑗))
𝟐

2000

𝑗=1

1000

𝑖=1

  

The three components can be estimated as follows: 
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Noiseℎ =
1

2000
∑ (𝐲𝑗

ℎ − 𝔼[𝐲𝑗
ℎ | 𝐳𝑗])

𝟐
2000

𝑗=1

 

Biasℎ
2 =

1

2000
∑ (𝔼[𝐲𝑗

ℎ | 𝐳𝑗] − �̅�(𝐳𝑗))
𝟐

2000

𝑗=1

 

Varianceℎ =
1

1000 × 2000
∑ ∑ (�̂�𝑆𝑖

ℎ (𝐳𝑗) − �̅�(𝐳𝑗))
𝟐

2000

𝑗=1

1000

𝑖=1

 

 

 

where �̅�(𝐳𝑗) =
1

1000
∑ �̂�𝑆𝑖

ℎ (𝐳𝑗)1000
𝑗=1  is an estimate of 𝑀ℎ(𝐳𝑗)  and �̂�𝑆𝑖

ℎ (𝐱𝑗)  is the combined 

forecast produced using dataset 𝑆𝑖 . The variable 𝐲𝑗
ℎ  is the ℎ th element of the vector 𝐲𝑗 , 

representing the h-step-ahead forecast. Throughout this study, forecasts are produced using 

the recursive strategy due to its simplicty, intuition, widespread use in research and practice, 

and reduced computational load. This is in contrast to the direct strategy which although 

being immune to propagation of forecast errors, would require a different model combination 

for each forecast horizon, and becoming rather intensive computationally (Taieb et al. 2012). 

The conditional mean 𝔼[𝐲𝑗
ℎ | 𝐳𝑗] for the linear process is calculated analytically. In the case 

of the nonlinear process, we average over a large number of possible values for each future 

time point of the series using simulation. In all cases we use a Multilayer Perceptron (MLP), 

a feedforward neural network capable of approximating linear and nonlinear data generating 

processes. We employ the same MLP setup as described in Section 5.3 with 𝑝 = 6. For 

Monte Carlo crogging we set the training-validation split to 70% - 30%.  

4.4. Experimental Results 

Results of the bias-variance decomposition including the MSE (first column), the bias 

(second column) and the variance (third column) for the linear and nonlinear DGP are shown 

in Figure 3 and Figure 4 respectively, for short series having length 𝑇 = 50 . The MSE 

provides a measure of the forecast error of the different combination approaches, Monte 

Carlo, 𝑘 -fold, BagMoob and BagFoob, while the decomposed bias and variance allows an 
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examination of the strengths of the competing approaches across sampling sizes. For both 

DGPs, we can see that the largest of the three components is the bias which, as the number of 

samples and forecast horizon increases, is nearly two to three times as large as the variance. 

This suggests that the neural network base model structure with 2 hidden nodes and 𝑝 = 6 

autoregressive inputs, may not be sufficient to approximate the underlying DGP in the 

presence of the given noise  level. Nevertheless, this scenario reflects the core challenge in 

real forecasting problems, where often the ’true‘ model stucture is not known in advance of 

model fitting and the data has significant levels of noise relative to the signal in the data. In 

contrast, where the model structure is known, then the DGP can trivally be estimated to high 

accuracy using NNs.  

Considering the differences between the methods, Figure 3 shows that for the linear 

process, BagFoob and k-fold both have the highest variance while Monte Carlo consistently 

has the smallest variance on average across all horizons. This improvement has however not 

induced a large increase in bias. On the contrary, the bias of Monte Carlo is generally equal 

to, if not less than other methods, and consequently the forecasts for Monte Carlo outperform 

bagging and k-fold based on MSE.  
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Figure 3.Decomposition for linear AR(6) processfor different sampling sizes showing MSE, 

bias and variance for time series length T=50 and forecast horizon of10. 

BagMoob is often nearly as good as Monte Carlo particularly at small sampling sizes 

where it has similar performance in terms of variance and on average across horizons 

outperforms k-fold and BagFoob. As sampling size increases up to 30 samples, this relative 

performance in terms of variance is still present; however the difference between methods in 

terms of bias is smaller. The difference in performance among methods appear to come 

mainly from the reduction in the variance of the combined forecast. 
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Figure 4.Decomposition for nonlinear STAR processfor different sampling sizes showing 

MSE, bias and variance for time series length T=50 and forecast horizon of 10. 

Results of the nonlinear DGP shown in Figure 4 are similar to those obtained on the 

linear DGP, with Monte Carlo on average having the lowest variance and best forecasts in 

terms of MSE across sampling sizes. This is followed closely by BagMoob which at sampling 

sizes less than 20 performs similarly. As sample size increases, both BagFoob and k-fold 

improve in performance however no consistent difference is noted between the two methods. 

However with the exception of sampling size 10 where BagFoob performs well on variance, 

Monte Carlo is always better.  
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Figure 5.Decomposition for linear AR(6)processfor different sampling sizes showing MSE, 

bias and variance for time series length T=400 and forecast horizon of 10. 

The evidence therefore indicates that Monte Carlo is best at reducing variance while 

not adversely increasing the bias of the combined forecast, and that BagMoob is on average 

always better than BagFoob. In fact, for both the linear and nonlinear DGP and across all 

sampling sizes, Monte Carlo always produces a forecast having smaller bias than k-fold and 

BagFoob, and which consequently leads to improved accuracy overall. On linear time series, k-

fold on average outperforms BagFoob across all sampling sizes and forecast horizons while for 

nonlinear time series at length 50, the difference in performance is less clear. 
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Figure 6.Decomposition for nonlinear STARprocessfor different sampling sizes showing 

MSE, bias and variance for time series length T=400 and forecast horizon of 10. 

 

This is possibly due to the sampling scheme of cross-validation and BagMoob which uses a set 

of ‘out of bag’ observations which guarantees that all observations in the learning set are used 

for training. In contrast for BagFoob observations in the validation set are never used for 

training. Additionally for short time series, linear or nonlinear Monte Carlo which like 

bagging involves some random sampling appears to be much more effective at reducing 

variance than 𝑘-fold. 
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These results hold, if not much clearer, for the longer time series having 400 

observations. For both the linear and nonlinear DGP, total forecast error is reduced with the 

significant reductions coming from the variance component. In fact the bias for all four 

methods, which is now considerably larger than the variance, is nearly equal across all 

sample sizes for all methods, while the variance of  Monte Carlo and BagMoob is on average 

always lower than k-fold and BagFoob. Though small this results in a consistent improvement 

in MSE from using  Monte Carlo over k-fold crogging, and BagMoob compared to BagFoob. 

5. Empirical Evaluation Experiment  

5.1. Design of combination methods 

In this real-world experiment, we compare the forecasting accuracy of 𝑘-fold and 

Monte Carlo crogging to bagging, conventional neural network model averaging over 

multiple initialisations, and individual neural network model selection. One objective of this 

study is to determine which, if any, of the combination strategies is best for forecast 

combination, and under what conditions of sample size, and time series length. For each 

method we use the same number of samples to train, using the identical neural network set up 

and weight initialisation, to ensure that any differences in the forecast accuracy are 

attributable directly to the method of choice, allowing a fair and robust comparison. We train 

a total of 50 networks, each with different random starting weights to account for error 

variance from local minima in the network training. 

For 𝑘-fold cross-validation we evaluate 𝑘 = 2, 5, 10, 15, 20, 25 and  30producing a 

corresponding number of data splits for training. For example, in the case of 2-fold cross-

validation, we obtain 2 splits of the learning set and for each split, train 50 similarly 

initialized networks producing altogether 100 forecasts. Similarly when k=10 we have 10-

fold cross-validation, and a combination size of 10 × 50 forecasts. In order to provide a 
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direct comparison with k-fold crogging, we again create Monte Carlo cross-validation 

samples of size 2, 5, 10, 15, 20, 25 and 30 using the same randomly initialized networks. We 

implement BagFoob, and BagMoob in the same manner allowing a fair and robust comparison.   

5.2. NN3 competition Dataset 

To empirically evaluate the performance of each method, we utilise the 111 time 

series from the NN3 competition dataset consisting of a representative set of long and short, 

seasonal and non-seasonal monthly time series drawn from a homogenous population of 

empirical business series (Crone, Hibon, and Nikolopoulos 2011). The time series contain 

between 68 and 144 observations. The reduced dataset contains a mixture of all time series 

types of which three are characterised as difficult to forecast, 4 as seasonal and the remaining 

7 as non-seasonal containing also outliers and structural breaks. A summary of the 

characteristics of the time series is provided in Table 1. 

Table 1: Summary description of NN3 competition time series dataset 

 Complete Dataset  

  Reduced Dataset  

 Short Long Normal Difficult SUM 

Non-Seasonal 
25 

(NS) 

25 

(NL) 

4 

(NN) 

3 

(ND) 
57 

Seasonal 
25 

(SS) 

25 

(SL) 

4 

(SN) 
- 54 

SUM 50 50 8 3 111 

For each method using a fixed validation set the number of observations is set to 14 to allow 

for estimating of monthly seasonlity in the shortest possible series being 68 observations and 

with 18 needed for the test dataset. However these observations are not always fixed as with 

Monte Carlo crogging and BagMoob which sample different obervations for the validation set. 

5.3. Design of benchmark Algorithms 

For each of the benchmarks previously described, Holdoutselect, Holdoutavg, 
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Noholdoutavg and BagNoob we use the same identically initialized 50 MLPs as with the 

principal combination methods. In the case of Holdoutselect or individual model selection we 

select the network from the 50 differently initialized MLPs having the smallest MSE on the 

fixed size validation set. For Holdoutavg we average over the predictions of these same 

networks while for the Noholdoutavg method we average over each network this time trained 

without a validation set. This approach of averaging over multiple weight initializations of 

the same neural network architecuture is also known as neural network model averaging 

(Hansen and Salamon 1990). Both model averaging and model selection are two established 

methods of building neural network models for time series forecasting (Zhang and Berardi 

2001; Naftaly, Intrator, and Horn 1997) both based on the Holdout method. Consequently 

they provide strong benchmarks for this study, and allow investigating the benefits of cross-

validation versus ordinary validation (holdout). In the case of BagNoob we train each of the 50 

networks on a bootstrap sample but unlike BagFoob and BagMoob no validation set is used 

therefore the entire learning set is bootstrapped.   

5.4. MLP setup 

For the implementation of crogging, bagging, neural network averaging and selection 

we use the same base learner of a univariate Multilayer Perceptron (MLP). MLPs are well 

researched, and their ability to approximate and generalize well any functional relationship to 

an arbitrary degree of accuracy has been proven (Hornik, Stinchcombe, and White 1989; 

Hornik 1991). In particular, they have been shown empirically to be able to forecast linear 

and nonlinear time series of different forms (Zhang, Patuwo, and Hu 1998). The functional 

form of these networks is given by: 

�̂�(𝐳𝑡) = 𝛽0 + ∑ 𝛽ℎ𝑔 (𝛾0𝑖 + ∑ 𝛾ℎ𝑖

𝐼

𝑖=0

𝑝𝑖)

𝐻

𝑘=1

 
(8) 
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with 𝐼 = 13, inputs 𝑝𝑖, connected to each of 𝐻 hidden nodes in a single hidden layer using 

the hyperbolic tangent transfer function, and a single output node with an identity function. 

This is sufficient to model monthly seasonality stochastically in addition to trends effectively 

combining an 𝐴𝑅(12) and 𝐴𝑅(1) process. To evaluate the impact of model complexity we 

consider neural networks having hidden nodes 𝐻 = 1, … ,5.  The architecture of the MLP is 

otherwise exactly the same allowing a fair assessment of the impact of the number of hidden 

nodes on performance of each combination method. Each time series is modelled directly 

without prior differencing or further data transformation to estimate level, seasonality, and 

potential trend directly in the network weights and the bias terms. Additionally all time series 

are linearly scaled into the interval of [-0.5, 0.5] to allow headroom for possible non-

stationarity prior to training. We produce multistep forecasts using an iterative prediction, 

recursively generating one-step-ahead forecasts. 

For parameter estimation the Levenberg-Marquardt algorithm (Hagan, Demuth, and 

Beale 1996) is used to minimise the MSEloss function up to a maximum of 1000 epochs. The 

algorithm requires setting a scalar 𝜇𝐿𝑀  and its increase and decrease steps, using 𝜇𝐿𝑀 =

10−3 , with an increase factor of 𝜇𝑖𝑛𝑐  =  10  and a decrease factor of 𝜇𝑑𝑒𝑐  =  10−1 . All 

network training employ an early stopping criterion in order to avoid overfitting. This means 

that we track the MSE on the training and the validation set, and halt the training process and 

retain the network weights with the lowest error on the validation data after the error has not 

decrease for more than 50 epochs, or if 𝜇𝐿𝑀 exceeds 𝜇𝑚𝑎𝑥 = 1010. For each new forecast 

model, we randomly initialize the starting weights for each MLP allowing for different 

solutions of the network to be achieved, taking care to ensure that the same starting weights 

are used for each method. This is in addition to the randomness introduced by the k-fold, 

Monte Carlo and bootstrap methods. 
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5.5. Evaluation 

The forecast horizon for all methods is set to 12 months using a holdout sample of 1 

to 18 months in the future, and a rolling origin evaluation to assess forecasting accuracy and 

performance (Tashman 2000). The size of the validation set during training depends on the 

method used, leaving the remaining observations for training. Where a fixed size validation 

set is used then it is set to 14 observations as explained in Section 5.2. In comparing results to 

that of the NN3 competitors (benchmarking), the forecast horizon will later be extended to 18 

steps ahead forecasting from a fixed origin, as required by competition guidelines. We 

calculate the mean absolute scaled error (MASE) and the symmetric mean absolute error 

(SMAPE) for all methods in assessing forecast accuracy and performance. For a given actual 

𝑋𝑡, and forecast 𝐹𝑡  the SMAPE (Chen and Yang 2004) provides a scale independent measure 

that can be used to compare accuracy across time series . It is calculated as follows:  

𝑆𝑀𝐴𝑃𝐸 =
1

𝑁
∑ (

|𝑋𝑡 − 𝐹𝑡|

(|𝑋𝑡| + |𝐹𝑡|) 2⁄
)

𝑁

𝑡=1

 (9) 

where 𝑁 is the number of observations in the training set and 𝐻 is the number of values being 

forecasted in the out-of-sample test set. 

Hyndman and Koehler (2006) propose the use of the MASE as it is less sensitive to 

outliers and more easily interpretable than other scaled error measures. The MASE is defined 

as follows: 

𝑀𝐴𝑆𝐸 =
1

𝐻
∑ (

|𝑋𝑡 − 𝐹𝑡|

(𝑁 − 1)−1 ∑ |𝑋𝑖 − 𝑋𝑖−1|𝑁
𝑖=2

)

𝐻

ℎ=1

 (10) 

To assess whether observed differences in MASE and SMAPE are statistically significant, 

the nonparametric Friedman test (Milton 1940, 1937) which requires no assumption about the 

distribution of forecast errors, and the post-hoc Nemenyi test (Nemenyi 1962) are employed. 

The Friedman test evaluates whether there is enough evidence that at least one method is 
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statistically different from the rest outputting a p-value. The Nemenyi test is based on the 

minimum distance between methods being compared such that methods are considered to be 

statistically different if the difference between the ranks of methods compared is larger than 

this ‘critical’ distance. 

6. Results  

6.1. Overall performance 

The overall results on bagging and crogging are provided in Table 2. For ease of 

presentation, results are shown using only MASE as no statistically significant differences are 

noted between results based on MASE and SMAPE.  It gives the results for the NN3 

competition data for training, validation and test dataset, showing MASE averaged across all 

time series, sampling sizes and number of hidden nodes.  Ranks based on the Nemenyi test 

are also shown for all datasets. Methods having no statistically significant difference in 

performance share the same ranking should in brackets. The method with the lowest average 

error is highlighted in bold, while those with the best model ranking is highlight in bold and 

underlined where the average ranking is best. 

Table 2. Average errors and and rank of errors on the complete dataset by method. Ranking of errors 

is based on the Nemenyi Test. 

Method 
Average errors   Rank across all methods 

Train Validation Test   Train Validation Test 

BagMoob 0.80 0.77 1.10   2.81 (2) 2.83 (2) 1.92 (1) 

BagFoob 0.97 0.92 1.15   3.67 (3) 3.46 (3) 3.23 (3) 

k-fold 0.79 0.76 1.15   1.84 (1) 1.85 (1) 2.93 (2) 

Monte-Carlo 0.78 0.75 1.09   1.68 (1) 1.86 (1) 1.92 (1) 

The best method in each column is in boldface. The method with the best ranking is underlined. 

Methods with no statistically significant differences at the 0.05 level of significance share the same 

model ranking shown in brackets. 

Across all series, Monte Carlo crogging, Monte-Carlo, has the lowest average MASE 

on the test set, as well as the best average ranking although results indicate no statistically 

significant difference in performance over bagging with moving ‘out-of-bag’, BagMoob. Both 

Monte-Carlo and BagMoob are however found to be significantly better than k-fold and  



30 
 

bagging with fixed ‘out-of-bag’, BagFoob. k-fold crogging outperforms and is statistically 

better than BagFoob suggesting that there are benefits in acurracy from having diffferent 

samples in the validation sets. For all methods out-of-sample results are consistent with those 

obtained in-sample on the training and validation datasets in terms of average errors, however 

results on rankings suggest that Monte-Carlo is more consistent. In-sample it ranks 

statistically better than BagMoob on training and validation datasets, and out-of-sample is just 

as good if not better on average error. This suggests that crogging is likely to be more robust 

to overfitting and issues of method selection particularly when selection is based on in-

sample model fit. In the next section we consider performance based on the properties of the 

tiem series data. 

6.2. Data properties 

Table 3 shows the results of average MASE and ranking for long and short series 

across sample size and number of hidden nodes for all four methods. Results show no 

statistically significant differnces between Monte-Carlo and BagMoob. While BagMoob ranks 

best on the test set with an average rank of 2.04 for long series, Monte-Carlo is best on short 

series having an average ranking of 1.78. In-sample k-fold performs well ranked best on 

training and validation dataset for short time series. However unlike Monte-Carlo which also 

performs well on the test set, k-fold does not show similar performance out-of-sample 

indicating evidence of overfitting as previously discussed. The effect of overfitting seems 

reduced on long series where it is ranked joint first with no statistically significant difference 

in performance compared to Monte-Carlo and BagMoob. BagFoob is always outranked by 

Monte-Carlo and BagMoob across all datasets although it does well in terms of average errors 

on test set for long series. This difference between ranks of errors and average errors suggests 

that there are several difficult time series, particularly affecting the less robust average of 

errors. 
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Table 3. Average errors and and rank of errors on the test dataset by method and time series length. 

Ranking of errors is based on the Nemenyi Test. 

Type Method 
Average errors   Rank across all methods 

Train Validation Test   Train Validation Test 

Long BagMoob 0.99 0.99 1.58   2.88 (2) 2.86 (2) 2.04 (1) 

  BagFoob 1.22 1.15 1.52   3.80 (3) 3.52 (2) 3.24 (2) 

  k-fold 0.98 0.98 1.56   1.96 (1) 2.02 (1) 2.64 (1,2) 

  Monte-Carlo 0.95 0.96 1.55   1.36 (1) 1.60 (1) 2.08 (1) 

Short BagMoob 0.60 0.58 0.69   2.86 (2) 2.84 (2,3) 1.82 (1) 

  BagFoob 0.68 0.66 0.79   3.46 (2) 3.30 (3) 3.18 (2) 

  k-fold 0.58 0.56 0.81   1.56 (1) 1.64 (1) 3.22 (2) 

  Monte-Carlo 0.59 0.57 0.69   2.12 (1) 2.22 (1,2) 1.78 (1) 

The best method in each column is in boldface. The method with the best ranking is underlined. 

Methods with no statistically significant differences at the 0.05 level of significance share the same 

model ranking shown in brackets. 

The order of rankings is similar when considering seasonal and non-seasonal data as 

shown in  

Table 4. Again no statistically significant difference is noted in the ranking of Monte-

Carlo and BagMoob although Monte-Carlo gives the best ranking on seasonal time seris while 

on non-seasonal BagMoob is ranked best. While both methods show no staistically significant 

differnces on the test set, on the training and validation datset, Monte-Carlo is always 

statistically better than BagMoob. This may potentially be explained by the structured nature of 

the sampling in Monte Carlo crogging, in that while observations are drawn at random, it is 

done without replacement ensuring that observations only appear in the trainining set once 

and therefore more distrinct observations can be sampled. In contrast, when  BagMoob is used, 

observations in the training set may repeat offfering fewer distinct obsevations on which to 

train.  The performance of Monte-Carlo and BagMoob would suggest that the feature of the 

randam sampling across both the training and validation set are important; coventional 

bagging which in contrasts involves random sampling but only of the training set appears to 

be inferior 

Table 4. Average errors and and rank of errors on the test dataset by method and time series type. 

Ranking of errors is based on the Nemenyi Test. 
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Type 
MASE Average errors   Rank across all methods 
Method Train Validation Test   Train Validation Test 

Non-seasonal BagMoob 0.98 0.99 1.56   2.74 (2) 2.76 (2) 1.96 (1) 

 BagFoob 1.21 1.15 1.52   3.56 (3) 3.40 (2) 3.20 (2) 

 k-fold 0.98 0.98 1.56   1.86 (1) 1.76 (1) 2.86 (2) 

  Monte-Carlo 0.96 0.97 1.53   1.84 (1) 2.08 (1) 1.98 (1) 

Seasonal BagMoob 0.61 0.58 0.71   3.00 (2) 2.94 (2) 1.90 (1) 

 BagFoob 0.69 0.67 0.80   3.70 (3) 3.42 (2) 3.22 (2) 

 k-fold 0.58 0.56 0.80   1.66 (1) 1.90 (1) 3.00 (2) 

  Monte-Carlo 0.59 0.57 0.71   1.64 (1) 1.74 (1) 1.88 (1) 

The best method in each column is in boldface. The method with the best ranking is underlined. 

Methods with no statistically significant differences at the 0.05 level of significance share the same 

model ranking shown in brackets. 

While the above provides a good overview of the performance of the four methods, it 

is does not account for the potential difference in forecasting accuracy of each method as 

sampling size and number of time series observations change, discussed next. 

6.3. Sampling size 

We investigate how the choice of sampling size and the interaction with time series 

length affects forecasting accuracy. Recall that for k-fold cross-validation the number of 

training sets is equivalent to the number of folds 𝑘, while for Monte Carlo crogging and 

bagging this is equivalent to the number of random splits and the number of bootstraps 

respectively. Table 5 shows the results for the average MASE and ranking by time series 

length and sample size. The most accurate method on average for each sampling size (by 

row) is highlighted in bold, while the most accurate method across sampling sizes is 

underlined, for both long and short series. Ranking is done by method for each sample size.  

Results of average error indicate that Monte-Carlo and BagMoob rank best on short 

series for nearly all sampling sizes. In contrast both methods perform comparatively poorly 

on long time series and are outperformed by BagFoob across nearly all sample sizes. Results 

based on rankings are somewhat different and show Monte-Carlo to be robust across time 

series length achieving good performance on both long and short time series. In contrast for  
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Table 5. Average errors and and rank of errors on test dataset by method and sampling size. Ranking 

of errors is based on the Nemenyi Test. 

Type Size 

Average errors   Rank across all methods 

Monte- 

Carlo 
k-fold BagMoob BagFoob   

Monte- 

Carlo 
k-fold BagMoob BagFoob 

Long 2 1.56 1.57 1.56 1.56   2.15 (1) 2.46 (1) 2.25 (1) 3.14 (2) 

  5 1.59 1.53 1.57 1.51   2.36 (1,2) 2.22 (1) 2.44 (1,2) 2.98 (2) 

  10 1.57 1.59 1.57 1.44   2.29 (1) 2.42 (1) 2.57 (1) 2.72 (1) 

  15 1.47 1.54 1.56 1.49   2.19 (1) 2.78 (1) 2.37 (1) 2.66 (1) 

  20 1.52 1.56 1.56 1.50   2.35 (1) 2.62 (1) 2.33 (1) 2.70 (1) 

  25 1.59 1.54 1.56 1.52   2.39 (1) 2.63 (1) 2.30 (1) 2.68 (1) 

  30 1.51 1.50 1.60 1.54   2.15 (1) 2.59 (1) 2.42 (1) 2.84 (1) 

Short 2 0.69 0.69 0.70 0.78   2.02 (1) 2.10 (1) 2.38 (1) 3.50 (2) 

  5 0.70 0.70 0.69 0.76   2.02 (1) 2.48 (1) 2.32 (1) 3.18 (2) 

  10 0.69 0.78 0.69 0.79   1.86 (1) 3.04 (2) 2.06 (1) 3.04 (2) 

  15 0.69 0.79 0.69 0.80   2.03 (1) 3.26 (2) 2.01 (1) 2.70 (2) 

  20 0.69 0.86 0.69 0.76   2.02 (1) 3.16 (2) 2.06 (1) 2.76 (2) 

  25 0.69 0.89 0.69 0.77   1.78 (1) 3.50 (3) 1.94 (1) 2.78 (2) 

  30 0.69 1.01 0.69 0.76   1.92 (1) 3.44 (3) 2.00 (1,2) 2.64 (2) 

The best method in each row is in boldface. The method with the best ranking is underlined. Methods 

with no statistically significant differences at the 0.05 level of significance share the same model 

ranking shown in brackets. 

short series k-fold is observed to degrade rather quickly as sample size increases. This is 

because as sample size increases fewer observations are available for the validaiton set. For 

short series BagFoob which uses a fixed size validation set also performs poorly. This is 

explained by observing that while Monte-Carlo and BagMoob train on the entire learning set, 

with different observations used either as training or validation datasets which BagFoob uses a 

fixed size validation set of the same observations. For long series this sample size 

performance tradeoff is less noticable.   

Results of average ranking however shows no statistically significant differences 

among any of the methods for long series at nearly all sample sizes suggesting that given a 

sufficient number of observations, each method is capable of performing similarly. 

Difference in reported performance using average errors and ranking is due to a few difficult 

to forecast series. For short series which are much harder to forecast, results of rankings 

remain consistent with those of average errors, and both Monte-Carlo and BagMoob  

outperform k-fold and BagFoob with statistical significance for sample sizes greater than 5. If 
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we consider average error, then BagFoob with 10 bootstraps has the lowest error for long time 

series, while several sizes of Monte-Carlo and  BagMoob record the lowest error on short series. 

6.4. Network parameters 

Next, we seek to assess the sensitivity of each method to the complexity of the neural 

network base model. For each combination method we consider the impact of the number of 

hidden nodes on forecast accuracy. Table 6 summarises the performance of each combination 

method on the test dataset across different numbers of hidden nodes. The best performing 

method in each row corresponding to the number of hidden nodes is highlighted in boldface. 

Results based on rankings across all time series and sample sizes show that Monte-Carlo and 

BagMoob are always ranked better than k-fold or BagFoob and statistically better than BagFoob for 

all but hidden node size 4. Results are clear in showing that bagging with moving ‘out-of-bag’ should 

be preferred to a bagging with fixed ‘out-of-bag’ approach. In addition it suggests that Monte-Carlo 

should be preferred to k-fold. 

Table 6. Average errors and rank of errors on test dataset by method and number of hidden nodes. 

Ranking of errors by method is based on the Nemenyi Test and done for each number of hidden 

nodes. 

MASE Average errors 
 

Rank across all methods 

Hidden  

Nodes 

Monte-

Carlo 
k-fold BagMoob BagFoob 

 

Monte-

Carlo 
k-fold BagMoob BagFoob 

1 1.11 1.14 1.09 1.28 
 

2.16 (1) 2.44 (1) 2.15 (1) 3.26 (2) 

2 1.14 1.28 1.07 1.18 
 

2.13 (1) 2.84 (2) 1.88 (1) 3.15 (2) 

3 1.06 1.11 1.08 1.12 
 

1.80 (1) 2.98 (2) 2.19 (1) 3.03 (2) 

4 1.09 1.14 1.15 1.10 
 

2.21 (1) 2.85 (2) 2.29 (1) 2.65 (1,2) 

5 1.09 1.09 1.10 1.05 
 

2.39 (1,2) 2.55 (1,2) 2.31 (1) 2.76(2) 

The best method in each row is in boldface. The method with the best ranking is underlined. Methods 

with no statistically significant differences at the 0.05 level of significance share the same model 

ranking shown in brackets. 

Results of average errors suggests that for BagFoob, Monte-Carlo and k-fold forecast 

accuracy generally improves with the number of hidden nodes, showing  reductions of 18%, 

2% and 4% respectively from the use of 1 hidden node versus 5 hidden nodes. To further 

validate our finding, we perform for each method a ranking of the MASE across all time 
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series based on the number of hidden nodes in the neural network. Results of Nemenyi model 

ranking and Friedman test shown in Table 7 show no statistically significant differences in 

accuracy due to number of hidden nodes for Monte-Carlo and similarly for BagMoob. In 

contrast k-fold and BagFoob methods perform statistically better with larger networks.  

Table 7. Rank of errors on test dataset by method and number of hidden nodes. Ranking of errors by 

number of hidden nodes is based on the Nemenyi Test and done for each method. 

MASE Mean rank  

 
Model rank 

Hidden 

Nodes 

Monte-

Carlo 
k-fold BagMoob BagFoob 

 

Monte-

Carlo 
k-fold BagMoob BagFoob 

1 3.20 2.82 3.41 3.68 

 
1 1 2 3 

2 2.69 3.60 2.94 3.50 

 
1 2 1,2 2, 3 

3 3.16 3.23 2.80 3.09 

 
1 2 1 2 

4 3.13 2.86 3.05 2.51 

 
1 1 1,2 1 

5 2.82 2.50 2.80 2.21 

 
1 1 1 1 

The best method in each column is in boldface. Methods with no statistically significant differences at 

the 0.05 level of significance share the same model ranking. 

6.5. Select best versus Benchmarks 

In this section we select for each time series and for each of the four methods 

previously evaluated, the best performing combination of sample size and number of hidden 

nodes. For each time series the sample size and hidden nodes having the producing lowest 

MASE on the validation set is selected. For each benchmark method, the number of hidden 

nodes is also selected based on the validation set accuracy. When the Holdout, Noholdout and 

BagNoob methods are used, the sample size is set to 50. Results of the average error and 

ranking of errors for each method aross all time series are presented in Table 8. Considering 

the average MASE across all time series, we see that the method with the lowest forecast 

error on the test set is BagMoob followed by k-fold. These results are however not statistically 

significant as observed by rankings which suggest no statistically significant difference 

between Monte-Carlo, k-fold and BagMoob when selecting based on in-sample accuracy on the 

validation set. 

Table 8. Average errors and and rank of errors on test dataset by method and number of hidden nodes. 

Ranking of errors is based on the Nemenyi Test. 
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MASE Average errors   Rank across all methods 

Method Train Validation Test   Train Validation Test 

BagMoob 0.77 0.63 0.86   6.34 (3,4) 5.37 (3,4) 4.73 (1) 

BagFoob 0.80 0.60 0.94   5.42 (2,3) 3.79 (1,2) 4.90 (1,2) 

k-fold 0.67 0.55 0.89   2.59 (1) 2.75 (1) 4.51 (1) 

Monte-Carlo 0.73 0.60 0.98   4.42 (2) 4.32 (2,3) 4.78 (1) 

Holdoutavg 0.79 0.72 1.05   5.56 (3,4) 7.22 (5) 5.17 (1,2) 

Noholdoutavg 0.77 0.65 1.05   6.02 (3,4) 6.42 (3,4) 5.05 (1,2) 

Holdoutselect 0.91 0.65 1.15   6.65 (4) 5.66 (3,4) 5.99 (1,2) 

Leave-one-out 0.63 0.58 0.93   2.31 (1) 3.03 (1) 4.86 (1,2) 

BagNoob 0.79 0.68 0.94   5.68 (3,4) 6.04 (3,4) 5.02 (1,2) 

The best method in each column is in boldface. The method with the best ranking is underlined. 

Methods with no statistically significant differences at the 0.05 level of significance share the same 

model ranking shown in brackets. 

Leave-one-out and k-fold perform are stistically better than all other methods on the training 

and validation datasets which is not surprising given the tendency to overfitt. These resullts 

suggest that use of the valiation set for individual time series parameter (sample size and 

hidden nodes) selection is not particularly effective at discriminating among the methods. 

6.6. Relative Ranking on results of NN3 competition 

Table 9 reports the results obtained by the first eight participants of the NN3 

competition and the benchmark model of the competition (AutomatANN). To these we 

compare Monte-Carlo crogging, k-fold crogging, both forms of bagging, as well as the set of 

benchmark approaches previously discussed. These are highlighted in boldface with the best 

method in each column underlined. For each method the sample size and number of hidden 

nodes is determined using in-sample mean forecast error on the validation set. To remain 

consistent with the reporting format of the competition, we report rankings using SMAPE and 

MASE. While these rankings provide evidence of each method’s ability to accurately forecast 

relative to competition benchmark, it is not possible to performance tests of statistical 

significance having no access to the competition forecasts. Among all methods BagMoob and 

Monte-Carlo ranked 3rd and 5th overall according to SMAPE, and 1st and 2nd based on 

MASE across all time series. Monte-Carlo and BagMoob method outperforms well known 

statistical benchmarks including damped exponential smoothing (DES) and the simple 
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average of damped, single and holt exponential smoothing (Comb-S-H-D) shown to work 

well in other competitions (Makridakis and Hibon 2000). Most encouraging is the 

improvement in accruacy over model selection with Monte-Carlo and BagMoob showing a 

19% and 21% improvement over HoldoutSelect according to SMAPE, and 15% and 16% 

according to MASE. 

Table 9. Average errors and ranks of errors across all time series of the NN3 competition. 

    

Average errors   Ranking all methods   Ranking NN/CI 

SMAPE MASE   SMAPE MASE   SMAPE MASE 

B09 Wildi 14.84 1.13   1 3   − − 

B07 Theta 14.89 1.13 

 

2 3 

 

− − 

** BagMoob 15.13 1.11 

 

3 1 

 

1 1 

C27 Illies 15.18 1.25 

 

3 15 

 

2 8 

B03 ForecastPro 15.44 1.17 

 

4 7 

 

− − 

** Monte-Carlo 15.47 1.12 

 

5 2 

 

3 2 

B16 DES 15.9 1.17 

 

6 7 

 

− − 

B17 Comb S-H-D 15.93 1.21 

 

7 13 

 

− − 

** Noholdoutavg 15.94 1.19 

 

8 10 

 

4 5 

B05 Autobox 15.95 1.18 

 

9 9 

 

− − 

** BagFoob 15.95 1.17 

 

10 6 

 

5 4 

** BagNoob 15.99 1.13 

 

11 5 

 

6 3 

C03 Flores 16.31 1.20 

 

12 12 

 

7 6 

** k-fold 16.34 1.20 

 

13 11 

 

8 6 

B00 AutomatANN 16.81 1.21 

 

14 13 

 

9 7 

** Holdoutavg 17.12 1.25 

 

15 16 

 

10 8 

** Leave-one-out 17.87 1.33 

 

16 18 

 

11 10 

** Holdoutselect 19.10 1.32   17 17   12 9 

Methods implemented in this study are highlighted in bold. The best method in each column is 

underlined. 

Among the computational intelligence (NN/CI) methods, BagMoob and Monte-Carlo 

ranked 1st and 3rd respectively according to SMAPE, and 1st and 2nd according to MASE. 

This reflects rather good performance by the proposed Monte-Carlo combination method and 

BagMoob. BagFoob ranks slight better than Neural network model averaging with no validation 

set (NoHoldoutAvg), while both the HoldoutSelect and leave-one-out are ranked worst than the 

competition benchmark method AutomatANN both in terms of SMAPE and MASE.While 

we do not show these results to be statistically significant relative to competition methods, 

they are not surprising given evidence already presenting showing Monte-Carlo and 
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BagMoob to perform better on average than the other methods evaluated in this study. Also 

this needs to be verified, results using SMAPE and the more robust MASE suggest that both 

methods outperform other neural network based methods of the competition. This includes 

the more complex approaches of Illies, Jäger, Kosuchinas, Rincon, Sakenas and Vaskevcius 

(C27) which is based on a combination of time series clustering, decomposition and the use 

of Echo State Networks (ESN), a type of recurrent NN, and the method of Flores et. al. 

(C03), which combines a self adaptive genetic algorithm to determine the terms of a seasonal 

ARIMA (p,d,q)(P,D,Q) model. 

7. Summary and conclusions 

We have presented the first application and evaluation of Monte Carlo cross-

validation as a method for producing combinations of univariate time series forecasts within a 

general framework of cross-validation aggregation (crogging). This general framework for 

combining autoregressive forecasts draws inspiration from bagging. Bagging which is based 

on bootstrap resampling is used for forecast combination as a relatively easy way to improve 

accuracy of an existing model and has grown in popularity over the last two decades. Several 

cross-validation sampling schemes are evaluated for combining forecasts including 2-fold, 

10-fold, leave-one-out and Monte Carlo cross-validation. 

Beyond Monte Carlo cross-validation, this study provides evidence that crogging 

which is relatively simple to implement, turns out to be even more effective at reducing the 

variance of the final forecast, and improving accuracy, in comparison to bagging with a fixed 

validation set, and neural network model averaging. Where bagging is implemented using a 

validation set, the ‘out-of-bag’ approach, then bagging performs just as good as Monte Carlo 

crogging. This is first shown theoretically through a decomposition of the mean squared error 

into its bias and variance components, which are both estimated through Monte and BagMoob 

are both effective at reducing variance, and in some cases, the bias of the combined forecast. 
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Secondly using competition data consisting of monthly real business time series, it was found 

that Monte-Carlo crogging and BagMoob, outperformed k-fold crogging and other benchmark 

methods, making Monte-Carlo a valid and attractive alternative for time series forecasting 

with autoregressive models.  

With the exception of BagFoob the number of hidden nodes used was found to have no 

statistical impact on forecast accuracy. However for short series and large combination sizes, 

k-fold and BagFoob were outperformed by both Monte-Carlo crogging and BagMoob. In contrast 

for long time series little statistical difference was noted among the four principal methods 

evaluated. Our results show evidence of better in-sample performance on the validation set by 

Monte-Carlo versus BagMoob, however this resulted in no improvement in terms of model 

selection of sample size and hidden node parameters even when using the validation set. This 

can be explained by the relative invariace of both methods to both paramaters. While Monte-

Carlo crogging and BagMoob are most effective at larger sampling sizes, k-fold crogging 

performed poorly; attributable to the trade-off between the number of folds, and the number 

of time series observations available for training. As the number of folds increases, and 

likewise the number of forecasts combined, the size of the validation dataset decreaces. This 

suggests that with fewer observations available for early stopping, model estimation becomes 

poorer. This appears to be the biggest advantage that the Monte-Carlo and bagging with ‘out-

of-bag’ methods afford, in that they decouples the number of samples available for forecast 

model estimation from the size of the training/validation datasets. 

While this study has shown that crogging can be used to improve forecasting accuracy 

when applied to neural networks, further evidence is required using other forecasting 

methods e.g. regression to which crogging can be easily applied. Additionally, an obvious 

next step would be to investigate the application of crogging beyond autoregressive models to 
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moving average processes as proposed by Bergmeir and Hyndman (2014) for bagging 

exponential smoothing methods.  
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