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Robustness Analysis of DNA-based Biomolecular Feedback Controllers
to Parametric and Time Delay Uncertainties

Rucha Sawlekar, Mathias Foo, and Declan G. Bates

Abstract— Recent advances in DNA computing have greatly
facilitated the design of biomolecular circuitry based on DNA
strand displacement reactions. An important issue to consider in
the design process for such circuits is the effect of biological and
experimental uncertainties on the functionality and reliability
of the overall circuit. In the case of biomolecular feedback
control circuits, such uncertainties could lead to a range of
adverse effects, including achieving wrong concentration levels,
sluggish performance and even instability. In this paper, we
analyse the robustness properties of two biomolecular feedback
controllers; a classical linear proportional integral (PI) and a re-
cently proposed nonlinear quasi sliding mode (QSM) controller,
subject to uncertainties in the experimentally implemented rates
of their underlying chemical reactions, and to variations in
accumulative time delays in the process to be controlled. Our
results show that the nonlinear QSM controller is significantly
more robust against investigated uncertainties, highlighting its
potential as a practically implementable biomolecular feedback
controller for future synthetic biology applications.

I. INTRODUCTION

A design framework that uses abstract chemical reaction
networks (CRNs) as a programming language to imple-
ment enzyme-free, enthalpy–entropy driven DNA elementary
reactions [1] has recently attracted much attention in the
synthetic biology community [2]-[4]. The designed circuitry
is implementable in DNA by means of a toehold-mediated
DNA strand displacement (DSD) mechanism, through the
well-known Watson-Crick base-pairing (i.e. adenine-thymine
and guanine-cytosine) [5]. The selection of appropriate DNA
sequences allows precise control over the dynamics of the
implemented DNA reactions, thus facilitating an accurate
molecular programming of the desired function, operator or
circuit. Also, design of synthetic circuits using this approach
is now being facilitated by sophisticated CAD tools, such
as the Visual DSD software package [6]. Examples of suc-
cessfully designed and implemented biomolecular circuitry
using this approach include linear and nonlinear feedback
controllers [4], [7], [8], dynamics of predator-prey systems
[9], and oscillators [10].

In recent work we have developed a nonlinear QSM con-
troller [7] using four activation-deactivation CRNs inspired
by the ultrasensitive behaviour exhibited by mitogen acti-
vated protein kinase (MAPK) cascade [11] and implemented
using the DSD mechanism. An important requirement for any
embedded bimolecular controller is that its design provides
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robustness to various forms of uncertainty and variability
that could arise in its final implementation in DNA. Here
we focus on two important sources of such uncertainty -
variability in the rate constants of the abstract chemical
reactions underlying the closed-loop control system, and
uncertain time delays in the biomolecular process to be
controlled. In practice, experimental biologists are rarely able
to specify the reaction rates of chemical reactions exactly,
and additionally, as highlighted in [8], unregulated chemical
devices or leaky expression can potentially affect production
and degradation rates and subsequently alter the behaviour
of the designed components. There are also many reasons
why we might wish to include time delays in CRN mod-
els of biomolecular processes, since this avoids cataloging
potentially large numbers of intermediate species and their
reactions, in favour of describing the dynamic relationships
between the concentrations of key species. As a result,
fewer concentration variables will generally be required,
thus simplifying the overall circuit design problem. Also,
in preliminary investigations of a new system, the level
of description afforded by a low-order time delayed CRN
model is often closer to our state of knowledge than is a
detailed model, in which a certain amount of speculation
about intermediate species is required, [15].

II. SYSTEM DESCRIPTION AND METHODOLOGY
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Fig. 1: The biomolecular closed-loop feedback control sys-
tem with the accumulative process time delay.

The system configuration considered here is shown in
Fig. 1, and consists of a biomolecular closed-loop feedback
circuit consisting of a number of dynamic components,
namely, a subtractor, a controller and a second order nonlin-
ear biomolecular process with an accumulative time delay.
The controller analysed here is a nonlinear quasi sliding
mode (QSM) controller, adapted from [12] - for the purposes
of comparison, we also illustrate the level of performance
that is achieved using a classical linear proportional integral
(PI) controller.

Whereas signals in systems theory can take both positive
and negative values, biomolecular concentrations can only



take non-negative values. To resolve this difficulty, following
the approach in [8] and [14], we represent a signal x as the
difference in concentrations of two DNA strands, such that
x = x+− x−. Here, x+ and x− are respectively the positive
and negative components of x. In this paper, x±i

k−→ x±o denotes
the set of the following two reactions: x+i

k−→ x+o and x−i
k−→ x−o .

The abstract chemical reactions describing the QSM con-
troller in Fig. 1, are given by:

X±1 +B±
kb1−−→ X±2 , (1a)

X±2
kc1−−→ A±+X±1 , (1b)

X+
2 +X−2

η−→ φ , (1c)

A++A−
η−→ φ , (1d)

A±+X±3
kb2−−→ X±4 , (2a)

X±4
kc2−−→ B±+X±3 , (2b)

X+
4 +X−4

η−→ φ , (2c)

B++B−
η−→ φ . (2d)

where, X1 is the input and A is the output of the QSM
controller. The above CRNs realise an ultrasensitive switch-
like input-output response that approximates an ideal sliding
mode controller [16]-[18]. By tuning the concentration of
the DNA strands X±3 , the input-output response of the set of
CRNs can be made to closely approximate the ideal switch
implemented by a sliding mode controller (SMC) [16]-[18],
so that it implements a QSM controller. Here, kb1 and kb2
denote the binding reaction rates whereas kc1 and kc2 denote
the catalytic reaction rates and η is the annihilation rate. The
tuning of the QSM controller involves adjusting kb1 , kb2 , kc1
and kc2 . Now, using mass action kinetics (see eg. [19]), the
set of reactions given by Eqns. (1) and (2) may be represented
by the following set of ODEs:

dA
dt

= kc1X2− kb2AX3, (3a)

dX2

dt
= kb1X1B− kc1X2, (3b)

dB
dt

=−kb1X1B+ kc2X4, (4a)

dX4

dt
= kb2AX3− kc2X4. (4b)

From Eqns. (3) and (4), we can see that Sqsm
.
= A + B +

X2 + X4 is constant. Thus, the signal B is variable and
depends on the dynamic signals A, X2 and X4. Since, X1
also varies over time; this means that the term kb1X1B in
Eqn. (3b) is nonlinear. The linear PI controller is constructed
following the approach of [8] and [4] using three CRNs for
the integration and seven for the proportional gain as:

[Integrator]:

X±1
kI−→ X±1 +X±2 , (5) X+

2 +X−2
η−→ φ . (6)

[Proportional]:

X±1
kp−→ X±1 +A±, (7a)

X±2
kc−→ X±2 +A±, (7b)

A±
kd−→ φ , (8a)

A++A−
η−→ φ . (8b)

Here, the signal X1 is the input and A is the output.
Furthermore, kp and kc denote the catalytic reaction rates
while kd denotes the degradation rate. Using mass action

kinetics, the following ODE representation is obtained for
the PI controller:

dX2

dt
= kIX1, (9)

dA
dt

= kpX1 + kcX2− kdA. (10)

We consider a second order nonlinear process that can be
formed using a combination of unimolecular and bimolecular
CRNs, given as follows:

A±+X±5
kr1−→ X±6 , (11a)

X±6
kr2−→ Y±+X±5 , (11b)

Y (t + τ)±
kr3−→ φ , (12a)

Y++Y−
η−→ φ . (12b)

where, kr1 , kr2 , kr3 are binding, catalytic and degradation
reaction rates, respectively. The input signal to the process
module is A and the output is Y . The term τ in Eqn.
(12a) indicates the accumulative time delay involved in the
production of the output species Y . Applying mass action
kinetics, we get:

dX6

dt
= kr1AX5− kr2X6, (13)

dY
dt

= kr2X6− kr3Y (t− τ). (14)

where, XTotal
.
= X5 +X6 is constant and conserved through

the entire time of the process. For the closed-loop feedback
control, we need a module to compute the difference of the
reference signal (U) and output signal (Y ). Following [8],
[14] and as implemented in [12], the CRNs that perform the
subtraction are given by:

U± ks−→U±+X±1 , (15a)

Y± ks−→ Y±+X∓1 , (15b)

X±1
ks−→ φ , (16a)

X+
1 +X−1

η−→ φ . (16b)

where, ks is the subtraction rate. Here, signals U and Y are
the inputs and X1 is the output of the subtractor. In other
words, the value of signal X1 being produced is equivalent
to the difference between the two input signals, U and Y . In
addition, both the catalysis reaction rates in Eqns. (15a) and
(15b) are set to be equal to the degradation rate. Applying
mass action kinetics to Eqns. (15) and (16) gives:

dX1

dt
= ks(U−Y −X1). (17)

In the context of our feedback system shown in Fig. 1, the
inputs to the subtractor comprise the reference input signal
U and the process output Y while its output X1 is used as
the input to the controller.

III. SIMULATION RESULTS

The performance of the QSM controller with τ = 0s and
τ = 1000s is shown in Fig. 2. In both the cases, the QSM
controller is seen to accurately track the reference signal,
with nearly the same settling time of approximately 12,000s.
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Fig. 2: Comparing system performance of QSM controller
with PI controller for τ = 1000s. The dashed line shows the
response of the QSM controller for τ = 0s.

However, when the response of the PI controller is evaluated
in the presence of τ = 1000s, as shown in Fig. 2, large
overshoots can be observed.

To analyse the robustness of closed-loop responses
achieved with the QSM controller, a formal Monte Carlo
simulation campaign was performed. All the parameters
determining the rate constants of the chemical reactions
underlying the closed-loop system are randomly drawn from
a uniform distribution over repeated simulations. The number
of Monte Carlo simulations required to achieve various
levels of estimation uncertainty with known probability were
calculated using the well-known Chernoff bound [20]. An
accuracy of 0.05 and a confidence level of 90% were chosen
for the Monte Carlo simulation analysis, which requires
1060 number of simulations, as discussed in [20]-[22]. To
investigate the effect of different levels of uncertainty we
varied the parameters within ranges of 20% and 50% around
their nominal values. Mathematically, we have p(1+∆P(x))
where, p∈ {ks,kb1 ,kb2 ,kc1 ,kc2 ,kI ,kp,kc,kd ,kr1 ,kr2 ,kr3}, P(x)
is the probability distribution and ∆ ∈ {0.2,0.5}.

In the simulations, the given step input U changes from

TABLE I: Step response characteristics and worst-case pa-
rameter ranges for the PI controller.

Characteristics Nominal ∆ = 0.2 ∆ = 0.5
ts (s) 12,652 15,958 unstable
tr (s) 718 11,259 unstable
MOS (%) 43.75 283.17 unstable
ess (M) 0 0 unstable
Parameters Nominal ∆ = 0.2 ∆ = 0.5
Subtractor
ks (/s) [10−3] 2.4 2.714-2.831 2.863-3.530
PI controller
kI (/M/s) [10−6] 1.6 1.616-1.907 1.631-2.110
kp (/M/s) 0.2 0.232-0.233 0.272-0.299
kc (/s) [10−4] 1.6 1.722-1.894 1.934-2.351
kd (/s) [10−1] 3.2 3.255-3.364 3.223-4.497
Nonlinear process
kr1 (/M/s) [102] 5 5.732-5.926 6.951-7.455
kr2 (/s) 1.6 1.818-1.884 1.804-2.242
kr3 (/s) [10−6] 8 8.033-8.696 9.561-11.335
Time delay
τ (s) 1000 700-1118 695-1436

0 to 4 nM at time t = 0s and the role of the controller is to
ensure that the process output Y tracks the reference input.
As quantitative measures of control system performance,
we measure the step response characteristics, which include
settling time (ts), rise time (tr), percentage overshoot (MOS)
and steady state error (ess). It is desirable to achieve small
values of ts, tr and MOS, while ess = 0. We first calculate
the closed-loop response without parameter uncertainty, i.e.
with nominal parameter values to use it as a benchmark for
comparison. Tables I and II detail the results of the Monte
Carlo simulation campaign for both the QSM and PI con-
trollers. The PI controller was observed to lose closed-loop
stability for ∆= 0.5. The worst case values of each of the step
response characteristics and their associated parameter values
are shown for each of the analysed uncertainty sets in Tables
I and II. Ranges are shown for the uncertain parameters since
their worst-case values for each step response characteristic
are different, e.g. the parameters yielding the worst ts may
not yield the worst tr, Mos and ess and vice versa. Figs. 3(a)
and 3(b) show the step responses produced by the Monte
Carlo simulation campaign for each controller. As shown,
the QSM controller displays significantly greater robustness
to the applied levels of uncertainty, highlighting its potential
for successful experimental implementation.

IV. CONCLUSIONS

Within the framework of CRNs, we designed an em-
bedded synthetic biomolecular feedback circuit that can be
implemented using enzyme-free, enthalpy and entropy driven
DNA elementary reactions. We analyzed and compared the
performance of a nonlinear QSM controller with a linear PI
controller, when subjected to potential accumulative process
time delays in the production of the output species of interest.
We introduced different levels of uncertainty in the parame-
ters representing the reaction rates of the underlying chemical
reactions, and in the process time delay to investigate the
robustness of both controllers to these variabilities. Our

TABLE II: Step response characteristics and worst-case
parameter ranges for the QSM controller.

Characteristics Nominal ∆ = 0.2 ∆ = 0.5
ts (s) 9,654 15,562 15,954
tr (s) 1,281 1,471 1,631
MOS (%) 12.36 38.23 181.29
ess (M) 0 0 oscillatory
Parameters Nominal ∆ = 0.2 ∆ = 0.5
Subtractor
ks (/s) [103] 1 1.139-1.175 1.059-1.267
QSM controller
kb1 (/M/s) [10−3] 40 41.060-47.587 40.642-59.807
kb2 (/M/s) [10−3] 40 43.094-47.103 42.489-54.347
kc1 (/s) [103] 9 9.122-10.732 12.423-13.410
kc2 (/s) [103] 10 10.201-11.946 10.269-14.694
Nonlinear process
kr1 (/M/s) [102] 5 5.077-5.900 5.038-7.185
kr2 (/s) 1.6 1.769-1.884 1.651-2.368
kr3 (/s) [10−6] 8 9.040-9.310 9.079-11.390
Time delay
τ (s) 1000 853-1169 853-1469
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Fig. 3: Comparing system performance for 20% and 50% uncertainty in parameters and time delay; for the Monte Carlo
simulation analysis (no. of simulations = 1060). Plots (a) and (b) are the closed-loop responses with the PI controller and
the QSM controller, respectively, with ∆ = 0.2, Plots (c) and (d) are the closed-loop responses with the PI controller and
the QSM controller, respectively, with ∆ = 0.5.

results highlight the strong robustness properties of the QSM
controller, indicating its suitability for implementation in
wet-lab experiments.
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