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Abstract
A wide range of organisms features molecular machines, circadian clocks, which generate

endogenous oscillations with ~24 h periodicity and thereby synchronize biological pro-

cesses to diurnal environmental fluctuations. Recently, it has become clear that plants har-

bor more complex gene regulatory circuits within the core circadian clocks than other

organisms, inspiring a fundamental question: are all these regulatory interactions between

clock genes equally crucial for the establishment and maintenance of circadian rhythms?

Our mechanistic simulation for Arabidopsis thaliana demonstrates that at least half of the

total regulatory interactions must be present to express the circadian molecular profiles

observed in wild-type plants. A set of those essential interactions is called herein a kernel of
the circadian system. The kernel structure unbiasedly reveals four interlocked negative

feedback loops contributing to circadian rhythms, and three feedback loops among them

drive the autonomous oscillation itself. Strikingly, the kernel structure, as well as the whole

clock circuitry, is overwhelmingly composed of inhibitory, rather than activating, interactions

between genes. We found that this tendency underlies plant circadian molecular profiles

which often exhibit sharply-shaped, cuspidate waveforms. Through the generation of these

cuspidate profiles, inhibitory interactions may facilitate the global coordination of tempo-

rally-distant clock events that are markedly peaked at very specific times of day. Our sys-

tematic approach resulting in experimentally-testable predictions provides insights into a

design principle of biological clockwork, with implications for synthetic biology.

Author Summary

Sleep/wake cycles in animals exemplify daily biological rhythms driven by internal molec-
ular clocks, circadian clocks, which are important for plant life as well. The plant circadian
clock is highly complex, eluding our understanding of its design principle. Based on the
computational simulation of Arabidopsis thaliana, we successfully identified a kernel of
the plant circadian system, the critical genetic circuitry for clock function. The kernel inte-
grates four major negative feedback loops that process molecular circadian oscillations.
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Surprisingly, the plant clock circuitry was found to be overwhelmingly composed of inhib-
itory, rather than activating, interactions among genes. This fact underlies plant circadian
molecular profiles to often exhibit sharply-shaped, cuspidate waveforms, which indicate
clock events that are markedly peaked at very specific times of day. Our work presents
experimentally-testable predictions, with implications for synthetic biology.

Introduction
A variety of living organisms on Earth features built-in molecular clock machineries that con-
trol the organism’s daily activities [1]. These internal time-keepers, circadian clocks, generate
endogenous oscillations of gene expression with ~24 h periodicity, enabling the anticipation of
diurnal environmental variations and the coordination of biological processes to the optimal
times of day. Examples of such biological processes include sleep/wake cycles in animals, emer-
gence from the pupal case in fruit flies, spore formation in fungi, and leaf movements in plants
[2–4]. Disruption of circadian rhythmicity is associated with a wide range of pathophysiologi-
cal conditions, indicating the importance of clock functions in homeostasis [5–8]

Compared to other organisms, such as fungi, insects, and mammals whose circadian sys-
tems have been well studied, a molecular understanding of the plant circadian system is still
elusive. Numerous molecular and genetic approaches using Arabidopsis thaliana have facili-
tated the discovery of more than 20 plant clock genes as well as their regulatory interactions [1,
9, 10]. The emerging picture from this effort suggests that the core regulatory circuit of the
plant circadian system is more complex than in other organisms [9, 11–13]. The apparent com-
plexity of the plant clock machinery raises a fundamental question: are all the regulatory inter-
actions between clock genes equally necessary for the establishment and maintenance of plant
circadian rhythms? In other words, can we distinguish more important from less important
regulatory interactions for normal clock functioning? Answering this question involves an
attempt to prioritize our focus amongst numerous regulatory interactions, in order to simplify
a global view of, and thereby elicit an essential principle of, the plant clock organization.
Despite the fundamental importance of this issue, a satisfactorily systematic approach has not
been taken yet; thus, this topic is the focus of our study. In the case of other biological pro-
cesses, finding essential subnetworks out of the whole has been of wide interest for both scien-
tific and engineering purposes [14–18].

Properly designed experiments may be one way to address this issue, but often require labo-
rious and costly efforts. Complementary to experiments, mathematical models help biological
findings by predicting the effects of genetic and non-genetic perturbations, where experimental
access could be limited or unavailable. Utility of mathematical models has been well docu-
mented in earlier studies of circadian rhythms [19–22]. An initial mathematical model of the
plant circadian system was constructed based only on three genes, LATE ELONGATED HYPO-
COTYL (LHY), CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), and TIMING OF CAB
EXPRESSION 1 (TOC1) [22]. This model has evolved to include five times more components
to date [23, 24]. Additionally, models that incorporate the downstream targets of the core circa-
dian system are starting to gain attention [25]. These models have certainly served a significant
role in enhancing our understanding of the plant circadian clock. Nevertheless, to the best of
our knowledge, none of these studies has fully attempted to specify the functionally essential
interactions between clock genes in a systematic and comprehensive way.

Central to our approach to the plant circadian system is the concept of a kernel. We define a
kernel as a collection of minimal functional sets, each comprising all molecular components
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(genes and gene products) in the system and only a part of their regulatory interactions, which
must be present to generate the temporal trajectory of molecular concentrations close to wild
type (WT). In this definition, we refer to a collection of minimal sets to cover cases with multi-
ple minimal sets. Based on an Arabidopsis clock model constructed in this study, our analysis
shows that the kernel structure combines four negative feedback loops whose interplay effec-
tively accounts for circadian rhythmicity in Arabidopsis. Strikingly, the kernel structure, as well
as the whole clock circuitry, was found to be overwhelmingly composed of inhibitory interac-
tions between genes. We subsequently present a mechanistic reason for the prevalence of such
inhibitory interactions in the plant clock. These results provide a systematic and unique view
of the plant circadian oscillators, with experimentally testable predictions to enhance our
understanding of biological time.

Results

Construction and verification of the mathematical plant clock model
We began by constructing a mathematical model of the core circadian oscillator in plant Arabi-
dopsis thaliana. For this model construction, we applied system identification techniques to
publicly available time course data of mRNA and protein expression (Materials and Methods).
The resulting model consists of 24 ordinary differential equations (ODEs), describing a rate of
a concentration change of each mRNA, protein, or protein complex (S1 Text). Experimentally-
verified molecular interactions were primarily incorporated in the model, which then contains
a total of 40 transcriptional and post-translational interactions between components, along
with light-dependent regulations. Fig 1A shows a global architecture of the core gene circuit
considered in our model.

In comparison with previous models [23, 24, 26], the new model is mainly based on the
model (P2013) by Pokhilko et al. [23], but we filtered out hypothetical or outdated molecular
interactions and adopted some recent findings [24]. Compared to our earlier work [26], which
uses a discrete-time model for control design purposes, here we have constructed a continu-
ous-time model, with revised interactions compatible with recent knowledge. Full details of the
model comparisons are presented in S1 Text. Overall, we stress that our current model does
not intend to outperform other existing models in its accuracy through the inclusion of all up-
to-date information. Rather, the priority was to construct a model which is compact, yet bio-
logically relevant, in accordance with recent experimental knowledge. We expect that this
model is suitable enough for our main purpose of kernel identification, without further sophis-
tication of the model structure.

Because we are ultimately moving forward to identify the kernel structure responsible for
circadian rhythms in WT plants, time series data of mRNA and protein expression fromWT,
not from mutants, were used during model construction. Mutant data were used only to vali-
date the constructed model, as will be described later. Specifically, we estimated the parameters
of the model by fitting the simulation results to WT mRNA and protein expression profiles
over time, under five different light conditions: equal length light-dark cycle, i.e., 12 hours of
light and 12 hours of dark (12L:12D), 16 hours of light and 8 hours of dark (long day), 8 hours
of light and 16 hours of dark (short day), constant light (LL), and constant dark (DD). These
expression profiles were obtained from publicly available experimental literature and databases
(S1 Table). Because the absolute levels of mRNAs and proteins were difficult to ascertain from
their sources, we normalized the expression levels into dimensionless values (�1) with arbi-
trary scales. As a proxy for the LHY/CCA1 information, we adopted the LHY expression data,
because they were often better in the quality than CCA1’s. Constraining the model output to fit
all these datasets gave rise to a total of 97 estimated parameters of the model equations, along
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Fig 1. Core of the Arabidopsis circadian clock. (A) Regulatory circuits of clock components in the MF2015 model. Boxes denote molecular components
(yellow and blue for morning and evening components, respectively). Lines denote activating (arrow-headed) or inhibitory (bar-headed) regulation, whether
transcriptional or post-translational (described below in detail). Light-dependent regulation is denoted by a sun-like symbol on each box. Curly brackets
indicate the formation of protein complexes. Black and red lines constitute the kernel structure and represent transcriptional (black) and post-translational
(red) regulation; among them, solid lines belong to the four major negative feedback loops, whereas dashed lines do not belong to those loops. Gray and pink
lines do not constitute the kernel structure, and represent transcriptional (gray) and post-translational (pink) regulation. Among light-dependent regulations
(sun-like symbols), only those of PRR9 and COP1 (sun-like symbols with stronger colors) belong to the current kernel structure. (B–G) Comparison between
experimental (black) and simulated (gray) mRNA or protein levels under different light conditions. (B, F) 12L:12D cycles. (C) Short days. (D) LL. (E) Long
days. (G) DD. In (B, C, E, F), white and black segments correspond to light and dark intervals, respectively. In (D, G), relatively light and dark segments
indicate subjective days and nights, respectively. The sources of the experimental data in (B–G) are presented in S1 Table.

doi:10.1371/journal.pcbi.1004748.g001
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with 51 coefficients that scale each light condition’s mRNA and protein levels relative to the
levels under 12L:12D cycles (see S1 Text). Our model does not separate nuclear from cytosolic
proteins [27, 28], due to incomplete availability of the relevant expression data and to avoid
increasing model complexity.

What is the resulting performance of our model (MF2015)? We found that MF2015 cap-
tures well the overall temporal patterns of gene expression fromWT (Fig 1B–1G; for compari-
son with P2013, see S1 Text). Also, the free running rhythms in WT are in good agreement
with experimental values [29, 30]: 25.2 h (model) and 24.6 h (experiment) in LL, and 25.8 h
(model) and 25.9 h (experiment) in DD. However, these results cannot validate MF2015,
because we estimated the model parameters from the WT data. To directly test the predictive
power of the model against an independent dataset, we computed the altered rhythmicity
under different genetic perturbations. The simulated mutants are 76.2% accurate when the
clock periods are quantitatively compared to experimental values (see S1 Text). Qualitative
agreement (lengthened period, shortened period, or arrhythmia) is observed for 85.7% of the
simulation outcomes and experimental results (S1 Text). Moreover, the simulation predicts the
substantial elevation (reduction) of ZEITLUPE (ZTL) protein levels in LL (DD), matching the
experimental finding [31]. This result is the first accurate reproduction of ZTL performance
through computational modeling (S6 Fig). Taken together, MF2015 is greatly supported by an
array of experimental evidence in terms of its predictability. Note that P2013 yields the simu-
lated mutant periods in 42.9% quantitative agreement with experimental values.

In general, the simulation outcomes were robust to a wide range of kinetic parameter varia-
tions and transient molecular concentration changes (S1 Text). A few exceptions that convey
the system’s sensitive response involve the variations of parameters in PSEUDO RESPONSE
REGULATOR 5 (PRR5) mRNA degradation, EARLY FLOWERING 3 (ELF3) inhibition by
LHY/CCA1, and light-responsive protein production. Whether they represent genuine biologi-
cal factors or model incompleteness is unknown. Meanwhile, the overall robustness to parame-
ter variations indicates the presence of multiple parameter sets for the model. Interestingly,
alternative parameters that we examined did not make much of an improvement in the
predictability of mutant period lengths (S1 Text). Moreover, such alternative parameters of the
model are unlikely to change the main results of our study, as kernel identification and analysis
involve parameter re-optimization processes.

Kernel identification from the plant circadian system
Our modeling of the core circadian system (MF2015) encouraged us to address difficult mech-
anistic questions. Among all 40 molecular interactions and light regulations in the system,
which interactions (and light regulations) are minimally necessary to shape the circadian
mRNA and protein expression profiles observed in WT across different light conditions? We
refer to this collection of minimal sets as the kernel of the circadian system. In the next para-
graph, both molecular interactions and light regulations are referred to simply as interactions.

Sheer screening of interaction sets, where removal severely distorts clock rhythmicity,
would not be sufficient to identify a kernel structure. If this distortion is repaired by a readjust-
ment of kinetic parameters, the removed interactions are not likely to be essential in their net-
work-topological properties; rather, their knockout effect is simply dependent on specific
parameters. Therefore, the knockout effect in distorting clock rhythms should be double-
checked with re-optimized parameters. If the knockout effect remains severe even after param-
eter re-optimization, the removed interactions can now be said to be essential in their network
topological properties. Ideally, our kernel discovery procedure would be to search through all
possible combinations of interactions, and examine the effects when the interactions in each

Genetic Circuitry of the Arabidopsis Circadian System

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004748 February 1, 2016 5 / 21



combination are removed, followed by parameter re-optimization to best fit the WT expression
profile of every clock component across different light conditions. This strategy, although
ideal, is extremely computationally demanding and therefore impractical. Instead, we devised a
heuristic approach that consists of the following steps (Materials and Methods, and S1 Text):
first, we measure the knockout effect of each interaction on the WT expression patterns under
the five different light conditions. Then, we prune those interactions from weak to strong
knockout effects until discovering any single clock component that fails to produce rhythms
similar to WT. Next, among the remaining interactions, we choose those with knockout effects
below a certain threshold. Each chosen interaction is deleted, and parameter re-optimization
follows to fit the WT expression data. If parameter re-optimization recovers the WT rhythms
for every clock component, this interaction is completely removed from the system. The imple-
mentation of these steps, complemented by an additional step to allow multiple solutions,
leaves a fraction of the interactions, which yet connect all the molecular components in the sys-
tem. This interaction set corresponds to our estimated kernel structure. For a detailed descrip-
tion of the kernel identification, see S1 Text.

Using MF2015, we found that the kernel of the plant circadian system consists of 22 tran-
scriptional and post-translational interactions and light regulations, which seamlessly involve all
molecular clock components in the system. In other words, at least half of the 40 interactions/
regulations in the whole system are required to form theWT rhythms across the five different
light conditions. Notably, the kernel structure harbors four negative feedback loops, termed
loops I to IV (Fig 2; compare with Fig 1A). In the kernel, the only negative feedback other than
these four loops is the autoinhibition of the EVENING COMPLEX (EC) genes through the EC,
and this effect remains localized to the EC formation and thus not our focus here. Loops I to IV
host at least one of the PSEUDO RESPONSE REGULATOR (PRR) genes each, and are inter-
locked by having LHY/CCA1 in common: loop I includes LHY/CCA1, PRR5, and TOC1 (Fig
2A). Loop II has LHY/CCA1, PRR7, and TOC1 (Fig 2B). Loop III involves LHY/CCA1, PRR7,
and the EC, along with the EC subcomponents (Fig 2C). Lastly, loop IV includes LHY/CCA1,
and PRR9 regulated by light (Fig 2D). Accordingly, TOC1 interconnects loops I and II, while
PRR7 interconnects loops II and III. Each of loops I, II, and III includes a cyclic structure of

Fig 2. Four major negative feedback loops in the kernel. (A) Loop I. (B) Loop II. (C) Loop III. For visual
clarity, the detailed EC subcomponents are omitted (available in Fig 1A). (D) Loop IV. In (A–D), the same
symbols were used as in Fig 1A.

doi:10.1371/journal.pcbi.1004748.g002
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triple inhibitions, known as a repressilator (Fig 2A–2C) [32]. A repressilator structure can
exhibit sustained oscillation under proper conditions. Of note, loop I has one more interaction
added to this repressilator structure, i.e., the inhibition of PRR5 by LHY/CCA1. The direction of
this inhibitory interaction is exactly opposite to the repressilator’s overall cyclic direction, and
thus is supposed to be antagonistic to the oscillatory capability of the loop (see below). Among
the four loops, loop IV in Fig 2D is the simplest one, having only a pair of single positive and
negative connections between two morning-expressed components, coupled with light.

To our knowledge, loops I and II have not been previously described, whereas loop III reca-
pitulates a repressilator structure previously reported [33]. Loop IV has been previously termed
the morning loop [9, 34, 35]. Therefore, our unbiased and systematic approach to kernel identi-
fication does not only recover previously characterized gene circuits (loops III and IV), but also
suggests new circuits (loops I and II) that may be crucial for Arabidopsis clock function.

Dynamical capability of the kernel-embedded feedback loops
Owing to the above kernel identification, the complex plant clock circuitry has been greatly
simplified, converging on the four negative feedback loops that structure the kernel. We next
considered an in-depth mechanistic analysis of the individual feedback loops as well as their
interrelations.

An immediate question is, among the four negative feedback loops, which of the loops criti-
cally support the generation of autonomousmolecular oscillations observed in WT. By defini-
tion, every element in the kernel must play a significant role in shaping the oscillatory profiles.
However, it does not mean that their contributions to the creation of the autonomous oscilla-
tion are necessarily equivalent to each other. Moreover, the current kernel structure is a full
repertoire of interactions necessary for all five different light conditions mentioned above.
Clearly, only separate simulations of constant, free running conditions will answer this ques-
tion for the endogenous, autonomous oscillation.

To test the capability of individual loops to generate autonomous oscillations close to WT,
we simulated LL using a computational model of each isolated loop, with kinetic parameters
re-optimized for the WT expression data in LL (S1 Text). Given the WT expression profiles,
this parameter re-optimization was expected to reveal the maximum oscillatory capacity of
each loop structure regardless of its specific MF2015 parameters. It infers a natural bound of
the loop’s contribution to the WT endogenous oscillations − a natural bound imposed by the
loop’s structure itself rather than by specific parameters. From this simulation, we found that
loops I, II, and III in LL were clearly able to generate sustained oscillations similar to WT (Fig
3A and 3B), whereas loop IV failed (Fig 3C). In fact, if equipped with other parameters, oscilla-
tions can be maintained even by loop IV, but at the expense of its specific oscillatory patterns,
in far deviation from the experimental profiles. Once loop IV undergoes a parameter adjust-
ment to fit the experimental profiles, it loses sustained oscillation.

The endogenous oscillatory capability of individual loops I to III raises an intriguing possi-
bility: can the plant circadian rhythm be robust to the breakage of some loop(s), if buffered by
the other loop(s’) activity? To explicitly address this question, we inactivated loop I in MF2015
by blocking the inhibition of LHY/CCA1 by PRR5. Likewise, we inactivated both loops II and
III simultaneously, by blocking the inhibition of LHY/CCA1 by PRR7. The MF2015 simulation
of LL demonstrates that either of these two “mutations” largely restores the circadian gene
expression profiles observed in WT, if accompanied by parameter re-optimization (Fig 3D). As
can be predicted, the simultaneous blockage of both PRR5 and PRR7’s inhibitory actions on
LHY/CCA1 in MF2015 inactivated all three oscillatory loops I to III, and thus abolished the cir-
cadian rhythmicity itself of gene expression, even when accompanied by parameter re-
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optimization. This prediction is well supported by an experimental report that the Δprr5/prr7
double mutant in constant conditions exhibits almost arrhythmic mRNA levels of clock-con-
trolled genes, although each single mutant retains free running rhythmicity [36]. Moreover, the
above simulation forecasts that only the removal of the two inhibitory interactions, rather than
the entire double gene deletion, is necessary to cause severely abnormal clock gene expression.
In sum, we find that under certain circumstances loop I can buffer the loss of loops II and III,
and vice versa. Similarly, we computationally blocked PRR7 inhibition by TOC1, and that by
the EC, to inactivate loop II and loop III, respectively. Again, simulated mutant outcomes

Fig 3. Dynamical properties of the kernel. (A) Experimental LHYmRNA levels in LL (S1 Table). (B, C) LHY
mRNA levels from each simulation of loops I to III (B) and loop IV (C) in LL. The parameters of each loop were
re-optimized for WT expression data in LL. Black solid, black dotted, and gray solid lines in (B) are for loops I,
II, and III, respectively. (D) The same LHYmRNA levels in (A), along with simulated LHYmRNA levels when
LHY/CCA1 inhibition by PRR5 (black dotted), or by PRR7 (gray dotted), or by both PRR5 and PRR7 (gray
solid) was removed fromMF2015. The MF2015 simulation was performed in LL with re-optimized
parameters. (E) LHYmRNA levels from the Δprr9 and Δprr7 knockout mutants in LL (time averages
normalized with respect to WT data). Experimental values [29] and MF2015 simulation results are compared.
(F) MF2015-simulated PRR5mRNA levels in LL when PRR5 inhibition by LHY/CCA1 is increased (gray solid)
or decreased (gray dotted) by 20%, or is not adjusted (black solid). In (A–D, F), white and gray segments
indicate subjective days and nights, respectively.

doi:10.1371/journal.pcbi.1004748.g003
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suggest that loop II and loop III can buffer the loss of each other. Taken together, these results
indicate complementary relationships between loops I, II, and III in the management of endog-
enous circadian oscillations.

While loops I to III exhibit the fundamental capacity to generate endogenous oscillations
similar to WT, loop IV lacks such capability. We therefore conjectured that, among all the four
loops, loop IV is unlikely to exert the strongest regulation on the clock gene expression, if these
genes are regulated by the other loops as well. Indeed, the LHY/CCA1 inhibition by PRR9 (in
loop IV) was consistently weaker than either the LHY/CCA1 inhibition by PRR7 or that by
PRR5 (in loops I to III), throughout our simulation with various re-optimized parameters (S1
Text). Previous experimental data from LL have shown that a Δprr9 knockout has a smaller
effect on LHY and CCA1 expression than a Δprr7 knockout [29]. Fig 3E shows that LHY
mRNA levels, on average, increased by 60.5% and 16.7% in the Δprr7 and Δprr9mutants,
respectively, consistent with our computational prediction; a similar trend was also observed
for CCA1mRNA [29]. Despite the loop IV’s relatively weak role in free running rhythmicity, it
should be noted that, in our current kernel structure, loop IV is the only negative feedback loop
which senses external light stimulus (Fig 2D) and thereby contributes to the entrainment of the
kernel dynamics to light. We cannot entirely exclude the possibility that more loops may come
into play in light sensing of the kernel as our model becomes updated.

The efficacy of our simple kernel structure to interpret the clock dynamics is further exem-
plified by loop I. In addition to the basic repressilator structure, loop I holds a unique topologi-
cal feature of reciprocal inhibitory interactions between LHY/CCA1 and PRR5 (Fig 2A). In
particular, the inhibition of PRR5 by LHY/CCA1 is placed in opposition to the repressilator’s
overall cyclic direction, and thus may retard the loop’s inherent oscillation. In fact, this retarda-
tion effect was found to affect the oscillation of the whole clock circuitry, because of the struc-
tural interconnection between loop I and the whole. For example, the simulation of MF2015 in
LL demonstrates that a 20% increase in PRR5 inhibition by LHY/CCA1 slows down the circa-
dian rhythm, resulting in a 3.3 h lengthened period, whereas a 20% decrease in this inhibition
shortens a period by 2.9 h (Fig 3F). This experimentally-testable idea might be hard to conceive
without the simplicity of the loop-I structure.

In the kernel, LHY/CCA1 interlocks all loops I to IV, indicating its central role in the circa-
dian oscillator. The adverse effect of the Δlhy/cca1 double knockout on model performance is
supported by experimental evidence [37, 38]. From the entire kernel structure in Fig 1A, com-
pared with loops I to III, one can notice the presence of TOC1 inhibition by the EC. This inhibi-
tion is the only regulatory interaction with its regulated target (TOC1) in the loops, while the
interaction itself is not a part of major negative feedback loops in the kernel. This fact
prompted us to investigate whether TOC1 inhibition by the EC should be retained in our ker-
nel. The simulated removal of this inhibition from the kernel apparently distorted, e.g., the
LHYmRNA and TOC1 protein profiles, even when accompanied by parameter re-optimiza-
tion (S7 Fig). Therefore, we keep in the present kernel structure TOC1 inhibition by the EC.

In conclusion, our model is supported by current experimental data and indicates that the
plant circadian oscillator is an orchestrated interaction of mainly four negative feedback loops
in the kernel. In the face of the larger complexity of the full circuitry, our simplified loop struc-
tures may offer an efficient way to understand the plant clock mechanisms, as well as predict
circadian dynamics that has not yet been characterized.

Prevalent inhibitory interactions and their functional advantage
Among the four major negative feedback loops in the kernel, loops I to III have the repressila-
tor-like structures that are entirely composed of inhibitory interactions. Only loop IV includes
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an activating interaction. Regarding the central role of these feedback loops in circadian
rhythms, why does the plant circadian system favor such inhibitor-enriched loops for its func-
tion? Indeed, recent molecular studies of the plant circadian system have indicated that inhibi-
tory relationships outnumber activating regulations among all clock genes [39]. The full
circuitry considered in MF2015 is dominated by inhibitory interactions, and this feature
becomes even more prominent in its kernel structure, harboring only one activating interaction
(Fig 1A). The dominance of such inhibitory interactions distinguishes the plant clock from
other circadian systems, including those of mammals and fungi, which have comparable num-
bers of inhibitory and activating interactions [11–13].

This issue can begin to be addressed by considering that the kernel structure is designed for
the production of temporal gene expression patterns close to WT (Fig 4A). Therefore, we pre-
sumed that many inhibitory regulations, at least in the kernel, may generate specific waveforms
of the WT expression profiles. We do observe, in fact, that a number of Arabidopsis clock genes
often exhibit particular waveforms of mRNA and protein expression (Figs 1B–1G and S1–S5).
This waveform is characterized by an asymmetry between the acrophase and bathyphase, as
schematized in Fig 4B: the acrophase shows a relatively sharpened peak, whereas the bathy-
phase can be approximated as flat. Regarding the overall acuteness around a particular peak
phase, we here describe this pattern as cuspidate. For comparison, a common sinusoidal wave
is not cuspidate, having a symmetrically rounded shape to the acrophase and bathyphase.

To examine the possible relevance of inhibitory regulation in cuspidate waveforms, we cre-
ated a mathematical system consisting of a single transcription factor, either an inhibitor or
activator, and its own target gene (Fig 4A and Materials and Methods). We formulated the
model equations similar to MF2015. On the assumption that the target gene shows a near cus-
pidate ~24h-period expression pattern of proteins (Fig 4B), we conversely asked what specific
abundance profile the transcription factor (inhibitor or activator) should have for the produc-
tion of that target gene profile. Our simulation results highlight a clear difference between
inhibitor and activator cases, when the target gene exhibits a cuspidate pattern (S1 Text). The
inhibitor or activator tends to have a large or small phase difference, respectively, of ~8 to 12
hours or ≲4 hours with the target gene in their protein profiles, as shown in Figs 4C–4E and
S8. In other words, an inhibitor (activator) and its target have a roughly antiphase-like
(inphase-like) relationship. Otherwise, the target gene’s protein expression waveform will not
be cuspidate but will exhibit a more smoothened profile (S9 Fig). These facts were initially
observed in our simulation with simplified, yet realistic, protein expression profiles, such as
that in Fig 4B. Even without such simplification, adopting empirical protein expression pat-
terns for our simulation consistently supported the above results (S10 Fig). We also note that
the cuspidate waveforms in the plant clock do not simply result from the sampling intervals of
experimental data, as different interpolation methods for these data points (and the absence of
such interpolation itself) gave similar profiles.

Provided that a cuspidate profile confers accurate timing of biological events around the
peak phase, what is the implication of our simulation results involving the cuspidate waveform
and inhibitory or activating regulation? Inhibition-induced large phase differences between the
genes correspond to the global coordination of multiple clock events, distant from each other
in their peak times. Conversely, activation-induced small phase differences between the genes
may coordinate only the clock events nearby in time. It is possible that activating regulation
might also induce larger phase differences between the genes, but would not generate cuspidate
profiles in this case (S9 Fig). This fact explains why the kernel does not keep the activating reg-
ulations by REVEILLE 8 (RVE8), whose target genes have large phase differences with RVE8,
yet exhibit cuspidate profiles (hence, those profiles are presumably more attributed to other
regulators of these target genes). To summarize, inhibitory interactions in the plant clock seem
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to support the temporal coordination of distant clock events peaked at very specific times.
However, it should be stressed that inhibitory interactions do not necessarily result in cuspidate
waveforms in all cases. Rather, obtaining such waveform profiles requires inhibitory interac-
tions when involving genes with large phase differences in their peak expression. Employing
the terms in propositional logic, the presence of both cuspidate waveforms and large phase dif-
ferences is close to a sufficient condition to implicate inhibitory regulation as their cause, but is
not the necessary condition. We also note that our current definition of a cuspidate waveform
is largely qualitative, based on a particular type of asymmetry between the acrophase and

Fig 4. Effect of an inhibitor or activator on the generation of cuspidate profiles. (A) A transcription factor
(TF; inhibitor or activator) regulates gene expression and thereby affects the protein production. (B)
Schematic diagram of a cuspidate waveform. (C, D) Sinusoidal profile (dotted) of an inhibitor (C) or activator
(D), which regulates the target gene to produce its proteins (solid). Given the inhibitor or activator levels, the
target gene transcription, translation, and product degradation were simulated with the parameters that best
fit the desired, cuspidate expression profile in (B). (E) For a given phase difference between a transcription
factor (inhibitor or activator) and its target gene’s protein, plotted is the resulting deviation of the target gene’s
protein profile from the cuspidate profile. The horizontal axis represents a peak time difference between each
transcription factor’s profile and the target gene’s desired protein profile in (B): a sign is negative if the former
profile has more advanced peak time than the latter, otherwise it is positive. The vertical axis represents a
root mean square error (RMSE) between the target gene’s actual and desired protein profiles when the target
gene expression was simulated with the parameters that best fit the cuspidate protein profile in (B). The
smaller the RMSE, the more cuspidate profile the target gene has. The inhibitor case is shown in blue, and
the activator case is shown in gray. Arrows in blue and gray correspond to the conditions for (C) and (D),
respectively. Sinusoidal waves were used for the transcription factor profiles as illustrated in (C, D).
Qualitatively similar results are reproduced by other various waveforms (S8 Fig). For an alternative definition
of peak time differences along the horizontal axis, use of the peak times of the target gene’s actual, rather
than desired, profiles did not essentially change the peak time differences.

doi:10.1371/journal.pcbi.1004748.g004
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bathyphase. Mathematically more rigorous characterization, along with the inclusion of other
possible waveforms in our framework, deserves investigation.

Within the MF2015 kernel structure, a cuspidate-waveform gene which has multiple inhibi-
tors tends to have larger phase differences with its strongest inhibitor, consistent with our
framework. For example, the transcription of a cuspidate-waveform gene, PRR5, is repressed
by both LHY/CCA1 and TOC1. There is a large phase difference between PRR5 and LHY/
CCA1 proteins, ~8 h compared to the ~4 h difference between PRR5 and TOC1 proteins in a
12L:12D cycle. Supportively, MF2015 suggests that LHY/CCA1 inhibits PRR5 expression ~17
times more than TOC1 (S1 Text). This fact indicates that the primary role of the PRR5 inhibi-
tion by LHY/CCA1 is to ensure the PRR5’s cuspidate waveform. Lowering the relative contri-
bution of this inhibition (i.e., alleviating the repression by LHY/CCA1 while strengthening that
by TOC1) reduces the peak-to-trough change in the PRR5 expression over time (performed
under 12L:12D cycles to control for the periods of different expression profiles; see S11 Fig).
Our analysis accounts well for why PRR5 inhibition by LHY/CCA1 is present in the clock,
although it is antagonistic to the system’s overall oscillatory capability as noted previously in
relation to loop I. However, we recognize that it may be hard to treat separately multiple tran-
scription factors regulating the same gene when considering their regulatory effects. Even in
this case, we suggest that the combined activity profile of those transcription factors, which can
be mapped into a mathematically equivalent single transcription factor’s profile, should follow
our aforementioned condition when the target gene displays a cuspidate waveform.

Generally, it is known that dynamical systems with activating interactions alone do not eas-
ily generate oscillations; inhibitory interactions are also necessary. Specifically, an odd number
of inhibitions need to be arranged along a feedback loop, if the loop is not too long [40–42]. In
addition to this basal level of inhibitory interactions required, an abundance of cuspidate-wave-
form genes in the plant oscillator tips the balance in favor of a greater number of inhibitory
interactions, resulting in their dominance, according to our hypothesis [cuspidate protein pro-
files include LHY, PRR5, TOC1, EARLY FLOWERING 4 (ELF4), LUX ARRHYTHMO (LUX),
and GIGANTEA (GI) profiles in S1–S5 Figs, and comprise at least half of the available protein
profiles. Among the corresponding genes, light-responsive genes are only LHY and GI (Fig
1A), which yet maintain cuspidate expression patterns in LL and DD (S4 and S5 Figs). It indi-
cates that these patterns are largely independent of light stimulation]. For example, in loop I of
the kernel, we note that both morning (LHY/CCA1) and evening (TOC1) genes show cuspidate
profiles with a large phase difference between them, and are thus likely to require their own
inhibitors. The simplest solution would be to have the two genes repressed by each other, but
this solution, with an even number of inhibitions, would not generate oscillations. Hence, one
more inhibitor, PRR5, is necessary and the subsequent introduction of the double negative con-
nection from TOC1 to LHY/CCA1 through PRR5, combined with the TOC1 inhibition by
LHY/CCA1, completes the repressilator structure. In addition, PRR5 should maintain a large
phase difference with LHY/CCA1, because of the LHY/CCA1’s cuspidate profile. Conse-
quently, PRR5 should show a small phase difference with TOC1. Because of this small phase
difference, the inhibition of PRR5 by TOC1 cannot alone produce the empirically-observed
cuspidate PRR5 profile. Therefore, PRR5 requires an additional inhibitor with a large phase dif-
ference, LHY/CCA1. The resulting inhibition of PRR5 by LHY/CCA1 now completes the full
loop-I circuit. Through this analysis of loop I, the underlying mechanism of oscillatory dynam-
ics with cuspidate waveforms was found to explain not only the prevalence of inhibitory inter-
actions, but also the very specific, fine-resolution structure of loop I, revealing the loop’s
organizing principle.

Motivated by the intriguing connection between the shape of the waveforms and inhibitory
regulation in plants, we asked if such relationships are observed in other circadian systems.
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Notably, a prevalence of inhibitory interactions per se is not conserved in other organisms: the
core circadian systems of other organisms are usually simpler than those of plants, and involve
feedback loops with comparable numbers of positive and negative interactions [11–13]. Those
interactions are not necessarily transcriptional, and thus, caution should be taken when they
are analyzed in our waveform-shape framework, which has been derived from the mathemati-
cal models of transcriptional regulation. Despite this caveat, in a preliminary analysis below,
we applied our framework to both transcriptional and non-transcriptional interactions, consid-
ering their possible mathematical similarity at the coarse-grained level.

In the core circadian clock of the fungus Neurospora crassa, WHITE COLLAR-1, 2 (WC-1
andWC-2) proteins form aWHITE COLLAR COMPLEX (WCC) that activates the expression
of frequency (frq) gene. The expressed FRQ protein subsequently blocks the WCC activity by
the clearance of WC-1 [12]. In this negative feedback loop, WC-1 is suppressed by FRQ, which
is upregulated by WC-1. From the experimental data [43], we observed that WC-1 exhibits a
cuspidate profile, when having a large phase difference (~11 hours in DD) with FRQ. At the
same time, FRQ shows a smooth sinusoidal profile. Despite multiple complicating factors in a
rigorous analysis of species other than plants, this preliminary result from the Neurospora data
is supportive of a relation between waveform-shape, phase differences, and interaction types
(activation or inhibition), which is suggested by our waveform-specifying framework.

Discussion
In this study, we explored the underlying mechanism of the plant circadian system through a
systematic in silico analysis of the clock gene circuitry, revealing its kernel architecture to be an
interaction between four negative feedback loops dominated by inhibitory regulations (Figs 1A
and 2). The kernel encompasses about half of the currently known interactions in the system,
and they must be present to generate molecular rhythms close to WT. The other interactions
not belonging to the kernel may play a role to improve the system’s robustness to diverse dis-
turbances (S1 Text), or may be required to formWT rhythms but under light conditions that
have not been considered here due to limited data availability. A follow-up analysis is war-
ranted for a more holistic understanding of plant circadian dynamics. Overall, our study illus-
trates the remarkable utility of mechanistic simulations, which can complement experimental
approaches, in deciphering important biological processes [44–46] such as circadian rhythms.

We suggested that a preponderance of inhibitory interactions at the core of the plant clock
reflects abundant cuspidate profiles of clock genes, and facilitates the global coordination of
temporally-distant clock events which are sharply peaked at very specific times. We envisage
that this type of cuspidate waveforms helps confer high-resolution timing to many subsequent
downstream tasks in plant physiology and development [35, 47]. Whether a certain class of
waveforms other than cuspidate shapes will also benefit from inhibitory interactions will be an
interesting issue to address.

Besides the effect on waveforms, alternative hypotheses might be possible to explain the
prevalence of the inhibitory interactions, e.g., in the context of stochasticity in molecular
events, or the system’s response time [48–50]. Yet, we are not aware of any explicit link or evi-
dence to connect those mechanisms to dominant inhibitory interactions in the plant clock.
Nevertheless, the possible relevance of those mechanisms deserves active investigation, towards
a comprehensive picture of the plant circadian system viewed from various angles.

The four negative feedback loops within the kernel present an array of interesting predic-
tions, which are experimentally testable. The Δprr5/prr7 double mutation severely impairs the
free running rhythmicity of clock-controlled gene expression [36]. According to our prior dis-
cussion of the loops-I-to-III inactivation, only the removal of both PRR5 and PRR7’s inhibitory
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actions on LHY and CCA1, rather than entire deletions of PRR5 and PRR7, should suffice to
phenocopy the double mutant, or at least, to considerably alter clock gene expression patterns.
Additionally, from the reciprocal inhibitions within the unique loop-I structure, we suggested
that an increase of the PRR5 inhibition by LHY/CCA1 would lengthen the free running period
and that the opposite perturbation would shorten the period (S1 Text). Furthermore, in the
context of inhibitory interactions and cuspidate waveforms, we proposed that decreasing the
PRR5 inhibition by LHY/CCA1 under 12L:12D cycles, balanced by strengthening the PRR5
inhibition by TOC1, would reduce the peak-to-trough change in the PRR5 expression profile
(S1 Text). Experimental validation of all these predictions would require manipulation of spe-
cific interactions between genes, rather than the alteration or deletion of the functionality of
the entire gene itself. This could be achieved, for example, by modifying key cis-regulatory ele-
ments at the relevant promoter sites. Any discrepancy between experimental and computa-
tional results might be useful for our model improvement. Further consideration of protein
segregation into different cellular compartments [27, 28], stochastic fluctuation in mRNA and
protein concentrations [49, 51, 52], stimulus by temperature changes and endogenous sugar
supply [53, 54], and tissue-specific clock regulation [55] offers additional avenues towards
more complete mathematical models. Various methods to infer biological networks would also
contribute to this direction [56–59]. Finally, our systematic approach advances the goal for a
fundamental design principle of biological clockwork [53, 60–62], as well as for an optimal cir-
cuitry design in synthetic biology [32, 63, 64].

Materials and Methods

Mathematical modeling of the plant circadian system
We constructed our mathematical model (MF2015) of the core circadian clock in Arabidopsis
by applying system identification techniques [65]. Transcriptional, post-translational, and light
regulations of molecular components were considered for model construction, primarily based
on experimentally verified knowledge. The model consists of 24 ODEs employing Michaelis-
Menten kinetics. Each ODE describes the concentration rate change of the corresponding
mRNA, protein, or protein complex: typically, for mRNAs, ċm(t) = f1[{c

TF(t)}, {h}, {θ}]–g1[c
m(t),

{θ}], and for proteins, ċp(t) = f2[c
m(t), {θ}]–g2[c

p(t), {θ}]. Here, cm (cp) denotes mRNA (protein)
concentration, cTF denotes the transcription factor concentration, t is time, the function f1 (f2)
describes transcriptional (translational) mechanisms, the function g1 (g2) describes mRNA (pro-
tein) degradation, θ’s are model parameters, h’s are the Hill coefficients, and {. . .} includes single
or multiple elements. If experimental evidence indicates that transcription factors form a dimer,
we set the Hill coefficient to be 2, otherwise, it is set to 1 [33, 66]. Transcriptional regulation in f1
is modeled by θ1(c

TF)h/[θ2
h+(cTF)h] for activation or θ1/[θ2

h+(cTF)h] for inhibition. The regula-
tory effect of multiple activators (inhibitors) is modeled by the summation (product) of individ-
ual regulatory effects, with some exceptions such as PRR proteins (S1 Text) [29, 67]. We model
the binding of ZTL and GI proteins by adapting the alternative Michaelis-Menten relation in
[68]. For the model parameter estimation, we collected experimental time course data of mRNA
and protein levels inWT Arabidopsis from publicly available sources listed in S1 Table. Because
the absolute mRNA and protein levels were difficult to ascertain from their sources, we normal-
ized the mRNA and protein levels into dimensionless values (�1) with arbitrary scales (S1
Text). We compared the simulation results with experimental data and applied the prediction
error method with a quadratic criterion [65] to estimate the parameters; minimization of a
mean squared error between the simulated and experimental data gave rise to the estimated
parameters. Before the minimization, the initial parameters were chosen using a linear least
square method described in [26]. The minimization was performed using the MATLAB
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function fminsearch. In cases where constraints need to be imposed on the parameters to avoid
over-fitting or biologically unrealistic solutions, the MATLAB function fmincon was used. Full
details of the model construction, equations, and parameters are presented in S1 Text.

Identification of the kernel structure
In this study, a kernel is defined as a collection of spanning subgraphs that satisfy the following
condition: each spanning subgraph contains all molecular components in the system and a mini-
mal subset of their regulatory interactions (including light regulation), which are necessary to
generate the temporal trajectory of molecular concentrations close to those of WT. Identification
of the exact kernel demands very extensive computational resources; therefore, we used a heuris-
tic approach to estimate the kernel structure. In this procedure, both molecular interactions and
light regulations are referred to simply as interactions. First, we simulated the knockout effect of
each interaction onWT expression patterns under five different light conditions. The knockout
effect was quantified for each molecular component and light condition, by a root mean square
error (RMSE) between the simulated mutant andWT expression profiles of the component in
that light condition (S1 Text). After deletion of a given interaction, we identified the largest
value (RMSEmax) among RMSEs for all components and light conditions except for GI and ZTL
proteins in LL (RMSEGI,LL and RMSEZTL,LL). Based on our manual inspection, the model out-
puts appear to remain robust if they simultaneously satisfy RMSEmax� 0.2, RMSEGI,LL� 0.5,
and RMSEZTL,LL� 0.5 (because GI and ZTL levels are substantially elevated in LL, they allow
relatively large RMSEs). FromMF2015, we pruned all interactions with small knockout effects
(RMSEmax� 0.2, RMSEGI,LL� 0.5, and RMSEZTL,LL� 0.5). The simulated profiles with the only
remaining interactions after the pruning still showed RMSEmax� 0.2, RMSEGI,LL� 0.5, and
RMSEZTL,LL� 0.5. Among these remaining interactions, we focused on the interactions that sat-
isfy RMSEmax� 0.3, RMSEGI,LL� 0.8, and RMSEZTL,LL� 0.8. We found that some of these
interactions can be additionally removed from the system because the simultaneous deletion of
those interactions eventually resulted in RMSEmax� 0.2, RMSEGI,LL� 0.5, and RMSEZTL,LL�
0.5, when parameter re-optimization was performed (S1 Text). We did not attempt to delete
interactions with larger RMSEmax, RMSEGI,LL, or RMSEZTL,LL (RMSEmax> 0.3, RMSEGI,LL>
0.8, or RMSEZTL,LL> 0.8) with the original parameters, because these RMSEs were not usually
reduced to RMSEmax� 0.2, RMSEGI,LL� 0.5, and RMSEZTL,LL� 0.5 after parameter re-optimi-
zation. The exception to these procedures was the PRR7 inhibition by TOC1. This interaction
was removed initially because of small RMSEs caused by the deletion. In fact, the small RMSEs
resulted from the PRR7 inhibition by the EC, which buffered the loss of the inhibition by TOC1.
The PRR7 inhibition by TOC1 and that by the EC are almost equivalent to each other, because
of the same target gene (PRR7) and regulation type (inhibition), and similar TOC1 and EC pro-
files in MF2015. Indeed, the removal of the PRR7 inhibition by the EC fromMF2015 was com-
pensated for by the inhibition by TOC1 when accompanied by parameter re-optimization.
Because of the equivalence of these two inhibitory interactions, we reinstated the PRR7 inhibi-
tion by TOC1 in the kernel structure. No other interaction was reinstated due to a lack of such
equivalence. The simulation of the resulting kernel structure with re-optimized parameters pro-
duces the WT expression profiles that capture the overall experimental and MF2015-simulated
profiles (S1–S5 Figs). Further details of the kernel identification are presented in S1 Text.

Modeling the relationship between cuspidate profiles and regulatory
interactions
To investigate how transcriptional regulation affects the formation of cuspidate profiles, we con-
sidered a mathematical system containing a single transcription factor (either an inhibitor or
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activator) and its own target gene (Fig 4A). The ODEs for this system are given by _xmðtÞ ¼
g½xTFðtÞ; h; fag� � lmxmðtÞ and _xpðtÞ ¼ xmðtÞ � lpxpðtÞ, where xTF denotes the transcription fac-
tor concentration, xm (xp) denotes the target gene’s mRNA (protein) concentration, t is time, g =
xTF

h/(α1+α2xTF
h) + α3 if the transcription factor is an activator, g = 1/(α1+α2xTF

h) if the transcrip-
tion factor is an inhibitor, h is the Hill coefficient, and α’s and λ’s are constants. In the equation
for _xpðtÞ, without loss of generality, we omitted the coefficient for a protein synthesis rate per

mRNA in front of xm(t). Therefore, technically, xm(t) should be interpreted as the protein synthe-
sis rate, rather than as the mRNA concentration itself. Although the equation for _xmðtÞ was for-
mulated for the case of a single transcription factor, it generally works for multiple transcription
factors as well, because the combined activity profile of these transcription factors (represented by
g) can be mapped into a mathematically equivalent single transcription factor’s profile. To gener-
ate xp(t) having a cuspidate waveform schematized in Fig 4B, we considered various forms of
xTF(t) and activating and inhibitory regulations. Given the form of xTF(t), we computed xp(t) with
the parameters that best fit xp(t) into a cuspidate profile in Fig 4B. The resulting xp(t) was com-
pared to Fig 4B, and their similarity was evaluated. Further details are presented in S1 Text.

Supporting Information
S1 Text. Extended methods and results.
(PDF)

S1 Fig. Experimental mRNA/protein levels in 12L:12D cycles (black solid), and simulation
data fromMF2015 (gray solid) and the kernel (gray dotted).White and black segments cor-
respond to light and dark intervals, respectively. Protein P, EC, and COP1 do not have actual
experimental profiles, but are represented by substitute values (see S1 Text).
(TIF)

S2 Fig. Experimental mRNA/protein levels in short days, and simulation data from
MF2015 and the kernel. Plotted according to S1 Fig.
(TIF)

S3 Fig. Experimental mRNA/protein levels in long days, and simulation data fromMF2015
and the kernel. Plotted according to S1 Fig.
(TIF)

S4 Fig. Experimental mRNA/protein levels in LL, and simulation data fromMF2015 and
the kernel. Plotted according to S1 Fig. White and gray segments indicate subjective days and
nights, respectively.
(TIF)

S5 Fig. Experimental mRNA/protein levels in DD, and simulation data fromMF2015 and
the kernel. Plotted according to S1 Fig. Gray and black segments indicate subjective days and
nights, respectively.
(TIF)

S6 Fig. Simulated ZTL levels fromMF2015 in LL (upper panel) and DD (bottom panel).
Initially entrained over four 12L:12D cycles and released into either LL or DD.
(TIF)

S7 Fig. Simulation of the kernel in LL with (black) and without (gray) the inhibition of
TOC1 by the EC. The latter was accompanied by parameter re-optimization. Initially entrained
over four 12L:12D cycles and released into LL.
(TIF)
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S8 Fig. Effect of an inhibitor or activator on the generation of cuspidate profiles. Simulation
details are presented in S1 Text. The left and center panels show diverse profiles of an inhibitor
(dotted in the left panel) or activator (dotted in the center panel) that regulates the target gene
to produce its proteins (solid). Given the inhibitor or activator levels, the target gene transcrip-
tion, translation, and product degradation were simulated with the parameters that best fit the
desired, cuspidate profile in Fig 4B. For a given phase difference between a transcription factor
(inhibitor or activator) and its target gene’s protein, the right panels plot the inevitable devia-
tion of the target gene’s protein profile from the cuspidate profile. The horizontal axis repre-
sents the phase difference between each transcription factor’s profile and the target gene’s
desired protein profile in Fig 4B; a sign is negative if the former profile has a more advanced
phase than the latter, and otherwise, it is positive. The vertical axis represents the root mean
square error (RMSE) between the target gene’s actual and desired protein profiles. The target
gene expression was simulated with the parameters that best fit the cuspidate profile in Fig 4B:
the smaller the RMSE, the more cuspidate profile the target gene has. An inhibitor case is
shown in blue, and an activator case is shown in gray. Arrows in blue and gray correspond to
the conditions for the left and center panels, respectively.
(TIF)

S9 Fig. Effect of an inhibitor (A; dotted) or activator (B; dotted), when its phase difference
with the target gene’s protein (A and B; solid) is not optimal for the generation of cuspidate
profiles. The resulting RMSEs are large as arrowed in (C). Plotted according to S8A–S8C Fig.
(TIF)

S10 Fig. Plots similar to S8 Fig, but with experimental protein profiles instead of the artifi-
cial profiles in S8 Fig. (A–C) The PRR5 waveform was used for the transcription factor’s pro-
file, and the LHY waveform was used for the desired cuspidate profile of the target gene’s
protein. (D–F) The LHY waveform was used for the transcription factor’s profile, and the
PRR5 waveform was used for the desired cuspidate profile of the target gene’s protein. For (A–
F), we adopted the LHY and PRR5 experimental profiles in 12L:12D cycles (a 12L:12D condi-
tion was the only light condition with both available LHY and PRR5 experimental profiles).
(TIF)

S11 Fig. PRR5 levels fromMF2015 in 12L:12D cycles when the PRR5 inhibition by LHY/
CCA1 was reduced by 20% (red solid) or 30% (blue solid), or was not adjusted (black dot-
ted). In parallel, the PRR5 inhibition by TOC1 was increased to control for the peak height of
PRR5 levels. Simulation details are presented in S1 Text.
(TIF)

S1 Table. Sources of mRNA and protein expression data.
(PDF)

S2 Table. Estimated parameters of the MF2015 model.
(PDF)

S3 Table. Free running periods of experimental and simulated mutants under constant
conditions.
(PDF)

S4 Table. Estimated parameters of the kernel structure.
(PDF)

S5 Table. Re-optimized parameters of loops I to IV.
(PDF)
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S1 Dataset. MF2015 and the kernel in MATLAB format.
(ZIP)
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