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Abstract
Specific flavonoid-rich foods/beverages are reported to exert positive effects on vascular function; however, data relating to effects in the
postprandial state are limited. The present study investigated the postprandial, time-dependent (0–7 h) impact of citrus flavanone intake on
vascular function. An acute, randomised, controlled, double-masked, cross-over intervention study was conducted by including middle-aged
healthy men (30–65 years, n 28) to assess the impact of flavanone intake (orange juice: 128·9mg; flavanone-rich orange juice: 272·1mg;
homogenised whole orange: 452·8mg; isoenergetic control: 0mg flavanones) on postprandial (double meal delivering a total of 81 g of fat)
endothelial function. Endothelial function was assessed by flow-mediated dilatation (FMD) of the brachial artery at 0, 2, 5 and 7 h.
Plasma levels of naringenin/hesperetin metabolites (sulphates and glucuronides) and nitric oxide species were also measured. All flavanone
interventions were effective at attenuating transient impairments in FMD induced by the double meal (7 h post intake; P< 0·05), but no dose–
response effects were observed. The effects on FMD coincided with the peak of naringenin/hesperetin metabolites in circulation (7 h) and
sustained levels of plasma nitrite. In summary, citrus flavanones are effective at counteracting the negative impact of a sequential double meal
on human vascular function, potentially through the actions of flavanone metabolites on nitric oxide.
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A transient impairment in vascular function is known to occur in
the postprandial or fed state(1–4) and is widely believed to impact
on endothelial dysfunction and lifetime CVD risk(5–8). In particular,
endothelial function has been shown to be transiently impaired
(2–8h) following ingestion of moderate- to high-fat meals (36–80g
of fat)(9–13), potentially driven by hyperglycaemia and hyper-
triglyceridaemia, which occurs during the postprandial state(1,14,15).
Observational data have highlighted that the consumption of diets
rich in flavonoids might lead to an improved cardiovascular
prognosis(16–20). Indeed, flavonoid-rich foods and beverages are
well reported to improve endothelial function acutely in humans
both at(21–24) short term(25–27) and long term(28–31). However, most

of the acute interventions were undertaken with volunteers in
the fasted state, which is considered less representative of the
free-living state, whereas data relating to flavonoid potential to
ameliorate acutely postprandial endothelial impairments are more
scarce(32–34).

Although the precise mechanisms by which absorbed
flavonoids and their circulating metabolites mediate beneficial
vascular effects remain unclear, there is evidence to suggest
that the modulation of circulating nitric oxide (NO) levels might
be involved(22–24,35–38). Notably, flavanol-rich cocoa has been
consistently shown to improve endothelium-dependent vasodila-
tion in healthy individuals(24,27,31,39,40), smokers(23,26), patients with
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coronary artery disease(41), hypertension(42) or diabetes(43).
In particular, acute vascular improvements have been shown
to coincide with the appearance of flavanol metabolites in
the circulation and with peak plasma NO levels(23,24,26,42).
Furthermore, flavanol-induced improvements in vascular function
are inhibited following co-administration of an endothelial nitric
oxide synthase (eNOS) inhibitor, suggesting a cause-and-effect
relationship between flavonoid intake, plasma NO levels and
vascular function(23,24). Although less studied, flavanones from
citrus fruits have also been shown to exert beneficial effects on
human vascular function(28,44). In particular, chronic interventions
with orange juice, or the pure flavanone hesperidin, resulted in a
decrease in blood pressure in overweight volunteers and acute
(6 h) improvements in micro-vascular reactivity(45). Short-term
intake of pure hesperidin also resulted in significant improvements
in endothelial function (as measured by brachial artery
flow-mediated dilation (FMD)) in volunteers with the metabolic
syndrome(46).
In the present study, we assessed the impact of an acute

intervention with increasing doses of orange flavanones
(sourced from differently processed orange beverages) on
human vascular function in the postprandial state. A sequential
double meal (breakfast and lunch, delivering a total of 81 g of
fat) was used to simulate the fed state and investigate the
postprandial time-dependent effects of flavanone intake on
endothelial function as measured by brachial artery FMD.

Methods

Ethics

The clinical trial was registered at clinicaltrials.gov (NCT01963416)
and conducted according to the Declaration of Helsinki following
Good Clinical Practice. It was approved for conduct by the
University of Reading’s Research Ethical Committee (ethics
reference no. 12/06). All volunteers signed an informed consent
form before commencing the study.

Intervention study volunteers

Volunteers were recruited from the University of Reading and
surrounding areas using the Hugh Sinclair Unit volunteers’
database, poster advertisements within the university and local
community via local websites (April–December 2012). In total,
fifty-nine, healthy, male volunteers, aged 30–65 years, were
assessed for screening and were selected according to the
following inclusion criteria: (1) fasting lipids in the upper half of
the normal range (TAG 0·8–3·2mmol/l and total cholesterol
6·0–8·0mmol/l) or BMI 25–32kg/m2; (2) non-smoker;
(3) non-diabetic (diagnosed or fasting glucose>7mmol/l) with no
endocrine disorders; (4) Hb and liver enzyme levels within the
normal range; (5) not having suffered a myocardial infarction/
stroke in the past 12 months; (6) not suffering from renal or bowel
diseases or having a history of cholestatic liver or pancreatitis;
(7) not on drug treatment for hyperlipidaemia, hypertension,
inflammation or hyper-coagulation; (8) not taking any fish oil,
fatty acid or vitamin and mineral supplements; (9) no history
of alcohol misuse; (10) not planning weight loss or on a

weight-reducing regimen; (11) not taken antibiotics during the
6 months before the study; and (12) not being able to consume
the study meals. Those selected for the study were instructed not
to alter their usual dietary or fluid intakes. Volunteers were asked
to refrain from the following for 24h before and during the study:
(1) consumption of polyphenol-rich foods including fruits
(including citrus fruits), vegetables, cocoa, chocolate, coffee, tea,
fruit juices and wine; (2) consumption of foods rich in nitrates,
including beetroot, spinach, lettuce, rocket, celery, parsley and
cabbage (defined as containing >50mg nitrates/100 g fresh
weight(47); (3) performing rigorous exercises; and (4) consuming
any alcoholic beverage. Volunteers were further asked to fast for
12h before each study visit, and during that period they were to
only consume the low-nitrate water provided. The same standard
meal, low in polyphenols and nitrates, was also provided for
dinner for the day before each visit. Written informed consent was
obtained from all eligible volunteers before their participation in
the study.

Study design

The study design was an acute, randomised, placebo-controlled,
double-masked, postprandial, cross-over study (Fig. 1). After the
initial screening visit to assess the eligibility of volunteers for
participation, volunteers were enrolled into the study (by
researchers C. R. and H. D.) and visited the Hugh Sinclair Unit at
the University of Reading on four separate occasions separated
by a 2-week period (June–December 2012). Volunteers were
asked to consume either a (a) control drink (C), (b) orange juice
beverage (OJ), (c) flavanone-rich orange juice (FROJ) or
(d) whole orange beverage (WO), together with a high-fat
breakfast (at baseline, t=0h), followed by a medium-fat lunch
(t=5·5h). H. D. assigned participants to the three-digit coded
drink interventions for their four visits according to a random
allocation sequence generated by a third party. Details on
flavonoid composition of the interventions, as well as micronutrient
and macronutrient compositions, can be found on Table 1.
Compliance to a 24-h low-polyphenol intake period and 12h of
fasting was monitored using a 24-h dietary recall conducted

Assessed for eligibility
(n 59)

Randomised double blind crossover (n 39)
Completed the first study arm (n 39)

Completed the study
(n 36)

Analysed
(n 28)

E
nr

ol
m

en
t

A
llo

ca
tio

n
F

ol
lo

w
-u

p
A

na
ly

si
s

Exclusion:
Not meeting inclusion criteria (n 12)
Declined to participate (n 8)

Discontinued the intervention:
Declined to participate (n 3)

Missing/non-analysable data (n 8)

Fig. 1. Consolidated Standards of Reporting Trials flow diagram for the
postprandial study.
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during each study visit. On each visit day, volunteers rested for
30min in a quiet, temperature-controlled room before they were
cannulated by a qualified research nurse; blood samples were
collected in the fasted state (0h) and at 2, 5, 7 and 24h after
consumption of each intervention drink. FMD of the brachial
artery was the primary outcome and it was measured at 0, 2, 5
and 7h after consumption. Secondary outcomes of the study
included systolic and diastolic blood pressures (0, 2, 5, 7h),
plasma flavanone levels (0, 2, 5, 7, 24h) and NO plasma levels
(0, 2, 5, 7h). After baseline measurements were obtained, the
high-fat breakfast (Table 2) was consumed with one of the clinical
products (C, OJ, FROJ, WO). Volunteers were asked to consume
the intervention drink and the high-fat meal within 10–15min. At
5·5h from baseline, a medium-fat lunch was provided (Table 2).
The last measurement of the day was performed at 7h, and
the volunteers were asked to return to the clinical unit the
following morning to provide a 24-h blood sample (fasted). From
7 to 24h, volunteers were asked to consume the free polyphenol
dinner provided by the research team and to continue on the
low-polyphenol diet, as well as refrain from exercise and
alcohol consumption. Blood samples for flavonoid analysis
were collected in EDTA-containing tubes (Greiner Bio-One Ltd),
immediately centrifuged for 15min at 4°C (4000 g), and the plasma
samples were spiked with formic acid (1·5% of a 50% water

solution) and ascorbic acid (5% of a 10mM solution) and stored
at −80°C. Blood samples for NO analysis were collected in heparin-
containing tubes, immediately (within 3min of collection)
centrifuged for 15min at 4°C (4000 g), and plasma was rapidly
collected, aliquoted and stored at −80°C to reduce inactivation of
nitroso species.

Sequential double meal

The sequential double-meal protocol was based on the
department’s extensive experience on postprandial studies,
which have been collated into the Dietary Studies: Reading
Unilever Postprandial Trials (DISRUPT) database(48).
It consisted of two meals: (1) high-fat breakfast (51 g fat; 14 g
protein; 64 g carbohydrates; 3251 kJ (777 kcal)) administered
with the intervention drink and (2) medium-fat lunch (30 g fat;
15 g protein; 80 g carbohydrates; 2628 kJ (628 kcal)) (Table 2)
administered 5·5 h after the intervention drink. The high-fat
meal consisted of two butter croissants (47 g of fat) and 5 g of
butter (4 g of fat). The medium-fat meal consisted of two slices
of white bread (2 g of fat), 42 g of Philadelphia soft cheese
(13 g of fat), a small bag of salted crisps (9 g of fat) and two
shortbread biscuits (6 g of fat) (Table 2). The volunteers were
asked to consume meals within 10–15min.

Flavanone-containing interventions

The preparations of the intervention drinks were carried out
according to good manufacturing practice as described in hazard
analysis and critical control points (HACCP). The control (C) drink
was matched for sugars found in the orange beverages, and 0·67%
citric acid and orange flavouring were added to enhance flavour.
The levels of total β-carotenes present in the flavanone treatments
were considered negligible (approximately 0·25mg; 2 relative
standard deviation of the measurement (2-RSD): 15%) with regard
to endothelial function effects, with a 15-mg dose (6 weeks
intervention, in combination with 150mg of vitamin C) resulting
in no significant changes on endothelial biomarkers(49) (Table 1).
The levels of folate present (approximately 60μg; 2-RSD: 16%)
can also be considered insignificant with regard to its potential to
impact on endothelial function; folate has been shown to drive
small improvements in endothelial function only in long-term
interventions (1–4 months) with at least 5000–10000μg/d of folate,
but not with lower doses in the ranges of 400–800μg/d(50).

Table 1. Compositional analysis of orange flavanone beverages and
control beverage used in the acute postprandial study
(2 Relative standard deviation of the measurement (2-RSD))

Intervention drink (240ml)

Compounds 2-RSD (%) Control OJ FROJ WO

Hesperidin (mg) 5·0 – 107·30 220·46 352·80
Narirutin (mg) 5·0 0·08 15·41 34·54 76·58
Others (mg)* 0·02 6·17 17·14 23·33
Total flavonoids (mg) 0·10 128·88 272·14 452·71
Fructose (g) 4·0 6·38 6·63 6·12 6·89
Glucose (g) 4·0 5·36 5·36 5·10 5·87
Sucrose (g) 2·0 10·20 10·97 11·99 11·48
Total sugars (g) 21·93 22·95 23·21 24·23
Fibre (total) (g) 12·0 – 0·66 5·36 6·30
Ascorbic acid (mg) 8·0 – 105·57 80·17 123·01
Folate (μg) 16·0 – 54·06 65·28 64·77
Total β-carotenes (mg) 15·0 – 0·13 0·26 0·35

Control, sugar matched control; OJ, Tropicana pure premium orange juice without
pulp; FROJ, flavanone-rich orange juice: Tropicana pure premium orange juice with
added orange pomace; WO, juice made from lightly blended fresh whole orange.

* Includes diosmin, didymin, nobiletin, tangeretin, sinensetin, Me4-scutellarein.

Table 2. Macronutrient composition of double-meal protocol

Macronutrient breakdown

Foods Fat (g) Protein (g) Carbohydrates (g) Energy (kJ) Energy (kcal)

High-fat breakfast Butter croissant (2×) 47 14 64 3096 740
Butter (5 g) 4 N/A N/A 159 37
Total 51 14 64 3251 777

Medium-fat lunch 2 slices of sliced white bread (108 g) 2 8·5 50 992 237
Philadelphia soft cheese (42 g) 13 3·6 N/A 548 131
Crisps (25 g) 9 1·5 13 556 133
Shortbread biscuit (22 g) 6 1·4 16 531 127
Total 30 15 80 2628 628
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The OJ used for the intervention was a commercial 100%
pure orange juice (Tropicana Pure Premium). The FROJ used was
Tropicana Pure Premium with added orange pomace. Pomace is
the edible part of a whole orange that is leftover during the
production of Tropicana pure premium orange juice and subjected
to particle size reduction. Orange pomace is rich in fibre (40:60 ratio
of soluble:insoluble) and contains small amounts of micronutrients
and a high proportion of the polyphenols found in whole orange.
The WO consisted of lightly blended whole table orange, without
the peel. Drinks displayed slightly different viscosities, but specific
measurements were not undertaken to assess this. All drinks were
stored in individual portions (255g/240ml) in aluminium canisters,
frozen at −20°C and labelled with a three-digit code to ensure
double-masking. Drinks were defrosted overnight in the fridge
(4°C) just before being used on each study day. Participants,
care-providers and all researchers assessing outcomes were blinded
until all the data were analysed. Quantification of flavanones
from orange beverages (OJ, FROJ and WO) was performed by
ultra-HPLC coupled with tandem MS (UHPLC-MS/MS). Sample
preparation was performed by diluting the juice sample with
dimethyl sulfoxide, the internal standard (IS) solution (10µg/ml
d4-dimethyl phthalate in 50% acetonitrile–water) and 50% acet-
onitrile–water, followed by vortexing and centrifugation (10min,
2500 rpm). The supernatant was filtered before analysis in an
Agilent 1290 UHPLC (Agilent Technologies), with a Zorbax Eclipse
Plus C18 column (1·8µm, 2·1×100mm; linear gradient starting at
100% (A) containing 2% acetonitrile in water with 0·1% formic acid,
to 90% (B) containing acetonitrile with 0·1% formic acid, followed
by 100% B). MS detection was performed in electrospray ionisation
(ESI)-positive ion mode on an Agilent 6530A Q-ToF MS with
MassHunter Software for instrument control and data processing.
Calibration standards were prepared from analytical grade materials
purchased from Indofine Chemical Chromadex or LKT Labora-
tories. The levels of flavanones in the test products are presented in
Table 1. In brief, the total levels of flavanones in (a) OJ was
128·88mg, (b) in FROJ 272·14mg and (c) in WO 452·80mg
(Table 1). The flavanone hesperidin was the main flavonoid present
in the intervention beverages, ranging from 107·30mg (OJ) to
352·80mg (WO).

Flow-mediated dilation

FMD of the brachial artery was the primary end point measure of
the study, and measurements were taken following standard
guidelines(51) using an ALT Ultrasound HDI5000 system (ATL
Ultrasound) in combination with a semi-automated computerised
analysis system (Brachial Analyzer; Medical Imaging Applications
LLC). In brief, after 15min of rest in the supine position in a
quiet air-conditioned room, the brachial artery was imaged
longitudinally at 2–10 cm proximal to the antecubital fossa. After
baseline images were recorded for 60 s, a blood pressure cuff
placed around the forearm was inflated to 220mmHg. After 5min
of occlusion, the pressure was rapidly released to allow reactive
hyperaemia, with image collection continuing for 5min after
release. A single researcher, who was blinded to the measurement
details, analysed all image files, and peak diameter was defined as
the largest diameter obtained after the occlusion was released.
FMD response was calculated as relative diastolic diameter change

from baseline as compared with peak diastolic diameter. A total of
twenty-eight volunteers were analysed for their FMD response.
Data from eight volunteers were not analysed or were excluded
because of the following reasons: (i) measurement of FMD from
the non-dominant arm (rather than dominant) due to limitations
with blood collection (n 2); (ii) absence of FMD response (n 3);
and (iii) technical problems during recording of ultrasound FMD
measurements rendered non-analysable data (n 3).

Blood pressure

Systolic and diastolic blood pressures were measured using an
Omron MX2 automatic digital upper-arm blood pressure monitor
(Omron Healthcare UK Ltd). All measurements were taken
according to standard practice and by a qualified research nurse,
before and following each intervention period. Before starting
blood pressure measurements, the volunteers were seated or were
laying down quietly for at least 20min. Measurements were taken
in the right arm, before FMD procedure for each time point.
The subject’s right arm was allowed to rest on a pillow (on a side
table positioned at heart level) and was slightly flexed with the
palm facing upward. Volunteers were asked to refrain from
speaking during blood pressure measurements. The measure-
ments were repeated three times, and blood pressure was con-
sidered as the average of these measurements.

Plasma flavanone analysis

Blood samples were collected in EDTA-containing tubes and cen-
trifuged at 4°C for 10–15min at 4000 g. Formic acid (1·5% of a 50%
solution) and ascorbic acid (5% of a 10-mM solution
prepared fresh everyday) were added to the plasma samples to
preserve flavanones before freezing at −80°C. A subset of twenty
volunteers was selected randomly for analysis of flavanone
content. A high throughput analytical method using UHPLC-MS/MS
was developed and validated to measure simultaneously naringenin
and hesperetin in human plasma. Enzymatic hydrolysis and
methanol extraction were applied as described earlier(52) with
modifications to accommodate in situ monitoring of enzyme effi-
ciency and automated sample preparation using a Hamilton
Microlab Star liquid handling system (Hamilton). Plasma samples
(45 litres) were incubated after addition of β-glucuronidase type VII-
A (Sigma) and sulfatase type H-5 (Sigma) for 90 and 60min at 37°C,
respectively. To monitor enzyme activity, every individual sample
was spiked with a known concentration of phenolphthalein
glucuronide and potassium 4-nitrophenyl sulfate (Sigma) as
enzyme substrates in addition to caffeine-(trimethyl-d9) (Sigma)
as IS before incubation. The enzyme-hydrolysed samples were
subsequently extracted with methanol and centrifuged. The super-
natant (6 litres) was analysed using an Agilent 1290 UHPLC coupled
with an Agilent 6490 triple quadrupole MS (Agilent Technologies).
Naringenin and hesperetin were separated in a Waters BEH C18
(100×2·1mm, 1·7 micrometre particle size) at a flow rate of 0·6ml/
min using 6·5-min gradient 99% solvent A (water containing 0·1%
formic acid) and 1% solvent B (acetonitrile containing 0·1% formic
acid) (initially; 70% solvent A at 0·5min; 55% solvent A at 2·5min;
2% solvent A at 3·0min; 2% solvent A at 4·0min; 99% solvent A
at 4·5min followed by post-equilibration for 2min). The MS was
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operated in ESI-positive ionisation mode and multiple reaction
monitoring (MRM) mode by monitoring quantifier and qualifier
ions for both naringenin and hesperetin. MRM transitions were
determined as 204·1/144·0 (m/z) corresponding to caffeine, as
495·1/319·1 (m/z) corresponding to phenolphthalein–glucuronide
and as 217·9/137·9 (m/z) corresponding to potassium
4-nitrophenyl sulphate as quantifier ions. MRM transitions were
determined as 303·1/153·1 (m/z) corresponding to hesperetin and
273·1/147·1 (m/z) corresponding to naringenin as qualifier ions.
Concentrations of hesperetin and naringenin were then calculated
on the basis of ratios of their integrated peak area for the quantifier
ions to that of IS using two sets of eight-point calibration curves.
Accuracy of the analysis was monitored by systematic counter-
balancing between plasma samples and quality control samples
spiked with known concentrations of hesperetin and naringenin.
The method was validated for a linear calibration range of
0·0313–8·02µm for naringenin and 0·0282–7·22µm for hesperetin,
respectively. In addition, limits of detection for naringenin and
hesperetin were determined as 2 and 7nm, respectively.

Biochemical analysis

The blood samples collected in pre-chilled Li or heparin tubes
were spun (4000 g; 10–15min; 4°C) immediately after collection
(within 3min). Samples were also collected in serum separation
tubes and allowed to stand for 30min before centrifugation
(1300 g; 10min; 21°C). All samples were aliquoted and frozen at
−80°C until analysis.

Plasma nitric oxide analysis. Plasma samples for measurement of
total nitroso species (NOx) were aliquoted in 150-μl aliquots to
avoid freeze-thawing of the samples for each measurement.
Samples were defrosted just before the measurements took
place (within 10min) and were kept on ice throughout.
Plasma samples (n 28) were analysed for nitrite, nitrate and other
nitroso species (RXNO, including nitrosothiols, nitrosamines, iron-
nitrosylhaemoglobin and nitrosohaemoglobin) by ozone-based
chemiluminescence (model 88AM; Eco Physics) as previously
described(53). In brief, for total NOx measurement (NO derived
from nitrate, nitrite and RXNO), one aliquot of plasma was injected
into an airtight microreaction vessel containing a solution of
vanadium (III) chloride (50mM) dissolved in 1M-HCl, connected
to a chemiluminescence analyser. For measurement of nitrite
and other RXNO (i) one aliquot of plasma was injected in the
same apparatus into glacial acid acetic solution containing
45mM-potassium iodide and 10mM-iodide, at 60°C, actively
purged by inert He, which allowed the detection of NO from both
nitrite and RXNO (but no nitrate). (ii) Subsequently, the plasma
sample was treated with acidic sulphanilamide (1M-HCl) to sca-
venge nitrite, before injection, allowing for quantification of RNXO
alone. Nitrite levels in the plasma samples were determined by the
difference between these two measurements (i and ii). Nitrate
concentration was determined by subtracting nitrite +RXNO from
total NOx. Samples used for calibration curves were prepared
fresh every day and displayed consistent values across days.

Plasma baseline lipids and glucose. Plasma levels of total
cholesterol, LDL-cholesterol, HDL-cholesterol, glucose and TAG

were assayed on an ILAB 600 chemistry analyzer (Instrumentation
Laboratory) using enzyme-based colourimetric tests supplied by
Instrumentation Laboratory.

Power calculation and statistical analysis

Power calculations were performed for the primary end point –
change in FMD response. Power was based on the intra-individual
variability of the operator who performed the FMD analysis
(5% CV, SD= 0·3%). Previous measures of variability in a control
group estimated the standard deviation within subjects to be 2·3%.
At 90% power and 0·05 significance, the number of volunteers
required to detect a difference of 1·5% in the response of matched
pairs in a cross-over study was twenty-five. All statistical analyses
were performed using SPSS Statistics 21 (IBM) package. FMD,
blood pressure, plasma levels of nitric oxide species (nitrate, nitrite
and RNXO) and plasma levels of flavanones were analysed using
a two-way repeated measures ANOVA within subjects with time
(0, 2, 5, 7h) and treatment (C, OJ, FROJ, WO) as main factors.
Post hoc and pair-wise comparisons were carried out using the
Bonferroni correction for multiple comparisons. Significance was
defined as P<0·05 (95% CI) for all outcome measures, with
P values represented in the figures as follows: *P=0·01–0·05,
**P= 0·001–0·01, ***P<0·001. Pharmacokinetic parameters were
calculated as follows: (a) the maximum plasma concentration
(Cmax) and (b) the time to reach the maximum plasma
concentration (Tmax) were determined from the individual data
obtained from each participant; (c) the area under the plasma
concentration v. time curve (AUC) was calculated using the
trapezoidal method. Multiple regression analysis was used to
predict the value of FMD (dependent variable) based on the
values of hesperetin and naringenin plasma levels (independent
variables). Random allocation sequence was generated by a third
party statistician using SAS version 9.1 (procedure plan and
seed=122700). The randomised block design contained four
blocks and nine randomised sequences within each block.

Results

Baseline characteristics and tolerance of intervention

The baseline characteristics of volunteers recruited were within the
desired ranges, with TAG ranging from 0·8 to 3·2mmol/l and total
cholesterol from 6·0 to 8·0mmol/l or/and BMI from 25 to 32kg/m2

(Table 3). All intervention beverages were well tolerated by all
volunteers, as well as the high- and medium-fat meals adminis-
tered throughout the study. No adverse events were reported.

Flavanone modulation of postprandial flow-mediated
dilatation

A two-factor repeated-measures ANOVA for endothelium-
dependent brachial artery vasodilation, measured FMD response,
revealed a highly significant interaction between the interventions
(C, OJ, FROJ, WO) and time of the day (0, 2, 5, 7h) (F9,243=3·27,
P<0·0001), as well as significant main effects of time of the day
(F3,81=12·062, P<0·0001) and intervention (F3,81=2·78, P<0·05).
At baseline (t=0h), there were no significant differences in
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brachial artery FMD between visits, with the average baseline levels
of FMD for the study population being 4·80 (SEM 0·03) FMD units.
After 2h of intake of the high-fat meal, a significant decrease in %
FMD was detected for both control (P<0·0001) and the three
flavanone interventions (P<0·05) (Fig. 2). In particular, in the
control group, the % FMD decreased by 0·99 (SEM 0·17)% FMD
after 2h (P<0·0001) and remained significantly suppressed
5h (P<0·05) and 7h (P<0·0001) after intake, relative to baseline
levels. In contrast, all orange flavanone interventions resulted
in a recovery in % FMD to that of baseline levels between 5 and
7h (OJ: 4·51 (SEM 0·23)% FMD; FROJ: 4·74 (SEM 0·25)%

FMD and WO: 4·75 (SEM 0·23)% FMD) (Fig. 2). At 5h post inter-
vention, there were no significant differences in % FMD between
control and each of the flavanone interventions (OJ, FROJ, WO),
whereas at 7h (following intake of the medium-fat meal at 5·5h)
we observed a significantly higher % FMD for OJ (P<0·05),
FROJ (P<0·01) and WO (P<0·01) in comparison with
control. There were no significant differences between the
flavanone interventions at 7h, with all three doses of flavanones
administered (OJ: 128·8mg; FROJ: 272·1mg and WO: 452·7mg)
counteracting the deleterious effect of the double-meal
challenge on % FMD response to a similar extent. Blood
pressure was not significantly altered following consumption of
any of the flavanone interventions, relative to baseline or to the
control beverage (Table 4).

Modulation of plasma flavanones

Total flavanones, naringenin and hesperetin (including
glucuronides and sulphates), were not detected in the plasma
of volunteers at baseline, indicating compliance to the
24-h low-flavonoid diet before the study visits. Flavanone
metabolites were not detected in the circulation of individuals
following intake of the control drink (Fig. 3). Significant
increases in plasma levels of hesperetin metabolites were
detected at 5 and 7 h (P< 0·0001) (Fig. 3(a)) and at 2, 5 and
7 h for naringenin metabolites (P< 0·0001) (Fig. 3(b)). The time
to reach Tmax for hesperetin and naringenin was not
significantly different between treatments and coincided with
the timeframe of FMD effects (Table 5). At 2, 5 and 7 h, plasma
levels of naringenin were significantly higher following WO
intake compared with OJ (P< 0·01) (Fig. 3(b)). Similarly, at
7 h, both FROJ and WO showed a trend towards higher plasma
concentrations of hesperetin, relative to OJ (P< 0·1) (Fig. 3(a)).
With respect to the Cmax and AUC (0–24 h) for plasma
hesperetin, both FROJ and WO were significantly higher
than after OJ (P< 0·05), whereas for naringenin, both Cmax and
AUC were only significantly higher for WO in relation to OJ
(P< 0·005) (Table 5). No significant differences in plasma
flavanone levels were detected between FROJ and WO
despite the different levels present in the treatment drinks.
At 24 h, the levels of flavanones were not significantly different
from baseline, indicating that the flavanone metabolites have
been cleared from circulation (P= 0·13) (Fig. 3). A multivariate
regression analysis, including both plasma naringenin and
hesperetin, showed that hesperetin (P= 0·001), but not
naringenin (P= 0·092), predicted changes in % FMD over
the course of 0–7 h. Specifically, at 7 h, at the peak of FMD
response, hesperetin significantly predicted the magnitude of
FMD increase (r 0·32, P= 0·005) following flavanone intake.

Modulation of plasma nitrite, nitrate and nitroso species
including nitrosothiols, nitrosamines, iron-nitrosylhaemoglobin
and nitrosohaemoglobin

Levels of nitrate, nitrite and other RXNO species were deter-
mined in plasma at baseline and 2, 5 and 7 h after treatment
(Fig. 4). Nitrite plasma levels are known to reflect more

Table 3. Baseline clinical characteristics of the study population
(Mean values with their standard errors)

Baseline characteristics Mean SEM

Age (years) 48 1
BMI (kg/m2) 28·4 0·4
Total cholesterol (mmol/l) 5·6 0·2
HDL-cholesterol (mmol/l) 1·3 0·3
TAG (mmol/l) 1·5 0·1
Fasting glucose (mmol/l) 4·8 0·1
Hb (g/l) 149 1·0
Systolic blood pressure (mmHg) 124·0 1·7
Diastolic blood pressure (mmHg) 74·9 1·5
Liver enzymes

Alanine aminotransferase (IU/l) 42·1 2·1
γ-Glutamyltransferase (IU/l) 41·7 5·3
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Fig. 2. Time course of postprandial flow-mediated dilatation (FMD) following
consumption of flavanone beverages containing either 128·88mg of flavanones
(OJ, ), 272·14mg of flavanones (FROJ, ), 452·80mg of flavanones
(WO, ) or a macronutrient- and micronutrient-matched control ( ) in
middle-aged healthy men (n 28). A high-fat breakfast (51 g of fat) was
administered at t=0 h, and a medium-fat lunch (30 g of fat) was administered at
t= 5·5 h. Values are means, with their standard errors and analysed using a
two-factor repeated-measures ANOVA with time and treatment as the two
factors (significant main effects of time × treatment (P< 0·0001), time
(P< 0·0001) and treatment (P< 0·05)). Post hoc analyses were conducted
using Bonferroni’s multiple comparison test. * P< 0·05 OJ significantly different
from control at the 7 h; ** P< 0·01 FROJ and WO significantly different from
control at 7 h. ‡ Significant decrease in FMD response in relation to baseline
levels for both control (at 2, 5 and 7 h; P< 0·0001, P< 0·05, P< 0·0001,
respectively) and all three flavanone interventions (at 2 h; P< 0·05). OJ, orange
juice; FROJ, flavanone-rich orange juice; WO, whole blended orange.
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accurately endogenous NO production in humans (estimate of
70–80% of plasma nitrite deriving from eNOS activity), whereas
the other major source is diet-derived nitrate (by reduction

to nitrite). This was the rational for detecting separately levels of
nitrite, nitrate and other RXNO species. The average levels of
plasma nitrate, nitrite and other RXNO at baseline were
32·1 μmol/l, 68·3 nmol/l and 0·4 nmol/l, respectively, which is in
agreement with the values reported in the literature(37,54).
A significant decrease in plasma nitrate levels was observed at
2, 5 and 7 h for all the interventions, including control
(P< 0·0001) (Fig. 4(b)). In contrast, plasma nitrite levels
remained constant up to 7 h after treatment (not significantly
different from baseline) following OJ, FROJ and WO intake,
whereas the control group nitrite levels decreased significantly
(P< 0·01) (Fig. 4(a)). No significant changes were detected in
RXNO levels in plasma (NS) (Fig. 4(c)).

Discussion

Considerable evidence suggests that dysregulation of endothelial
function in the postprandial state is an important contributing
factor for CVD risk(2,5,7,8), whereas intakes of flavonoid/
polyphenol-rich foods such as cocoa, tea and berries have been
shown to exert positive effects on vascular function. In support
of this, clinical trial data have indicated that intakes of such
foods/beverages may lower CVD disease risk, at least partially,
through their actions in mitigating fed-state metabolic and
vascular disturbances(34). In the present study, we showed
that intervention with orange flavanones, both as juice and
whole orange in homogenised form, counteracts impairments in
vascular function evoked by a sequential double-meal challenge,
which reflects a regular eating pattern and a typical dietary intake
in the population(48). Each flavanone intervention tested was
effective in reversing vascular impairments, to a physiologically
similar degree, despite them containing different levels of
flavanones (ranging from 128 to 452mg) and resulting in
different concentrations of plasma flavanone metabolites. No
changes in blood pressure were observed. The rescue of
transient impairments in vascular function, as assessed using
brachial artery FMD, coincided with the peak of flavanone
metabolites (total sulphates and glucuronides) in circulation (7 h)
and with sustained levels of plasma nitrite, the latter of which
was significantly reduced by the double-meal challenge. Thus,
our data support the concept that the observed postprandial
vascular benefits may be linked to the actions of circulating
flavanone metabolites on NO bioavailability.

Table 4. Acute postprandial effects of orange flavanone beverages on static blood pressure

Blood pressure (mmHg) Baseline 2 h 5 h 7 h P

Systolic
Control 125·5 1·9 126·7 1·9 126·7 1·7 128·6 1·5 NS
OJ 124·8 1·5 125·7 1·2 125·72 1·5 126·4 1·5
FROJ 126·1 2·1 125·7 2·0 127·3 2·1 127·1 1·6
WO 126·1 1·6 125·1 1·4 124·8 1·5 126·6 1·5

Diastolic
Control 75·6 1·6 71·5 1·4 74·6 1·4 72·1 1·4 NS
OJ 74·9 1·5 70·1 1·2 73·7 1·5 70·4 1·5
FROJ 75·5 1·5 70·9 1·6 74·6 1·5 72·2 1·4
WO 76·0 1·6 69·9 1·4 73·9 1·5 70·9 1·5

OJ, Tropicana pure premium orange juice without pulp; FROJ, flavanone-rich orange juice: Tropicana pure premium orange juice with added orange
pomace; WO, juice made from lightly blended fresh whole orange.
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Fig. 3. Plasma flavanone profile following postprandial consumption of flavanone
beverages containing either 128·88mg of flavanones (OJ, ), 272·14mg of
flavanones (FROJ, ), 452·80mg of flavanones (WO, ) or a
macronutrient- and micronutrient-matched control ( ) in middle-aged healthy
men (n 20). (a) Hesperetin, (b) naringenin. Values are means, with their standard
errors and analysed using a two-factor repeated-measures ANOVA with time and
treatment as the two factors (significant main effects of time× treatment (P<0·0001),
time (P<0·0001) and treatment (P<0·001). Post hoc analyses were conducted
using Bonferroni’s multiple comparison test. Hesperetin levels are significantly
higher in all treatments in comparison with control at 5 and 7h (‡ 0·00<P<0·02),
whereas naringenin levels are significantly higher in all treatments in comparison
with control at 2, 5 and 7h (‡ 0·00<P<0·03). Levels of plasma naringenin
are significantly higher in OJ in comparison with WO: **P<0·01, ***P<0·001.
§ Levels of plasma hesperetin in FROJ andWO show a trend towards higher values
than OJ (P<0·1). OJ, orange juice; FROJ, flavanone-rich orange juice; WO, whole
blended orange.
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Fig. 4. Plasma nitric oxide levels following postprandial consumption of
flavanone beverages containing either 128·88mg of flavanones (OJ, ),
272·14mg of flavanones (FROJ, ), 452·80mg of flavanones (WO, )
or a macronutrient- and micronutrient-matched control ( ) in middle-aged
healthy men (n 28). (a) Nitrite levels (nmol/l), (b) nitrate levels (μmol/l), (c) nitroso
species including nitrosothiols, nitrosamines, iron-nitrosylhaemoglobin and
nitrosohaemoglobin (nmol/l). Values are means, with their standard errors and
expressed as change from baseline. Data were analysed using a two-factor
repeated-measures ANOVAwith time and treatment as the two factors (significant
main effects of time (P<0·0001)). Post hoc analyses were conducted using
Bonferroni’s multiple comparison test. ** Nitrite levels are significantly different
from baseline only for the control group at the specified time points (P<0·01).
*** Nitrate levels are significantly different from baseline for both control and all
three flavanone treatments (P<0·0001) at the specified time points. OJ, orange
juice; FROJ, flavanone-rich orange juice; WO, whole blended orange.
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Our findings are consistent with previous randomised
controlled trial (RCT) data sets indicating that cocoa flavanols
partially counteract the decrease in FMD following high-fat
meal loading(32). Furthermore, pure quercetin has also been
shown to ameliorate postprandial FMD following maltose
overload(33). To our knowledge, this is the first set of data
indicating that citrus flavanones are also capable of attenuating
postprandial impairments in endothelial function following
a sequential high–medium-fat double meal in individuals
displaying mild cardiometabolic risk factors. Furthermore, and
in support of our findings, previous studies conducted in the
fasted state report that chronic interventions with flavanones in
at-risk groups (e.g. hypertensive, overweight or the metabolic
syndrome patients) induce positive effects on blood pressure
and endothelial function (FMD)(45,46,55) and improvements in
microvascular reactivity(45). Most importantly, in the present
study, no dose-dependent effects on brachial artery FMD were
observed, despite the interventions containing different
amounts of flavanones (WO: 3·5×OJ). This may indicate that at
these intake levels a threshold plateau may be reached, similar
to what has been shown previously with other flavonoid-rich
interventions(22). It also further suggests that lower doses of
flavanones (approximately 130mg) can be efficacious at modu-
lating postprandial endothelial function. No changes in blood
pressure were observed in the present study, which is in
agreement with previous human intervention trials reporting
modulation of blood pressure only after chronic interventions
with flavonoid-rich foods, but not in an acute manner(27,31).
We observed concurrent modulation of FMD, nitrite

and circulating flavanone metabolites (total sulphates and
glucuronides), suggesting that the latter may be linked to NO
availability and subsequent improvements in vascular function,
although we cannot establish a causal relationship at this time.
Specifically, both naringenin and hesperetin metabolite peak
plasma levels for all three interventions occured at approxi-
mately 7 h, which coincided with significant improvements in
endothelial function (at 7 h) and sustained levels of circulating
nitrite after flavanone interventions in comparison with control.
Plasma levels of flavanone metabolites peaked slightly later
than that previously reported (4–6 h)(45,56,57), most likely due to
the concomitant intake of fat, which is thought to interfere
with flavonoid absorption(58). On the other hand, no significant
differences in time of absorption were detected between
the flavanone treatment groups (peak occurs at approximately
7 h for all three treatments).
In support of the link between flavanone intake and human

vascular function, we observed that when low or no levels of
flavanone metabolites are detected in circulation (e.g. 2 h), no
differences in postprandial brachial FMD are observed between
control and flavanone-rich beverages. Further, multiple
regression analyses suggest that mainly hesperetin metabolites
seem to predict significantly the magnitude of changes in FMD
(r 0·32, P= 0·005), suggesting an important role of this flava-
none in the effects observed. This is corroborated by previous
studies showing that pure hesperidin can trigger both acute
and chronic improvements in vascular function in humans(45,46).
It is important to further note that only the sulphated and
glucuronidated portion of the flavanone metabolites were

quantified in our study, and these are likely to account for a
fraction (approximately 16%) of the total flavanone metabolites
absorbed(59). As such, we anticipate that gut-derived phenolic
compounds might also contribute to the improvements in
endothelial function observed. This is supported by our
observation that hesperetin metabolites can only significantly
predict a small percentage (approximately 30%) of the FMD
response observed; therefore, it is likely that stronger correla-
tions might be apparent once gut-derived small phenolic
metabolites are taken into consideration; however, such
extensive analysis was outside of the scope of our study.

Our study also indicates that the impairment in postprandial
FMD induced by the sequential high-fat meal might be linked to
decreases in circulating levels of NO species, particularly
nitrite and nitrate. Although the precise mechanisms underlying
postprandial endothelium impairments are not established,
mechanistic animal studies suggest a role for NO signalling,
showing, for example, that endothelial dysfunction induced
by fat intake also results in decreases in NO production(60–62).
Importantly, the flavanone interventions only prevented the
decrease in nitrite, but not nitrate. Numerous evidence suggest
that nitrite reflects more accurately endogenous NO production in
humans, with an estimate of 70–80% of plasma nitrite deriving
from eNOS activity(63,64) and also better reflects the degree of
endothelial dysfunction in humans(65). In agreement with our
data, previous human clinical data suggest an ability of some
flavonoid-rich foods to modulate NO bioavailability(22,24,35,37).
In particular, cocoa flavanols-induced improvements in FMD
have been causally linked to NO production in humans(23). More
recently, Bondonno et al.(37), also showed that apples containing
(–) epicatechin and quercetin increased levels of nitrite along with
FMD response after 2 h of intake. In addition, and in agreement
with the present data, both pure (–) epicatechin and quercetin
were shown to specifically increase plasma nitrite, but not nitrate
in healthy humans(35). Supporting in vitro mechanistic studies
(in endothelial cells) have demonstrated that flavanone
hesperetin and some of its in vivo metabolites (e.g. 7-O-β-D
glucuronide) can stimulate NO production via activation/
expression of eNOS(46,66) or by decreasing NO degradation
through inhibition of NADPH(67), and these are possible
mechanistic pathways by which flavanone metabolites might
modulate postprandial FMD. Although the specific modulation
of nitrite by flavanone-containing interventions is an interesting
observation in the present study, the interpretation of the temporal
dynamics (time course) of flavanone appearance in plasma and
levels of plasma nitrite is not straightforward with regard to
explaining the effects of nitrite on FMD. This seems to suggest that
the impact of flavanone metabolites on FMD response cannot be
explained completely by modulation of nitrite (as a measure of
NO). As the present study was not designed (or powered) to detect
changes in NO species, we are limited in our ability to establish a
clear-cut link between FMD modulation and NO at this time.
However, we believe this preliminary data are very novel and
valuable for future, more mechanism-focused, human RCT.

Interestingly, FROJ intake resulted in similar levels of plasma
flavanones to WO, despite lower initial concentrations, which
might be related to characteristics of the food matrix itself, such
as viscosity, which is known to influence the bioavailability of
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polyphenols(68). It is possible that the reduced particle size of
pomace in FROJ aided the release of polyphenols from the
fibre matrix, making these more accessible for gut microbiota
metabolism(69). It is known that dietary fibre can physically trap
polyphenols within the fibre matrix in the fruit tissue, reducing
the accessibility to enzymes and the gut microbiota(70). On the
other hand, the rate of release of polyphenols from fibrous
particles is inversely proportional to the fibre particle size(71);
therefore, by reducing particle size in the pomace, we are likely
to increase the bioavailability of flavanones in FROJ. In order to
confirm that this is the case, future studies should focus on
measuring accurately total urine excretion (e.g. over a 24 h
period). Nonetheless, our study seems to suggest that particle
size reduction of fibre-rich orange pomace and the
re-introduction of this product into orange juice might be an
effective strategy to increase the bioavailability of polyphenols
in vivo. Importantly, the increased bioavailability of flavanones
after FROJ intake did not enhance significantly postprandial
FMD in comparison with lower flavanone-containing OJ, again
suggesting that perhaps a certain level of flavanone metabolites
is necessary in circulation to trigger postprandial FMD
improvements, but further increases in flavanone levels may
not produce additional benefits(22).
One of the limitations in the design of the present study is

related to the composition of the control intervention, which did
not take into account the levels of ascorbic acid present in the
citrus beverages. Clinical studies suggest that doses up to 500mg
of vitamin C do not impact on biomarkers of endothelial
function(49,72). More specifically, it has been shown in a recent
stratified meta-analysis that doses ranging from 90 to 500mg
of ascorbic acid do not produce improvements in endothelial
function, both acutely or chronically(73,74), especially in popula-
tions with normal vitamin C status(75,76). Furthermore, previous
studies reporting acute beneficial effects of ascorbic acid on
endothelium-dependent vasodilation (within 2–4h of intake)
delivered doses of at least 2000mg(77–79), and in many cases
positive outcomes were achieved by delivering ascorbic acid
intravenously, resulting in supra-physiological plasma levels of
vitamin C, which cannot be achieved by oral ingestion(79,80). As
the levels of vitamin C in the present study were approximately
80–120mg, we are confident that these can be considered
negligible with respect to acute effects on endothelial function, as
measured by FMD. Therefore, despite these limitations, we can
safely argue that our conclusions are reasonable when attributing
the FMD response to circulating flavanone metabolites (at 7h
post intake) and that our data are relevant in furthering the
understanding of the impact of flavonoid-rich foods/beverages on
postprandial endothelial function.
In summary, our results suggest that acute intake of a

beverage containing at least 128mg of flavanones can be an
effective dietary strategy to blunt the acute transient impairment
in endothelial function induced by a sequential double meal
that reflects a typical intake in the population. Although we
cannot draw firm conclusions regarding the mechanisms by
which flavanones elicit vascular responses, our results suggest
that these might be linked to an ability of flavanone metabolites
to sustain basal circulating NO levels. Collectively, these
observations have important implications, considering that most

individuals spend the majority of the day in the postprandial
state, and such temporary vascular changes repeated on a daily
basis can critically impact on long-term vascular health and
overall chronic disease risk.
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