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Hafiz Ahmeda, Héctor Ŕıosb, Beshah Ayalewc and Yongqiang Wangd

aSchool of Mechanical, Aerospace and Automotive Engineering, Coventry University,
Coventry CV1 2TL, UK
bCONACYT - TECNM/Instituto Tecn̈ı¿œlogico de La Laguna, Divisïı¿œn de Estudios de
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Abstract
This article provides a comparative study of four different second-order sliding-
mode (SOSM) differentiators proposed in the literature, namely, standard higher-
order sliding-modes (HOSM) differentiator, non-homogeneous HOSM differentiator,
uniform robust exact differentiator and hybrid fixed-time differentiator. Based on
sliding mode principles, these differentiators can provide robust exact differentiation
with finite/fixed-time convergence. First, a comprehensive summary of the different
methods is provided. Then, the differentiators are applied experimentally to esti-
mate the states of a Van der Pol oscillator. Through experiments, it is shown that
the different differentiators outperformed a Kalman-like observer, high-gain differ-
entiator and extended Kalman filter. Finally, some suggestions are provided on the
selection of SOSM differentiators for various applications.

KEYWORDS
Sliding mode differentiation, Van der Pol oscillator, Real-time estimation

1. Introduction

Numerical differentiation of noisy signals is very useful in the context of state es-
timation, parameter identification, filtering, fault detection and control of dynamical
systems. Numerical differentiation can be found in a wide varieties of applications. For
example - calculation of velocity and acceleration from position measurement [De Loza
et al. (2012); Guerra et al. (2016); Salgado et al. (2017); Davila et al. (2005)], fault
detection [Ŕıos et al. (2016); H. Ahmed et al. (2016)], control [Salgado, Camacho, et
al. (2014); Levant (2003)], parameter identification [Davila et al. (2006); Shtessel &
Poznyak (2005); Iqbal et al. (2011); Q. Ahmed & Bhatti (2011); Imine et al. (2015)],
synchronization of nonlinear systems [H. Ahmed et al. (2017)], secure communication
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[Perruquetti et al. (2008)], environmental monitoring [H. Ahmed et al. (2015)], fre-
quency estimation of sinusoidal signals [Wu et al. (2004)] etc. to name a few. Due
to its various practical applications, this area has attracted a lot attention from the
scientific community in recent times.

Two popular numerical differentiation schemes that are used frequently to calcu-
late time derivatives are difference method (also known as Euler method) and Kalman
filter [Kalman (1960)]. The difference method can estimate the derivatives of signals
but its result is sensitive to the noise which is inevitable in practical applications.
To solve this problem, engineers often use low-pass filtering, this however, introduces
undesirable delay in real-time applications. In the presence of non-Gaussian noise,
Kalman-filer is known as the best linear estimator. However, Kalman-filter depends
on the model/knowledge of the plant. For various industrial applications, models are
often not available. As a result, model-free robust derivative estimation in the presence
of measurement noise is a challenging problem from practical point of view. To tackle
this problem, various robust techniques have been proposed in the literature. They are
based on methods like-sliding-mode (SM) [Levant (1998, 2003)], homogeneity based
approach [Perruquetti et al. (2008); Polyakov et al. (2014)], algebraic approach [Ibrir
(2003)], high-gain approach [Dabroom & Khalil (1999)], to name a few.

Out of all the previously mentioned methods, in this work we focus on sliding-
mode based differentiators. Sliding-mode differentiators have some very nice properties
like - robustness to noise, finite/fixed-time convergence, easy implementation, compu-
tational simplicity etc. All these properties have made sliding-mode differentiator a
very suitable choice for solving practical problems. The sliding-mode differentiator has
already been successfully applied to numerous practical applications [Amamra et al.
(2017); Reichhartinger & Horn (2009); Salgado et al. (2017); Rodriguez et al. (2009);
Salgado, Chairez, et al. (2014); H. Ahmed et al. (2016)].

The sliding-mode differentiator based on 2-sliding algorithm was initially pro-
posed by Levant in 1998 [Levant (1998)]. It allows to estimate the first order derivative
of a bounded noisy signal. In 2003, a generalization of the original differentiator to
an arbitrary order case was proposed in [Levant (2003)]. Since then, various types
of sliding-mode differentiators have been proposed based on high order sliding-mode
principles [D. V. Efimov & Fridman (2011); Cruz-Zavala et al. (2011); Sidhom et al.
(2015); Vázquez et al. (2016); Basin et al. (2017); Ghanes et al. (2017); Levant (2014);
Barbot et al. (2016); Ŕıos & Teel (2018)]. These variants consider different objectives.
The result proposed in [D. V. Efimov & Fridman (2011)] provides global derivative
estimation independently on amplitude of the differentiated signal and measurement
noise. Currently, in the literature, there exist only a few works related to the fixed-
time property: in the differentiation framework, i.e. [Cruz-Zavala et al. (2011)] for
the design of a first-order fixed-time robust exact differentiator, and [Angulo et al.
(2013)] for arbitrary order differentiation under some type of disturbances; and in the
observer design framework [Andrieu et al. (2008)], [Lopez-Ramirez et al. (2018, 2017)]
and [Ŕıos & Teel (2018)], but only for the ideal linear case. Finite- and fixed-settling
time differentiators utilizing a non-recursive higher-order sliding mode is proposed in
[Basin et al. (2017)]. The differentiators have also been applied to hypersonic missile.
In [Ghanes et al. (2017)], SOSM differentiator with a variable exponent is proposed.
However, finite-time convergence of the differentiation error is obtained only for a
particular value of the exponent. In [Levant (2014)], a finite-time convergent exact
differentiator with variable gains is presented. This differentiator works through the
addition of linear terms to the recursive structure of [Levant (2003)]. Variable gain
approach is also used in [Edwards & Shtessel (2016)] where equivalent control based
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dual-layer is used. However, the number of parameter to tune is relatively higher
than non-adaptive version. Unlike the deterministic settings used in the previously
mentioned references, [A. S. Poznyak (2018); A. Poznyak (2017)] proposes the appli-
cation of stochastic super-twisting for SM based observer and controller design. The
advantage of this method is that it can explicitly take into account the noise effect.
However, real-time implementation of this algorithm is complicated. For example, the
gain adaptation mechanism in [A. Poznyak (2017)] requires the calculation of partial
derivative. The results of [Vázquez et al. (2016)] and [Sidhom et al. (2015)] provide
robust derivative estimation in the context of hydraulic system application. In the
same line of research, several adaptive differentiators have already been proposed for
particular purposes. In [Alwi & Edwards (2013)], an adaptive differentiator has been
proposed to estimate an actuator oscillatory fault. Fault reconstruction of uncertain
nonlinear systems using adaptive sliding-mode differentiator is discussed in [X.-G. Yan
& Edwards (2008)]. Sensorless control of electric motor using adaptive sliding-mode
differentiator can be found in [Furuhashi et al. (1992)]. For a detail bibliographical sur-
vey on sliding-mode observer/differentiator, readers may consult [Spurgeon (2008)].

There are some existing works in the literature, where different differentiation
techniques have been compared by simulation. In [Hongwei & Heping (2015)], the
authors compared various tracking differentiators (including sliding-mode differentia-
tor) by simulation. Comparative analysis of differentiators for pneumatic application
was performed in [X. Yan et al. (2014)]. Comparative analysis of differentiators for
aerospace application can be found in [Cieslak et al. (2016)]. The same analysis for
environmental monitoring application can be found in [H. Ahmed et al. (2015)]. To
the best of the author’s knowledge, up to now, no experimental study has been carried
out to compare the performances of the various HOSM differentiators proposed in the
literature. The goal of this article is to fill this void. To achieve this goal, four tech-
niques [Levant (1998); D. V. Efimov & Fridman (2011); Cruz-Zavala et al. (2011); Ŕıos
& Teel (2018)] based on HOSM have been selected. They have been chosen because
of their comparative advantages as summarized below:

(1) HOSM Differentiator (HOSMD) [Levant (2003)]: This is the first HOSM differ-
entiator proposed in the literature. Exact finite-time differentiation along with
robustness to measurement noises are its main features. Various variants of this
differentiator have been proposed in the literature. This differentiator has been
applied to numerous practical problems (e.g., Chawda et al. (2011); Imine et
al. (2015); Madani & Benallegue (2007) etc.). It is considered as a benchmark
HOSM differentiator.

(2) Non-homogeneous HOSM differentiator (NHOSMD) [D. V. Efimov & Fridman
(2011)]: Using novel Lyapunov function, this differentiator provide simple es-
timates on the time of convergence and accuracy of derivative calculation. An
interesting property of this differentiator is that the solutions of the differen-
tiator stay bounded even for wrongly chosen parameters. This differentiator is
also applied to solve various practical problems (e.g., H. Ahmed et al. (2016);
D. Efimov et al. (2013); de Loza et al. (2015)).

(3) Uniform robust exact differentiator (URED) [Cruz-Zavala et al. (2011)]: This
differentiator is a variant of the Levant’s differentiator and includes high-degree
terms providing finite-time, and exact convergence to the derivative of the input
signal, with a convergence time that is bounded by some constant independent
of the initial conditions of the differentiation error. This is the first SOSM dif-
ferentiator that provided fixed-time convergence. The fixed-time convergence
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property is proved using strong Lyapunov functions. This differentiator also also
found to be very effective in practical applications (e.g., Amamra et al. (2017);
Espinoza-Moreno et al. (2014); Hussain et al. (2013) etc.).

(4) Hybrid fixed-time differentiator (HFTD) [Ŕıos & Teel (2018)]: This differentia-
tor is a combination between the Levant’s differentiator and the general homoge-
neous differentiator given by [Levant (2005)] and [Angulo et al. (2013)]. A hybrid
hysteresis mechanism is proposed to combine the main properties of these dif-
ferentiators, i.e. finite-time convergence and exactness, and uniform convergence
with respect to initial errors, providing the fixed-time convergence property. This
differentiator is one of the few arbitrary-order differentiators with fixed-time con-
vergence.

The above mentioned techniques will be compared experimentally for an interesting
practical application. In this work only the estimation of first derivative will be con-
sidered for the sake of simplicity. It is to be noted here that there are also other
sliding-mode differentiators available in the literature. However, for the sake of sim-
plicity and tractability, we decided not to include them here.

The rest of the article is organized as follows: Section 2 provides some prelimi-
naries about different types of stabilities of nonlinear systems, Section 3 provides the
formal problem statement, Section 4 provides a summary of the selected techniques,
Results and discussions can be found in Section 5 and finally Section 6 concludes this
article.

2. Preliminaries

2.1. Notation

Throughout the paper the following notations are used:

• R+ = {x ∈ R : x ≥ 0} , where R is the set of all real numbers.
• | · | denotes the absolute value in R, || · || denotes the Euclidean norm on Rn.
• For a (Lebesgue) measurable function d : R+ → Rm define the norm ||d||[t0,t1) =

ess supt∈[t0,t1)||d (t) || , then ||d||∞ = ||d||[0,+∞) and the set of d(t) with the prop-
erty ||d||∞ < +∞ is denoted as L∞ (the set of essentially bounded measurable
functions); and LD = {d ∈ L∞ : ||d||∞ ≤ D} for any D > 0.

2.2. Stability of nonlinear systems

This section gives the notion of different types of stability of nonlinear systems. These
notions will be helpful to understand the types of convergence of the selected differ-
entiators described in Section 4.

Consider the following nonlinear systems

ẋ (t) = f (x (t) , d (t)) , t ≥ 0, (1)

where x (t) ∈ Rn is the state, d (t) ∈ Rm is the input, d (t) ∈ L∞, f : Rn+m → Rn
ensures forward existence of the system solutions at least locally, f (0, 0) = 0. For an
initial condition x0 ∈ Rn and input d ∈ L∞, define the corresponding solution by
ϕ(t, x0, d) for any t ≥ 0 for which the solution exists. Let Ω be an open neighborhood
of the origin in Rn and D > 0.
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Definition 1. At the steady state x = 0 the system (1) for any d ∈ LD is said to be

(1) uniformly Lyapunov stable in Ω if for any ε > 0 there is δ(ε) > 0 such that for
any x0 ∈ Ω and d ∈ LD, if ||x0|| < δ(ε) then ||ϕ(t, x0, d)|| < ε for all t ≥ 0;

(2) uniformly asymptotically stable in Ω if it is uniformly Lyapunov stable in Ω and
for any κ > 0 and ε > 0 there exists T (κ, ε) ≥ 0 such that for any x0 ∈ Ω and
d ∈ LD, if ||x0|| < κ then ||ϕ(t, x0, d)|| < ε for all t ≥ T (κ, ε);

(3) uniformly finite-time stable in Ω if it is uniformly Lyapunov stable in Ω and
uniformly finite-time converging in Ω, i.e. for any x0 ∈ Ω and all d ∈ LD there
exists 0 ≤ T ≤ +∞ such that ϕ(t, x0, d) = 0 for all t ≥ T . The function T0 (x0) =
inf {T ≥ 0: ϕ(t, x0, d) = 0 ∀t ≥ T, ∀d ∈ LD} is called the uniform settling time of
the system (1);

(4) uniformly fixed-time stable in Ω if it is uniformly finite-time stable in Ω and
supx0∈ΩT0 (x0) < +∞. The set Ω is called the domain of stability/attraction.

If Ω = Rn, then the corresponding properties are called global uniform
Lyapunov/asymptotic/finite-time/fixed-time stability of (1) for d ∈ LD at x = 0. For
details, please consult [D. Efimov, Levant, et al. (2017)] and the references therein.

3. Problem Statement

Let us consider the Van der Pol oscillator which is a popular second-order benchmark
nonlinear system. The Van der Pol oscillator is an oscillator with nonlinear damping
governed by the second-order differential equation given below,

ẍ(t)− ε
[
1− x2(t)

]
ẋ(t) + ω2x(t) = 0, γ, ω > 0. (2)

In model (2), ε and ω are model parameters. By considering ω2 = 1, ẋ = x1 and
ẍ = x2, model (2) can be written in state-space form as

ẋ1 = x2,

ẋ2 = −x1 + εx2

(
1− x2

1

)
,

y = x1, (3)

where x1, x2 ∈ R are state variables, y ∈ R is the output and ε is the model parameter.
Model (3) has been successfully applied in various fields like biomedical engineering
[Ryzhii & Ryzhii (2014); Kaplan et al. (2008)], control [Puvsenjak et al. (2014); Landau
et al. (2008)], electrical networks [Sinha et al. (2016)], etc. Because of its practical
importance, state estimation of model (3) is a very interesting problem.

Model (3) can be re-written as:

ẋ =

[
0 1
0 0

]
x+

[
0
1

]−x1 + εx2

(
1− x2

1

)︸ ︷︷ ︸
d(t,x)


y =

[
1 0

]
x (4)

5



where x =
[
x1 x2

]T
and d : R × R2 → R is an unknown bounded function,

|d(t, x)| ≤ d0,∀ (t, x) ∈ R3 with d0 being a known positive number. For model (4),
estimating the state x2 from measurement x1 is essentially a problem of derivative
estimation. Estimating the state x2 can be done using the observer framework as well.
For this purpose, in this work various SOSM observer/differentiator will be used. As
comparison tools, several other popular methods namely high-gain observer, extended
Kalman filter and Kalman-like observer will also be used. A short summary of all these
methods can be found in the following section.

4. Summary of the selected differentiators

In this section, a short summary of the selected SOSM differentiators [Levant (1998);
D. V. Efimov & Fridman (2011); Cruz-Zavala et al. (2011); Ŕıos & Teel (2018)] will
be given for further analysis. Kalman-like observer [Besançon et al. (2010)], high-gain
observer [Khalil (2017)] and extended Kalman filter [Simon (2006)] have been selected
for comparison purpose. Short summary of these methods can also be found at the
end of this section.

4.1. Summary of the SOSM differentiators

4.1.1. HOSM Differentiator (HOSMD) [Levant (2003)]

Consider an input signal f(t) be a function defined on [0,∞) consisting of a bounded
Lebesgue-measurable noise with unknown features and an unknown base signal f0(t)
having a derivative with known Lipschitz’s constant L > 0, i.e. |f̈0(t)| ≤ L. To cal-
culate the derivative of f(t), consider an auxiliary equation ż = u where z(t) denotes
the estimate of the original signal f(t). The control law u is designed to drive the
estimation error, i.e. e(t) = f(t)−z(t), to zero. A. Levant proposed in Levant (2003) a
control based on super-twisting principle that guarantees the finite-time convergence
to zero of the derivative estimation error e(t). The differentiator is given by:

ẋ1 = −λ1dx1 − f(t)c
1

2 + x2,

ẋ2 = −λ2dx1 − f(t)c0, (5)

where dxcγ := |x|γsign (x) , γ ≥ 0 , x1, x2 ∈ R are the state variables of the system,
λ1 and λ2 are tuning parameters with λ1 > 0 and λ2 > 0. The variable x1(t) serves
as an estimate of the function f(t) and x2(t) converges to ḟ(t), i.e. it provides the
derivative estimate. Tuning of parameters λ1 and λ2 is provided in Levant (2003).

They can be selected as: λ1 = 1.5L
1

2 and λ2 = 1.1L. The gains of the super-twisting
differentiator (5) can also be tuned based on a strict Lyapunov function as proposed
in [Moreno & Osorio (2012)].The system (5) is discontinuous. The classical theory of
differential equations is now not applicable since Lipschitz assumptions are employed to
guarantee the existence of unique solutions. The solutions of (5) are to be understood
in Filippov sense [Filippov (1960)]. The solution concept proposed by Filippov for
differential equation with discontinuous right hand sides constructs a solution as the
“average” of the solutions obtained from approaching the point of discontinuity from
different directions. In [Levant (2003)] and [Moreno & Osorio (2012)], it was shown
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that differentiator (5) is finite-time convergent. To prove the finite-time convergence
property of (5), [Levant (1998)] used the homogeneity based approach as such no
estimate of the convergence time is available. In the presence of measurement noise,
the accuracy of this differentiator is proportional to ϕ

1

2 , where ϕ is the maximal
measurement noise magnitude.

4.1.2. Non-homogeneous HOSM differentiator (NHOSMD) [D. V. Efimov &
Fridman (2011)]

Recently, D. Efimov and L. Fridman proposed a variant of the super-twisting differ-
entiator [Levant (1998)]. It can provide simple estimates on the time of convergence
and accuracy of the derivative calculation. The differentiator is given by:

ẋ1 = −αdx1 − f(t)c
1

2 + x2,

ẋ2 = −βdx1 − f(t)c0 − χdx2c0 − x2, (6)

where, x1, x2 and f (t) are as defined in Section 4.1.1, α, β and χ are tuning parameters
with α, β, χ > 0. Compared to (5), differentiator (6) has two additional feedback
loops involving x2. Appearance of x2 causes the loss of homogeneity property but
does not affect the excellent performance of super-twisting differentiator. The main
advantage of (6) is that solutions of the differentiator stay bounded even for wrongly
chosen parameters. The system (6) is discontinuous, its solutions are understood in the
Filippov sense [Filippov (1960)]. Using Lyapunov function argument, in [D. V. Efimov
& Fridman (2011)], it was shown that the differentiator (6) is finite-time convergent.
The gains α, β and χ of this differentiator can be chosen according to the following
formula (given in Corollary 1 of [D. V. Efimov & Fridman (2011)]):

χ = 0.25
4
√

2L1 + ν, β > L1 + L2 + 3χ,

α = 4

√
2 (β + L1 + L2 + 2χ)χ+

√
β + L1 + L2 + 3χ (L1 + L2 + 2χ)

2β − L1 − L2 − 2χ
, (7)

where |ḟ0(t)| ≤ L1, |f̈0(t)| ≤ L2 and ν ≥ 0. According to Corollary 1 of [D. V. Efimov
& Fridman (2011)], if the gains are selected as in (7) and the initial conditions are
selected as x1 (0) = f (0) and x2 (0) = 0, then for ν ≥ 0, the convergence time T0 is
bounded by T0 ≤ L1/

(
0.25 4
√

2L1 + ν
)
. This simple estimate of convergence time was

one of the big advantage of [D. V. Efimov & Fridman (2011)] over [Levant (1998)]. As
in [Levant (1998)] the requirement on the existence of the second derivative can be
replaced with Lipschitz continuity of the first derivative, then L2 is the corresponding
Lipschitz constant. An interesting property of this differentiator is that the solutions
of the differentiator stay bounded even for wrongly chosen parameters [(D. V. Efimov
& Fridman, 2011, Lemma 1)]. In the presence of measurement noise, the accuracy of

this differentiator is proportional to ϕ
1

4 , where ϕ is the maximal measurement- noise
magnitude. It is also to be pointed out here that many new Lyapunov functions are
now available for the Super Twisting algorithm that allows to estimate convergence
rates and attraction regions in the presence of noise (cf. [Moreno & Osorio (2012)]).
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4.1.3. Uniform robust exact differentiator (URED) [Cruz-Zavala et al. (2011)]

Super-twisting differentiators like [Levant (1998)] and [D. V. Efimov & Fridman (2011)]
are well known for their exact and finite-time convergence properties. However, the
convergence time grows unboundedly when the initial conditions of the differentiation
error grow. To overcome this problem, E. Cruz-Zavala et al. proposed a variant of
[Levant (2003)] by considering high-degree terms. The main advantage of this method
is that it can provide finite-time, and exact convergence to the derivative of the input
signal, with a convergence time that is bounded by some constant independent of the
initial conditions of the differentiation error. This differentiator is given by:

ẋ1 = −k1

[
dx1 − f(t)c

1

2 + µdx1 − f(t)c
3

2

]
+ x2,

ẋ2 = −k2

[
1

2
dx1 − f(t)c0 + 2µ (x1 − f(t)) +

3

2
µ2dx1 − f(t)c2

]
, (8)

where, k1, k2 > 0 are differentiators gains and µ > 0 is a scalar. When µ = 0, the
standard robust exact differentiator is recovered [Levant (1998)]. As before, x1(t) and
x2(t) represent the estimate of signal f(t) and its first derivative. The system (8) is
discontinuous, its solutions are understood in the Filippov sense [Filippov (1960)].
Using Lyapunov function argument, in [Cruz-Zavala et al. (2011)], it was shown that
the differentiator (8) is fixed-time convergent if the gains k1 and k2 are in the set

K =

{
(k1, k2) ∈ R2|0 < k1 ≤ 2

√
L, k2 >

k2
1

4
+

4L2

k2
1

}
∪
{

(k1, k2) ∈ R2|k1 > 2
√
L, k2 > 2L

}
. (9)

The convergence time estimate of differentiator (8) is quite complex and requires to
solve linear matrix inequality. So, the estimate is avoided here for the purpose of
brevity. Interested reader may consult eq. (12) of [Cruz-Zavala et al. (2011)]. Finally,
in the presence of measurement noise, the accuracy of this differentiator is the same
to that of HOSMD.

4.1.4. Hybrid fixed-time differentiator (HFTD) [Rı́os & Teel (2018)]

In many real-time control applications, fixed-time convergence of the derivative is
a highly desirable property. This property implies the existence of a bound for the
convergence time, and such a bound is independent of the initial estimation error.
To achieve this goal, H. R̈ı¿œos and A. R. Teel recently proposed a fixed-time ob-
server/differentiator in [Ŕıos & Teel (2018)] using the hybrid systems framework given
in [Goebel et al. (2012)]. Based on homogeneity properties, the robustness of the hy-
brid differentiator is analyzed in [Ŕıos & Teel (2018)]. The main idea of [Ŕıos & Teel
(2018)] is summarized below:

Consider the system of the following form:

ẋ = Ax+Df̈0(t), x(0) = x0,

y = Cx, (10)
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where x =
[
x1 x2

]T
=
[
f0 ḟ0

]T ∈ R2, y ∈ R and f0 ∈ R are the states, the
output and the signal to be differentiated, respectively. The matrices are defined as

A =

[
0 1
0 0

]
, D =

[
0
1

]
, C =

[
1 0

]
.

For this system, estimating the state x2 from the measurement x1 is essentially
the problem of the estimating the first derivative. The following differentiator has been
proposed in Ŕıos & Teel (2018),

x̂ = z + Φ−1v,

d

dt


z
v
v̄
q

 =


Az +H (y − Cz)
Āv + χq (ε1, v1)
Āv̄ + χ2 (ε1, v̄1)

0

 , (x̂, z, v, v̄, q) ∈ C,

z+

v+

v̄+

q+

 =


z
v
v̄

3− q

 , (x̂, z, v, v̄, q) ∈ D, (11)

where, x̂ =
[
x̂1 x̂2

]T ∈ R2 is the state estimation of x through the hybrid observer
and z ∈ R2 is the state estimation of x through Luenberger observer. The matrix Ā :=

ΦAhΦ−1 := Φ (A−HC) Φ−1 with the linear correction term H =
[
h1 h2

]T ∈ R2

and the transformation matrix Φ ∈ R2x2 given as
[
Ahζ ζ

]
/|ζ|2; where ζ := Oh̄,

with h̄ =
[

0 1
]T

and O is the observability matrix of the pair (Ah, C). The vectors

v =
[
v1 v2

]T ∈ R2 and v̄ =
[
v̄1 v̄2

]T ∈ R2 provide estimations of the error
between the system state x (i.e. x − x̂) and the Luenberger state estimation z, i.e.
x−z, respectively. The nonlinear injection χi : R×R→ R2, i = 1, 2 take the following
structure:

χ1 (ε1 − v1) =

[
α1dε1 − v1c

1

2

α2dε1 − v1c0

]
,

χ2 (ε1 − v1) =

[
β1dε1 − v1c

2+γ

2

β2dε1 − v1c1+γ

]
.

The parameters αi, βi and γ are positive constants to be designed, and the
variable ε1 = y − Cz. The corresponding initial conditions are given as z(0, 0) = z0,
v(0, 0) = v0, v̄(0, 0) = v̄0, q(0, 0) = q0, and the flow and jump sets are defined as

C := {(x̂, z, v, v̄, q) ∈ R8 × {1, 2} : v − v̄ ∈ Cq}, (12)

D := {(x̂, z, v, v̄, q) ∈ R8 × {1, 2} : v − v̄ ∈ Dq}, (13)

where

C1 :=
{
ṽ ∈ R2 : |ṽ| ≤ ε+ ρ

}
, C2 := R2 \ D2,

D1 := R2 \ C1, D2 :=
{
ṽ ∈ R2 : |ṽ| ≤ ε

}
,

9



with ε > 0 and ρ > 0. The idea of this hybrid observer is to switch between the two
injections χ1 and χ2 in order to provide fixed-time attractiveness of the set correspond-
ing to zero estimation error by means of using χ1 near the estimation error origin and
χ2 far from it. Thus, based on a hysteresis mechanism [Goebel et al. (2012)], a hybrid
injection involving the logic variable q ∈ {1, 2} and the decision variable ṽ := v − v̄ is
proposed. The mechanism sets χ1 if the variable q equals to 1 and ṽ ∈ C1, and sets
χ2 if the variable q equals to 2 and ṽ ∈ C2, otherwise the variable q switches. The
auxiliary variable v̄, which never switches, help us to define the flow and jump sets
only in terms of known variables as follows: the subset C1 should be taken as a compact
neighborhood of the origin of ṽ that is contained in the attraction domain when using
χ2, while D2 should be taken as another compact neighborhood of the origin of ṽ such
that the solutions using χ1 that start in D2 do not reach the boundary of C1.

Using homogeneity properties, in [Ŕıos & Teel (2018)], it was shown that the
differentiator (11) is fixed-time convergent if the observer parameters are design as
follows:

(1) H such that matrix Ah is Hurwitz, and Φ−1 :=
[
Alζ, ζ

]
/|ζ|2.

(2) α1 = 1.5L
1

2 and α2 = 1.1L.
(3) γ > 0 is selected sufficiently small and β1 and β2 are chosen such that the

following matrix is Hurwitz [
−β1 1
−β2 0

]
.

(4) The flow and jump sets as in (12)-(13), with ε > 0 a small positive constant
and ρ > 0 sufficiently large such that |ṽχ1

(0, 0)| ≤ ε then |ṽχ1
| ≤ ε + ρ, where

ṽχ1
:= vχ1

− v̄, with vχ1
the trajectories of v for q = 1.

Since ṽ is measurable one can calculate ρ by means of simulations. Particularly, fixing
|ṽ(0, 0)| = ε, i.e. ṽ(0, 0) ∈ D2, it is possible to do some simulations in order to estimate
the region ρ and then ensure that any trajectory starting in D2 does not reach the
boundary of C1 while χ1 is used. In other words, the value of ρ should be greater
or equal to the overshot given by the Levant’s differentiator. Since the fixed-time
convergence property of differentiator (11) is proved using homogeneity properties,ass
such no convergence time estimate is available. Differentiator (11) uses the HOSMD
in its hybrid structure. As a result, it can be substantiated that in the presence of
measurement noise, the accuracy of this differentiator is the same to that of HOSMD.

4.2. Summary of the non-SM differentiators

4.2.1. Kalman-like observer (KO) [Besançon et al. (2010)]

In state-space form, model (2) can be written as,

ẋ1 = x2,

ẋ2 =
(
x3 − x3x

2
1

)
x2 − x4x1,

ẋi = 0, i = 3, 4, (14)

y = x1,

10



where, x1 = x, x2 = ẋ, x3 = µ and x4 = ω2. Next, consider a global transformation
defined as zi = xi, i = 1, 3, 4 and

z2 = x2 + x3

(
x3

1

3
− x1

)
,

Then, system (14) can be written as:

ż = A (y(t)) z, a(y) = y − y3

3
,

y = z. (15)

where

A (y (t)) =


0 1 a(y) 0
0 0 0 −y
0 0 0 0
0 0 0 0

 , C =
[

1 0 0 0
]

For system (15), the following observer was proposed in [Besançon et al. (2010)]:

˙̂z(t) = A (y (t)) ẑ(t)− S−1(t)CT [Cẑ(t)− y(t)] ;S (0) > 0,

Ṡ (t) = −ρS (t)−AT (y (t))S (t)− S (t)A (y (t)) + CTC. (16)

KO (16) provides exponential convergence for the extended Van der Pol oscillator
model (15). Specialty of the KO (16) lies in the fact that it provides simultaneous state
and parameter estimation. For the detail convergence analysis of observer (16), please
consult [Besançon et al. (2010)].

4.2.2. High-Gain Differentiator (HG) [Khalil (2017)]

This differentiator is given by:

ẋ1 = x2 +
η1

κ
{f (t)− x1} ,

ẋ2 =
η2

κ2
{f (t)− x1} , (17)

where, x1 and x2 are as defined in Section 4.1.1, η1, η2 and κ are positive tuning
parameters. The parametersη1 and η2 are designed in a way such that the roots of the
equation s2 + η1s+ η2 = 0 become negative and κ� 1. Convergence time of HG (17)
can be controlled by properly selecting the gain κ. However, for very small values of
κ, HG (17) shows impulsive-like transient behavior known as peaking phenomenon.

4.2.3. Extended Kalman Filter (EKF) [Simon (2006)]

Consider the following nonlinear system affected by process and measurement noise

ẋ (t) = f (x) + w (t) ,

y = Cx+ v (t) , (18)
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Table 1. Summary of the properties of the selected sliding-mode differentiators
Differentiator/Observer Type of convergence Knowledge required Asymptotic Accuracy

HOSMD Finite-time Lipschitz constant of the first derivative ϕ
1

2

NHOSMD Finite-time Lipschitz constants of the signal and the first derivative ϕ
1

4

URED Fixed-time Lipschitz constant of the first derivative ϕ
1

2

HFTD Fixed-time Lipschitz constant of the first derivative ϕ
1

2

where x (t) ∈ R2 are the states, w (t) is the process noise, v (t) is the measurement noise
and C =

[
1 0

]
. It is assumed here that both w (t) and v (t) are zero mean Gaussian

noise with their covariance matrices are denoted by Q and R. The Jacobian matrix

of systems (18) can be denoted as F (x) = ∂f(x)
∂x . EKF obtain the state estimation

through predictor-corrector structure whose equations are given below:
The prediction step

xk|k−1 = xk−1|k−1 + f
(
xk−1|k−1

)
Ts,

Pk|k−1 = Pk−1|k−1 +
[
Fk−1Pk−1|k−1 + Pk−1|k−1F

T
k−1|k−1

]
Ts +Q. (19)

The correction step

Kk = Pk|k−1C
T
(
CPk|k−1C

T +R
)−1

,

xk|k = xk|k−1 +Kk

(
yk − Cxk|k−1

)
,

Pk|k = Pk|k−1 −KkCPk|k−1, (20)

where
Ts sampling interval;
k sampling instant;
Q process noise covariance matrix;
R measurement noise covariance matrix;
xk|k−1 predicted state estimate;
xk|k optimal state estimate;
Pk|k−1 predicted error covariance estimate;
Pk|k optimal error covariance estimate;
Kk Kalman filter gain.

In the literature, very few results are available for the systematic tuning of EKF
parameters Q and R. Trial and error method is frequently used for the tuning of Q
and R.

A short summary of the properties of the selected sliding-mode differentia-
tors/observer can be found in Table 1.

5. Results and Discussions

In this section, the performance of the selected differentiators/observers will be com-
pared through experimental study of a Van der Pol oscillator. For model (4), estimating
the state x2 from measurement x1 is essentially a problem of derivative estimation. As
a result, the differentiators described in Section 4 will be very useful for this purpose.
Electronic circuit diagram of the model (4) can be seen in Fig. 1. The circuit param-
eters are: Ri = 1MΩ, i = 1, 6, R7 = 130Ω, R8 = 1.2KΩ, R9 = 100Ω, R10 = 1.5KΩ,
C1 = C2 = 1µF , LM741 is a general purpose operational amplifier and AD633 is a
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Figure 1. Left - overview of the experimental setup, Right - electronic circuit diagram of (2) [H. Ahmed et

al. (2018)].

4-quadrant multiplier operational amplifier. The parameters of the circuits are set in
a way so that ε ≈ 0.1. Then we can consider d0 = 3 as the bound of d (t, x). We
have used dSPACE 1104 board as rapid prototyping solution. The differentiators were
implemented using Simulink. The solver was the fixed-step Euler and the time step
was 0.001 seconds.

Discretization plays an important role in the real-time implementation of contin-
uous HOSM differentiators. Recent literature on this topic [Acary & Brogliato (2010);
D. Efimov, Polyakov, et al. (2017); Levant et al. (2016)] have considered the implicit
Euler method of discretization. Implicit Euler method has some very nice property
like global asymptotic stability even in the case of very slow sampling. However, it
has higher computational complexity than the explicit one. That is why, explicit Euler
scheme is mostly used in real-time implementation where computational complexity is
a big issue. Moreover in [D. Efimov, Polyakov, et al. (2017)], it was shown that for fast
sampling, explicit Euler scheme has better convergence speed than implicit one. In
our real-time implementation, we have considered sampling frequency of 1KHz which
is sufficiently fast. As such for the sake of computational complexity, explicit Euler
method was used in our work. However, through study on the discretization scheme
will be considered in a future work.

Next, the four differentiators were applied to estimate x1 and x2 from measure-
ment of x1. States x1 and x2 are the output voltages of LM741 op-amps as given in
Fig. 1. The values of the differentiators parameters can be seen in Table 2. The gains
were selected according to the tuning rules presented in Sec. 4.1.1, 4.1.2, 4.1.3 and
4.1.4 respectively.

There are also some existing results on the state estimation of the Van der pol
oscillator. We have selected KO, HG and EKF (described in Sec. 4.2.1, 4.2.2 and
4.2.3) to compare the performances of the second-order sliding-mode differentiators.
The values of the different parameters of these three techniques can also be found in
Table 2. The initial conditions are selected as: HOSMD, NHOSMD, URED, HFTD =
(0, 1), KO, HG = (0, 0) and EKF = (−0.1, 0). Slightly different initial conditions are
selected to avoid numerical stability issues.

Remark 2. To find the parameters of the EKF, some information about the type of
process and measurement noises are needed. The main source of measurement noise
in our case is the analog to digital conversion process. The noise introduced by this
process is very often of Gaussian nature [Ruscak & Singer (1995)]. To separate the
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Table 2. Parameters values of the differentiators

Differentiator/Observer Parameter Values
HOSMD λ1 = 1.5L, λ2 = 1.1L,L = 5

NHOSMD α = 9.18, β = 5.92, χ = 0.3, ν = 0.1

URED k1 = 2
√

5, k2 = 18, µ = 1

HFTD

H = [ 22 120 ]T ,Φ = I2,α1 = 2.5981,
α2 = 3.3000, γ = 0.75, β1 = 10.2560, β2 = 40.0743

C1 = {ṽ ∈ Rn : |ṽ| ≤ 28.5270} , C2 = Rn \ D2,

D1 = Rn \ C1,D2 = {ṽ ∈ Rn : |ṽ| ≤ 18.5270}
KO ρ = 10
HG η1 = 2, η2 = 1, κ = 0.05

EKF Q = diag [0.2 0.1] , R = 0.0356

noise, measured signal x1 was passed through a high pass filter. Then the covariance of
the noise signal can be easily calculated. To select the process noise covariance matrix
Q, trial and error method was used. In the literature, very few results can be found
regarding the systematic tuning of Q and R.

The performances of the selected methods can be seen in Fig. 2 and 3. From
Fig. 3, it can be seen that the selected differentiators perform very well to estimate the
state x2 with good convergence time. Except HOSMD, the convergence time is around
0.2 sec. which is quite good. Differentiation/observation errors in the case of state x2

can be seen in Fig. 4 and 5. In noise free case, the selected differentiators provide fi-
nite/fixed time convergence of estimation error. In the presence of measurement noise,
the differentiation errors are supposed to converge to a close vicinity of zero. In this ap-
plication, the measurement x1 was collected after analog-to-digital conversion (ADC).
The initial analog measurement had noise. ADC process also introduced errors1. As
a result, the differentiation errors obtained by the selected differentiators converge to
a close vicinity of zero (Fig. 4 and 5) in accordance with the prior theoretical find-
ings. Out of three comparison techniques, HG’s performance is close to the worst
performing (in terms of maximum steady-state error) sliding-mode differentiator i.e.
NHOSMD. This observation is similar to the findings reported in [Vasiljevic & Khalil
(2008)] where the performance of HG was compared with super-twisting differentia-
tor. However, the maximum error magnitude in steady-state is relatively high for the
methods KO2 and EKF. For example, the maximum error given by HFTD is 0.09V ,
while it is almost four times higher in the case of KO and EKF. Moreover, KO and
EKF are computationally complex. KO requires the inversion of a 4× 4 matrix while
several equations have to be solved for EKF. One point to be noted here is that KO
showed very good convergence time comparable to SOSM differentiators. The selected
HOSM differentiators (except HFTD) are very easy to implement both in analog and
digital form. HOSM differentiators also provide finite/fixed time convergence which is
very useful for observer based control as separation principle (separate design of ob-
server and controller) can be guaranteed. These demonstrate the suitability of HOSM
differentiators for real-time state estimation of nonlinear systems in practice. In this
particular case, the maximum steady-state error performance of HOSM differentiators
are better than the other selected methods. URED, HOSMD and HFTD provide al-

1For details about the ADC performance of dSPACE 1104 board, please consult DS1104 (2006) (page 159)
2By choosing sufficiently small ρ, the maximum error magnitude may be reduced. However, this will increase

significantly the convergence time.
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Figure 2. x1 and its estimates by different methods

most similar performances. The maximum differentiation error of these methods varies
between 0.09−0.0135V . Although the estimation error by NHOSMD in steady-state is
relatively higher than the others but still much better than the result of HG, KO and
EKF. A comparative summary of the different methods can be seen in Table 3. Graph-
ical representation of Table 3 can be seen in Fig 8. One point to be noted in Table 3, is
that we have considered only the maximum steady stare error along with convergence
time as performance criteria. Steady state error is also used as performance indicator
for differentiator performance comparison in [Vasiljevic & Khalil (2008)]. However,
there are other criteria as well, for example - maximum overshoot of the estimation
error, robustness to high or low frequency noise, etc. For the sake of simplicity, these
criteria are not considered in this work.

Figure 2, 3, 4 and 5 show that SOSM differentiators are suitable choices for real-
time online differentiation purposes. These observers provide robust estimation of the
unmeasured state x2 from the noisy digital measurement x1. Moreover, the estimation
errors converge to a close vicinity of zero in a finite/fixed time. Their estimation error
performances are better than HG and significantly better than KO and EKF as given
in Fig. 4 and 5. The overall performances of the differentiators are similar since all these
differentiators are based on the same principle i.e. sliding mode. However, depending
on the application, the choice of particular SOSM differentiator can be different. If the
focus is number of tunable parameters, then HOSMD is a good choice. For convergence
time sensitive applications, URED and HFTD are good choice. From computational
complexity view point, HOSMD, NHOSMD and URED can be good options as they
are easy to implement. From asymptotic accuracy view point, HOSMD, HFTD and
URED can be chosen. In this work, only first derivative was considered. Some practical
applications require higher order derivatives, for example, acceleration feedback from
position measurements only. In this case, some of the selected differentiators (or their
extensions) can provide higher order derivative estimation also. Except NHOSMD,
the selected differentiators can be used for the purpose of estimating higher order
derivatives. In this work, robustness with respect to high or low frequency noise was
not considered. This will be considered in a future work.
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Table 3. Estimation error x2 − x̂2 statistics of different methods when the oscillator reached the limit cycle.

Method Maximum
error (V )

max(x2−x̂2)
max(x2)

(in %)

Convergence
Time (in sec)3

HFTD 0.09 3.9 0.13
HOSMD 0.12 5.1 0.77
URED 0.135 5.8 0.26

NHOSMD 0.2 8.6 0.1
HG 0.25 11.1 0.2
KO 0.32 13.7 0.26

EKF 0.37 16 3.35
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6. Conclusion

In this paper, a comparison study of four different SOSM differentiators was performed.
The performances of the differentiators were compared experimentally by estimating
the states of Van der Pol oscillator. Experimental results showed that the performances
of the different differentiators are similar for this particular application. The differ-
entiators were also compared with other methods from the literature. Comparative
analysis showed the superiority of SOSM differentiators over other selected methods.
Finally, some conclusions were drawn based on theoretical and experimental findings
regarding the selection of SOSM differentiator in practice for various applications.
They are summarized below:

• In terms of parameter tuning, HOSMD is the simplest since only the Lipschitz
constant of the second derivative has to be known. URED and NHOSMD have
one more parameter to tune than HOSMD.
• URED and HFTD ensure fixed-time convergence while NHOSMD and HOSMD

provide finite-time convergence.
• HOSMD, NHOSMD and URED are computationally simple and easy to imple-

ment.
• HOSMD, UFTD and URED have better asymptotic accuracy than NHOSMD.
• HOSMD, HFTD and extension of URED can be used to obtain higher order

derivatives.
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Salgado, I., Camacho, O., Yáñez, C., & Chairez, I. (2014). Proportional derivative fuzzy
control supplied with second order sliding mode differentiation. Engineering Applications
of Artificial Intelligence, 35 , 84–94.
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