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Big Data in the Construction Industry: A Review of
Present Status, Opportunities, and Future Trends

Abstract—The ability to process large amounts of data and1

to extract useful insights from data has revolutionised society.2

This phenomenon—dubbed as Big Data—has applications for a3

wide assortment of industries, including the construction industry.4

The construction industry already deals with large volumes of5

heterogeneous data; which is expected to increase exponentially6

as technologies such as sensor networks and the Internet of7

Things are commoditized. In this paper, we present a detailed8

survey of the literature, investigating the application of Big Data9

techniques in the construction industry. We reviewed related10

works published in the databases of American Association of11

Civil Engineers (ASCE), Institute of Electrical and Electronics12

Engineers (IEEE), Association of Computing Machinery (ACM),13

and Elsevier Science Direct Digital Library. While the application14

of data analytics in the construction industry is not new, the15

adoption of Big Data technologies in this industry remains at a16

nascent stage and lags the broad uptake of these technologies in17

other fields. To the best of our knowledge, there is currently no18

comprehensive survey of Big Data techniques in the context of19

the construction industry. This paper fills the void and presents a20

wide-ranging interdisciplinary review of literature of fields such21

as statistics, data mining and warehousing, machine learning, and22

Big Data Analytics in the context of the construction industry.23

We discuss the current state of adoption of Big Data in the24

construction industry and discuss the future potential of such25

technologies across the multiple domain-specific sub-areas of the26

construction industry. We also propose open issues and directions27

for future work along with potential pitfalls associated with Big28

Data adoption in the industry.29

I. INTRODUCTION30

The world is currently inundated with data, with fast advanc-31

ing technology leading to its steady increase. Today, companies32

deal with petabytes (1015 bytes) of data. Google processes33

above 24 petabytes of data per day [1], while Facebook gets34

more than 10 million photos per hour [1]. The glut of data35

increased in 2012 is approximately 2.5 quintillion (1018) bytes36

per day [2]. This data growth brings significant opportunities37

to scientists for identifying useful insights and knowledge.38

Arguably, the accessibility of data can improve the status39

quo in various fields by strengthening existing statistical and40

algorithmic methods [3], or by even making them redundant41

[4].42

The construction industry is not an exception to the per-43

vasive digital revolution. The industry is dealing with sig-44

nificant data arising from diverse disciplines throughout the45

life cycle of a facility. Building Information Modelling (BIM)46

is envisioned to capture multi-dimensional CAD information47

systematically for supporting multidisciplinary collaboration48

among the stakeholders [5]. BIM data is typically 3D ge-49

ometric encoded, compute intensive (graphics and Boolean50

computing), compressed, in diverse proprietary formats, and 51

intertwined [6]. Accordingly, this diverse data is collated in 52

federated BIM models, which are enriched gradually and 53

persisted beyond the end-of-life of facilities. BIM files can 54

quickly get voluminous, with the design data of a 3-story 55

building model easily reaching 50GB in size [7]. Noticeably, 56

this data in any form and shape has intrinsic value to the 57

performance of the industry. With the advent of embedded 58

devices and sensors, facilities have even started to generate 59

massive data during the operations and maintenance stage, 60

eventually leading to more rich sources of Big BIM Data. This 61

vast accumulation of BIM data has pushed the construction 62

industry to enter the Big Data era. 63

Big Data has three defining attributes (a.k.a. 3V‘s), namely 64

(i) volume (terabytes, petabytes of data and beyond); (ii) 65

variety (heterogeneous formats like text, sensors, audio, video, 66

graphs and more); and (iii) velocity (continuous streams of the 67

data). The 3V‘s of Big Data are clearly evident in construction 68

data. Construction data is typically large, heterogeneous, and 69

dynamic [8]. Construction data is voluminous due to large 70

volumes of design data, schedules, Enterprise Resource Plan- 71

ning (ERP) systems, financial data, etc. The diversity of con- 72

struction data can be observed by noting the various formats 73

supported in construction applications including DWG (short 74

for drawing), DXF (drawing exchange format), DGN (short for 75

design), RVT (short for Revit), ifcXML (Industry Foundation 76

Classes XML), ifcOWL (Industry Foundation Classes OWL), 77

DOC/XLS/PPT (Microsoft format), RM/MPG (video format), 78

and JPEG (image format). The dynamic nature of construction 79

data follows from the streaming nature of data sources such 80

as Sensors, RFIDs, and BMS (Building Management System). 81

Utilising this data to optimise construction operations is the 82

next frontier of innovation in the industry. 83

[Fig. 1 about here.] 84

To understand the subtleties of Big Data, we need to 85

disambiguate between two of its complementary aspects: Big 86

Data Engineering (BDE) and Big Data Analytics (BDA). The 87

domain of BDE is primarily concerned with supporting the 88

relevant data storage and processing activities, needed for 89

analytics [9]. BDE encompasses technology stacks such as 90

Hadoop and Berkeley Data Analytics Stack (BDAS). Big Data 91

Analytics (BDA), the second integral aspect, relates to the tasks 92

responsible for extracting the knowledge to drive decision- 93

making [9]. BDA is mostly concerned with the principles, 94

processes, and techniques to understand the Big Data. The 95

essence of BDA is to discover the latent patterns buried 96

inside Big Data and derive useful insights therefrom [10]. 97

These insights have the capability to transform the future 98

of many industries through data-driven decision-making. This 99
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ability to identify, understanding and reacting to the latent1

trends promptly is indeed a competitive edge in this hyper-2

competitive era.3

Contributions of this paper: While some data-driven so-4

lutions have been proposed for the fields of the construction5

industry, there is currently no comprehensive survey of the6

literature, targeting the application of Big Data in the context7

of the construction industry. This paper fills the void and8

presents a wide-ranging interdisciplinary study of fields such as9

Statistics, Data Mining and Warehousing, Machine Learning,10

Big Data and their applications in the construction industry.11

Organization of this paper: The discussion in this paper12

follow the review structure shown in Fig. 1. We start with a13

thorough review of extant literature on BDE and BDA in the14

construction industry in Section II and III, respectively. After15

which, opportunities of Big Data in the construction industry16

sub-domains are presented in Section IV. Discussions about17

open research issues and future work, and pitfalls of Big Data18

in the construction industry are then presented in Section V19

and VI, respectively.20

II. BIG DATA ENGINEERING (BDE)21

Big Data Engineering (BDE) provide infrastructure to sup-22

port Big Data Analytics (BDA). Some discussions about the23

Big Data platforms worth consideration to understand the BDE24

adequately. Various Big Data platforms are developed so far25

with varied characteristics, which can be divided into two26

groups: (i) horizontal scaling platforms (HSPs), the ones that27

distribute processing across multiple servers and scale out by28

adding new machines to the cluster. (ii) And vertical scaling29

platforms (VSPs), in which scaling is achieved by upgrading30

hardware (processor or memory or disk) of the underlying31

server since it is a single server-based configuration. In the32

interest of brevity of this paper, the discussion here is confined33

to HSPs, notably Hadoop and BDAS only. We refer interested34

readers to Singh et al. [11] for a detailed explanation on their35

comparison and selection criterion.36

Due to clear performance gains of BDAS over Hadoop, it37

is getting more attention recently. However, BDAS is in its38

infancy with limited support and supporting tools. Whereas,39

Hadoop is still widely adopted and has become the de-40

facto framework for Big Data applications. These platforms41

offer tools to store and process Big Data. Some of the most42

prominent tools are discussed in the subsequent sections.43

A. Big Data Processing44

[Fig. 2 about here.]45

Parallel and distributed computation is at the core of BDE.46

A large number of processing models are developed for this47

purpose, which includes but not limited to:48

1) MapReduce (MR): MR is the distributed processing49

model to handle Big Data [13]. The entire analytical tasks50

in MR are written as two functions, i.e., map and reduce51

(see Fig. 2), which are submitted to separate processes called52

Mappers and Reducers. Mapper read data, process it, and gen-53

erate intermediate results. Reducers work on mappers’ output54

and produce final results which are stored back to the file 55

system. Hadoop—a popular Big Data platform—introduced 56

MR initially to the wider public and provided an ecosystem 57

to execute MR programs successfully. In a typical Hadoop 58

cluster, several mappers and reducers simultaneously run MR 59

programs. MR is a powerful model for batch-processing tasks. 60

However, it is struggling with applications that require real- 61

time, graph, or iterative processing. Latest versions of Hadoop 62

have encountered this issue to some extent where processing 63

aspect of MR is detached from rest of the ecosystem. To this 64

end, Yet Another Resource Negotiator (YARN) is introduced 65

that has taken Hadoop to an actually computationally-agnostic 66

Big Data platform. MR runs as a service over YARN, while 67

YARN handles scheduling and resource management related 68

functionalities. This separation has made Hadoop suitable for 69

implementing innovative applications. 70

2) Directed Acyclic Graphs (DAG): DAG is an alternative 71

processing model for Big Data platforms. In contrary to MR, 72

DAG relaxes the rigid map-then-reduce style of MR to a more 73

generic notion. BDAS—an emerging Big Data platform— 74

supports this kind of data processing through its resilient 75

component called Spark [14]. Spark holds supremacy over MR 76

in many aspects. Particularly, in-memory computation and high 77

expressiveness are keys to wider adoption of Spark. These 78

capabilities heralded the Spark a natural choice to support 79

iterative as well as reactive applications [14]. Spark is reported 80

to have ten times faster than MR on disk-resident tasks, 81

whereas hundred times faster for memory-resident tasks [11]. 82

Fig. 3 shows components of Spark. These technologies are 83

designed to support functions that are vital to the development 84

of enterprise applications. 85

[Fig. 3 about here.] 86

Examples of Construction Research using Big Data 87

Processing: MR and Spark have use cases across myriad 88

information systems (IS) of the construction industry. Despite 89

significance, these tools are rarely used to process BIM data 90

in construction industry applications. 91

Chang et al. [16] customised MR for BIM data (MR4B) 92

to optimise the retrieval of partial BIM models. They found 93

legacy data distribution logic of Hadoop MR inadequate, since 94

BIM data is intertwined as well as highly relative, and merely 95

placing it randomly might sparsely distribute BIM elements 96

across different blocks on Hadoop cluster nodes. Such place- 97

ment degrades querying performance due to increased disk 98

I/O required to bring sparsely distributed data together for 99

analysis using MR. To overcome this, a data pre-partition 100

and processing step is devised to parse, analyse and partition 101

logically relevant parts of BIM data (by floor number or 102

material family) and store it in the adjacent spaces on the 103

Hadoop cluster. Node multi-threading is introduced to utilise 104

the CPU maximally during analysis [16]. This way Hadoop 105

is customised for BIM data and querying components are 106

implemented as YARN applications. A BIM system for clash 107

detection and quantity estimation is developed to exploit the 108

proposed YARN applications. It is reported that the system has 109

improved the performance manifold, and the required tasks are 110
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executed at real time with reasonable response time.1

Lin et al. [7] presented the development of a specialised big2

BIM data storage and retrieval system for experts and naive3

BIM users. The intentions are to develop a highly interactive4

user interface for querying BIM data through mobile devices5

to maximise its utility and usability. User queries in plain6

English are re-formulated using the proposed natural language7

processing approach to retrieve highly complex BIM data,8

which are mapped onto a variety of visualisations. To optimise9

query execution, an MR join pre-processing is demonstrated10

to merge two BIM collections before query evaluation. The11

response time is reported to have enhanced by more than 40%12

compared to the same join pre-processing written in traditional13

technologies.14

B. Big Data Storage15

Another aspect of BDE is the Big Data storage, which is16

provided either by the distributed file systems or emerging17

NoSQL databases. These technologies are briefly discussed in18

the following subsections.19

1) Distributed File Systems: In this subsection, we are20

discussing two competing distributed file systems, namely21

HDFS and Tachyon.22

• Hadoop Distributed File System (HDFS)—HDFS is23

suitably designed for managing the larger datasets [17].24

It is designed specifically to work with a cluster of com-25

modity servers. Since the chances of hardware failure are26

higher in such settings, it provides greater fault tolerance27

for hardware failures. Data distribution and replications28

are the key traits of HDFS to achieve the fault tolerance29

and high availability. There are however situations when30

the usage of HDFS degrades performance, particularly in31

applications requiring low-latency data access. Similarly,32

it is also not ideal for storing a large number of small33

files due to the associated overhead for managing their34

metadata. Lastly, HDFS is not the choice of technology35

if applications require a significant number of concurrent36

modifications at random places in data.37

• Tachyon is the BDAS flagship distributed file system38

that extends HDFS and provides access to the distributed39

data at memory speed across the cluster. Some of the40

features where Tachyon has outsmarted HDFS include:41

(i) in-memory data caching for enhanced performance42

and (ii) backwards compatibility to work seamlessly43

with Spark as well as MR tasks without any code44

changes required to the programs.45

2) NoSQL Databases: Relational databases served IT in-46

dustry for the past couple of decades as de facto data man-47

agement standard. However, recently applications emerged48

that demanded more scalability, performance, and flexibility.49

Relational databases are found unsuitable for these applications50

due to their specialised storage and processing needs. Conse-51

quently, new systems came into being—called “Not only SQL”52

(NoSQL) systems—to fill this technological gap. NoSQL sys-53

tems improved traditional data management in numerous ways.54

More importantly, NoSQL systems eschew the rigid schema- 55

oriented storage in favour of schema-less storage to achieve 56

flexibility [18]. Today these systems are prevalent in myriad 57

data-intensive applications in many industries. Pointedly, the 58

architecture of NoSQL systems is well suited to fragmented 59

nature of construction industry’s data. 60

NoSQL systems store schema-less data in a non-relational 61

data model. Presumably, there are four data models for these 62

systems. 63

1) Key-Value: This is the simplest data model to store 64

unstructured data. However, the underlying data is not 65

self-describing. 66

2) Document: This data model is suitable for storing self- 67

describing entities. However, the storage of this model 68

can be inefficient. 69

3) Columnar: This data model favours the storage of sparse 70

datasets, grouped sub-columns, and aggregated columns. 71

4) Graph: This is a relatively new data model that supports 72

relationship traversal over a huge dataset of property- 73

graphs. Graph databases are getting popular than other 74

data models (see Fig. 4, where the x-axis represents 75

the period of popularity and y-axis shows a change in 76

popularity). Table VIII describes features of 12 prominent 77

databases. 78

[TABLE 1 about here.] 79

[Fig. 4 about here.] 80

Examples of Construction Research using Big Data 81

Storage: Despite significance for massive BIM data storage, 82

existing applications are still lacking their successful imple- 83

mentation. Das et al. [20] proposed Social-BIM to capture 84

social interactions of users along with the building models. 85

A distributed BIM framework, called BIMCloud, is developed 86

to store this data through IFC. Apache Cassandra, hosted 87

on Amazon EC2, is used. Jeong et al. [21] proposed a 88

hybrid data management infrastructure comprised two tiers. 89

The client tier that utilises MongoDB for storing the structured 90

data temporarily for efficiently completing analytical tasks, 91

whereas, the central tier employs Apache Cassandra to store 92

permanently the streams of sensor data generated over time. 93

Cheng et al. [22] have also employed the Apache Cassandra for 94

presenting their query language to extract partial BIM models. 95

Similarly, Lin et al. [7] exploited MongoDB to store BIM data 96

of building models for distributed processing through MapRe- 97

duce. MongoDB is tailored for IFC, with minor alterations to 98

IFC hierarchy for supporting MR-efficient query execution. 99

III. BIG DATA ANALYTICS 100

Big Data Analytics has a rich intellectual tradition and 101

borrows from a wide variety of fields. There have been 102

traditionally many related disciplines that have essentially the 103

same core focus: finding useful patterns in data (but with a 104

different emphasis). These related fields are Statistics (18301) 105

1While it can be difficult to pin down the exact time of genesis of a
technology, the year in which the domain’s seminal work was proposed is
provided to approximately sequence the various Big Data Analytics enabling
technologies chronologically.
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[23], Data Mining (1980), Predictive Analytics (1989 [24]),1

Business Analytics (1997), Knowledge Discovery from Data2

(KDD) (2002), Data Analytics (2010), Data Science (2010)3

and now Big Data (2012). Fig. 5 shows the relevance of these4

multidisciplinary fields to Big Data. So, Big Data Analytics5

is a broadening of the field of data analytics and incorporates6

many of the techniques that have already been performed. This7

is the key reason that most of the existing work, presented in8

subsequent subsections, has focused on data analytics rather9

than Big Data is that the Big Data revolution—i.e., the ability10

to process large amounts of diverse data on a large scale—has11

only recently happened. Existing approaches can be possibly12

extended to the environments, dealing with large, diverse13

datasets.14

[TABLE 2 about here.]15

Some ML-based tools have been developed for Big Data16

analytics. Table IX highlight some of the important ones. To17

showcase the implementation of BDA, we use MLlib (MLbase)18

code in the subsequent subsections.19

[Fig. 5 about here.]20

1) Statistics: In scientific studies, rigorous and efficient21

techniques are used to answer research questions. Careful22

observations (data) comprise the backbone of underpinning23

investigations. Statistics is the study of collecting, analysing,24

and drawing conclusions from the data, with the primary25

focus on selecting the right tools and techniques at every26

data analysis stage [29]. Right from the data collections,27

to efficiently analysing it, and then inferring or formulating28

conclusions out of it, all of these steps comes under the scope29

of statistics [30]. Various fields of analytics are borrowing30

techniques from statistics [29].31

Examples of Construction Research using Statistics: The32

industry is employing statistical methods in a variety of appli-33

cation areas, such as identifying causes of construction delays34

[31], learning from post-project reviews (PPRs) [32], decision35

support for construction litigation [33], detecting structural36

damages of buildings [34], identifying actions of workers and37

heavy machinery [35], [36], etc., are to name a few.38

[TABLE 3 about here.]39

2) Data Mining: Data Mining is concerned with the au-40

tomatic or semi-automatic exploration and analysis, of large41

volumes of data, to discover meaningful patterns or rules.42

Data Mining has the broader scope than other traditional data43

analysis fields (such as statistics) since it tends to answer44

non-trivial questions [37], [38]. For patterns discovery and45

extraction, Data Mining is primarily based on the technique(s)46

from statistics, machine learning, and pattern recognition [39],47

[40]. Several models are created and tested to assess the suit-48

ability of particular technique(s) for solving the given business49

problem. Models with the highest accuracy and tolerance are50

chosen and applied to the actual data for generating predictive51

results (including predictions, rules, probability, and predictive52

confidence).53

Databases are crucial to empowering various aspects of 54

data mining, in particular by taking care of the activities of 55

efficient data access, group and ordering of operations and 56

optimising the queries to scale up data mining algorithms. 57

Databases provide native support for analytics in the form 58

of data warehousing. In data warehousing, the copy of the 59

transactional data is stored specifically structured for querying 60

and the analysis [37], [41]. The transactional data is collated 61

from the operational databases using a process usually known 62

as Extract, Transform, and Load (ETL) [42]. Data in the 63

warehouse is typically analysed through the Online Analytical 64

Processing (OLAP). OLAP outperforms SQL in computing the 65

summaries (roll-up) and breakdown (roll-down) of the data. 66

Examples of Construction Research using Data Mining: 67

Kim et al. [31] employed data mining techniques to identify 68

the key factors that cause delays in construction projects. They 69

presented knowledge discovery in databases (KDD) framework 70

to analyse massive construction datasets. Limitations of ML 71

algorithms (such as incorrect prediction) are discussed and 72

overcome through statistical methods. Buchheit et al. [43] also 73

presented KDD process for the construction industry. Data 74

preprocessing is found to be the most challenging and time- 75

consuming step. Also, Soibelman et al. [44] illustrated the 76

applicability of KDD to construction datasets for identifying 77

causes of construction delays, cost overrun, and quality con- 78

trols. 79

Carrilli et al. [32] used data mining to learn from past 80

projects and improve future project delivery. Approaches such 81

as text analysis, link analysis and dimensional matrix analysis 82

are performed on data from multiple projects. Liao et al. [45] 83

employed association rule mining to proactively prevent oc- 84

cupational injuries. In another similar study [46], data mining 85

is used to explore the causes and distribution of occupational 86

injuries and revealed that falls and collapses are the primary 87

reasons of occupational fatalities. While Oh et al. [47] em- 88

ployed DW in construction productivity data, which is utilised 89

using a multi-layer analysis through OLAP in the proposed 90

system. SQL is quite prevalent in the industry for querying 91

partial BIM models query languages such as Express Query 92

Language (EQL) and Building Information Modelling Query 93

Language (BIMQL) are developed in the various construction 94

industry sub-domain applications [48], [49]. 95

These datasets underlying the identification of causes of 96

delays, learning from PPRs, BIM-based knowledge discovery, 97

preventing occupational injury, among others, evidently present 98

the 3V‘s of Big Data, and these applications can easily be 99

extended to this emerging revolution of Big Data Analytics 100

for features like efficiently processing querying partial BIM 101

models. 102

[TABLE 4 about here.] 103

3) Machine Learning Techniques: Machine learning (ML), 104

a sub-field of Artificial Intelligence (AI), focuses on the task 105

of enabling computational systems to learn from data about 106

specific task automatically. ML tasks can be categorized into: 107

i) classification (or supervised learning); ii) clustering (or 108

unsupervised learning); iii) association; iv) numeric prediction 109
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[51].1

ML has many applications across the construction applica-2

tions, such as the modelling of judicial reasoning and pre-3

dicting the outcomes of litigation is thoroughly studied using4

rule-based learning approaches [52], artificial neural networks5

methods [53], [54], [55], case-based reasoning techniques [56],6

[57], and hybrid methodologies [58], [59]. Such applications7

are discussed by ML techniques in the subsequent sections.8

A. Regression Techniques9

Regression is the supervised ML method, which is con-10

cerned about predicting the numerical value of a target variable11

based on input variables. For instance, estimating the cost of12

the design based on design specifications. Regression can be of13

the following types. The simple linear regression that is used14

for modelling the relationship between a dependent variable y15

and one explanatory variable x. Multiple linear regression that16

is used for modelling the relationship between one dependent17

variable (continuous) and two or more explanatory variables.18

This is commonly used regression approach. The logistic19

regression that is used for modelling the relationship between20

on categorical dependent variable and one or more explanatory21

variables. Listing 1 shows the MLlib code to demonstrate22

loading data, customising regression algorithm, developing the23

model, and finally using it to predict data point.24

1 v a l d f = s q l C o n t e x t . c r e a t e D a t a F r a m e ( d a t a ) .25

2 toDF ( ” l a b e l ” , ” f e a t u r e s ” )26

327

4 v a l r e g = new L o g i s t i c R e g r e s s i o n ( ) . s e t M a x I t e r ( 1 5 )28

5 v a l model = r e g . f i t ( d f )29

6 v a l w e i g h t s = model . w e i g h t s30

7 model . t r a n s f o r m ( d f ) . show ( )31

832

933

Listing 1. A Snapshot of MLlib Code for Regression Analysis

Examples of Construction Research using Regression: Siu34

et al. [60] employed regression for predicting the cycle times35

of construction operations using least-square-error and least-36

mean-square. The approach is evaluated on a project installing37

Viaduct Bridge and is reported to have higher accuracy of38

predictions. Aibinu et al. [61] employed linear regression for39

identifying the delays on construction projects. Their findings40

reveal that cost and time overruns are frequently occurring41

delay factors. Similarly, Sambasivan et al. [62] studied relation-42

ship between the cause and effect of delays in the Malaysian43

construction industry using regression models.44

Trost et al. [63] used multivariate regression analysis for45

predicting the accuracy of estimate during the early stages of46

construction projects. Estimates are given scores for gaining47

prediction accuracy. The results reveal that estimate score48

model is predicting the accuracy with very high significance.49

Chan et al. [64] employed multiple regression analysis for50

predicting the partnering success of contracting parties.51

Fang et al. [65] applied logistic regression analysis to52

explore the relationship between safety climate and individual53

behaviour. The results demonstrate the vivid relationship of54

safety climate and personal behaviour such as gender, marital55

status, education level, number of family members to support, 56

safety knowledge, drinking habits, direct employer, and indi- 57

vidual safety behaviour. 58

B. Classification Techniques 59

Classification is the supervised learning technique in which 60

programs emulate decisions automatically based on the pre- 61

viously made correct decisions. The input to classification 62

algorithms is a particular set of features, and the output is to 63

make a single selection from a short list of choices (categorical 64

or mutually exclusive). It suits situations where single but more 65

focused decisions are involved. Since these algorithms learn 66

by examples, carefully crafted examples of correct decisions 67

aside with input data are vital for algorithms to learn pre- 68

cisely. These algorithms learn to mimic the examples of right 69

decisions contrary to clustering in which algorithms decide 70

on their own without prior guidance. Classification intends 71

to choose a single choice from the limited set of possible 72

choices. Prominent classification algorithms include Logistic 73

Regression, Naive Bayes, Decision Trees, and Support Vector 74

Machine (SVM). These algorithms are slightly discussed in 75

the subsequent sections. 76

1) Naive Bayes Classifier: Naive Bayes is very simple but 77

the popular algorithm to create a broad class of ML classifiers 78

for diverse industrial applications. It is used to calculate the 79

joint probabilities of values with their attributes (features) 80

within the given set of cases. The attributes are considered 81

independent of each other, and this consideration is known as 82

naive assumption of conditional independence. The classifier 83

makes this assumption while evaluating cases. The classifi- 84

cation is made by taking into account the prior information 85

and likelihood of incoming information to constitute posteriori 86

probability model, which can be denoted by the following 87

expression. 88

Posterior = (Prior ∗ Likelihood)/Evidence (1)

Listing 2 shows MLlib code for Naive Bayes classifier, where 89

data is split into training (60%) and test (40%), and model is 90

built and used for making predictions. 91

1 v a l s p l i t s = p a r s e d D a t a . r a n d o m S p l i t ( Array ( 0 . 6 , 0 . 4 ) , 92

s eed = 11L ) 93

2 v a l t r a i n i n g = s p l i t s ( 0 ) 94

3 v a l t e s t = s p l i t s ( 1 ) 95

4 v a l model = NaiveBayes . t r a i n ( t r a i n i n g , lambda = 1 . 0 , 96

modelType = ” m u l t i n o m i a l ” ) 97

5 v a l p r e d i c t i o n A n d L a b e l = t e s t . map ( p => ( model . 98

p r e d i c t ( p . f e a t u r e s ) , p . l a b e l ) ) 99

6 v a l a c c u r a c y = 1 . 0 ∗ p r e d i c t i o n A n d L a b e l . f i l t e r ( x => 100

x . 1 == x . 2 ) . c o u n t ( ) / t e s t . c o u n t ( ) 101

Listing 2. A Snippet of MLlib Code for Naive Bayes

Examples of Construction Research using Naive Bayes 102

Classifiers: Jiang et al. [34] presented a Bayesian probabilis- 103

tic methodology for detecting the structural damages. Bayes 104

factor evaluation metric is computed from Bayes theorem 105

and Gaussian distribution assumption for accurate damage 106

identification. The effectiveness of the proposed techniques 107

is reported for assessing damage confidence of structures 108
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over five damaged scenarios of four-story buildings bench-1

mark. Gong et al. [35] presented a framework for automated2

classification of actions of workers and heavy machinery3

in complex construction scenarios. They employed Bag-of-4

Video-Features-Model alongside the Bayesian probability for5

evaluating and tuning action discovery. It is revealed that the6

proposed approach is capable of identifying several actions7

in highly complex situations and is faster than the traditional8

methods. Huang et al. [36] studied the effect of severe loading9

events, namely earthquakes or long environmental degradation,10

on civil structures. A Bayesian probabilistic framework is11

proposed to compute the stiffness reduction. Using simulated12

data, the proposed approach is found to measure the stiffness13

accurately. The approaches as mentioned earlier are reportedly14

revealed as compute-intensive; hence require contemporary15

Big Data technologies for enhanced accuracy and response.16

[TABLE 5 about here.]17

2) Decision Trees: Decision trees (DTs) is the modern ML18

method for predicting about qualitative and quantitative target19

features. The process of building DT begins with identifying20

decision node and then recursively split nodes until no further21

divisions are possible. The robustness of DT depends on the22

logic for splitting nodes, which is assessed by using concepts23

such as information gain (IG) or entropy reduction. Listing24

3 shows MLlib code to show DTs implementation; the data25

is split into training and testing sets, initialized parameters,26

created DT, and evaluated the model using data.27

1 v a l s p l i t s = d a t a . r a n d o m S p l i t ( Array ( 0 . 7 , 0 . 3 ) )28

2 v a l ( t r a i n D a t a , t e s t D a t a ) = ( s p l i t s ( 0 ) , s p l i t s ( 1 ) )29

3 v a l numClasses = 230

4 v a l c a t e g o r i c a l F e a t u r e s I n f o = Map[ I n t , I n t ] ( )31

5 v a l i m p u r i t y = ” g i n i ”32

6 v a l maxDepth = 533

7 v a l maxBins = 3234

8 v a l model = D e c i s i o n T r e e . t r a i n C l a s s i f i e r ( t r a i n D a t a ,35

numClasses , c a t e g o r i c a l F e a t u r e s I n f o , i m p u r i t y ,36

maxDepth , maxBins )37

9 v a l l a b e l A n d P r e d s = t e s t D a t a . map { p o i n t => v a l38

p r e d i c t i o n = model . p r e d i c t ( p o i n t . f e a t u r e s ) (39

p o i n t . l a b e l , p r e d i c t i o n )40

Listing 3. A Snippet of MLlib Code for Decision Trees

Examples of Construction Research using Decision Trees:41

Pietrzyk et al. [66] studied the issue of mould germination in42

building structures using fault tree analysis. Structure related43

deficiencies that are introduced during the construction process44

are identified and classified. A probabilistic quantification45

model is generated to compare building structures based on46

their tendency for mould germination. Desai et al. [67] have47

employed decision trees to analyse and assess the labour pro-48

ductivity in the construction industry. The traditional decision49

tree algorithm is slightly customised to suit construction data,50

which is reported to have improved the accuracy of proposed51

methodology, with more realistic results are obtained.52

3) Support Vector Machines (SVM): SVM is a widely53

used technique that is remarkable for being practical and54

theoretically sound, simultaneously. SVM is rooted in the field55

of statistical learning theory, and is systematic: e.g., training56

an SVM has a unique solution (since it involves optimisation 57

of a concave function). SVM uses kernel methods to map data 58

from input/parametric space to higher level dimensional feature 59

space. Listing 4 shows MLlib code to illustrate SVM, where 60

algorithm builds a model, compute accuracy on test data, and 61

evaluate the model. 62

1 v a l s p l i t s = d a t a . r a n d o m S p l i t ( Array ( 0 . 6 , 0 . 4 ) , 63

2 s eed = 11L ) 64

3 v a l t r a i n = s p l i t s ( 0 ) . cache ( ) 65

4 v a l t e s t = s p l i t s ( 1 ) 66

5 67

6 v a l n u m I t e r a t i o n s = 100 68

7 v a l model = SVMWithSGD . t r a i n ( t r a i n , n u m I t e r a t i o n s ) 69

8 70

9 v a l s c o r e A n d L a b e l s = t e s t . map { p o i n t => 71

10 v a l s c o r e = model . p r e d i c t ( p o i n t . f e a t u r e s ) ( s c o r e , 72

p o i n t . l a b e l ) } 73

11 74

12 v a l m e t r i c s = new B i n a r y C l a s s i f i c a t i o n M e t r i c s ( 75

s c o r e A n d L a b e l s ) 76

Listing 4. A Snippet of MLlib Code for SVM

Examples of Construction Research using SVM: To iden- 77

tify the damages in bridges, Liu et al. [68] employed SVM 78

and genetic algorithms (GA). The selection, crossover, and 79

mutation in GA are used for selecting best kernel parameters 80

which are used in SVM as model parameters. A numerical 81

simulation is presented to see the feasibility of the pro- 82

posed approach. Comparative analysis of GA-RBF (radical 83

basis function) and GA-BP (back propagation networks) is 84

conducted, which reveals that the proposed technique has 85

outsmarted these previously used approaches significantly for 86

damage identification in bridges. 87

Mahfouz et al. [69] studied automated construction docu- 88

ment classification using models, based on SVM and Latent 89

Semantic Analysis (LSA). The classification accuracy of these 90

models is compared and contrasted against the Gold standard 91

of human agreement measures. Relatively better results are 92

attained (with accuracy between 71% to 91%) than the pre- 93

viously used models. In another study [70], a construction 94

legal decision support system is developed using SVM. SVM 95

models extract legal factors from earlier cases to help the 96

judges to check the basis for their verdicts. Results of first, 97

second, and third-degree polynomial kernel SVM models are 98

compared and contrasted. Highest accuracy is revealed for the 99

first and second-degree polynomial SVM, of 76% and 85% 100

respectively, implemented using TF-IDF. Similarly, SVM is 101

used in fault detection system for HVAC under real working 102

conditions [71]. The SVM classifiers for fault detection and 103

isolation (FDI) are developed. The proposed approach can 104

efficiently detect and isolate many typical HVAC faults. 105

4) Artificial Neural Networks (ANN): Artificial Neural 106

Networks (ANNs) algorithms are well suited to problems 107

of classification or function estimation. Since their advent, 108

these algorithms are widely used in solving complex industrial 109

problems. Multi-layer perceptron (MLP) is the most commonly 110

used type of ANN. ANNs are typically made up of three 111

layers including an input layer, hidden (intermediate) layer, 112

and output layer. 113
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Data samples in MLP neural network are normalised and1

are fed into the input layer. This data moves from the input2

layer to one or two hidden layers and is finally passed onto the3

output layer, producing an output of the given ANN algorithm.4

Typically, x:y:z is used to describe the ANN topology in which5

x, y, z corresponds to the number of nodes in input, hidden,6

and output layers, respectively. During the training phase,7

the values of connections between nodes (a.k.a weights) are8

adjusted. Back propagation, simulated annealing and genetic9

algorithms are commonly used for training ANNs. Listing 510

shows MLlib code to explain lifecycle stages of ANN model11

development and evaluation.12

1 v a l s p l i t s = d a t a . r a n d o m S p l i t ( Array ( 0 . 6 , 0 . 4 ) , s eed13

= 1234L )14

2 v a l t r a i n = s p l i t s ( 0 )15

3 v a l t e s t = s p l i t s ( 1 )16

417

5 v a l l a y e r s = Array [ I n t ] ( 4 , 5 , 4 , 3 )18

619

7 v a l t r a i n e r = new M u l t i l a y e r P e r c e p t r o n C l a s s i f i e r ( )20

8 . s e t L a y e r s ( l a y e r s ) . s e t B l o c k S i z e ( 1 2 8 )21

9 . s e t S e e d (1234L ) . s e t M a x I t e r ( 1 0 0 )22

1023

11 v a l model = t r a i n e r . f i t ( t r a i n )24

12 v a l r e s u l t = model . t r a n s f o r m ( t e s t )25

13 v a l p r e d i c t i o n A n d L a b e l s = r e s u l t26

14 . s e l e c t ( ” p r e d i c t i o n ” , ” l a b e l ” )27

15 v a l e v a l u a t o r = new28

M u l t i c l a s s C l a s s i f i c a t i o n E v a l u a t o r ( ) .29

se tMet r i cName ( ” p r e c i s i o n ” )30

Listing 5. A Snippet of MLlib Code for ANN

Examples of Construction Research using ANN: Chen31

et al. [72] tailored ANN for fault detection of engineering32

structures, caused due to vibration and fatigue. The approach33

is reportedly revealed to yield better results in structural fault34

diagnosis. Fang et al. [74] employed ANN for structural35

damage detection. Back propagation algorithm, empowered36

by heuristics-based tunable steepest descent method, is used37

for training the neural network. Frequency response functions38

(FRF) are used for structural damage detection. A case study of39

cantilevered beam is analysed for unseen, single, and multiple40

damage types. Similarly, ANN is employed alongside GA in41

[73] for fault classification, in which ANN and GA comple-42

mented each other in reconstructing the missing input data.43

Moselhi et al. [75] deliberated the usefulness of ANN over the44

conventional expert-based systems, employed in developing45

various applications for the construction industry. A generic46

neural network based architecture is described, which is val-47

idated by implementing an application for optimal markup48

estimation. It is argued that ANN-based intelligent systems49

guarantee ideal performance over the systems, developed using50

conventional expert systems based approaches.51

ANN algorithms have recently brought revolution in ma-52

chine learning through deep learning. New algorithms of ANN53

are designed to learn from high dimensionality data (i.e., Big54

Data), which seek special attention in all the construction55

industry applications where ANN is employed.56

5) Genetic Algorithms (GA): Genetic Algorithms (GA) are57

evolutionary ML algorithms that are inspired by the natural58

evolution process. It computes better solutions to optimisation 59

problems using the concepts such as inheritance, mutation, 60

selection, and crossover. Typically GA algorithms involve 61

creating two integral components, including (i) genetic rep- 62

resentation (array of bits) of the problem, and (ii) a fitness 63

function to evaluate solution domain. The process starts with 64

initiating a solution randomly and then keeps improving it 65

through iterative application of mutation, crossover, inversion 66

and selection unless an optimal solution is found. 67

Examples of Construction Research using GA: Chen et 68

al. [76] used GA to develop cost/schedule integrated planning 69

system (CSIPS) which is focused on assigning crew optimally 70

under complex set of constraints pertaining to resources and 71

workforce. GA couple with BIM and object sequencing matrix 72

is used to achieve feasible crew assignment in CSIPS system. 73

Similarly, Moon et al. [77] developed an active BIM system 74

for assessing the risks imposed by schedule and workspace 75

conflicts that typically happens during the construction phase 76

of a project. This active BIM system used fuzzy and GA 77

algorithms for efficiently generating the optimal plan for 78

workspace conflicts. 79

6) Latent Document Analysis (LDA)/ Latent Semantic 80

Analysis (LSA): LSA determines the meaning of words over 81

a large corpus of documents using statistical techniques. It 82

uses singular value decomposition method as its entire basis 83

for computation. It is widely used in text analytics where it is 84

used for vocabulary recognition, word categorization, sentence 85

word priming, discourse comprehension, and essay quality 86

assessment. LSA is based on the following measures. 87

1 v a l c o r p u s = p a r s e d D a t a . z i p W i t h I n d e x . map ( . swap ) . 88

cache ( ) 89

2 v a l ldaModel = new LDA( ) . se tK ( 3 ) . run ( c o r p u s ) 90

3 v a l t o p i c s = ldaModel . t o p i c s M a t r i x 91

Listing 6. A Snippet of MLlib Code for Latent Semantic Analysis

1) Precision—is the fraction of retrieved documents, which 92

are relevant. It is useful to assess the quality of LSA 93

approaches. 94

2) Recall—is the fraction of the relevant documents, which 95

are retrieved. Recall mostly informs about the complete- 96

ness of LSA approaches. 97

3) F-Measure—is often used to combine precision and recall 98

for assessing the accuracy of tests. 99

Listing 6 shows MLlib code to demonstrate the implemen- 100

tation of LDA, where a corpus is created, and documents are 101

clustered based on word distribution. 102

Examples of Construction Research using LDA & LSA: 103

Kandil et al. [79] employed LSA for automated construction 104

document classification. The proposed technique classified two 105

sets of documents: (1) documents with low word variations 106

(claims and legal documents), and (2) documents with high 107

word variations (correspondence and meeting minutes). The 108

evaluation of proposed technique provided satisfactory classi- 109

fication results. Mahfouz et al. [69] employed a hybrid ML- 110

based construction document classification methodology built 111

on top of SVM and LSA. The presented results are relatively 112

better than approaches based on a single ML technique. Salama 113
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et al. [78] employed LSA-based classifiers for this purpose1

where the documents clauses are automatically classified into2

predefined categories such as environmental, health, etc., be-3

fore rule extraction. The developed method is reported to4

achieve 100% and 96% recall and precision respectively.5

7) More Construction Industry Research using Classi-6

fication: Classification algorithms have been used in con-7

struction for many tasks. In this subsection, we will discuss8

some of the important applications of classification for the9

construction industry. In particular, we will review document10

classification, document analysis, image-based classification,11

the classification for predicting project overrun, and finally, the12

classification for safety analysis. Pointedly, these applications13

need to be revamped with the Big Data technologies, since they14

present similar challenges of high dimensionality, velocity,15

and variety. Besides, these applications also involve classy16

computation while performing domain-specific tasks.17

Document Classification: Different techniques are devised18

to classify automatically documents based on various classifi-19

cation systems such as CSI MasterFormat, CSI UniFormat, and20

UniClass. Caldas et al. [80] used SVM to organise construc-21

tion documents based on the CSI MasterFormat classes. The22

relevance of documents with terms is calculated by Boolean23

weighting, absolute frequency, TF/IDF, and IFC weighting.24

The prototype system is evaluated and found very relevant.25

Rehman et al. [81] classified construction documents into26

two distinct groups of good and bad information-containing27

documents. Three layered ML approach is employed. Decision28

Trees (DT), Naive Bayes, SVM, and KNN algorithms are used29

to check the accuracy of classification. Except for the DT, the30

rest of algorithms have significantly improved the classification31

accuracy. Similarly, Liu et al.[82] presented the process for32

structured document retrieval for engineering based document33

management.34

Document Analysis: Soibelman et al. [83] proposed a35

comprehensive platform to store and analyse unstructured doc-36

uments used within a construction project. The system captures37

the essential attributes of these document types containing38

diverse data about text, web, image, and linking and stores39

it in an analytic-friendly format. These documents are then40

automatically linked to the appropriate binary files (building41

models) using different ML classifiers, which dramatically42

improved the information retrieval and significantly reduced43

overall searching time of project managers.44

Image-Based Classification: Construction site photography45

logs comprise a significant chunk of construction documen-46

tation. A novel ML-based classification system is proposed47

in [84] which uses Whitening Transform (WT), SVM, and48

Biased Discriminant Transform (BDT) algorithms to classify49

and index construction site images. The proposed approach has50

significantly boosted the results of traditional search engines.51

Predicting Overrun Potential: Williams et al. [85] analysed52

highway project bidding data for interested trends informing53

about project overruns. Data exploration revealed that bids54

with higher ratios tend to have significant cost overruns.55

Based on these ratios (as independent variables), an automated 56

ML-based algorithm (Ripple Down Rules) is employed to 57

classify the overrun potential of construction projects into 58

following discrete values of Near, Overrun, BigOverrun. This 59

exploration has revealed interesting rules for assessing the 60

dilemma of project cost overruns. Similarly, Elfaki et al. [86] 61

explored the whole breadth of intelligent systems developed 62

using different ML algorithms for construction project cost 63

estimation. 64

Safety Analysis: Han et al. [87] presented an approach that 65

uses site videos to measure the workers’ behaviour towards 66

safety. The proposed approach analyse the 3D skeleton motion 67

model of the workers to identify their actions. Since safe and 68

unsafe actions are known, so the training data is correctly 69

labelled for safe and unsafe actions, which is exploited by 70

the classifier for learning. As a case study, the motion of 71

worker while climbing the ladder is analysed. It is revealed 72

that classifier can successfully identify the moves that can 73

potentially lead to site injuries. 74

[TABLE 6 about here.] 75

C. Clustering Techniques 76

Clustering is used to find groups that have similarity in their 77

characteristics. Intuitively, clustering is akin to unsupervised 78

classification: while classification in supervised learning as- 79

sumed the availability of a correctly labelled training set, the 80

unsupervised task of clustering seeks to identify the structure 81

of input data directly. Items in one cluster are similar to each 82

other whereas different from the items of other clusters. Some 83

of the examples of clustering algorithms include K-means, O- 84

means, fuzzy K-means, and canopy. Listing 7 shows MLlib 85

code for clustering data using K-Means and evaluating the 86

model using Within Set-Sum-of-Squared-Errors. 87

1 v a l n u m C l u s t e r s = 2 88

2 v a l n u m I t e r a t i o n s = 20 89

3 v a l c l u s t e r s = KMeans . t r a i n ( pa r s edDa ta , numClus te r s , 90

n u m I t e r a t i o n s ) 91

4 v a l WSSSE = c l u s t e r s . computeCos t ( p a r s e d D a t a ) 92

Listing 7. A Snapshot of MLlib Code for K-Means

Examples of Construction Research using Clustering: 93

Ng et al. [88] used clustering to group the facilities based 94

on the deficiency descriptions stored in the facility condition 95

assessment database. The results have shown that facility 96

deficiencies are unique and always a function of location and 97

type of the facility. Fan et al. [89] employed clustering for 98

developing construction case retrieval system to identifying 99

accidents occurred in the past. The goal is to resolve the 100

disputes before provoking litigation and work interruptions. 101

It is noticed that the NLP based approaches performed far 102

better than case-based reasoning techniques, while measuring 103

the similarity of case documents. 104

A hybrid approach is adopted in [90] to group construction 105

project documents automatically. The approach initially uses 106

clustering to generate classes for these documents based on 107

textual similarity measures. Later on text classifier is used 108
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to classify relevant documents from the construction docu-1

ment information system. This hybrid approach has drastically2

improved the recall and F-measure. Clustering becomes non-3

trivial with massive datasets comprising millions of dimen-4

sions.5

D. Natural Language Processing (NLP)6

The NLP is concerned with creating computational models7

that resemble the linguistic abilities (reading, writing, listening,8

and speaking) of human beings. It provides basic concepts9

and methods for text processing and analysis, such as part10

of speech (POS) tagging, tokenization, sentence splitting,11

named entity recognition, and semantic role labelling, etc. This12

field brings together diverse techniques from computational13

linguistics, speech recognition, and speech synthesis to process14

human languages.15

Examples of Construction Research using NLP: The NLP16

has a broad range of applications for knowledge acquisition17

and retrieval in the construction industry. Al-Qady et al. [91]18

used NLP to develop ontologies from construction contrac-19

tual documents. They employed NLP-based Concept Relation20

Identification using Shallow Parsing (CRISP) for automatically21

extracting the concepts and concept relationships from the text22

of contract documents. The Kappa score and F-measure have23

significantly improved knowledge acquisition, while construct-24

ing legal ontology. The works in [92], [93], [94] proposed25

an NLP-based information extraction system for automated26

compliance checking from construction regulatory documents.27

A set of pattern-matching and conflict resolution rules has been28

developed that employ syntactic (syntax/grammar-related) and29

semantic (meaning/context-related) text features during NLP30

processing. A technique for tagging, separation, and sequenc-31

ing of regulatory document elements is proposed to generate32

high-quality ontology. The proposed algorithm is tested on33

the regulatory documents, retrieved from the International34

Building Code and the results are promising with higher35

precision and recall.36

E. Information Retrieval (IR)37

Web search engines are the most common examples of IR38

systems, where information is typically organised as a collec-39

tion of documents. IR systems deal mainly with unstructured40

textual data (that have no defined schemas). Besides, these41

systems can also handle complex, unstructured data such as42

images. Approximation and ranking are the vital attributes43

of the IR query languages. Queries are specified as search44

terms encapsulated in keywords and logical (AND & OR)45

connectives. These queries are evaluated with approximation46

based relevance ranking, where documents are identified and47

returned based on their relevance to a query.48

Examples of Construction Research using IR: Demian et49

al. [95] developed CoMem-XML system to augment searching50

through granularity and context. The system is enhanced51

for contextual similarity, which is revealed to be of greater52

usefulness and usability to construction professionals. Tserng53

et al. [96] developed IR system called Knowledge Map Model 54

System (KMMS) to facilitate construction professionals for 55

managing and reusing construction knowledge from a va- 56

riety of unstructured documents. Fan et al. [97] proposed 57

a framework for managing unstructured construction project 58

documents where terms dictionaries and dependency textual 59

documents are used. The framework is evaluated, and its 60

usefulness is revealed. 61

Hsu et al. [98] employed context-based text mining for 3D 62

CAD documents exploration. Traditional systems depend on 63

textual naming and require designers to memorise and embed 64

these descriptions within the design documents. To this end, 65

a context-based CAD document retrieval system (CCRS) is 66

developed for extracting the context from CAD documents 67

into the characteristic document (CD), which is exploited 68

by query planner to select the documents. Lin et al. [99] 69

studied the retrieval of technical documents like journal papers, 70

patents, technical reports, or domain handbooks. A concept- 71

based IR system is developed to illustrate the effectiveness of 72

proposed partitioning approach. It is shown that the proposed 73

approach is quite useful for concept-based IR of technical 74

documents. Al-Qasy et al. [100] introduced an electronic doc- 75

ument management system (EDMS) to manage construction 76

project documents. At the crux of this system lies the proposed 77

idea of document discourse, which determines the semantic 78

similarity of documents. A classification algorithm, using 79

document discourse, is implemented for classifying project 80

documents. The system is evaluated by a group of experts. 81

IV. OPPORTUNITIES 82

A. Resource and Waste Optimization 83

Rapid urbanisation has escalated construction activities 84

globally, which triggered construction industry to consume the 85

bulk of natural resources and produce massive construction 86

and demolition (C&D) waste [101]. The adverse impact of 87

construction activities on the environment has serious implica- 88

tions worldwide [102]. Existing waste management approaches 89

are based on Waste Intelligence (WI), which suggests remedial 90

measures to manage waste only after it happens [103]. These 91

systems mostly answer close-ended questions such as projec- 92

t/site wise waste generated, progress towards defined waste 93

targets, and understanding how a particular design strategy 94

produces waste [104]. The end users are provided hindsight 95

with limited insight on waste minimisation. 96

However, data-driven decision-making at the design stage 97

is revealed to bring a revolution for preventing a significant 98

proportion of construction waste [105], [104]. This compels a 99

paradigmatic shift from the static notion of WI to a more pro- 100

gressive idea of Waste Analytics (WA) [106]. Waste minimisa- 101

tion through design is the future of waste management research 102

[101]. WA advocates proactive analyses of disaggregated and 103

massive datasets to uncover non-obvious correlations related to 104

design, procurement, materials, and supply-chain, which could 105

lead to waste during the actual construction stage. It explores 106

waste data in a forward-looking way [104], [106]. Advanced 107

analytical approaches could be employed to forecast waste and 108
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prescribe the best course of actions to pre-emptively minimise1

waste.2

However, WA depends increasingly on the high-performance3

computation and large-scale data storage. It requires a sig-4

nificant number of diverse data of building design, material5

properties, and construction strategies to successfully carry out6

the process. Storing these datasets, using traditional technolo-7

gies, is not only insurmountable, but the real-time processing8

for underpinning high-dimensional analytical models is highly9

challenging. This calls for the application of Big Data tech-10

nologies for effective construction waste management. Partic-11

ularly, robust waste generation estimation models, BIM-based12

optimal materials selection during design specification, and13

holistic waste minimisation framework are key research areas14

which call for the applications of these Big Data technologies15

to be employed. Table XIV summarises the state of the art and16

potential opportunities for resource and waste optimisation.17

Some of these opportunities are further explained in Section18

V.19

[TABLE 7 about here.]20

B. Value Added Services21

This section discusses a broad range of non-core services,22

which can be benefited from the emerging trend of Big Data23

in the construction industry.24

1) Generative Design: Generative design (GD) is another25

paradigm shift in the construction industry. The idea is to26

generate many designs automatically based on the specified27

design objectives, such as functional requirements, material28

type, manufacturing method, performance criteria, and cost29

restriction, among others. The intended GD tools employ so-30

phisticated algorithms to synthesise design space and generate31

a wide assortment of design solutions that meet the given32

design requirements. These designs are presented to designers33

for evaluation based on their performance. This evaluation34

enables the designers to reiterate designs by adjusting design35

goals and constraints unless a design is produced to their36

satisfaction. Advancements in this field can bring lots of bene-37

fits, particularly for resource optimisation and waste reduction38

through design.39

Attempts are made to verify the adequacy of this idea.40

To this end, Autodesk has come up with the Dreamcatcher41

tool, to facilitate designers, for generating designs based on42

abstract design requirements. However, Dreamcatcher is still43

in its infancy and is far from being a promising tool to be used44

for professional purposes. Many challenges are underlying45

to achieve GD realistically. Particularly, the generation and46

exploration of design space is time-consuming and is massive.47

The tool has to generate and compare a permutation of48

models for single client requirement. This field requires more49

R&D for getting mature to be usable in the enterprise-grade50

applications. These challenges of GD tools are expressly the51

jurisdiction of using Big Data technologies. These technologies52

can undoubtedly bring new levels of usability, accessibility,53

and democratisation in the design exploration and optimisation54

in next generation GD tools. Table XIV summarises the state 55

of the art and potential opportunities for this subdomain. 56

2) Clash Detection and Resolution: The identification of 57

design clashes is an integral part of the building model. Ideally, 58

this phase should be carried out before the start of con- 59

struction stage for effective project management. Traditional 60

paper-based approaches are widely substituted by BIM-enabled 61

automated approaches, which are found relatively inefficient 62

as well as less accurate to identify the majority of design 63

conflicts. However, existing BIM-enabled conflict resolution 64

solutions are still tedious and time-consuming for efficient 65

process automation. There are two aspects of these systems. 66

Firstly, adequate knowledge management is at the crux of 67

these systems to achieve accuracy. Wang et al. [38] proposed 68

a knowledge-based system for acquiring, formulating, and de- 69

ploying knowledge in BIM-enabled MEP design coordination. 70

However, much is required in this direction. Additionally, for 71

the later, design conflicts identification requires non-trivial 72

algorithms for design exploration, which are time-consuming. 73

These aspects are the subject of Big Data technologies, which 74

can augment knowledge representation as well as computation 75

through its well-known distributed and parallel computational 76

capabilities. Table XIV summarises the state of the art and 77

potential opportunities for this subdomain. 78

3) Performance Prediction: Performance prediction models 79

have been wide applicability in various domains of the con- 80

struction industry. Particularly, these models are instrumental 81

for pavement management systems, where system engineers 82

are facilitated to take right decisions while constructing, 83

maintaining, and rehabilitating the pavement structures. These 84

models use a large number of variables and their great combi- 85

nations, in which they influence each other as well as overall 86

model performance, and are developed using simple statistical 87

approach (like linear regression) to computational intelligence 88

techniques (as ANN). Karagah et al. [109] evaluated various 89

prediction models for predicting their accuracy for pavement 90

deterioration trends. Their evaluation shows that these system 91

involve computation-savvy analysis, which is time-consuming 92

and hard for traditional technologies to process at a real 93

time. Moreover, it is highlighted that high dimensionality is 94

inherent to the dataset produced for these applications, where 95

the extremely large number of variables contribute to the model 96

development. To this end, performance prediction field offers 97

opportunities to utilise Big Data technologies. Consequently, 98

Big Data technologies are of immense relevance and can aid in 99

the area regarding real-time computation, reliable model devel- 100

opment, and enhanced visualisation. Table XIV summarises the 101

state of the art and potential opportunities for this subdomain. 102

4) Visual Analytics: Analytical problems are of two kinds: 103

(1) the problems that have clearly defined and logical solutions; 104

and (2) the problems that have approximate heuristic solutions 105

(and no logic-based straightforward solution applies). The 106

former category is handled through automated approaches, 107

whereas the later ones are tackled through visualisation. 108

Human knowledge, creativity, and intuition are pivotal for 109

effective visualisation. Human knowledge works perfectly with 110
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smaller datasets, but its application in involving high dimen-1

sional larger datasets becomes impractical. The field of Visual2

Analytics (VA) came into existence to combine automated rea-3

soning and visualisation to solve complex analytical problems.4

Such systems are phenomenal to empower analytical abilities5

of users while perceiving, understanding, and reasoning about6

complex and uncertain situations. VA is one of the key domains7

that require Big Data technologies to execute data visualisation8

to provide personal views and interactive exploration of data.9

One of the key reasons behind the widespread adoption10

of BIM lies in its versatile visualisation capabilities. Existing11

software are quite competitive to visualise all dimensions (nD)12

of the design using the right set of tools and techniques.13

In this context, Castronov et al. [110] studied the role of14

visualisation in 4D construction management. Shortcomings of15

existing BIM visualisation are identified, and general guideli-16

nes/ protocols are prescribed for developing 4D visualisation17

in BIM authoring tools. To enable participation of technically18

unskilled BIM users, Zhadanovsky et al. [154] studied the issue19

of generating master plan visualisation. Similarly to promote20

sustainable energy use, Goodwin et al. [111] employed VA21

for classifying energy users. The data of household energy22

consumption along with geo-demographic data is used for23

deeper insights. Classification is reported to enable clusters24

and trends for understanding energy usage. However, state-of-25

the-art approaches of visualisation are needed during clustering26

process and decision making to enable overall comprehension.27

Chuang et al. [112] studied the development of a cloud-enabled28

web-based system for BIM visualisation and manipulation. The29

system improved communication and distribution of relevant30

information among the stakeholders.31

The scope of BIM is widening with more applications32

from construction as well FM stage has started utilising and33

extending it. As BIM data grows, these models get highly34

dimensional, so the visualisation of high-dimensional BIM35

models is challenging. VA is essential to both BIM and36

Big Data and provides sophisticated techniques to improve37

BIM and Big Data visualisation for better comprehension and38

interpretation. Table XIV summarises the state of the art and39

potential opportunities for this subdomain.40

5) Social Networking Services/ Analytics: Majority of con-41

struction industry problems are communication-related [113].42

Social media is another interesting trend that can help the43

industry to improve communication among the project team.44

This trend is slowly penetrating the industry. Social networking45

services to share updated project information along with wider46

practices for communicating the best practices of sustainability47

could be the next application areas.48

Some studies have been carried out in these directions. Jiao49

et al. [113] studied the usage of social media to communicate50

project management data, including schedules, progress mon-51

itoring data, and work assignments. The proposed approach52

facilitates the integration of useful project data with BIM.53

Meadati et al. [114] studied the integration of RFID, BIM, and54

social media to support facility managers in locating data from55

multiple documents. Jiao et al. [115] brought the web3D-based56

AR environment for integration of BIM and business social57

networking services (BSNS) over the cloud-enabled platform. 58

The goal is to enhance the overall comprehension of BIM 59

models. 60

However, a robust framework is required to capture every 61

useful social interaction into the BIM right from the design 62

to end-of-life of the building. Since data of social interactions 63

are likely to be in variety, velocity, and volume, Big Data 64

technologies could be harnessed to develop interesting domain 65

applications for enhancing the productivity of stakeholders. 66

Table XIV summarises the state of the art and potential 67

opportunities for this subdomain. 68

6) Personalized Services: In personalised services, the pri- 69

mary emphasis lies on an adaptation of the given facilities 70

based on the user’ choice. The users are empowered to 71

control the overall usage of services the way they desire. 72

These systems adapt based on various parameters such as user 73

behaviour. The input to such services could be manual as well 74

as automatic. 75

Gao et al. [116] developed SPOT+ system to enable office 76

workers to personalise the indoor thermal comfort. SPOT+ 77

used Predictive Personal Vote (PPV) to automatically adjust in- 78

door thermal comfort that mainly involve heating. The system 79

turns on the heating before the arrival of occupants whereas 80

turns the heating off immediately after their departure. Rabbani 81

et al. [117] proposed an enhanced personalised thermal com- 82

fort system called SPOT* that enables users to adjust lower 83

and upper bounds of indoor temperature as desired, which is 84

automatically regulated accordingly. SPOT* supports heating 85

as well cooling of indoor spaces. The system has significant 86

potential for energy reduction while maintaining the overall 87

comfort at desired level. Panagopoulos et al. [118] proposed 88

the AdaHeat system that uses intelligent agents to regulate 89

the heating for domestic consumption. A novel aspect of this 90

system is that it requires minimal user input. Chen et al. 91

[119] studied the correlation of human behaviour and energy 92

consumption in smart homes. Computational models to predict 93

energy consumption based on user behaviour are developed. 94

These models are used to develop a web-based system that 95

provides user with insights based on behaviour for optimal 96

energy consumption. 97

The applications to enable personalised services always 98

require scanning the surrounding environment for the events 99

of interest using sensing technologies, generating large vol- 100

umes of data. Accumulating such streams of data and then 101

processing it to generate actionable insights at real time for 102

point-in-time adaptation is non-trivial and is the subject of 103

interest for Big Data technologies. To this end, robust Big Data 104

enabled platform is required that provides a unified interface to 105

support the needs of diverse personalisation services, employed 106

in modern buildings. Table XIV summarises the state of the 107

art and potential opportunities for this subdomain. 108

C. Facility Management 109

Facilities management (FM) integrate organisational pro- 110

cesses to maintain the agreed services that support and improve 111

the effectiveness of its primary activities. Operations and man- 112

agement are the central parts of FM and are the longest stage in 113
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whole building lifecycle. Mostly FM activities (such as assets1

management, preventive maintenance, etc.) are laborious, and2

the efficiency of such tasks can improve by incorporating3

suitable supporting technology. Localization information is4

of great importance to these technology solutions. Today5

these facilities utilise advanced automation and integration to6

measure, monitor, control, and optimise building operations7

and maintenance. They provide adaptive, real-time control over8

an ever-expanding array of building activities in response to a9

wide range of internal and external data streams. As investment10

ramps up and more intelligent systems are brought online,11

more data will enter the energy management platform at faster12

speeds.13

Taneha et al. [120] proposed an approach to determine the14

FM personal location information using localization technolo-15

gies to support FM related activities. The system employs16

three technologies like RFID, Wireless LAN, and Inertial17

measurement units (IMUs) for this localization. To reduce the18

FM cost, Ng et al. [121] applied knowledge discovery and19

data mining over the facilities maintenance databases. Liu et20

al. [122] evaluated the capabilities of BIM to support the FM21

operations. A detailed needs of FM professionals are identified22

to harness BIM to support relevant tasks. The factors affecting23

the maintainability of facilities are mainly considered.24

Motamedi et al. [155] highlighted three challenges faced by25

the majority of FM systems. These include (i) inefficient &26

time-consuming searching interfaces, (ii) no unified interface27

for FM system to exchange information, and (iii) inability to28

store and process large volumes of data generated by these29

systems. These challenges evidently call for the applications30

of Big Data technologies in the development of FM systems.31

Particularly, in the case of predictive maintenance, BDA can32

inform FM managers whenever equipment is likely to break33

or require an upgrade. Consequently, FM organisations could34

benefit from lowered operating expenses, higher profit margins35

and enhanced service availability. Table XIV summarises the36

state of the art and potential opportunities for this subdomain.37

D. Energy Management & Analytics38

Two type of energy software are prevalent. Firstly, building39

energy simulation software to model the energy consumption40

of buildings. Their accuracy depends on the accuracy of41

provided parameters that are fine-tuned by experts. This fine42

tweaking is laborious and time-consuming. Automatic fine43

tweaking involves lots of computations. Sanyal et al. [123]44

studied the automatic generation of accurate input model45

with proposed Autotune workflow for the EnergyPlus energy46

simulation software. Pointedly, it is informed that the software47

operates on raw data of about 270 terabytes, and condenses48

that to approximately 80 terabytes of useful data. Data storage,49

transfer, and processing such datasets is inevitably the subject50

of Big Data technologies.51

Secondly, Building Energy Management Systems (BEMSs)52

are vital for buildings. And as part of their architecture,53

hundreds to thousands of sensors are installed to capture54

data. Linda et al. [124] used computational intelligence based55

anomaly detection to fuse data from multiple heterogeneous56

data sources and to process it for generating actionable in- 57

sights. Despite BEMSs use the state-of-the-art multi-processor 58

infrastructures, the issue of data management and processing 59

is reported to have taxed the boundaries of these systems. 60

Hong et al. [125] proposed a cloud-based storage system to 61

store and process energy data generated from a network of 62

thousands of Zigbee sensors. To persist this data, Singh et al. 63

[126] proposed cloud-based storage and processing architec- 64

ture. Berges et al. [127], [128] proposed novel approach for 65

identifying appliances and their events (on/off or low/high) to 66

measure their electric consumption precisely from the electric 67

influx. It is reportedly revealed that proposed approach requires 68

emerging data management and processing capabilities for real 69

life deployment. Similarly, Goodwin et al. [111] employed 70

visual analytics for energy users classification. It is highlighted 71

that state-of-the-art approaches of visualisation are at the 72

core of clustering process, decision making, and enhanced 73

overall comprehension of energy consumption. Wei et al. [128] 74

proposed an IOT-based framework to monitor and analyse the 75

energy consumption of Smart Buildings. 76

The software as mentioned above perfectly presents the 77

opportunities for Big Data analytics to advance the field. Point- 78

edly, energy-related data is of immense importance for various 79

analytics, which is usually discarded by building owners and 80

utility companies at a time interval. To present this data nicely 81

for advanced analytics is the next frontier of innovation in this 82

field. Table XIV summarises the state of the art and potential 83

opportunities for this subdomain. 84

E. Other Emerging Trends that Triggered Big Data 85

This section presents a few technologies that amplified 86

the advent of Big Data in the construction industry. Their 87

successful deployment to advance the industry is indeed the 88

function of Big Data analytics. 89

1) Big Data with BIM: Building Information Modelling 90

(BIM) is conceived to revolutionise construction industry in 91

many aspects [156], [131]. BIM is empowered with an extra 92

layer of data, captured throughout the whole building lifecycle 93

[131], [132]. This data can be unleashed to develop useful ap- 94

plications for improving the overall building delivery process. 95

Theoretically, BIM is declared as the de facto standard for 96

managing building data, its applications, in practice, across 97

every lifecycle stages of building are yet to develop, however. 98

Preconstruction stages are well-known for widely adopting the 99

BIM, whereas, it is progressively used lesser in the later stages 100

of building lifecycle [5]. Substantial research is made to extend 101

BIM for encapsulating different types of related data. 102

Goedert et al. [133] extended BIM for construction process 103

documentation. Chiang et al. [157] integrated power consump- 104

tion data with BIM models. Isikdag et al. [134] integrated 105

geographic information systems (GIS) data with BIM for 106

developing a fire response system. Yeh et al. [158] employed 107

BIM for onsite building information retrieval using augmented 108

reality. Wang et al. [38] extended BIM for spatial conflict data 109

for MEP models. Yu et al. [135] integrated BIMserver with 110

OpenStudion (a platform for assessing the energy efficiency 111

of building designs). Das et al. [20] tailored BIM for social 112
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interactions taking place while reviewing and commenting1

on different aspects of the design. Zheng et al. [136] in-2

tegrated BIM with diverse project data sources. Chaung et3

al. [112] exploited BIM for cloud-enabled design exploration4

and manipulation. Jiao et al. [113] sorted out the issues of5

integrating BIM with project schedules, progress monitoring6

data, and work assignments. Meadit et al. [114] integrated7

RFID data into BIM to locate project documents. Volk et al.8

[129] illustrated the automated creation of BIM models for9

existing buildings.10

These illustrate the gradual increase in the size and scope11

of the contents of BIM models, which eventually restricts the12

capabilities of traditional BIM-based storage and processing13

systems. To tackle this, Jiao et al. [6] tailored MapReduce for14

storage and processing BIM. However, there are still many15

use cases which may require sophisticated customizations to16

the way BIM is stored and processed. So in future, we are17

expecting BIM specialised Big Data storage and processing18

platforms. Up until recently, BIM is envisaged to contain data19

of construction industry only; however the emergence of linked20

building data has changed this perception. Despite linking BIM21

data to inter-industry applications, many interesting applica-22

tions can be developed by enabling the integration of BIM with23

Linked Open Data (LOD) datasets, such as weather, flooding,24

population densities, road congestions, and so on [147]. Such25

integration of BIM is undoubtedly resulting in Big BIM data,26

which justifies the emergence of Big Data in the specialised27

area of BIM. Table XIV summarises the state of the art and28

potential opportunities for this subdomain.29

2) Big Data with Cloud Computing: Cloud computing is30

Internet computing paradigm in which on-demand access to a31

shared pool of configurable resources is provided [159]. The32

idea is to outsource data storage and computation to third-party33

datacentres. Multiple users can simultaneously access the cloud34

services without having to purchase individual licenses. Cloud35

computing offers three service models. (i) Infrastructure-as-a-36

service (IaaS): In IaaS, the user is provided with an abstrac-37

tion to manage virtual/physical computers and cloud network38

services. (ii) Platform-as-a-service (PaaS): In PaaS, a user39

is provided with services pertaining to development environ-40

ments such as operating systems, programming languages, or41

databases, among others; (iii) Software-as-a-service (SaaS): In42

SaaS, the user is provided access to enterprise applications via43

the internet such as Revit 360.44

Cloud computing is widely adopted in the construction45

industry since it supports the integration of tasks in BIM-based46

applications. Hong et al. [125] utilised cloud computing for47

building energy management systems using Zigbee sensors.48

Das et al. [20] proposed a cloud-based BIM framework for49

integrating stakeholders interactions with BIM. Zhang et al.50

[136] utilised private clouds to offer BIM services across the51

whole building lifecycle. Klinc et al. [139] proposed SaaS52

platform for the structural analysis applications. Kumar et53

al. [140] employed cloud for SMEs design and construction54

firms. Chuang et al. [112] used cloud computing for BIM55

design exploration and manipulation. Redmond et al. [160]56

employed cloud for interoperability between BIM applications.57

Amarnath et al. [161] deployed Revit Server on the cloud for 58

collaboration and coordination of architectural and structural 59

models. Rawai et al. [162] explored cloud computing for 60

green and sustainable developments. Fathi et al. [142] used 61

the cloud for BIM-based context-aware computing. Beach et 62

al. [143] discussed the issues of enabling Google SketchUp 63

over the Amazon EC2 cloud. Chong et al. [144] evaluated 64

existing cloud computing applications and highlighted Google 65

Apps, Autodesk BIM 360, and Viewpoint, among others, 66

support majority of designers features on the cloud. Grilo et 67

al. [145] used the cloud for creating e-procurement platform— 68

Cloud Marketplaces. Jiao et al. [113] exploited cloud frame- 69

work for integrating project management data with building 70

models. Jiao et al. [115] integrated cloud computing with 71

latest technologies such as AR and business social networking 72

services to create virtual environment to visualise better and 73

understand BIM models. Wong et al. [137] highlighted the 74

legal issues related to cloud-based BIM models, including 75

security, responsibility, liability, and design ownership. 76

Cloud computing has already accelerated the uptake of IT 77

in the construction industry by transforming many domain 78

specific applications as discussed above. And the role of 79

Big Data in this transformation is overwhelming. Table XIV 80

summarises the state of the art and potential opportunities for 81

this subdomain. 82

3) Big Data with Internet of Things (IOT): An exciting 83

fact about Internet is it keeps evolving since its percep- 84

tion. It started with Internet-of-Computers and had evolved 85

into Internet-of-People, and is recently facing new paradigm 86

shift. With fast emerging technologies, the devices are getting 87

smaller and powerful, and the broadband connectivity is get- 88

ting cheaper and ubiquitous. This has led to the proliferation 89

of connected devices on the Internet, eventually resulted in an 90

exciting trend coined as the Internet-of-Things (IOT) [150]. 91

The primary vision behind IOT is to bring together the smart 92

devices and objects the vital parts of Internet. Fusing these 93

exciting physical and digital worlds are creating fascinating 94

opportunities of growth. Some of the popular areas where 95

IOT applications are successfully demonstrated across the 96

industries include logistics, transport, assets tracking, smart 97

homes, smart buildings, to energy, defence and agriculture. 98

Elghamrawy et al. [146] demonstrated RFID usage for 99

construction monitoring and quality control. Meadati et al. 100

[114] integrated RFID with 3D BIM documents of assets 101

for searching and locating objects quickly. Wei et al. [128] 102

proposed an IOT-based framework for building energy mon- 103

itoring. Zanella et al. [148] presented specifications of urban 104

IOT to envision the idea of Smart Cities. Kortuem et al. [163] 105

discussed the technical specifications of the smart object for 106

petrochemical and road construction industries. Curry et al. 107

[147] examined the storage and processing of energy sensors 108

data using cloud-based data management framework. 109

The applications of IOT are non-trivial and often deploy 110

hundreds or even thousands of sensor devices for data collec- 111

tion. Since construction industry presents unlimited use cases 112

for IOT, Big Data is inherently the subject of interest. IOT and 113

Big Data are complementary trends, with former to generate 114
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large volumes of data and the later to store and analyse1

these data at the real time in construction specific domain2

applications. Table XIV summarises the state of the art and3

potential opportunities for this subdomain.4

4) Big Data for Smart Buildings: Buildings evolved con-5

siderably over time. While providing comfort and security,6

buildings cause adverse environmental impact by consuming7

energy and producing lots of greenhouse gases [159]. Smart8

building technology is a paradigm shift to embrace the integra-9

tion of contemporary technologies with the prevailing building10

systems for striking the trade-off between the comfort maximi-11

sation and energy minimisation [149]. Building systems such12

as building automation, life safety, telecommunications, user13

systems, facility management systems, among others, provide14

actionable insights about different aspects of building and15

allows the users to control their interactions with building16

services better. The smart building incorporates technologies17

into building systems through a unified view. Often, these18

systems generate vast amounts of data and majority of this19

data remain untapped and often discarded. To truly realise20

smart buildings, this data of unprecedented size need to be21

analysed—a task that presents significant data management22

and processing issues. To this end, Big Data analytics is of23

immense importance to optimise total building performance24

via predictive analytics.25

McKinsey [159] highlighted smart buildings amongst the26

top ten emerging technology businesses. Azam et al. [149]27

implemented a prototype software Project Dasher to illustrate28

Smart Buildings. Data of sensors related to motion, CO2,29

temperature, airflow, lighting, and other acoustics properties30

are gathered and analysed. It is reportedly revealed that more31

than 2 billion data entries are accumulated in 3 months that32

reached the limits of legacy relational databases. Stankovic33

et al. [150] developed sensor based fire-fighting systems for34

skyscraper office building with the authorities to detect fires,35

alter fire situations, and aid in evacuation. Bonino et al. [151]36

studied complex event processing in smart buildings. spChain37

framework is proposed to support the real-time processing of38

sensor data. Miller et al. [152] analysed significant energy data39

through proposed DayFilter approach to precisely identify the40

diurnal patterns from the data.41

Despite the fact that sophisticated IT systems are currently42

being used for controlling various building operations via43

sensors with enhanced data collection and analysis capabilities.44

However, these systems are still a long way off the actual45

vision of smart building apps that empower the end user in46

understanding and controlling their interactions with the build-47

ing systems and spaces [164]. This discrepancy is due to the48

following reasons: (i) the services and functionalities currently49

being offered are quite rigid; (ii) the services are isolated50

and robust solutions for vertical and horizontal integration51

are not as yet available; and (iii) the supporting apps and52

APIs are often proprietary and lack standardization in many53

cases. For these reasons, these APIs can only be exploited by54

the BMS software itself, and are not amenable to the third-55

party development of applications, which restricts innovation56

at scale. In the future, Big Data Analytics based standard57

buildings APIs can bridge this technology gap and enable 58

integration of sensors, users, control systems, machinery for 59

providing innovative smart building services that promise com- 60

fort, safety, and energy. Table XIV summarises the potential 61

opportunities for research on the applications of Big Data in 62

Smart Buildings. 63

5) Big Data with Augmented Reality (AR): Augmented 64

reality (AR), which is an offshoot of virtual reality, is the field 65

in which computer-generated virtual objects are superimposed 66

over real-world scenes to produce mix worlds. It enables a 67

semi-immersive environment that accurately aligns real scenes 68

with corresponding virtual world imagery. This mixed overlay 69

enables the users to obtain additional information about the 70

real world. It is an emerging technology for enhancing human 71

perception. 72

Rankohi et al. [165] argued that visualisation and simulation 73

aspects of the construction industry apps can be revamped 74

with AR to enhance their usability. Some of the exciting AR 75

application areas are highlighted such as virtual site visits, 76

proactive schedule dispute identification and resolution, and 77

as-planned vs. as-built comparison. Chi et al. [166] pointed 78

out the following four pillars for wider AR adoption in the 79

construction industry. (i) Localization, the ability to accurately 80

impose virtual object on the real-life scene. (ii) A natural user 81

interface, which provides easy and intuitive user experiences to 82

increase the usability of AP software. (iii) Cloud computing, 83

which enables apps to store and retrieve information seam- 84

lessly everywhere, and (iv) mobile devices, which are getting 85

smaller, cheaper, and powerful and play a vital role in AR 86

environment. William et al. [153] went ahead by bringing 87

BIM, mobile technology and AR together. The BIM aspects of 88

geometry translation, indoor localization, attribute assignment, 89

and registration are explored for integration with mobile AR. 90

The study proposed BIM2MAR, which provides general guide- 91

lines for integrating BIM with mobile AR. It is emphasised 92

robust BIM integration requires new approaches for BIM 93

geometry conversion and indoor localisation of BIM using 94

geo-coordinates. Jiao et al. [115] developed a web3D-based 95

AR environment to integrate BIM, business social networking 96

services (BSNS), and cloud services. 97

AR and Big Data inevitably converge. The complexity 98

associated with Big Data in construction is enormous, which 99

can only be surmounted by advanced methods of visualisation, 100

particularly Augment and Virtual reality technologies. This 101

requires new interactive platforms and methodologies to visu- 102

alise construction related datasets. The aim is to comprehend 103

better and interpret the complicated structures and interconnec- 104

tion buried inside the Big BIM Data for design exploration and 105

optimisation. Table XIV summarises of progress and potential 106

opportunities for AR in the construction industry. 107

V. OPEN RESEARCH ISSUES AND FUTURE WORK 108

There are many interesting open research issues within the 109

construction industry for Big Data. Some of these include (but 110

are not limited to) the following: 111

A. Construction Waste Simulation Tool: 112
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Construction waste minimisation is the perennial issue of1

the construction industry. Estimating construction waste accu-2

rately, at the early stages of design or as the project proceeds, is3

core to so many exciting project activities. Particularly, waste4

estimation is preliminary to waste minimisation at the early5

stages of design, where it provides insights about how the de-6

sign is generating waste. These insights enable the designers to7

explore further and carry out corrective measures proactively,8

for waste efficiency at the early stages of design. So, construc-9

tion waste estimation has become the key research question10

in construction waste management research. This estimation11

requires thorough design exploration and optimisation from a12

myriad of dimensions. Existing waste estimation models are13

based on very limited, and static project attributes such as14

GFA, project contract sum, etc. [107], [108], [167], [168].15

However, these attributes are incapable of informing about16

the true size of construction waste, hence unable to generate17

a reliable waste estimate, regardless of how much data is18

used during their model development. A comprehensive waste19

estimation model that considers dynamic project attributes of20

deconstruction, standardisation and dimension coordination,21

reuse and recycling, and procurement, among together, needs22

to be developed. The model is also required to consider23

many attributes of construction materials, which heralds the24

development of a comprehensive materials database using25

open and linked data standards. The waste estimation model26

and construction materials database will be bundled into a27

standard and handy simulation tool, where waste estimates are28

visualised onto design elements through analytical dashboard29

alongside necessary prescriptions to minimise it through alter-30

native materials or better design strategies. This tool presents31

a rich application of BDA in construction waste minimisation32

to backstage its storage and computation related workloads.33

B. BDA enabled Linked Building Data Platform:34

Existing interoperability efforts in the construction industry35

are mainly concerned about exchanging the building data36

between domain-specific applications (architectural, structural,37

MEP, energy simulation, etc.) pertaining to the construction38

industry. However, many interesting use cases can be achieved39

from greater integration of BIM data with external data40

sources such as materials, GIS, sensors, geodata, etc. This41

interoperability, at a wider scale, enables the construction42

industry to achieve automation of its business processes, which43

can improve the overall efficiency of the project participants.44

Linked data coupled with the Web of data technologies are45

found phenomenal for this integration. Substantial progress is46

made to develop various enabling artefacts for this integration47

such as ifcOWL ontology [169], [170]. However, much has48

yet to be done. To this end, the development of a robust BDA49

enabled platform that supports the storage and processing of50

these diverse linked data sets pertaining to the building as well51

as other data, is required. This platform can provide the basis52

for the development of interesting applications, particularly for53

energy analytics and smart buildings.54

C. Big Data driven BIM System for Construction Progress55

Monitoring:56

Currently, BIM is prevalent in the design world, with very 57

limited utilisation across the construction and FM stages of 58

the building. The real intent of BIM could never be achieved 59

until it is employed in every stage of the building lifecycle. 60

At present, no such mechanism can facilitate the tracking of 61

progress of various construction sites using automated tools. 62

It is indeed labour-intensive as well impractical (to some 63

extent) to update the BIM model with such minute details 64

pertaining to the daily construction progress. As a result, real- 65

time construction progress monitoring is not an easy task, 66

because managers are required to visit their sites regularly and 67

assess the progress subjectively with the intended schedule, 68

which is less effective and error-prone. Employing Big Data 69

and sensing technologies could move the state of the art in 70

domain of construction progress monitoring to the next level. 71

Using latest imaging technology, the progress of the on-going 72

construction is captured at the real time. Big Data analytics 73

will process the real-time streams of these images to measure 74

the daily change and updated the BIM models and construction 75

schedule accordingly. The project managers are presented with 76

an update to date progress on the schedule, which will, in turn, 77

enable them to see whether they are lagging behind on the 78

project or still follow the schedule. Accordingly, the project 79

managers can proactively respond in case of any delay is 80

reported. This will save them a lot of money due to penalty 81

whenever the deadline is missed, and improve the overall 82

project monitoring and control. This is also aligned with the 83

vision of BIM adoption. In this way, Big Data can help the 84

industry to deliver the projects on time. 85

D. Big Data for Design with Data: 86

Currently, designs are produced solely based on the client 87

requirements and the designers experience. Thus, such designs 88

that suit wider needs of the users, as well as the surrounding 89

environment, are rare. For example, designers rarely consider 90

the data collected by manufacturers on hundred or thousands 91

of their product lines during design specification, which might 92

be quite valuable. Similarly, many other sources of data can 93

be relevant to designs such as users’ sentiments while inter- 94

acting with facilities, weather, flooding, energy consumption, 95

commute pattern in that vicinity, and population densities, 96

to name a few. These datasets could be harnessed to sup- 97

port for example the generation of an optimal construction 98

schedule. And the good thing is that these data are captured 99

using technologies such as the web, sensors, smart meters, 100

mobile phones, etc., and are made available through open 101

data initiative (in most cases). However, the design world 102

is still detached from harnessing these data sources for their 103

purpose. Currently, there is no such tool that can facilitate the 104

designers to leverage these data during their design activities. 105

If this is achieved, this can result in the paradigm shift 106

of Design with Data, where these diverse data sources are 107

integrated within the BIM authoring tools and made available 108

to architects, engineers, contractors, and facility managers at 109

early design stages. Big Data Analytics is indeed the key 110

to this frontier of innovation. This symbiotic integration of 111

diverse data sources with BIM will ultimately lead to the 112

generation of next generation designs that can meet the wider 113
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requirements of sustainability, users, environment, and even1

broader infrastructures of emerging concept of smart cities.2

VI. PITFALLS OF BIG DATA IN CONSTRUCTION3

INDUSTRY4

Despite the opportunities and benefits accruable from Big5

Data in this industry, some challenging issues remain of6

concern. This section discusses some of these challenges and7

provides suggestions to deal with them for the successful8

implementation and dissemination of Big Data technologies9

across various domain applications of the construction indus-10

try.11

A. Data Security, Privacy and Protection:12

Prominent among these concerns is the issue of data se-13

curity, data ownership, and management issues. To scale the14

hurdles posed by these challenges, several research studies15

have proposed and implemented security measures such as16

access control, intrusion prevention, Denial of Service (DoS)17

prevention, etc. [171], [172], [173]. These issues also require18

more study in the context of BIM-related construction data,19

and the appropriate solutions also need to be adopted in the20

underlying analytics workflows.21

B. Data Quality of Construction Industry Datasets:22

The construction industry is well-known for fragmented data23

management practices. Despite the aggressive promotion of24

BIM, companies using BIM are rare. Null values, misleading25

values, outliers, non-standardised values, among others, are26

some of the essential traits of industry data. And producing27

high-valued analytics is challenging due to poor data manage-28

ment practices. High-quality data is preliminary for successful29

Big Data projects. It is observed that analytics projects usually30

require approximately 80% of time cleaning noisy datasets31

before embarking on analytics. So, Big Data projects in32

construction industry shall also be specially taken care of, for33

data quality related issues. Otherwise, the resulting insights are34

likely to mislead, which in turn will result in unpleasant and35

pessimistic feeling in the industry. Consequently, the industry36

will be reluctant towards adopting such fascinating trends like37

Big Data.38

C. Cost Implications for Big Data in Construction Industry:39

40

Every technology incurs cost so introducing Big Data in41

construction is not for free of charge. Companies are required42

to set up data centres and purchase software licenses, which43

can be an attractive investment. Also, skilled IT personnel44

to keep the entire ecosystem running is another overhead.45

So Big Data has inevitably substantial cost implication. The46

construction business is considered amongst the low-profit-47

margin businesses, and introducing such costly add-ons to48

projects are more likely to be opposed and difficult to be49

defended. However, Big Data has the potential to enhance the50

overall project delivery by optimising processes and reducing51

risks that companies usually bear due to myriad inefficien-52

cies such as delays, litigations, etc. It is highly optimistic53

that construction industry can gain huge revenue from this 54

investment as experienced by other industries, provided the 55

right methodology is used to employ Big Data. The exact cost 56

implication of Big Data is, however, difficult to quantify. More 57

studies on cost-benefit analysis of using Big Data technologies 58

in construction projects are required. 59

D. Internet Connectivity for Big Data Applications: 60

To monitor project site activities at real-time, instant data 61

transmission between project sites (dams, highways, etc.) and 62

centralised Big Data repository should be supported. However, 63

project sites usually have low bandwidth; due to unavailability 64

of sophisticated networking infrastructure in rural, underde- 65

veloped areas. Advanced wireless sensor networks need to be 66

extended to tackle internet connectivity issues in these types of 67

Big Data applications; otherwise, the decisions on stale offline 68

data will not be useful for effective monitoring. 69

E. Exploiting Big Data to its Full Potential: 70

The effectiveness of Big Data cannot be measured just by 71

accumulating large volumes of data; it is more of the use 72

cases or industrial problems that dictate the usefulness of 73

these technologies. It is feared that the construction industry 74

might not extract the full value of accessible Big BIM Data 75

if the conceived use cases are vague. To this end, researchers 76

or domain experts are required to highlight domain-specific 77

problems that are the subject of Big Data. This way Big Data 78

as a technology will not be the driving force rather the industry 79

itself will lead the innovation by applying contemporary tools 80

to solve its topical issues. Additionally, Big Data is not the 81

silver bullet, it merely sets the stage. Skilled professionals 82

and domain experts, empowered with sophisticated analytical 83

workflows, are equally necessary to reap the overall benefits. 84

Without whom, the applications are likely to get into the 85

pitfall of producing too much information that should not be 86

delivering significant insights for the purpose. 87

VII. CONCLUSIONS 88

Although the construction industry generates massive 89

amounts of data throughout the life cycle of a building, 90

the adoption of Big Data technology in this sector lags the 91

progress made in other fields. With the commoditization of 92

the technology necessary for storing, computing, processing, 93

analysing, and visualising Big Data, there is immense interest 94

in leveraging such technologies for improving the efficiency 95

of construction processes. In this exploratory study, we have 96

analysed the extent to which the industry has employed Big 97

Data technologies. Towards this end, we have reviewed not 98

only the latest research but also relevant research articles that 99

have been published over the last few decades in which the 100

precursor to modern Big Data Analytics techniques have been 101

deployed in various domain-specific construction applications. 102

Principal Big Data technology streams are explained to help 103

readers to understand the complicated subject. Concepts of Big 104

Data Engineering and Big Data Analytics are demarcated; the 105

works utilising these technologies across various subdomains 106

of the construction industry are deliberated. 107
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Through our research, we conclude that while data-driven1

analytics have long been used in the construction industry due2

to the broad applicability of such techniques in many con-3

struction subdomains, the adoption of the recent, much agiler4

and powerful, Big Data technology has been relatively slow.5

Although Big Data trend is gradually creeping in the industry;6

its applicability is amplified further by many other emerging7

trends such as BIM, IOT, cloud computing, smart buildings,8

and augmented reality, which are also slightly elaborated. We9

presented some of the prominent future works along with10

potential pitfalls associated with Big Data while adopting it11

in the industry. To the best of our knowledge, this is the12

first in-depth review of the applications of Big Data related13

techniques in the construction industry. In our work, we have14

identified many potential application areas in which Big Data15

techniques can significantly advance the state-of-the-art in the16

construction industry. This work is of utility and relevance to17

all the construction researchers and practitioners who will like18

to harness the power of Big Data in the construction industry19

for developing exciting business applications.20
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TABLE I. PROMINENT NOSQL SYSTEMS AND THEIR CRITICAL FEATURES.

Product Name Product
Description Data Model(s) Language Concurrency Storage Key

Features

Cassandra Apache Cassandra is scalable database that provides proven fault-tolerance and tunable
consistency on cluster of commodity servers.

Columnar
Key-Value

Java,
Python MVCC Disk,

Hadoop, Plugin

High
Availability,
Partition Tolerance

HBase HBase is distributed data store that extended Google Bigtable to scale on HDFS. Its novelty
lies in storing and accessing data with random access. It doesn‘t restrict the kind of data
being stored.

Columnar
Key-Value Java Locks Hadoop Consistent,

Partition Tolerance

HyperTable Hypertable supports data distribution for scalable data management. It offers maximum
efficiency and superior performance. However, it lacks data management features such as
transaction and join processing.

Columnar C++ MVCC

Disk
Hadoop
GlusterFS,
Kosmos File System

Consistent,
Partition Tolerance

MongoDB MongoDB is a document-oriented database. It facilitates storage of documents with
variable schemas and is suitable for applications, storing complex types.

Document
Key-Value C++ Locks Disk,GFS,

Plugin
Consistent,
Partition Tolerance

CouchDB CouchDB is suitable for large scale web and mobile applications. It facilitate data storage
that are queried through web browsers, via HTTP. JavaScript is used to index, integrate,
and transform the database.

Document
Key-Value

Erlang,
C MVCC Disk High Availability,

Partition Tolerance

MarkLogic MarkLogic facilitates storing documents efficiently for easy and intuitive search. It is
suitable for applications that derive revenue, streamline operations, risk management, and
security.

Document
C,

Java,
Python

ACID
GFS
Hadoop
S3, RDF

Consistent,
High Availability,
Partition Tolerance

Redis Redis is in-memory system that can be used as a database, cache, and message broker.
When configured on cluster, it becomes scalable and highly available. It also supports
transaction processing.

Key-Value ANSI
C Locks RAM Consistent,

Partition Tolerance

Riak Riak is a distributed database that provides scalability and high availability. It achieves
performance and fault tolerance through built-in distribution and replications.

Key-Value Erlang ACID Disk, Plugin High Availability,
Partition Tolerance

BarkeleyDB Berkeley DB is embedded database for key-value dataset. It is written in C but supports
application development for C++, PHP, Java, Perl, among others.

Key-Value Java ACID RDF
Consistency,
Availability,
Partition-Tolerance

Neo4J Neo4J is a semantic store for creating, updating, deleting, and retrieving graph data. It
captures relationships natively and processes queries as paths through language called
Cypher. Neo4J is good option for applications, dealing with connected data.

Graph Java Locks Disk High Availability,
Partition Tolerance

OrientDB OrientDB is a system for large-scale and distributed graph management. The core features
include multi-master replication and sharding.

Graph Java ACID
Disk,
Plug-in
RAM, SSD

Consistent,
High Availability,
Partition Tolerance

Oracle
NoSQL Oracle NoSQL is designed specifically to provide highly reliability, scalability, and

maximum availability across the cluster of storage nodes. Data is replicated to survive
rapid failure and load balancing for distributed query processing.

Columnar
Document
Key-Value

Graph

Java ACID Berkeley DB
Architecture, RDF

Consistency,
Availability,
Limited
Partition-Tolerance
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TABLE II. BIG DATA ANALYTICS (BDA) ML TOOLS

Tool Name Description Supported
Languages ML at Scale Supported

Algorithms

Apache
Mahout [25]

Mahout is an open-source machine learning framework for quickly writing scalable and high
performance ML applications.

-Java
-Scala. Yes

-Collaborative Filtering
-Classification
-Clustering
-Regression

R [26]
R is an open-source programming language for statistical analysis. R is extremely extensible. With
huge developer base, thousands of R packages are available to provide variety of functionalities.
The graphics supported by R are highly polished and very powerful.

Many
languages Yes

-Collaborative Filtering
-Classification
-Clustering
-Regression

MLbase [27]

Spark has constituted a novel ML platform called MLbase, which has brought together highly
robust ML components, such as ML optimizer, MLI, and MLlib, to support the full lifecycle
activities, required to implement as well as use ML algorithms. ML optimizer automates the tasks
of ML pipeline construction to efficiently search algorithms of MLI and MLlib. MLI is the API to
develop ML algorithms using high-level constructs. MLlib is the Spark distributed ML library.

-Java
-Scala
-Python

Yes

-Collaborative Filtering
-Classification
-Clustering
-Regression

Oryx [14]

Oryx is an open-source ML library that has evolved over time out of the libraries and toolkits
developed by Cloudera. Based on the distributed input from HDFS, it builds predictive models
that are written to output in predictive model markup language (PMML). An interesting feature
of Oryx is its ability to keep the model updated under emerging streams of data from Hadoop.

-Java Yes

-Collaborative Filtering
-Classification
-Clustering
-Regression



TABLES 31

TABLE III. SUMMARY OF WORKS WITH STATISTICAL METHODS

Purpose of use Technique(s) employed References

Identifying the causes of
construction delays

-Frequency charts
-Correlation matrix
-Factor analysis
-Bayesian networks

[31]

Learning from
post project reviews (PPRs)

-Link analysis
-Dimensional matrix analysis [32]

Decision support
systems for construction litigation

-Naı̈ve Bayes
-Decision trees
-Rule inductive

[33]

Structural damage
detection in buildings

-Gaussian distribution
-Monte Carlo simulation [34]

Identifying workers
and heavy machinery actions
towards site safety

-Gaussian distribution
-Naı̈ve Bayes
-Bags of video feature

[35], [36]
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TABLE IV. SUMMARY OF WORKS ON DATA MINING

Purpose of use Technique(s) employed References

Causes of construction
project delays

-KDD
-Statistics [31]

Cost overruns and quality
control in construction
projects

-KDD
-Data function [43], [50], [44]

Learning from past
Projects (PPRs)

-Text mining
-Link analysis [32]

Identifying and
coordinating spatial
conflicts in MEP design

-KDD [38]

Presenting occupational
injuries

-Association rule mining
-Classification and
regression tree (CART)

[45], [46]

Construction data
integration for
enhanced productivity

-Data warehousing
-OLAP [41], [47]

Querying partial
BIM models
in information systems

-SQL
-EQL
-BIMQL

[48] [49]



TABLES 33

TABLE V. CLASSIFICATION-BASED WORKS FOR THE CONSTRUCTION INDUSTRY, CATEGORIZED PER CLASSIFICATION TECHNIQUE

Purpose of use Technique(s) employed References

Naı̈ve Bayes

Detecting structural
damages of buildings

-Gaussian distribution
-Probability density
function

[34]

Complex actions
classification of workers
and heavy machinery

-Bags-of-video-features
-Bayesian probability [35]

Stiffness reduction of
structures, caused by
earthquakes

-Bayesian
probability [36]

Decision Trees (DTs)

Assessment of mould
germination in
building structures

-Fault tree
analysis [66]

Construction labour
productivity assessment

-Augmented decision
tree [67]

Support Vector Machine (SVM)

Damage identification
in bridges

-SVM
-GA-RDF [68]

Automated construction
document classification

-SVM
-LSA [69]

Legal decision
support system

-SVM
-TF
-TF/IDF
-LTF

[70]

Semi-supervised fault detection
and isolation system for HVAC -SVM [71]

Artificial Neural Networks (ANN)

Structural fault detection,
caused by vibration and fatigue

-Transmissibility
Functions
-ANN

[72]

Fault classification system -GA
-ANN [73]

Structural damage detection

-Tuneable steepest
descent method
-Frequency response
function

[74]

Expert system for optimal
markup estimation -ANN [75]

Genetic Algorithms (GA)

Cost/schedule integrated
planning system for
optimal crew assignment

-GA
-Object sequencing
matrix

[76]

Risks imposed by schedule
and workspace conflicts

-GA
-Fuzzy logic [77]

Latent Semantic Analysis (LSA)

Automated construction
document classification -LSA [69]

Automated regulatory and contractual
compliance system -LSA [78]
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TABLE VI. CLASSIFICATION-BASED APPLICATIONS IN THE CONSTRUCTION INDUSTRY

Purpose of use Technique(s) employed References

Document classification

Document classification based
on CSI MasterFormat

-Boolean weighting
-Absolute frequency
-TF/IDF
-IFC weighting

[80]

Classifying post project review
documents

-SVM
-KNN
-DT
-Naı̈ve Bayes

[81]

Structured document retrieval
system

-SGML
-XML [82]

Document analysis

Unstructured document
analysis system -ML classifiers [83]

Image-based classification

Indexing construction
site imagery

-Whitening Transform
(WT)
-SVM
-Biased Discriminant
Transform (BDT)

[84]

Predicting overrun potential

Highway project bidding
system for overrun prediction - Ripple Down Rules [85]

Construction project estimation -ML algorithms [86]

Safety analysis

Worker behaviour
modelling to predict site
injury from construction
site videos

-Bayesian classifier [87]
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TABLE VII. SUMMARY OF OPPORTUNITIES WITHIN THE SUB-DOMAIN OF CONSTRUCTION INDUSTRY

Construction Industry
Sub-domains State of the Art Potential Opportunities

Resource and
Waste Optimization

-Construction waste generation estimation [105], [107]
-Waste generation benchmarking [107]
Comparative analysis of waste management performance [108]

-BIM tools to actualize circular economy for sustainability, green
supply chains, and closed-loop supply chains
-BIM tools for optimal & auto design specification
-BIM integrated materials database using open standards
-BIM integrated linked data for waste data management
-BIM based waste estimation using predictive analytics
-BIM based waste minimisation through deconstruction
-BIM based waste minimisation through resource optimisation
-BIM based waste minimisation through interactive visualisation

Generative Designs -Autodesk Dreamcatcher—a prototype system to showcase
the feasibility of this idea of generating design from abstract requirements

-Framework to exploit Big Data analytics to parallelize algorithms for
real time GD computation
-Big Data algorithms to accurately reduce the design space
-Big Data enabled GD tool

Clash Detection
and Resolution

-BIM enabled approaches are developed to resolve conflicts in MEP design,
however these approaches are time consuming [38]

-Big Data analytics based MEP design checker that uses prescriptive
analytics not only to identify conflicts but also describe the best
action to resolve it.

Performance
Prediction

-Pavement management system using pavement deterioration
prediction [109] -Big Data driven BIM system for pavement deterioration prediction

Visual Analytics -4D BIM Visualisation [110], energy user classification [111], using VA
-Cloud-based BIM system for design visualisation and exploration [112]

-Visual analytics driven Big Data framework for BIM model
visualisation
-Visual analytics driven design optimiser for energy reduction
and comfort maximisation

Social Networking
Services/ Analytics

-Integration of project management data using social networking [113]
-BIM, RFID, and social data integration [114]
-AR based Business social networking services (BSNS) [115]

-BIM framework for social network information modelling
using Big Data

Personalized
Services

-SPOT+ indoor air personalisation [116], SPOT* for heating/cooling [117]
-AdaHeat domestic heat regulator [118], Behavioural energy adaptation [119]

-Personalisation energy monitor that requires less user input to
regulate optimal energy consumption

Facility Management -BIM based indoor localisation [120], FM cost reduction through massive
data exploration [121], FM data modelling through BIM [122] -Big Data Analytics based BIM system for FM activities

Energy Management and
Analytics

-Energy simulation software (EnergyPlus) [123], energy management systems
[124], Cloud based energy data storage and processing [125], [126]
-Appliance event identification using NILM and Wire Spy [127], [128],
Energy user classification [111], IOT framework for energy analytics [128]

-Big Data framework for BIM based open energy data persistence
-Big Data analytics platform to simulate and optimise energy
usage of buildings

Big Data with BIM

-BIM models for building designs [129], [130], [131], [132], BIM models for
construction process documentation [133], BIM models for GIS data [134],
BIM for MEP conflict resolution [38], BIM open platform [135], BIM via
cloud [20], [136], [112], BIM and RFID [114], BIM models for project
management data [113], MapReduce savvy BIM data storage and processing [6]

-Big Data enabled IFC-compliant BIM storage system
-BIM platform for IOT applications
-Open data platform for linking BIM models with external sources
-Big Data enabled BIM processing platform to developing
applications

Big Data with Cloud
Computing

-Cloud based energy data management [125]
-Cloud based BIM data management [20]
-Cloud enabled BIM design data storage & exploration [112], [137], [136], [138]
-SaaS platform for structural MEP analysis [139]
-Cloud based BIM system for SMEs [140], [141]
-BIM based context-aware computing [142]
-Amazon EC2 enabled Google SketchUp [143], [144]
-Cloud based e-procurement platform [145]

-A BDA platform to store and process BIM models on cloud for
developing domain specific applications.

Big Data with Internet
of Things (IOT)

-RFID based construction document retrieval & assets
management system [146], [114]
-IOT based energy monitoring and analysis system [128], [147]
-Urban IOT, a framework for smart cities [148]

-Big Data driven IOT platform for Smart Buildings

Big Data for Smart
Buildings

-Project dasher for measuring and visualising CO2 emission of buildings [149]
-A robust firefighting systems for buildings [150]
-Complex event processing for smart buildings [151]
-DayFilter, for pattern recognition in energy data [152]

-Building Personalisation Services using Big Data
-Mobiles apps to exploit building personalisation services

Big Data with Augmented
Reality (AR)

-BIM2MAR, a platform to integrate BIM, mobile and AR [153]
-Web3D-based AR system for BIM and social networking services (SNS) [115]

-Big BIM Data Visual Exploration System
-Big Data and AR based virtual site exploration
-Big Data and AR enabled Proactive Dispute Identification
and resolution System
-Big Data and AR enabled As-planned vs. As-built
Comparison System


