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Abstract: A numerical algorithm based on the local radial basis function collocation method 

(LRBFCM) is developed for the efficient computation of the derivatives of the primary field 

quantities. Instead of a direct calculation of the derivatives by using the partial differentiation of 

the shape functions as in the traditional numerical approach, the derivative calculation in the 

present work is performed by using a simple finite difference scheme with an introduced fictitious 

node. The developed algorithm is very geometrically flexible and can be easily applied to the 

continuity and boundary conditions of arbitrary geometries, which require an accurate derivative 

computation of the primary field quantities. Based on the present numerical approach, the 

developed LRBFCM has been applied to the phononic crystals with scatterers of an arbitrary 

geometry, which has not yet been reported before to the authors’ knowledge. A few examples for 

anti-plane elastic wave propagation are modelled to validate the developed LRBFCM. A 

comparison with finite element modelling shows that the present method is efficient and flexible.  

  

Keywords: Phononic crystals, interface conditions, elastic wave propagation, band structures, 

eigenvalue problems, radial basis functions.  

 

1. Introduction  

Acoustic or elastic waves of a certain range of frequencies cannot propagate in periodic structures 

due to the periodic variation of material properties [1]. In order to evaluate the bandgaps that stop 

the wave propagation, different numerical methods have been applied to compute the band 

structures of phononic crystals, but most of the existing methods cannot efficiently undertake this 

challenging task. For example, a large number of elements are needed to ensure the continuity and 

the equilibrium conditions on solid-fluid interfaces when the conventional FEM is used [3-5]. 

Neglecting transverse waves in the solid parts might result in high numerical errors in the plane 

wave expansion method [6, 7] and the wavelet method [8, 9]. The multi-scattering theory method 

[10, 11] and the Dirichlet-to-Neumann map method [12, 13] are only suitable for scatterers with 

simple shapes such as circles and spheres. The boundary element method (BEM) [15, 16] involves 

singular integrals and may result in fictitious eigenfrequencies or missing of some 

eigenfrequencies. The generalized multipole technique [16, 17] is computationally very 

demanding because the band structure can only be obtained from the time domain using the Fast 

Fourier Transform method. The time-domain finite difference approach [18, 19] is able to consider 

different wave modes in solids and fluids but often has to neglect solid-fluid interactions at the 

interfaces. Therefore, accurate and efficient numerical methods are still needed to compute the 

band structures of phononic crystals. 
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The meshless method of the radial basis function collocation method (RBFCM) has been 

developed many years [23-25]. Due to the full matrix formulated in the RBFCM, the single local 

collocation approach is introduced, which is also known as the RBF-FD method or local RBFCM 

(LRBFCM) [26-30]. However, the instability caused by the Neumann boundary conditions limits 

its wider applications considerably [27, 31]. In order to solve this problem, special treatments 

were introduced to the LRBFCM for the derivation calculation. The fictitious nodes are introduced 

near the boundaries to increase the smooth of the solution and avoid of one side stencil [32, 33], 

however the fictitious nodes increase the size of the formulated matrix, and might have a 

limitation in the application of multi-domian eigenvalue problems; The least square method is 

introduced to develop LRBFCM to the phononics crystals [34, 35], but the only considered case is 

limited in the square lattice with square scatterers, the instability of the derivative calculation is 

still remain unsolved. The direct method, indirect method and fictitious node method were 

proposed for the derivative calculation in LRBFCM, and have been applied to phononic crystals 

of different problems [36-38]. However, these methods are still not easy to be applied to the 

phononic crystals with a complex geometry interface. By far, the LRBFCM has not yet been 

applied to the phononic crystals with a complex scatterer before. 

 

In this work, a simple approach is introduced in the LRBFCM to deal with the instability caused 

by derivative calculation. Unlike other finite difference form introduced in LRBFCM [27, 39], the 

derivative calculation in this presented work is evaluated by using a simple finite difference form 

between the source point and one introduced fictitious node, the derivative of any direction at any 

node can be easily evaluated. The introduced fictitious node does not increase the size of the 

formulated matrix, and can greatly increase the geometric flexibility of the LRBFCM. A boundary 

value problem is first introduced to present the stability of this new approach. The improved 

LRBFCM is then applied to compute the band structures of phononic crystals with scatterers of 

arbitrary geometry. Two examples with anti-plane elastic wave propagation were modelled using 

the improved method and the results were compared by FEM models. The paper is organized as 

follows. The general form of LRBFCM and the new numerical technique is given in section 2. 

The stability tests with a boundary value problem is given in the section 3. The problem of 

phononic crystals are briefly introduced in section 4. The numerical results of the phononic 

crystals are presented and discussed in section 5, followed by some conclusions in the last section. 

 

2. LRBFCM and the numerical technique for derivative calculation 

 

2.1 General formulation of LRBFCM  

 

In the LRBFCM formulation, the general solution of the field quantity u is approximated by 

  
1

( )

s
N

m m

m

u  



 x x x , (1)  

where Ns is the total number of local nodes, ᵠ the RBF, and 
m

  the unknown coefficient related 

to ( )
m

u x  of the local node at
m

x , which can be calculated by 
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 1

m


 u  ,                  (2) 

where 
1

[ ( ) , ... , ( )]
T

m
= u uu x x  is the vector of the field quantities of the local nodes (m=1, Ns), 

1 2
[ , , .. . , ]

T

m m
=     is the vector of unknown coefficients, and  

1 ,
s

j l
l j N 

  
 

x x   

is the RBF interpolation matrix with the size of Ns×Ns.  

 

Considering Eq. (1), Eq. (2) can be expressed as  

  
1

1

( )

s
N

m m

m

u  




  x x x u ,    (3) 

where 

   1
, . . . ,

s
N

    
 

 x x x x .                     (4)
 

In Eq. (3), 
1

  is the vector with the size of Ns that relates to local nodes. For convenience, 

the following definition is introduced 

1
( ) ( )


 x x .                            (5) 

Then the field quantities given in Eq. (3) can be expressed as  

 ( ) ( )u x x u .                           (6) 

From Eq. (6), it is easy to reformulate the vector ( )x  to a global vector by inserting zeros at 

proper positions. For simplicity, two global vectors ( )x and u  with the size of N (the number 

of global nodes) are defined by mapping the local ones with the size of Ns as 

 
lo c a l ( )      g lo b a l ( ) ,

lo c a l       g lo b a l ,





 x x

u u
 (7) 

where  1
( ) , ..., ( )

T

N
u uu x x  is the vector of field quantities in the global domain. The global 

vector 
1

( ) [ ( ), ..., ( )]
N

 x x x is a sparse vector related to the local vector. Using the 

relationships (7), Eq. (6) can be expressed as  

        ( ) ( ) ( )u  x x u x u  ,                           (8) 

where the unknown field quantity vector u  can be determined from governing partial differential 

equations and boundary conditions. ( ) x  is related to the the partial differentiation of ( ) x  

while 1
  is a constant matrix, i.e., 
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1( ) ( ) ( ) ( )
   ,    

i i i i

u

x x x x

   
  

   

 
   

x x x x
u u u


                (9) 

The function ( )x  obeys the Kronecker-delta property, ( )k m k m x  or 

 1( ) ( ) 0 , ..., ( ) 1, ..., ( ) 0m m m m N N     x x x x  and hence 

1 1

( ) ( ) ( ) ( ) ( ) ( )

N N

m m k m k km k m

k k

u x u u u 

 

     x u x x x x ,            (10) 

where the subscript m denotes the mth element of a vector, the corresponding field quantity at the 

mth node 
m

x = x . 

 

2.2 The numerical technique for derivative calculation 

 

n
d s

k
x

Real nodes

Fictitious nodes

 

Fig. 1 The improved fictitious node method 

 

 

The instabilities of the LRBFCM may stop the application of the LRBFCM. Many numerical 

approaches, such as residual based error [40,41], least-squares method [42,43], have been applied 

to deal with the instability of the collocation method [44, 45]. Instabilities of the LRBFCM may 

relate to shape parameter, local nodes, nodes distribution and so on. One of the key instabilies 

caused by the LRBFCM is the derivative calculation. In the proposed numerical approach of 

solving derivative, a fictitious node or ghost node is used as shown in Fig. 1. This fictitious node 

is interpolated by using the local nodes, and thus does not increase the size of the formulated 

matrix. The derivative of /u n  can be calculated in two steps. Firstly, the field quantity 

values on the fictitious node is interpolated using the information of the real nodes nearby, as 

shown in the circular area in Fig. 1. Hence we have 

 ( ) ( )
s

N
u x x u , (11) 

where 
1

[ ( ), ..., ( )]
s s

T

N N
= u uu x x  are the values of the field quantities at real nodes in the local 

domain, and x  is the fictitious node that does not exist in the reality. Then the derivative can be 
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formulated using a finite difference form instead of the RBF trial function, by subtracting the field 

quantity of the source node xk. The derivative of the field quantity can be expressed as   

 

( ) ( ) ( )
=

u u u

d s

 



x x x

n
,                           (12) 

where ds is the distance between the source node and the fictitious node, as shown in Fig. 3. 

Considering Eqs. (10) and (11), Eq. (12) can be rewritten as 

( ) ( ) ( ) ( ) ( )
=

s
N

u u u

d s d s

  




x x x x x
u

n

 
.               (13) 

As ( )x has the Kronecker-delta property ( )k m k m x , Eq. (13) can be further modified as 

 1
( ) , . . . , ( ) 1, . . . , ( )( ) ( ) k N

d s d s

  


x x xx x 
,            (14) 

where k denotes the node xk as shown in Fig. 1. In Eq. (14), the field quantity of the only 

fictitious node is interpolated using the local nodes in the small domain. Due to the 

Kronecker-delta property, the field quantity at the boundary node is given analytically in the 

derivative calculation, the accuracy and the stability of the derivative calculation is only related 

to the interpolation of the field quantity located at the fictitious node. As the distance ds is getting 

smaller, the accuracy of the derivative is greatly increasing in the LRBFCM. This approach 

combines the advantanges of the RBF interpolation and the Kronecker-delta property together, 

the derivative can easily be solved no matter how complex is the interface or boundary.  

 

3. The stability tests with a boundary value problem

  

In order to fully validate the proposed approach, a simple laplace case with a square domain is 

considered, as shown in Fig. 2. A uniform nodes distribution with 31×31 is considered to 

compare the proposed approach with the traditional LRBFCM, as shown in Fig.2. The Nuemann 

boundary condition is considered on right boundary. The shape parameter is fixed with ζs =1, the 

number of local nodes from 5 to 13 are tested as shown in Fig. 3. 9 nearest local nodes are 

employed including the inner domian and boundary nodes. The exact solutions of u(x)=sin(x)e
y 
is 

taken as the test function, numerical errors are given as follows
 

 /
n e e

E rro rs E E E   ,                      (15) 

 

where the Ee are the exact solution and En denote the numerical results. The multiquartic RBF is 

considered 

2

s
r    

 

where ζs is the shape parameter of the RBF and ζs >0.  
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Fig. 2 Uniform nodes distribution 
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Fig. 3 Comparision of the improved LRBFCM with Traditional LRBFCM 

 

As shown in Fig.3, the convergence rate of the proposed LRBFCM is much faster than 

traditional LRBFCM, the accuaracy and stability of the proposed LRBFCM increases as the ds 

diseases. The numerical results when ds=10
-3

 show that small value of ds  should be employed to 

keep a certain accuracy. Theoretically, smaller ds can always lead to better numerical results. 

However, singularity may influence numerical results as two nodes are getting close to each 

other.  

 

In order to show the improvement of the proposed approach, and further discuss the influence of 

the ds, the Neumann boundary conditions on all the boundaries, and only one single node 

information on the right above corner in Fig.4 is given. A disorder with the range of 0.01 is 

considered based on the same 31×31 uniform nodes to generate the random nodes distribution in 

Fig.4. The traditional LRBFCM may be difficult to solve this case due to difficulties in choosing 
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proper shape parameters and subdomain nodes 

. 
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Fig. 4 Nodes distribution of the considered domain 

 

The influence of ds with different shape parameters are presented in Fig. 5, where ds is changing 

from 10
-1

 to 10
-10

. Fig. 5 shows that the ds introduced can greatly enhance the LRBFCM for 

Neumann boundary conditions. As ds is decreasing before 10
-2

, the numerical results are getting 

better, this is because the accuracy of the of derivative is increasing as ds is getting smaller. ds 

between 10
-2

 and 10
-6

 always leads to good results, when ds is less than 10
-8

 the numerical results 

are becoming worse. This is because of the singularity when the nodes are too close.  

 

In general, the proposed numerical approach can well treat the Neumann boundary conditions for 

LRBFCM, ds between 10
-2

 and 10
-6

 is suggested. Based on this approach, the LRBFCM is 

developed to the phononic crystals with an arbitrary sactterers, where normal derivative in a 

complex interface must be proper treated. 
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shape parameter=6
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Fig. 5 The numerical results influence with different ds 
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3. Problem of Phononic crystals 

 

Since this work is mainly focus on an arbitrary scatterer phononic crystals, governing equations 

and related boundary conditions are briefly presented. More the RBF formulation of phononic 

please refer to [36]. 

 

3.1 Governing equations 

 

Consider a 2D phononic crystal composed of scatterers of an arbitrary shape embedded in a square 

matrix with the lattice constant a as illustrated in Fig. 6, where Γ1 to Γ4 and Γ1 to Γ6 represent the 

boundaries of a unit-cell, and Γ0 is the interface between the matrix and a scatterer. The governing 

equations of the anti-plane elastic waves in a homogeneous, isotropic and linear elastic solid are 

 

2

2
( ) ( )u u

c


  x x ,  (16) 

where ω is the rotation frequency, /
j j j

c    the elastic wave speed (j=1 for the scatterer 

domain D1 and 2 for the matrix domain D2), ρ the mass density and µ the shear modulus. 

 

 

y

x

a

2 / a

a1 a2 a3

1


2


3


1
D

4


0


2
D

4 / 3 a1
D

a

1


2


3


4


5


6


0


b1 b2 b3

y

x

3


2
D

 

 

Fig. 6 Phononic crystal structures: (a1), (a2) and (a3) represent the square lattice, the square 

unit-cell and the first Brillouin zone; (b1), (b2) and (b3) the triangular lattice, the hexagonal 

unit-cell and the first Brillouin zone. 

 

3.2 Interface conditions  

The continuity conditions on the interface Γ0 are expressed as 
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1 2
( ) ( )u ux x ,             0

 x ,              (17)
 

1 2

1 2

( ) ( )u u
 

 


 

x x

n n

,        
0

 x ,          (18) 

where  ,
T

x y
n nn is the outward unit normal vector of the scatterer. 

 

3.3 Periodic boundary conditions 

The periodic boundary conditions are given as 

 ( ) ( )
i

u e u 
k a

x a x
,
       (19) 

   ( ) ( )
i

t e t 
k a

x a x ,       
        

               (20) 

where ( , )
T

x y
k kk  is the Bloch wave vector, 1i   , 

( )
( )

u
t






x
x

n  

and 
1 1 2 2

l l a a a  

with (l1, l2)∈Z2
 , where a1 and a2 are fundamental translation vectors of the lattices. 

 

For the square lattice we have 

1 3

( ) ( )x
ik a

u e u
 
 x a x

,
      

2 4

( ) ( )
y

ik a

u e u
 

 x a x
,
      (21)

   
1 3

( ) ( )x
ik a

t e t
 
 x a x ,       

2 4

( ) ( )
y

ik a

t e t
 

 x a x ,           (22) 

where 
i


x (i=1~4) are the nodes on the boundaries Γi.  

 

For the triangular lattice we have:     

1 4 2 5 3 6

3 3

2 2 2 2

( ) ( ) , ( ) ( ) , ( ) ( ) ,
x y x y

y

a a
i k a k i k a k

ik a

u u e u u e u u e

   
       

   
   

     
  x x x x x x  (23)   

1 4 2 5 3 6

3 3

2 2 2 2

( ) ( ) , ( ) ( ) , ( ) ( ) .
x y x y

y

a a
i k a k i k a k

ik a

t t e t t e t t e

   
       

   
   

     
  x x x x x x

    (24) 

  

The generalized eigenvalue matrix can be formulated by substituting Eq. (8) into Eq. (16), Eq. 

(18), Eq. (22) or Eq. (24). The interface condition Eq. (17) and the periodic boundary condition Eq. 

(21) or Eq. (23) are considered analytically in the generalized eigenvalue matrix form.  

 

 

4 Numerical results and discussions 

 

The present LRBFCM is validated by comparison of numerical results with those obtained from 

finite element modelling using COMSOL
TM

 Multiphysics 5.0. There is little time difference due to 

different eigenvalue solvers of the LRBFCM and FEM. The generalized eigenvalue equation is 
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solved numerically by using the eigensolver in MATLAB. 9 local nodes are employed for both 

boundary and inner domain, ds=10
-6

 is employed, the shape parameter is choosen as 1. Scatterers 

made of gold (Au) and aluminium (Al) embedded in an epoxy matrix are modelled, respectively. 

The material constants are ρ1=19500kg/m
3 

and c1=1239m/s for Au and ρ1=2730kg/m
3 

and 

c1=3145m/s for Al, respectively.  ρ2=1180kg/m
3 

and c2=1161m/s for the epoxy. This leads to 

acoustic impedance ratio Z=ρ1c1/ρ2c2 =17.64 for Au and Z=6.46 for Al, respectively. 

 
 

4.1 Numerical results 

Square lattice 

The square lattice with a scatterer of star shape and its first Brillouin zone with 225 points are 

shown on the left and right hand side of Fig. 7 respectively. The band structures are obtained by 

sweeping all the first Brillouin zone points. 

2 / a

1


2


3


1
D

4


0


2
D

 

Fig. 7 Square lattice (left) and its related first Brillouin zone (right) 

 

An FE mesh with 2737 degrees of freedom and 1348 elements are used for comparison with the 

LRBFCM with 2585 degrees of freedom and 2454 nodes, as shown in Fig. 8 and Fig. 9, 

respectively. The corresponding band structures of the Au scatterer embedded in the epoxy matrix 

are shown in Fig. 10 and Fig. 11, respectively. It is clear that the present results agree quite well 

with the FEM results. The band gap can be easily calculated from the first and second band of 

eigenvalues. Fig. 12 and Fig. 13 show the band structures of the Al scatterer embedded in the 

epoxy matrix using the FEM and the LRBFCM, respectively. Again an excellent agreement can be 

seen, and different material properties do not affect the accuracy of numerical results.  
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Fig. 8 FEM mesh Fig. 9 Nodal distribution in RBF 

 

  

Fig. 10 Band structures of Au/Ep using FEM Fig. 11 Band structures of Au/Ep using 

LRBFCM 

 

  

Fig. 12 Band structures of Al/Ep using FEM Fig. 13 Band structures of Al/Ep using 

LRBFCM 

Triangular lattice 

 

The triangular lattice with a star shape scatterer is shown in Fig. 14 with 165 points used in the 

first Brillouin zone. For this example, 1487 degrees of freedom with 408 elements are employed 

in the FE mesh, and 2181 degrees of freedom with 2055 nodes used in the LRBFCM, as shown in 
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Fig. 15 and Fig. 16, respectively. Fig. 17 and Fig. 18 show the band structures of the Au scatterer 

case from the FEM and LRBFCM, respectively. The results for the Al scatterer case are shown in 

Fig. 19 and Fig. 20, respectively. All the results are in excellent agreement.  

1
D

1


2


3


4


5


6


0


3


2
D

4 / 3 a

 

Fig. 14 Triangular lattice (left) and its first Brillouin zone (right) 

 

  

Fig. 15 FEM mesh Fig. 16 Nodes distribution in RBF 

    

  

Fig. 17 Band structures of Au/Ep using FEM Fig. 18 Band structures of Au/Ep using 

LRBFCM 
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Fig. 19 Band structures of Al/Ep using FEM Fig. 20 Band structures of Al/Ep using 

LRBFCM 

   

4.3 Comparison and analysis  

The CPU times and errors of the FEM and the LRBFCM for the above numerical examples are 

given in Table 1. The lowest ten eigenvalues are compared and the errors are defined as 

/
r f r

E rro rs E E E   ,                      (25)
 

where Ef is the FEM result using COMSOL
TM

 Multiphysics and
 
Er the result of LRBFCM 

implemented in a Matlab code. All the simulations are run on a laptop with Intel(R) Core(TM) 

i7-4510U, 2.00 GHz CPU and 8 GB RAM.                    

 

Table 1 shows that the performance of the LRBFCM is much better than that of the FEM in 

general. Although more degrees of freedom are purposely employed in the LRBFCM for the 

examples, the computing time is much less than that required by the FEM, with more than 90% 

savings in all the cases considered here. The high efficiency of the present LRBFCM is attributed 

to the fact that it is based on a strong-form formulation of partial differential equations and does 

not need any numerical integration for computing the system matrices. The errors in Table 1 also 

shows that the improved LRBFCM can deal with the arbitrary interface very well. 

 

5. Conclusions  

In this paper, an improved numerical approach based on the LRBFCM has been developed to 

accurately compute the normal derivatives of field quantities, and thus the continuity conditions of 

arbitrary geometry interfaces can be treated more properly, the LRBFCM can be developed to the 

phononic crystal with scatterers of arbitrary geometry. Numerical results show that the improved 

LRBFCM is capable of very efficiently computing the band structure of phononic crystals with 

scatterers of arbitrary geometry. Due to its advantages in dealing with complicated boundary or 

interface shapes, the improved LRBFCM can be extended to simulate other problems such as 

acoustics, solid-fluid interaction, crack propagation and hydrodynamics with moving boundaries. 
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Table 1 Comparisons of computing time and accuracy for the phononic crystals 

Lattice form Square Triangular 

Material properties Au/Ep Al/Ep Au/Ep Al/Ep 

RBF Degrees of freedom 
2585 2585 2055 2055 

Time spent [s] 88.8 92.24 48.8 52.9 

 

FEM 

Degrees of freedom 
2055 2055 1487 1487 

Time spent [s] 1003 1130 463 412 

Comparison 

Errors 0.00698 0.00335 0.00410 0.00205 

Time saving 91.14% 91.84% 96.72% 96.44% 
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